Sample records for icosahedral zr-al-ni-cu-ag quasicrystals

  1. Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn

    2016-06-15

    The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences ofmore » the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.« less

  2. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  3. Al-centered icosahedral ordering in Cu46Zr46Al8 bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Fang, H. Z.; Hui, X.; Chen, G. L.; Liu, Z. K.

    2009-03-01

    Icosahedral short-range order, of which Al atoms are caged in the center of icosahedra with Cu and Zr atoms being the vertices, has been evidenced in the Cu46Zr46Al8 glassy structure by ab initio molecular dynamics simulation. These Al-centered clusters distribute irregularly in the three-dimensional space and form a "backbone" structure of the Cu46Zr46Al8 glass alloy. It is suggested that this kind of local structural feature is attributed to the requirement of efficient dense packing and the chemical affinity between Zr-Zr, Zr-Al, and Cu-Zr atoms. Our calculated results are found to be in good agreement with the experimental data.

  4. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al(6)CuLi(3), the C-phase Al(37)Cu(3)Li(21)Mg(3), and GaMg(2)Zn(3).

    PubMed

    Pauling, L

    1988-06-01

    Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.

  5. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al6CuLi3, the C-phase Al37Cu3Li21Mg3, and GaMg2Zn3

    PubMed Central

    Pauling, Linus

    1988-01-01

    Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929

  6. Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al 63Cu 24Fe 13 at high temperature

    DOE PAGES

    Stagno, Vincenzo; Bindi, Luca; Park, Changyong; ...

    2015-11-20

    Icosahedrite, the first natural quasicrystal with composition Al 63Cu 24Fe 13, was discovered in several grains of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite. The presence in the meteorite fragments of icosahedrite strictly associated with high-pressure phases like ahrensite and stishovite indicates a formation conditions at high pressures and temperatures, likely during an impact-induced shock occurred in contact with the reducing solar nebula gas. In contrast, previous experimental studies on the stability of synthetic icosahedral AlCuFe, which were limited to ambient pressure, indicated incongruent melting at ~1123 K, while high-pressure experiments carried out at room temperature showed structural stabilitymore » up to about 35 GPa. These data are insufficient to experimentally constrain the formation and stability of icosahedrite under extreme conditions. Here we present the results of in situ high pressure experiments using diamond anvil cells of the compressional behavior of synthetic icosahedrite up to ~50 GPa at room temperature. Simultaneous high P-T experiments have been also carried out using both laser-heated diamond anvil cells combined with in situ synchrotron X-ray diffraction (at ~42 GPa) and multi-anvil apparatus (at 21 GPa) to investigate the structural evolution of icosahedral Al 63Cu 24Fe 13 and crystallization of possible coexisting phases. The results demonstrate that the quasiperiodic symmetry of icosahedrite is retained over the entire experimental pressure range explored. In addition, we show that pressure acts to stabilize the icosahedral symmetry at temperatures much higher than previously reported. Based on our experimental study, direct crystallization of Al-Cu-Fe quasicrystals from an unusual Al-Cu-rich melt would be possible but limited to a narrow temperature range beyond which crystalline phases would form, like those observed in the Khatyrka meteorite. Here, an alternative mechanism would consist in late

  7. Diffuse Scattering in the Icosahedral AL-Li-Cu Quasicrystal

    NASA Astrophysics Data System (ADS)

    Proult, A.; Donnadieu, P.; Wang, K.; Garoche, P.

    1995-12-01

    Electron diffraction patterns of icosahedral quasicrystals frequently exhibit diffuse scattering features. We report a detailed analysis of diffuse scattering in Al{6}Li{3}Cu (T2) quasicrystalline samples. The samples have been specifically heat-treated which allows to observe pronounced diffuse effects. Diffuse streaks are observed along the 5-fold and 2-fold symmetry axes and are elongated perpendicularly to these directions. These streaks are due to discs in the 3-dimensional reciprocal space. The diffuse disc positions are only indexable in the 6-dimensional hyperspace but the disc intensities do not agree with the ones predicted by the Cut-and-Project method. The diffuse discs we observed seem to be related to an original quasicrystalline phenomenon overlapping with the icosahedral phase. Les diagrammes de diffraction électronique des quasicristaux icosaédriques présentent fréquemment des diffusions diffuses. Nous les analysons ici en détails sur des échantillons de phase quasicristalline Al{6}Li{3}Cu (T2) traités thermiquement dans lesquels les diffusions diffuses sont trés prononcées. Les intensités diffuses forment des batônnets centrés sur des positions appartenant aux rangées réciproques d'ordre 5 et d'ordre 2 et allongés perpendiculairement à ces directions. On montre qu'il s'agit en fait de disques diffus. dans le réseau réciproque à 3 dimensions, dont les positions ne peuvent s'indexer que sur le réseau à 6 dimensions. Toutefois, les intensités ne correspondent pas à celle prédites par l'algorithme de Coupe-et-Projection. Les disques de diffusion diffuse semblent relever d'une organisation quasicristalline originale se superposant à la phase icosaédrique.

  8. Nanocrystallization of Zr-Cu-Ni-Al-Au glassy alloys during severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiro; Kamisato, Ryo; Yamasaki, Tohru; Adachi, Hiroki; Tsuchiya, Koichi; Yokoyama, Yoshihiko

    2014-08-01

    A study has been carried out into the formation of nanocrystalline grains during high-pressure torsion (HPT) deformation of Zr65Cu17Ni5Al10Au3 bulk alloys prepared using tilt casting. As a preliminary to this, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were carried out on as-cast Zr65+xCu17-xNi5Al10Au3 (x=0~5 at.%) and Zr65Cu20Ni5Al10Au3 alloys, in order to determine the effect on the microstructure of the excess Zr content x and the presence of Au. From the XRD patterns, it was determined that all of the alloys had a metallic glassy nature. For Zr65Cu17Ni5Al10Au3, the DSC results indicated the presence of a wide supercooled liquid region between the glass transition temperature (Tg) of 644 K and the crystallization temperature of 763 K, where the stable body-centered tetragonal Zr2Cu phase was formed. In contrast, for the Zr65+xCu17-xNi5Al10Au3 alloys, precipitation of an icosahedral quasicrystalline phase (I-phase) was observed in the supercooled liquid region at about 715 K. HPT deformation of the Zr65Cu17Ni5Al10Au3 alloys was carried out under a high pressure of 5 GPa. Both as-cast specimens and those annealed at Tg-50 K for 90 min were used. Following a single HPT rotation (N=1), transmission electron microscopy identified the presence of face- centered cubic Zr2Ni precipitates in the as-cast alloy, with a size of about 50 nm. For the annealed alloy, a high density of I-phase precipitates with sizes of less than 10 nm was observed following HPT with N=10, indicating that the combination of severe plastic deformation and annealing is effective at producing extremely small grains.

  9. The deviations of the Al6Li3Cu quasicrystal from icosahedral symmetry : a reminiscence of a cubic crystal

    NASA Astrophysics Data System (ADS)

    Donnadieu, Patricia

    1994-05-01

    The (Al6Li3Cu) (T2) quasicrystals are known to exhibit large deviations from the icosahedral symmetry. Series of electron diffraction patterns are used to investigate these imperfections in as-cast T, samples. A detailed analysis of the 5-fold and 3-fold symmetry diffraction patterns shows that they are compatible with the m3 point group instead of the m35 icosahedral group. This symmetry reduction is interprétéd as reminiscent of the cubic approximant phase (R-Al5Li3Cu) rather than of higher order approximant phases. This interpretation is supported by previous observations on crystal/quasicrystal phase transformation in the AlLiCu system. Les quasicristaux de phase T2(Al6Li3Cu) montrent d'importantes déviations à la symétrie icosaédrique. Ces imperfections sont mises en évidence par diffraction électronique dans des échantillons de phase T2 brut de coulée. Un examen détaillé des diagrammes de diffraction de symétrie d'ordre 3 et 5 révèle qu'ils sont compatibles avec le groupe ponctuel m3 au lieu du groupe de l'icosaèdre (m35). Cette réduction de symétrie est interprétée comme une réminiscence de la phase cubique approximante (R-Al5Li3Cu) et non l'apparition d'approximant d'ordre plus élevé. Cette interprétation est suggérée par des observations antérieures sur la transformation cristal/quasicristal dans le système AlLiCu.

  10. Analysis of pulsed-neutron powder diffraction patterns of the icosahedral quasicrystals Pd3Siu and AlCuLiMg (three alloys) as twinned cubic crystals with large units.

    PubMed Central

    Pauling, L

    1991-01-01

    The low-Q peaks on three pulsed-neutron powder patterns (total, U differential, and Pd differential) of the icosahedral quasicrystal Pd3SiU have been indexed on the basis of an assumed cubic structure of the crystals that by icosahedral twinning form the quasicrystal. The primitive unit cube is found to have edge length 56.20 A and to contain approximately 12,100 atoms. Similar analyses of pulsed-neutron patterns of Al55Cu10Li35, Al55Cu10Li30Mg5, and Al510Cu125Li235Mg130 give values of the cube edge length 58.3, 58.5, and 58.4 A, respectively, with approximately 11,650 atoms in the unit cube. It is suggested that the unit contains eight complexes in the beta-W positions, plus some small interstitial groups of atoms, with each complex consisting of a centered icosahedron of 13 clusters, each of 116 atoms with the icosahedral structure found in the body-centered cubic crystal Mg32(Al,Zn)49. PMID:11607201

  11. Analysis of pulsed-neutron powder diffraction patterns of the icosahedral quasicrystals Pd3Siu and AlCuLiMg (three alloys) as twinned cubic crystals with large units.

    PubMed

    Pauling, L

    1991-08-01

    The low-Q peaks on three pulsed-neutron powder patterns (total, U differential, and Pd differential) of the icosahedral quasicrystal Pd3SiU have been indexed on the basis of an assumed cubic structure of the crystals that by icosahedral twinning form the quasicrystal. The primitive unit cube is found to have edge length 56.20 A and to contain approximately 12,100 atoms. Similar analyses of pulsed-neutron patterns of Al55Cu10Li35, Al55Cu10Li30Mg5, and Al510Cu125Li235Mg130 give values of the cube edge length 58.3, 58.5, and 58.4 A, respectively, with approximately 11,650 atoms in the unit cube. It is suggested that the unit contains eight complexes in the beta-W positions, plus some small interstitial groups of atoms, with each complex consisting of a centered icosahedron of 13 clusters, each of 116 atoms with the icosahedral structure found in the body-centered cubic crystal Mg32(Al,Zn)49.

  12. Magnetism in icosahedral quasicrystals: current status and open questions

    DOE PAGES

    Goldman, Alan I.

    2014-07-02

    Progress in our understanding of the magnetic properties of R-containing icosahedral quasicrystals (R = rare earth element) from over 20 years of experimental effort is reviewed. This includes the much studied R-Mg-Zn and R-Mg-Cd ternary systems, as well as several magnetic quasicrystals that have been discovered and investigated more recently including Sc-Fe-Zn, R-Ag-In, Yb-Au-Al, the recently synthesized R-Cd binary quasicrystals, and their periodic approximants. In many ways, the magnetic properties among these quasicrystals are very similar. However, differences are observed that suggest new experiments and promising directions for future research.

  13. Orientation relationship between the T structure and the icosahedral quasicrystal in the Zn-Mg-Al alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Kei, E-mail: k.n@aoni.waseda.jp; Watanabe, Junya; Koyama, Yasumasa, E-mail: ykoyama@waseda.jp

    2016-08-26

    To understand the crystallographic relation between the Bergman-type icosahedral quasicrystal and its approximant-T structure, we have investigated the crystallographic features of prepared Zn-Mg-Al alloy samples, mainly by transmission electron microscopy. It was found that there existed three kinds of regions: that is, C14-Laves, approximant-T, and icosahedral-quasicrystal regions, in Zn-Mg-Al alloy samples with the composition of Zn-36at.%Mg-9at.%Al. Among these regions, in particular, we tried to determine an orientation relationship between neighboring icosahedral-quasicrystal and approximant-T regions. Based on the determined relationship, for instance, four threefold rotatory-inversion axes in the T structure were found to be parallel to four of ten threefold rotatory-inversionmore » axes in the icosahedral quasicrystal. It was thus understood that the atomic arrangements of the Bergman-type icosahedral quasicrystal and its approximant-T structure are likely to resemble each other.« less

  14. Icosahedral quasicrystals of intermetallic compounds are icosahedral twins of cubic crystals of three kinds, consisting of large (about 5000 atoms) icosahedral complexes in either a cubic body-centered or a cubic face-centered arrangement or smaller (about 1350 atoms) icosahedral complexes in the β-tungsten arrangement

    PubMed Central

    Pauling, Linus

    1989-01-01

    The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al13Cu4Fe3, contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al5Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al6CuLi3, contains eight icosahedral complexes, each of about 1350 atoms, in the β-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified. Images PMID:16594078

  15. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; McGrath, R.; Sharma, H. R.

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized bymore » x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.« less

  16. As-Cast Icosashedral Quasicrystals in Ti-Zr-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Lee, Geun Woo; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2002-03-01

    Most Ti-based icosahedral quasicrystals (i-phase) obtained by rapid quenching from the melt are metastable and disordered. In contrast, the Ti-Zr-Ni i-phase prepared by low temperature annealing is stable and better ordered. This i-phase is formed by a solid-state transformation from C14 Laves phase and α (Ti/Zr) solid-solution phase. It has not been possible previously to grow this i-phase directly from the liquid. Here, the nucleation and growth of the i-phase from the liquid in as-cast Ti-Zr-Ni alloys is reported. Pentagonal growth ledges in as-cast Ti-Zr-Ni ingots are clearly observed. Transmission electron microscopy and x-ray diffraction studies confirm the phase identity. Differential scanning calorimetry measurements show an endothermic transformation from the i-phase to a phase mixture of the C14 Laves and solid-solution phases, demonstrating that this i-phase is also stable. The short time that the liquid remains in the Laves phase-forming-field and the higher nucleation rate of the i-phase, owing to the presumed similarity between the local atomic structures of the i-phase and liquid, allows the i-phase to nucleate and grow directly from the liquid. Container-less solidification studies using electrostatic levitation (ESL) techniques support this conclusion.

  17. Unified structure theory of icosahedral quasicrystals: Evidence from neutron powder diffraction patterns that AlCrFeMnSi, AlCuLiMg, and TiNiFeSi icosahedral quasicrystals are twins of cubic crystals containing about 820 or 1012 atoms in a primitive unit cube

    PubMed Central

    Pauling, Linus

    1988-01-01

    A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990

  18. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  19. On the kinetic and equilibrium shapes of icosahedral Al 71Pd 19Mn 10 quasicrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senabulya, Nancy; Xiao, Xianghui; Han, Insung

    The dynamics of growth and relaxation of icosahedral single quasicrystals in a liquid phase were investigated using in situ synchrotron-based X-ray tomography. Here, our 4D studies (i.e., space- and time-resolved) provide direct evidence that indicates the growth process of an Al 71Pd 19Mn 10 quasicrystal is governed predominantly by bulk transport rather than attachment kinetics. This work is in agreement with theoretical predictions, which show that the pentagonal dodecahedron is not the minimum energy structure in Al-Pd-Mn icosahedral quasicrystals, but merely a growth shape characterized by non-zero anisotropic velocity. This transient shape transforms into a truncated dodecahedral Archimedian polyhedron oncemore » equilibrium has been attained.« less

  20. On the kinetic and equilibrium shapes of icosahedral Al 71Pd 19Mn 10 quasicrystals

    DOE PAGES

    Senabulya, Nancy; Xiao, Xianghui; Han, Insung; ...

    2018-03-06

    The dynamics of growth and relaxation of icosahedral single quasicrystals in a liquid phase were investigated using in situ synchrotron-based X-ray tomography. Here, our 4D studies (i.e., space- and time-resolved) provide direct evidence that indicates the growth process of an Al 71Pd 19Mn 10 quasicrystal is governed predominantly by bulk transport rather than attachment kinetics. This work is in agreement with theoretical predictions, which show that the pentagonal dodecahedron is not the minimum energy structure in Al-Pd-Mn icosahedral quasicrystals, but merely a growth shape characterized by non-zero anisotropic velocity. This transient shape transforms into a truncated dodecahedral Archimedian polyhedron oncemore » equilibrium has been attained.« less

  1. Inelastic neutron scattering study of icosahedral AlFeCu quasicrystal

    NASA Astrophysics Data System (ADS)

    Quilichini, M.; Hennion, B.; Heger, G.; Lefebvre, S.; Quivy, A.

    1992-02-01

    Dynamical properties of quasiperiodic structures are rather tricky and far from being understood. For quasicrystals only little information is available both theoretically and experimentally. In this paper we present new experimental results obtained by inelastic neutron scattering on a monodomain quasicrystal of Al{63}Cu{25}Fe{12} already investigated in a previous study [1]. In section 1 we recall the basic features of the quasiperiodic structures and briefly review theoretical works on the dynamics of quasicrystals which can be of some help to appreciate the experimental data presented in section 2 and discussed in section 3. Les propriétés dynamiques des structures quasipériodiques sont complexes et pas encore complètement comprises. Pour les quasicristaux on ne possède que peu d'études dynamiques tant du point de vue théorique qu'expérimental. Dans cette lettre nous présentons des nouveaux résultats obtenus par diffusion inélastique de neutrons avec un quasicristal monodomaine de Al{63}Cu{25}Fe{12} que nous avions déjà étudié [1]. Dans la partie 1 nous rappelons quelques propriétés spécifiques des structures quasipériodiques et nous résumons brièvement les travaux théoriques qui nous permettent une interprétation qualitative des données expérimentales présentées dans la partie 2 et discutées dans la partie 3.

  2. Advances in Natural Quasicrystals and Quasicrystal Tilings

    NASA Astrophysics Data System (ADS)

    Lin, Chaney C.

    The first part of this dissertation reports recent progress on natural quasicrystals. We present new evidence from a fragment of the quasicrystal-bearing CV3 carbonaceous chondritic meteorite Khatyrka that shows cross-cutting relationships and redox reaction between Al-Cu-bearing alloys and silicate phases. The new evidence establishes that the Al-Cu-bearing alloys (including quasicrystals) formed in outer space during a complex, multi-stage process. Some Al-bearing grains (including some quasicrystals) formed as a direct result of an impact in space a few 100 Ma. Most other Al-bearing grains (including quasicrystals) existed prior to the impact and thus formed in space at an earlier time. We also present the discovery of two new quasicrystals, including a second distinct Al-Cu-Fe icosahedral phase in Khatyrka--the first quasicrystal found in nature prior to discovery in the lab--and a synthetic Al-Fe-Cu-Cr-Ni icosahedral phase--the first quasicrystal to be synthesized in a laboratory shock experiment. In the second part of this dissertation, we explore how different local isomorphism (LI) classes of quasicrystals vary in their structural and physical properties. We examine the continuum of LI classes of pentagonal quasicrystal tilings obtained by direct projection from a five-dimensional hypercubic lattice. Our initial focus is on hyperuniformity, the suppression of long-wavelength density fluctuations relative to typical structurally disordered systems. We study how the degree of hyperuniformity depends on LI class. The results show that the degree of hyperuniformity is dominantly determined by the local distribution of vertex environments, and also exhibits a non-negligible dependence on the restorability. Among the pentagonal quasicrystal tilings, the Penrose tiling is the most hyperuniform. The difference in the degree of hyperuniformity is expected to affect physical characteristics, such as transport properties. We then turn to a study of photonic

  3. Evolution of Nano-structured Quasicrystals from Amorphous alloys

    NASA Astrophysics Data System (ADS)

    Xing, L. Q.; Kelton, K. F.

    2002-03-01

    Ta shows a significant effect on the precipitation of quasicrystals in (Zr_1-xTa_x)_64Cu_18Ni_8Al_10 amorphous alloys. The amorphous alloy made without Ta forms precipitates of tetragonal Zr_2Cu primary phases upon annealing. The addition of a small amount of Ta ( ~ 3 at%) to the alloy initiates the precipitation of primary icosahedral quasicrystal phases. Moreover, as the Ta concentration increases, the size of the precipitates decreases dramatically. To study the effect of Ta in this alloy system and to understand the mechanism for the precipitation of nano-structured quasicrystals, we have investigated the crystallization characteristics of the alloys made with different Ta concentration using DSC, checked the structures of the annealed samples with TEM and X-ray diffraction, and analyzed the kinetics of the crystallization processes. The kinetic parameter and the measured crystal size distribution will be compared with theoretical predictions from conventional nucleation and growth model and from a new model for nucleation that couples the long-range diffusion flux with the interfacial attachment processes.

  4. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-03-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0> is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2> and < 0,2,8,1> , are prominent. And the < 0,2,8,2> polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centered clusters, while the < 0,0,12,0> in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. The relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.

  5. Ab initio molecular dynamics simulations of short-range order in Zr 50Cu 45Al 5 and Cu 50Zr 45Al 5 metallic glasses

    DOE PAGES

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; ...

    2016-02-01

    Comparative analysis between Zr-rich Zr 50Cu 45Al 5 and Cu-rich Cu 50Zr 45Al 5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr 50Cu 45Al 5 and Cu 50Zr 45Al 5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and , are prominent. And the < 0,2,8,2 > polyhedra in Cu 50Zr 45Al 5 MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr 50Cu 45Al 5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr 50Cu 45Al 5.« less

  6. Metallic-covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants.

    PubMed

    Takagiwa, Yoshiki; Kimura, Kaoru

    2014-08-01

    In this article, we review the characteristic features of icosahedral cluster solids, metallic-covalent bonding conversion (MCBC), and the thermoelectric properties of Al-based icosahedral quasicrystals and approximants. MCBC is clearly distinguishable from and closely related to the well-known metal-insulator transition. This unique bonding conversion has been experimentally verified in 1/1-AlReSi and 1/0-Al 12 Re approximants by the maximum entropy method and Rietveld refinement for powder x-ray diffraction data, and is caused by a central atom inside the icosahedral clusters. This helps to understand pseudogap formation in the vicinity of the Fermi energy and establish a guiding principle for tuning the thermoelectric properties. From the electron density distribution analysis, rigid heavy clusters weakly bonded with glue atoms are observed in the 1/1-AlReSi approximant crystal, whose physical properties are close to icosahedral Al-Pd-TM (TM: Re, Mn) quasicrystals. They are considered to be an intermediate state among the three typical solids: metals, covalently bonded networks (semiconductor), and molecular solids. Using the above picture and detailed effective mass analysis, we propose a guiding principle of weakly bonded rigid heavy clusters to increase the thermoelectric figure of merit ( ZT ) by optimizing the bond strengths of intra- and inter-icosahedral clusters. Through element substitutions that mainly weaken the inter-cluster bonds, a dramatic increase of ZT from less than 0.01 to 0.26 was achieved. To further increase ZT , materials should form a real gap to obtain a higher Seebeck coefficient.

  7. Structural properties of medium-range order in CuNiZr alloy

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei

    2017-10-01

    The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.

  8. Mysteries of icosahedral quasicrystals: how are the atoms arranged?

    PubMed

    Ishimasa, Tsutomu

    2016-07-01

    Higher-dimensional structure analysis of quasicrystals is now possible. Yamada et al. [IUCrJ (2016), 3, 247-258] have solved the atomic structure of icosahedral ScZn7.33 including the characteristic imperfections.

  9. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions.

    PubMed

    Asimow, Paul D; Lin, Chaney; Bindi, Luca; Ma, Chi; Tschauner, Oliver; Hollister, Lincoln S; Steinhardt, Paul J

    2016-06-28

    We designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg0.75Fe(2+) 0.25)2SiO4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al68-73Fe11-16Cu10-12Cr1-4Ni1-2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystal in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.

  10. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions

    NASA Astrophysics Data System (ADS)

    Asimow, Paul D.; Lin, Chaney; Bindi, Luca; Ma, Chi; Tschauner, Oliver; Hollister, Lincoln S.; Steinhardt, Paul J.

    2016-06-01

    We designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg0.75Fe2+0.25)2SiO4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al68-73Fe11-16Cu10-12Cr1-4Ni1-2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystal in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.

  11. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    PubMed

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-05-27

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  12. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-05-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  13. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    PubMed Central

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-01-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design. PMID:27230692

  14. Evidence from electron micrographs that icosahedral quasicrystals are icosahedral twins of cubic crystals.

    PubMed

    Pauling, L

    1990-10-01

    An analysis of electron micrographs of Al5Mn quasicrystals obtained by rapidly cooling a molten alloy with composition Al17Mn and removing the Al matrix by electrosolution, revealing aggregates of 20 microcrystals at the corners of a pentagonal dodecahedron, supports the proposal that these microcrystals are cubic crystals twinned about an icosahedral seed, with each cubic microcrystal sharing a threefold axis and three symmetry planes with the seed.

  15. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    NASA Astrophysics Data System (ADS)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  16. Atomic clusters and atomic surfaces in icosahedral quasicrystals.

    PubMed

    Quiquandon, Marianne; Portier, Richard; Gratias, Denis

    2014-05-01

    This paper presents the basic tools commonly used to describe the atomic structures of quasicrystals with a specific focus on the icosahedral phases. After a brief recall of the main properties of quasiperiodic objects, two simple physical rules are discussed that lead one to eventually obtain a surprisingly small number of atomic structures as ideal quasiperiodic models for real quasicrystals. This is due to the fact that the atomic surfaces (ASs) used to describe all known icosahedral phases are located on high-symmetry special points in six-dimensional space. The first rule is maximizing the density using simple polyhedral ASs that leads to two possible sets of ASs according to the value of the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second rule is maximizing the number of complete orbits of high symmetry to construct as large as possible atomic clusters similar to those observed in complex intermetallic structures and approximant phases. The practical use of these two rules together is demonstrated on two typical examples of icosahedral phases, i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).

  17. Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21 GPa: Implications for the quasicrystal-bearing Khatyrka meteorite

    NASA Astrophysics Data System (ADS)

    Stagno, Vincenzo; Bindi, Luca; Steinhardt, Paul J.; Fei, Yingwei

    2017-10-01

    Two of the three natural quasiperiodic crystals found in the Khatyrka meteorite show a composition within the Al-Cu-Fe system. Icosahedrite, with formula Al63Cu24Fe13, coexists with the new Al62Cu31Fe7 quasicrystal plus additional Al-metallic minerals such as stolperite (AlCu), kryachkoite [(Al,Cu)6(Fe,Cu)], hollisterite (AlFe3), khatyrkite (Al2Cu) and cupalite (AlCu), associated to high-pressure phases like ringwoodite/ahrensite, coesite, and stishovite. These high-pressure minerals represent the evidence that most of the Khatyrka meteoritic fragments formed at least at 5 GPa and 1200 °C, if not at more extreme conditions. On the other hand, experimental studies on phase equilibria within the representative Al-Cu-Fe system appear mostly limited to ambient pressure conditions, yet. This makes the interpretation of the coexisting mineral phases in the meteoritic sample quite difficult. We performed experiments at 3, 5 and 21 GPa and temperatures of 800-1500 °C using the multi-anvil apparatus to investigate the phase equilibria in the Al65Cu23Fe12 system representative of the first natural quasicrystal, icosahedrite. Our results, supported by single-crystal X-ray diffraction and analyses by scanning electron microscopy, confirm the stability of icosahedrite at high pressure and temperature along with additional coexisting Al-bearing phases representative of khatyrkite and stolperite as those found in the natural meteorite. One reversal experiment performed at 5 GPa and 1200 °C shows the formation of the icosahedral quasicrystal from a pure Al, Cu and Fe mixture, a first experimental synthesis of icosahedrite under those conditions. Pressure appears to not play a major role in the distribution of Al, Cu and Fe between the coexisting phases, icosahedrite in particular. Results from this study extend our knowledge on the stability of icosahedral AlCuFe at higher temperature and pressure than previously examined, and provide a new constraint on the stability of

  18. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions

    DOE PAGES

    Asimow, Paul D.; Lin, Chaney; Bindi, Luca; ...

    2016-06-28

    Here, we designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg 0.75Fe 0.25 2+) 2SiO 4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al 68-73Fe 11-16Cu 10-12Cr 1-4Ni 1-2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystalmore » in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.« less

  19. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asimow, Paul D.; Lin, Chaney; Bindi, Luca

    Here, we designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg 0.75Fe 0.25 2+) 2SiO 4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al 68-73Fe 11-16Cu 10-12Cr 1-4Ni 1-2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystalmore » in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.« less

  20. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Baris

    2008-01-01

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Ourmore » STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical

  1. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE PAGES

    Gammer, C.; Escher, B.; Ebner, C.; ...

    2017-03-21

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  2. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammer, C.; Escher, B.; Ebner, C.

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  3. Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory.

    PubMed

    Bindi, Luca; Lin, Chaney; Ma, Chi; Steinhardt, Paul J

    2016-12-08

    We report the first occurrence of an icosahedral quasicrystal with composition Al 62.0(8) Cu 31.2(8) Fe 6.8(4) , outside the measured equilibrium stability field at standard pressure of the previously reported Al-Cu-Fe quasicrystal (Al x Cu y Fe z , with x between 61 and 64, y between 24 and 26, z between 12 and 13%). The new icosahedral mineral formed naturally and was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite that experienced shock metamorphism, local melting (with conditions exceeding 5 GPa and 1,200 °C in some locations), and rapid cooling, all of which likely resulted from impact-induced shock in space. This is the first example of a quasicrystal composition discovered in nature prior to being synthesized in the laboratory. The new composition was found in a grain that has a separate metal assemblage containing icosahedrite (Al 63 Cu 24 Fe 13 ), currently the only other known naturally occurring mineral with icosahedral symmetry (though the latter composition had already been observed in the laboratory prior to its discovery in nature). The chemistry of both the icosahedral phases was characterized by electron microprobe, and the rotational symmetry was confirmed by means of electron backscatter diffraction.

  4. Natural quasicrystal with decagonal symmetry

    NASA Astrophysics Data System (ADS)

    Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S.; Andronicos, Christopher L.; Distler, Vadim V.; Eddy, Michael P.; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J.; Steinhardt, William M.; Yudovskaya, Marina; Steinhardt, Paul J.

    2015-03-01

    We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) <= 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.

  5. About the atomic structures of icosahedral quasicrystals

    NASA Astrophysics Data System (ADS)

    Quiquandon, Marianne; Gratias, Denis

    2014-01-01

    This paper is a survey of the crystallographic methods that have been developed these last twenty five years to decipher the atomic structures of the icosahedral stable quasicrystals since their discovery in 1982 by D. Shechtman. After a brief recall of the notion of quasiperiodicity and the natural description of Z-modules in 3-dim as projection of regular lattices in N>3-dim spaces, we give the basic geometrical ingredients useful to describe icosahedral quasicrystals as irrational 3-dim cuts of ordinary crystals in 6-dim space. Atoms are described by atomic surfaces (ASs) that are bounded volumes in the internal (or perpendicular) 3-dim space and the intersections of which with the physical space are the actual atomic positions. The main part of the paper is devoted to finding the major properties of quasicrystalline icosahedral structures. As experimentally demonstrated, they can be described with a surprisingly few high symmetry ASs located at high symmetry special points in 6-dim space. The atomic structures are best described by aggregations and intersections of high symmetry compact interpenetrating atomic clusters. We show here that the experimentally relevant clusters are derived from one generic cluster made of two concentric triacontahedra scaled by τ and an external icosidodecahedron. Depending on which ones of the orbits of this cluster are eventually occupied by atoms, the actual atomic clusters are of type Bergman, Mackay, Tsai and others….

  6. Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory

    PubMed Central

    Bindi, Luca; Lin, Chaney; Ma, Chi; Steinhardt, Paul J.

    2016-01-01

    We report the first occurrence of an icosahedral quasicrystal with composition Al62.0(8)Cu31.2(8)Fe6.8(4), outside the measured equilibrium stability field at standard pressure of the previously reported Al-Cu-Fe quasicrystal (AlxCuyFez, with x between 61 and 64, y between 24 and 26, z between 12 and 13%). The new icosahedral mineral formed naturally and was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite that experienced shock metamorphism, local melting (with conditions exceeding 5 GPa and 1,200 °C in some locations), and rapid cooling, all of which likely resulted from impact-induced shock in space. This is the first example of a quasicrystal composition discovered in nature prior to being synthesized in the laboratory. The new composition was found in a grain that has a separate metal assemblage containing icosahedrite (Al63Cu24Fe13), currently the only other known naturally occurring mineral with icosahedral symmetry (though the latter composition had already been observed in the laboratory prior to its discovery in nature). The chemistry of both the icosahedral phases was characterized by electron microprobe, and the rotational symmetry was confirmed by means of electron backscatter diffraction. PMID:27929519

  7. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties ofmore » equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.« less

  8. Solid state amorphization of metastable Al 0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

    DOE PAGES

    Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...

    2017-07-18

    Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less

  9. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Thanka Rajan, S.; Karthika, M.; Bendavid, Avi; Subramanian, B.

    2016-04-01

    The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr48Cu36Al8Ag8 (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30-50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca-P) bone-like hydroxyapatite on Zr48Cu36Al8Ag8 (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.

  10. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al6Pd

    PubMed Central

    Pauling, Linus

    1989-01-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092

  11. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al(6)Pd.

    PubMed

    Pauling, L

    1989-12-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.

  12. Icosahedral quasicrystalline (Ti1.6V0.4Ni)100-xScx alloys: Synthesis, structure and their application in Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Hu, Wen; Yi, Jianhong; Zheng, Biju; Wang, Limin

    2013-06-01

    Thanks to the revolutionary discovery of 5-fold symmetry contributed by Shechtman, quasicrystal is now recognized as another solid-state existing form. As the second largest class of quasicrystals, titanium-based icosahedral quasicrystals are very promising for hydrogen storage applications owing to their inherent abundant interstitial sites and favorable hydrogen-metal chemistry. In this context, (Ti1.6V0.4Ni)100-xScx (x=0.5-6) quaternary icosahedral quasicrystals have been successfully synthesized via arc-melting and subsequent melt-spinning techniques, and then their electrochemical performance toward hydrogen is explored. When the molar ratio of Sc addition is under 1%, a maximum discharge capacity of about 270 mA h g-1 can be delivered. With further increasing Sc amount to 6%, good cycling stability as well as significantly retarded self-discharge rate (capacity retention 94% after 24 h relaxation) is observed. But meanwhile, the discharge capacities fall into 250-240 mA h g-1, and the electrocatalytic activity improvement is highly demanded.

  13. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  14. Development of Cu Clad Cu-Zr Based Metallic Glass and Its Solderability

    NASA Astrophysics Data System (ADS)

    Terajima, Takeshi; Kimura, Hisamichi; Inoue, Akihisa

    Soldering is a candidate technique for joining metallic glasses. It can be processed far below the crystallization temperatures of the various metallic glasses so that there is no possibility of crystallization. However, wettability of Cu-Zr based metallic glass by Pb free solder is poor because a strong surface oxide film interferes direct contact between them. To overcome the problem, Cu thin film clad metallic glass was developed. It was preliminary produced by casting a melt of Cu36Zr48Al8Ag8 pre-alloy into Cu mold cavity, inside which Cu thin film with 2 mm in thickness was set on the wall. Cu36Zr48Al8Ag8 metallic glass, whose surface Cu thin film was welded to, was successfully produced. From the microstructure analyses, it was found that reaction layer was formed at the interface between Cu and Cu36Zr48Al8Ag8 metallic glass, however, there was no oxide in the Cu clad layer. Solderability to the metallic glass was drastically increased. The Cu clad layer played an important role to prevent the formation of surface oxide film and consequently improved the solderability.

  15. Icosahedral quasicrystalline (Ti₁.₆V₀.₄Ni)₁₀₀₋xScx alloys: Synthesis, structure and their application in Ni-MH batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wen; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, Jilin; Yi, Jianhong

    2013-06-01

    Thanks to the revolutionary discovery of 5-fold symmetry contributed by Shechtman, quasicrystal is now recognized as another solid-state existing form. As the second largest class of quasicrystals, titanium-based icosahedral quasicrystals are very promising for hydrogen storage applications owing to their inherent abundant interstitial sites and favorable hydrogen-metal chemistry. In this context, (Ti₁.₆V₀.₄Ni)₁₀₀₋xScx (x=0.5–6) quaternary icosahedral quasicrystals have been successfully synthesized via arc-melting and subsequent melt-spinning techniques, and then their electrochemical performance toward hydrogen is explored. When the molar ratio of Sc addition is under 1%, a maximum discharge capacity of about 270 mA h g⁻¹ can be delivered. With furthermore » increasing Sc amount to 6%, good cycling stability as well as significantly retarded self-discharge rate (capacity retention 94% after 24 h relaxation) is observed. But meanwhile, the discharge capacities fall into 250-240 mA h g⁻¹, and the electrocatalytic activity improvement is highly demanded. - Graphical abstract: Quasicrystalline Ti–V–Ni–Sc hydrogen storage materials: Sc addition into Ti₁.₆V₀.₄Ni alloy forms the icosahedral phase (see picture). With optimal Sc dosage, the anodic cycling stability and self-discharge property are greatly enhanced. - Highlights: • Crystalline disallowed 5-fold symmetry is present in (Ti₁.₆V₀.₄Ni)₁₀₀₋xScx alloys. • Ti-based metastable quasicrystalline alloys can store hydrogen electrochemically. • A maximum discharge capacity of 270 mA h g⁻¹ can be delivered. • Advantageous cycle stability and self-discharge property benefit from Sc addition. • Ti and V dissolution is suppressed by an oxide layer resulting from Sc corrosion.« less

  16. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  17. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    NASA Astrophysics Data System (ADS)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  18. Growth Behavior of Intermetallic Compounds at SnAgCu/Ni and Cu Interfaces

    NASA Astrophysics Data System (ADS)

    Qi, Lihua; Huang, Jihua; Zhang, Hua; Zhao, Xingke; Wang, Haitao; Cheng, Donghai

    2010-02-01

    The growth behavior of reaction-formed intermetallic compounds (IMCs) at Sn3.5Ag0.5Cu/Ni and Cu interfaces under thermal-shear cycling conditions was investigated. The results show that the morphology of (Cu x Ni1- x )6Sn5 and Cu6Sn5 IMCs formed both at Sn3.5Ag0.5Cu/Ni and Cu interfaces gradually changed from scallop-like to chunk-like, and different IMC thicknesses developed with increasing thermal-shear cycling time. Furthermore, Cu6Sn5 IMC growth rate at the Sn3.5Ag0.5Cu/Cu interface was higher than that of (Cu x Ni1- x )6Sn5 IMC under thermal-shear cycling. Compared to isothermal aging, thermal-shear cycling led to only one Cu6Sn5 layer at the interface between SnAgCu solder and Cu substrate after 720 cycles. Moreover, Ag3Sn IMC was dispersed uniformly in the solder after reflow. The planar Ag3Sn formed near the interface changed remarkably and merged together to large platelets with increasing cycles. The mechanism of formation of Cu6Sn5, (Cu x Ni1- x )6Sn5 and Ag3Sn IMCs during thermal-shear cycling process was investigated.

  19. Composition susceptibility and the role of one, two, and three-body interactions in glass forming alloys: Cu50Zr50 vs Ni50Al50

    NASA Astrophysics Data System (ADS)

    Tang, Chunguang; Harrowell, Peter

    2018-06-01

    In this paper, we compare the composition fluctuations and interaction potentials of a good metallic glass former, Cu50Zr50, and a poor glass former, Ni50Al50. The Bhatia-Thornton correlation functions are calculated. Motivated by the observation of chemical ordering at the NiAl surface, we derive a new property, R^ c n(q ) , corresponding to the linear susceptibility of concentration to a perturbation in density. We present a direct comparison of the potentials for the two model alloys using a 2nd order density expansion, and establish that the one-body energy plays a crucial role in stabilizing the crystal relative to the liquid in both alloys but that the three-body contribution to the heat of fusion is significantly larger in NiAl than CuZr.

  20. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

    PubMed

    Hua, Nengbin; Huang, Lu; Chen, Wenzhe; He, Wei; Zhang, Tao

    2014-11-01

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-07-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell ( n A u-v ) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_{{A}}^{{u - v}} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5˜45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2˜10 wt%. Thus, Ti-based filler metal with Zr content being 2˜10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n A u-v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface.

  2. Two-Phase Eutectic Growth in Al-Cu and Al-Cu-Ag

    NASA Astrophysics Data System (ADS)

    Senninger, Oriane; Peters, Matthew; Voorhees, Peter W.

    2018-02-01

    The microstructure developed by two-phase lamellar eutectics (α ) -(θ {-Al}2{Cu}) in Al-Cu and Al-Cu-Ag alloys is analyzed. A model of two-phase eutectic growth in multicomponent alloys is used to determine the scaling law of the eutectic microstructure using the alloy thermophysical properties. The application of the model to these alloys shows that the addition of Ag to Al-Cu alloys does not significantly change the length scale of the microstructure, which is in agreement with previous experimental studies. This is explained by the combined phenomena of the decrease in interface energies with the addition of Ag and the superheating of the (α ) phase interface induced by the Ag composition profile.

  3. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Recently, a family of Al-Cu-Li alloys containing minor amounts of Ag, Mg, and Zr and having desirable combinations of strength and toughness were developed. The Weldalite (trademark) alloys exhibit a unique characteristic in that with or without a prior stretch, they obtain significant strength-ductility combinations upon natural and artificial aging. The ultra-high strength (approximately 690 MPa yield strength) in the peak-aged tempers (T6 and T8) were primarily attributed to the extremely fine T(sub 1) (Al2CuLi) or T(sub 1)-type precipitates that occur in these alloys during artificial aging, whereas the significant natural aging response observed is attributed to strengthening from delta prime (Al3Li) and GP zones. In recent work, the aging behavior of an Al-Cu-Li-Ag-Mg alloy without a prior stretch was followed microstructurally from the T4 to the T6 condition. Commercial extrusions, rolled plates, and sheets of Al-Cu-Li alloys are typically subjected to a stretching operation before artificial aging to straighten the extrusions and, more importantly, introduce dislocations to simulate precipitation of strengthening phases such as T(sub 1) by providing relatively low-energy nucleation sites. The goals of this study are to examine the microstructure that evolves during aging of an alloy that was stretch after solution treatment and to compare the observations with those for the unstretched alloy.

  4. Mechanism of abnormally slow crystal growth of CuZr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. Q.; Lü, Y. J., E-mail: yongjunlv@bit.edu.cn; State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027

    2015-10-28

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. Wemore » find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.« less

  5. The growth of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu solder/Ni interfaces and the associated evolution of the solder microstructure

    NASA Astrophysics Data System (ADS)

    Zribi, A.; Clark, A.; Zavalij, L.; Borgesen, P.; Cotts, E. J.

    2001-09-01

    The evolution of intermetallics at and near SnAgCu/Cu and SnAgCu/Ni interfaces was examined, and compared to the behavior, near PbSn/metal and Sn/metal interfaces. Two different solder compositions were considered, Sn93.6Ag4.7Cu1.7 and Sn95.5Ag3.5Cu1.0 (Sn91.8Ag5.1 Cu3.1 and Sn94.35Ag3.8Cu1.85 in atomic percent). In both cases, phase formation and growth at interfaces with Cu were very similar to those commonly observed for eutectic SnPb solder. However, the evolution of intermetallics at SnAgCu/Ni interfaces proved much more complex. The presence of the Cu in the solder dramatically altered the phase selectivity at the solder/Ni interface and affected the growth kinetics of intermetallics. As long as sufficient Cu was available, it would combine with Ni and Sn to form (Cu,Ni)6)Sn5 which grew instead of the Ni3Sn4 usually observed in PbSn/Ni and Sn/Ni diffusion couples. This growing phase would, however, eventually consume essentially all of the available Cu in the solder. Because the mechanical properties of Sn-Ag-Cu alloys, depend upon the Cu content, this consumption can be expected to alter the mechanical properties of these Pb-free solderjoints. After depletion of the Cu from the solder, further annealing then gradually transformed the (Cu,Ni)6Sn5 phase into a (Ni,Cu)3Sn4 phase.

  6. Comparative study of local atomic structures in Zr2CuxNi1-x (x = 0, 0.5, 1) metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2015-11-01

    Extensive analysis has been performed to understand the key structural motifs accounting for the difference in glass forming ability in the Zr-Cu and Zr-Ni binary alloy systems. Here, the reliable atomic structure models of Zr2CuxNi1-x (x = 0, 0.5, 1) are constructed using the combination of X-ray diffraction experiments, ab initio molecular dynamics simulations and a constrained reverse Monte Carlo method. We observe a systematic variation of the interatomic distance of different atomic pairs with respect to the alloy composition. The ideal icosahedral content in all samples is limited, despite the high content of five-fold symmetry motifs. We also demonstrate that the population of Z-clusters in Zr2Cu glass is much higher than that in the Zr2Ni and Zr2Cu0.5Ni0.5 samples. And Z12 ⟨0, 0, 12, 0⟩ Voronoi polyhedra clusters prefer to form around Cu atoms, while Ni-centered clusters are more like Z11 ⟨0, 2, 8, 1⟩ clusters, which is less energetically stable compared to Z12 clusters. These two different structural properties may account for the higher glass forming ability of Zr2Cu alloy than that of Zr2Ni alloy.

  7. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  8. Growth of a decagonal Al 70Ni 15Co 15 single quasicrystal by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Jeong, H. T.; Kim, S. H.; Kim, W. T.; Kim, D. H.; Inkson, B. J.

    2000-07-01

    Single decagonal quasicrystals of Al 70Ni 15Co 15 were grown by the Czochralski method at Ar atmosphere. The grown crystals were of single decagonal phase without any secondary phases due to the peritectic reaction and contained a large single quasicrystal of cm order size. The high quality and single quasicrystallinity of them were examined by the Laue transmission photography, single crystal X-ray diffraction, and high-resolution electron microscopy investigations.

  9. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

    PubMed

    Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M

    2008-07-01

    Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.

  10. Structure of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation and long-term storage

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2015-11-01

    Structural and phase transformations in commercial aging aluminum-lithium Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg alloy have been studied after severe plastic deformation by high-pressure torsion (at a pressure of 4 GPa with 1, 5, and 10 revolutions of the anvil) and natural aging (roomtemperature storage) for 1 week and 2 years. It has been found that, in this case, the process of static recrystallization is achieved in the alloy, the degree of which increases with an increasing degree of deformation and time of storage.

  11. Thermophysical Properties Measurements of Zr62Cu20Al10Ni8

    NASA Technical Reports Server (NTRS)

    Bradshaw, Richard C.; Waren, Mary; Rogers, Jan R.; Rathz, Thomas J.; Gangopadhyay, Anup K.; Kelton, Ken F.; Hyers, Robert W.

    2006-01-01

    Thermophysical property studies performed at high temperature can prove challenging because of reactivity problems brought on by the elevated temperatures. Contaminants from measuring devices and container walls can cause changes in properties. To prevent this, containerless processing techniques can be employed to isolate a sample during study. A common method used for this is levitation. Typical levitation methods used for containerless processing are, aerodynamically, electromagnetically and electrostatically based. All levitation methods reduce heterogeneous nucleation sites, 'which in turn provide access to metastable undercooled phases. In particular, electrostatic levitation is appealing because sample motion and stirring are minimized; and by combining it with optically based non-contact measuring techniques, many thermophysical properties can be measured. Applying some of these techniques, surface tension, viscosity and density have been measured for the glass forming alloy Zr62Cu20Al10Ni8 and will be presented with a brief overview of the non-contact measuring method used.

  12. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  13. Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe)

    NASA Astrophysics Data System (ADS)

    Zheng, Yuehong; Li, Xiaona; Cheng, Xiaotian; Li, Zhuming; Liu, Yubo; Dong, Chuang

    2018-04-01

    Low resistivity, phase stability and nonreactivity with surrounding dielectrics are the key to the application of Cu to ultra-large-scale integrated circuits. Here, a stable solid solution cluster model was introduced to design the composition of barrierless Cu-Ni-Zr (or Fe) seed layers. The third elements Fe and Zr were dissolved into Cu via a second element Ni, which is soluble in both Cu and Zr (or Fe). The films were prepared by magnetron sputtering on the single-crystal p-Si (1 0 0) wafers. Since the diffusion characteristics of the alloying elements are different, the effects of the strong interaction between Ni and Zr (or Fe) on the film’s stability and resistivity were studied. The results showed that a proper addition of Zr-Ni (Zr/Ni  ⩽  0.6/12) into Cu could form a large negative lattice distortion, which inhibits Cu-Si interdiffusion and enhances the stability of Cu film. When Fe-Ni was co-added into Cu, the lattice distortion of Cu reached a lower value, 0.0029 Å  ⩽  |Δa|  ⩽  0.0046 Å, and the films showed poor stability. Therefore, when the model is applied to the composition design of the films, the strong interaction between the elements and the addition ratio should be taken into consideration.

  14. Evidence for the extraterrestrial origin of a natural quasicrystal.

    PubMed

    Bindi, Luca; Eiler, John M; Guan, Yunbin; Hollister, Lincoln S; MacPherson, Glenn; Steinhardt, Paul J; Yao, Nan

    2012-01-31

    We present evidence that a rock sample found in the Koryak Mountains in Russia and containing icosahedrite, an icosahedral quasicrystalline phase with composition Al(63)Cu(24)Fe(13), is part of a meteorite, likely formed in the early solar system about 4.5 Gya. The quasicrystal grains are intergrown with diopside, forsterite, stishovite, and additional metallic phases [khatyrkite (CuAl(2)), cupalite (CuAl), and β-phase (AlCuFe)]. This assemblage, in turn, is enclosed in a white rind consisting of diopside, hedenbergite, spinel (MgAl(2)O(4)), nepheline, and forsterite. Particularly notable is a grain of stishovite (from the interior), a tetragonal polymorph of silica that only occurs at ultrahigh pressures (≥ 10 Gpa), that contains an inclusion of quasicrystal. An extraterrestrial origin is inferred from secondary ion mass spectrometry (18)O/(16)O and (17)O/(16)O measurements of the pyroxene and olivine intergrown with the metal that show them to have isotopic compositions unlike any terrestrial minerals and instead overlap those of anhydrous phases in carbonaceous chondrite meteorites. The spinel from the white rind has an isotopic composition suggesting that it was part of a calcium-aluminum-rich inclusion similar to those found in CV3 chondrites. The mechanism that produced this exotic assemblage is not yet understood. The assemblage (metallic copper-aluminum alloy) is extremely reduced, and the close association of aluminum (high temperature refractory lithophile) with copper (low temperature chalcophile) is unexpected. Nevertheless, our evidence indicates that quasicrystals can form naturally under astrophysical conditions and remain stable over cosmic timescales, giving unique insights on their existence in nature and stability.

  15. Evidence for the extraterrestrial origin of a natural quasicrystal

    PubMed Central

    Bindi, Luca; Eiler, John M.; Guan, Yunbin; Hollister, Lincoln S.; MacPherson, Glenn; Steinhardt, Paul J.; Yao, Nan

    2012-01-01

    We present evidence that a rock sample found in the Koryak Mountains in Russia and containing icosahedrite, an icosahedral quasicrystalline phase with composition Al63Cu24Fe13, is part of a meteorite, likely formed in the early solar system about 4.5 Gya. The quasicrystal grains are intergrown with diopside, forsterite, stishovite, and additional metallic phases [khatyrkite (CuAl2), cupalite (CuAl), and β-phase (AlCuFe)]. This assemblage, in turn, is enclosed in a white rind consisting of diopside, hedenbergite, spinel (MgAl2O4), nepheline, and forsterite. Particularly notable is a grain of stishovite (from the interior), a tetragonal polymorph of silica that only occurs at ultrahigh pressures (≥10 Gpa), that contains an inclusion of quasicrystal. An extraterrestrial origin is inferred from secondary ion mass spectrometry 18O/16O and 17O/16O measurements of the pyroxene and olivine intergrown with the metal that show them to have isotopic compositions unlike any terrestrial minerals and instead overlap those of anhydrous phases in carbonaceous chondrite meteorites. The spinel from the white rind has an isotopic composition suggesting that it was part of a calcium-aluminum-rich inclusion similar to those found in CV3 chondrites. The mechanism that produced this exotic assemblage is not yet understood. The assemblage (metallic copper-aluminum alloy) is extremely reduced, and the close association of aluminum (high temperature refractory lithophile) with copper (low temperature chalcophile) is unexpected. Nevertheless, our evidence indicates that quasicrystals can form naturally under astrophysical conditions and remain stable over cosmic timescales, giving unique insights on their existence in nature and stability. PMID:22215583

  16. Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cui, Senlin; Rao, Weifeng

    2018-07-01

    A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.

  17. Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cui, Senlin; Rao, Weifeng

    2018-05-01

    A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.

  18. Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell

    NASA Astrophysics Data System (ADS)

    Long, Shibing; Liu, Qi; Lv, Hangbing; Li, Yingtao; Wang, Yan; Zhang, Sen; Lian, Wentai; Zhang, Kangwei; Wang, Ming; Xie, Hongwei; Liu, Ming

    2011-03-01

    Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I- V relationship of low resistance state (LRS) and the dependence of LRS resistance ( R ON) and reset current ( I reset) on the set current compliance ( I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.

  19. Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay

    2018-04-01

    The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.

  20. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  1. A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems.

    PubMed

    De Souza, Douglas G; Cezar, Henrique M; Rondina, Gustavo G; de Oliveira, Marcelo F; Da Silva, Juarez L F

    2016-05-05

    We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard's law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.

  2. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  3. High resolution electron microscopy study of a high Cu variant of Weldalite (tm) 049 and a high strength Al-Cu-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Herring, R. A.; Gayle, Frank W.; Pickens, Joseph R.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy that is strengthened in artificially aged tempers primarily by very thin plate-like precipitates lying on the set of (111) matrix planes. This precipitate might be expected to be the T(sub 1) phase, Al2CuLi, which has been observed in Al-Cu-Li alloys. However, in several ways this precipitate is similar to the omega phase which also appears as the set of (111) planes plates and is found in Al-Cu-Ag-Mg alloys. The study was undertaken to identify the set of (111) planes precipitate or precipitates in Weldalite (trademark) 049 in the T8 (stretched and artificially aged) temper, and to determine whether T(sub 1), omega, or some other phase is primarily responsible for the high strength (i.e., 700 MPa tensile strength) in this Al-Cu-Li-Ag-Mg alloy.

  4. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  5. Kinetics of Glass Transition and Crystallization of a Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass with High Mixing Entropy

    NASA Astrophysics Data System (ADS)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-04-01

    The kinetics of glass transition and crystallization of a novel Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 bulk metallic glass (BMG) with high mixing entropy have been studied by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The continuous DSC curves show five stages of crystallization at lower heating rates (≤ 20 K/min). The activation energies of glass transition were determined by Moynihan and Kissinger methods, while the activation energies of crystallization were calculated utilizing Kissinger, Ozawa, and Boswell models. The crystalline phases corresponding to each crystallization step have been found out. The kinetic fragility of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG has also been evaluated. Based on the isothermal DSC curves, the Avrami exponent, evaluated from the Johnson-Mehl-Avrami equation, has been analyzed in detail. The current study reveals that the crystallization behavior of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG exhibits characteristics of both the high entropy BMGs and traditional BMGs with a single principal element, leading to its high glass-forming ability.

  6. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Alloys in the Al-Cu-Li Ag-Mg subsystem were developed that exhibit desirable combinations of strength and ductility. These Weldalite (trademark) alloys, are unique for Al-Cu-Li alloys in that with or without a prior cold stretching operation, they obtain excellent strength-ductility combinations upon natural and artificial aging. This is significant because it enables complex, near-net shape products such as forgings and super plastically formed parts to be heat treated to ultra-high strengths. On the other hand, commercial extrusions, rolled plates and sheets of other Al-Cu-Li alloys are typically subjected to a cold stretching operation before artificial aging to the highest strength tempers to introduce dislocations that provide low-energy nucleation sites for strengthening precipitates such as the T(sub 1) phase. The variation in yield strength (YS) with Li content in the near-peak aged condition for these Weldalite (trademark) alloys and the associated microstructures were examined, and the results are discussed.

  7. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation

    NASA Astrophysics Data System (ADS)

    Fang, Qihong; Yi, Ming; Li, Jia; Liu, Bin; Huang, Zaiwang

    2018-06-01

    The deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass (HE-BMG) during the nanoindentation are presented via the large-scale molecular dynamics (MD) simulations. The indentation tests are carried out using spherical rigid indenter to investigate the microstructural evolution on the mechanical properties of HE-BMGs in terms of shear strain, indentation force, and surface morphology as well as radial distribution function (RDF). Based on the Hertzian fitting the load-displacement curve, HE-BMG Cu29Zr32Ti15Al5Ni19 has the Young's modulus of 93.1 GPa and hardness of 8.8 GPa. The indentation force requiring for the continual increasing contacted area between the indenter and the substrate goes up with the increasing of indentation depth. In addition, the symmetrical distribution of atomic displacement reveals the isotropic of HE-BMG after the indentation treatment. In the deformation region, the Al element would lead to the serious fluctuation in the first peak of RDF, which is much stronger than the other elements. The severe distortion from the atomic size difference maybe reduce the activation energy to the occurrence of shear deformation in HE-BMG, leading to the transition from brittle to ductile observed by the whole sliding of the local atom group. Through the indentation load-displacement curves at various temperatures, the softening of HE-BMG at high temperatures is in qualitative agreement with the experimental findings. Moreover, this effective strategy is used to accelerate the discovery of excellent mechanical properties of HE-BMGs by means of MD simulation, as well as understand the fundamental nanoindentation response of HE-BMGs.

  8. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    PubMed Central

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao; Pryds, Nini

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  9. Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions

    NASA Astrophysics Data System (ADS)

    Chen, Chih-ming; Chen, Sinn-wen

    2001-08-01

    This study investigates the effect of electromigration upon the interfacial reactions between the promising lead-free solders, Sn-Cu and Sn-Ag, with Ni substrate. Sandwich-type reaction couples, Sn-0.7 wt% Cu/Ni/Sn-0.7 wt% Cu and Sn-3.5 wt% Ag/Ni/Sn-3.5 wt% Ag, were reacted at 160, 180, and 200 °C for various lengths of time with and without the passage of electric currents. Without passage of electric currents through the couples, only one intermetallic compound Ni3Sn4 with ˜7 at. % Cu solubility was found at both interfaces of the Sn-0.7 wt% Cu/Ni couples. With the passage of an electric current of 500 A/cm2 density, the Cu6Sn5 phase was formed at the solder/Ni interface besides the Ni3Sn4 phase. Similar to those without the passage of electric currents, only the Ni3Sn4 phase was found at the Ni/solder interface. Directions of movement of electrons, Sn, and Cu atoms are the same at the solder/Ni interface, and the growth rates of the intermetallic layers were enhanced. At the Ni/solder interface, the electrons flow in the opposite direction of the Sn and Cu movement, and the growth rates of the intermetallic layers were retarded. Only the Ni3Sn4 phase was formed from the Sn-3.5 wt% Ag/Ni interfacial reaction with and without the passage of electric currents. Similar to the Sn-0.7 wt% Cu/Ni system, the movement of electrons enhances or retards the growth rates of the intermetallic layers at the solder/Ni and Ni/solder interfaces, respectively. Calculation results show the apparent effective charge za* decreases in magnitude with raising temperatures, which indicates the electromigration effect becomes insignificant at higher temperatures.

  10. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  11. On the crystallization kinetics of Zr-(Co,Ni)-Al bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Qin, X. M.; Zhang, Q. F.; Duan, X. Y.; Wang, X. C.; Jiang, Y. H.; Zhou, R.; Tan, J.

    2017-07-01

    Zr-based amorphous alloys are promising materials applied in engineering field, due to their strong glass-forming ability, outstanding mechanical properties and relatively low cost. In this work, the crystallization kinetics of Zr56Co18-xNixAl16 (x = 0, 2, 4 and 8; marked as Ni0, Ni2, Ni4 and Ni8, respectively) alloys are investigated in detail. The results show that, due to the addition of Ni, the glass transition of the alloys presents obvious dynamic characteristics, i.e., with the increasing heating rate, all characteristic temperatures are shifted to higher temperature. By fitting the Kissinger equation, the glass transition activation energy of Ni8 is the highest, indicating that Ni8 is much more difficult to crystallize. Therefore, the Ni8 alloy has the strongest anti-crystallization ability in the Zr56Co18-xNixAl16 alloys investigated.

  12. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, F.; Laws, K.; Martinez, D.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Ferry, M.; Quadir, M. Z.; Jiang, J.; Escobedo, J. P.

    2017-01-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic (BMG) alloys with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400˜600m/s range and tested at both room temperature and 250°C. The samples impacted steel extrusion dies which subjected the bullets to high strains at relatively high strain-rates. The extruded fragments were subsequently soft recovered by using low density foams and examined by means of optical/scanning electron microscopy and differential scanning calorimetry. It was found that shear banding was the dictating mechanism responsible for the fracture of all BMGs. At room temperature, the Zr55Cu30Ni5Al30 alloy exhibited a higher resistance to fragmentation than the Zr46Cu38Ag8Al38 alloy. At 250°C, significant melting was observed in the recovered fragments of both alloys, which indicates that the BMG glassy structure undergoes a melting process and deformation likely occurs homogeneously.

  13. Interfacial reactions and compound formation of Sn-Ag-Cu solders by mechanical alloying on electroless Ni-P/Cu under bump metallization

    NASA Astrophysics Data System (ADS)

    Kao, Szu-Tsung; Duh, Jenq-Gong

    2005-08-01

    Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.

  14. Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Jiang, Q. K.; Cao, Q. P.; Bednarcik, J.; Franz, H.; Jiang, J. Z.

    2008-11-01

    By using a combination of state-of-the-art experimental and computational methods, the high glass forming ability (GFA) of Cu46Zr46Al8 alloy is studied from the view of its atomic packing. Three-dimensional atomic configuration is well established. It is found that Al atoms almost homogeneously distribute around Cu and Zr atoms without segregation, causing the local environment around Cu and Zr atoms in Cu46Zr46Al8 bulk metallic glass different from that of the major competing phase of Cu10Zr7. Furthermore, the addition of Al not only increases the amount of icosahedronlike clusters but also makes them more homogeneous distribution, which can enhance the GFA by increasing the structural incompatibility with the competing crystalline phases.

  15. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  16. High thermally stable Ni /Ag(Al) alloy contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.; Bor, H. Y.; Liu, C. Y.

    2007-01-01

    Ag agglomeration was found to occur at Ni /Ag to p-GaN contacts after annealing at 500°C. This Ag agglomeration led to the poor thermal stability showed by the Ni /Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10at.% Al by e-gun deposition, the Ni /Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  17. High thermally stable Ni/Ag(Al) alloy contacts on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.

    2007-01-08

    Ag agglomeration was found to occur at Ni/Ag to p-GaN contacts after annealing at 500 degree sign C. This Ag agglomeration led to the poor thermal stability showed by the Ni/Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10 at. % Al by e-gun deposition, the Ni/Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  18. Crystal Nucleation and Growth in Undercooled Melts of Pure Zr, Binary Zr-Based and Ternary Zr-Ni-Cu Glass-Forming Alloys

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan

    2018-03-01

    Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.

  19. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, J. R.

    1990-01-01

    The effect of a prior stretching of an aluminum alloy Al-5.3Cu-1.4Li-0.4Ag-0.4Mg-0.17Zr (in wt pct) on the microstructure that develops during aging of this alloy was investigated by comparing TEM and SAD observations and hardness curves with results for the unstretched alloy. The results suggest that stretching introduces a significant number of dislocations which may act as vacanacy sinks by sweeping vacancies away and thereby decreasing the vacancy concentration available for influencing the natural aging response. In the stretched and near-peak aged condition, a fine homogeneous distribution of T1, theta-prime, and S-prime phases were observed in an alpha solid solution matrix. Upon overaging, virtually all of the theta-prime and most of the S-prime phases were found to dissolve, leaving behind a microstructure of T1 precipitates.

  20. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  1. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  2. Direct measurements of irradiation-induced creep in micropillars of amorphous Cu{sub 56}Ti{sub 38}Ag{sub 6}, Zr{sub 52}Ni{sub 48}, Si, and SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özerinç, Sezer; Kim, Hoe Joon; Averback, Robert S.

    2015-01-14

    We report in situ measurements of irradiation-induced creep on amorphous (a-) Cu{sub 56}Ti{sub 38}Ag{sub 6}, Zr{sub 52}Ni{sub 48}, Si, and SiO{sub 2}. Micropillars 1 μm in diameter and 2 μm in height were irradiated with ∼2 MeV heavy ions during uniaxial compression at room temperature. The creep measurements were performed using a custom mechanical testing apparatus utilizing a nanopositioner, a silicon beam transducer, and an interferometric laser displacement sensor. We observed Newtonian flow in all tested materials. For a-Cu{sub 56}Ti{sub 38}Ag{sub 6}, a-Zr{sub 52}Ni{sub 48}, a-Si, and Kr{sup +} irradiated a-SiO{sub 2} irradiation-induced fluidities were found to be nearly the same, ≈3 GPa{sup −1}more » dpa{sup −1}, whereas for Ne{sup +} irradiated a-SiO{sub 2} the fluidity was much higher, 83 GPa{sup −1} dpa{sup −1}. A fluidity of 3 GPa{sup −1} dpa{sup −1} can be explained by point-defect mediated plastic flow induced by nuclear collisions. The fluidity of a-SiO{sub 2} can also be explained by this model when nuclear stopping dominates the energy loss, but when the electronic stopping exceeds 1 keV/nm, stress relaxation in thermal spikes also contributes to the fluidity.« less

  3. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE PAGES

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  4. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    NASA Astrophysics Data System (ADS)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  5. Ab initio molecular dynamics simulation of binary Cu64Zr36 bulk metallic glass: Validation of the cluster-plus-glue-atom model

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Zhang, Chong; Wang, Lu; Zhao, JiJun; Dong, Chuang; Wen, Bin; Wang, Qing

    2011-06-01

    We have performed ab initio molecular dynamics simulation of Cu64Zr36 alloy at descending temperatures (from 2000 K to 400 K) and discussed the evolution of short-range order with temperature. The pair-correlation functions, coordination numbers, and chemical compositions of the most abundant local clusters have been analyzed. We found that icosahedral short-range order exists in the liquid, undercooled, and glass states, and it becomes dominant in the glass states. Moreover, we demonstrated the existence of Cu-centered Cu8Zr5 icosahedral clusters as the major local structural unit in the Cu64Zr36 amorphous alloy. This finding agrees well with our previous cluster model of Cu-Zr-based BMG as well as experimental evidences from synchrotron x ray and neutron diffraction measurements.

  6. Interaction of intermetallic compound formation in Cu/SnAgCu/NiAu sandwich solder joints

    NASA Astrophysics Data System (ADS)

    Xia, Yanghua; Lu, Chuanyan; Chang, Junling; Xie, Xiaoming

    2006-05-01

    The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.

  7. The effect of TM doping on the superconducting properties of ZrNi2-xTMxGa (TM = Cu, Co) Heusler compounds

    NASA Astrophysics Data System (ADS)

    Basaula, Dharma Raj; Brock, Jeffrey; Khan, Mahmud

    2018-05-01

    We have explored the structural and superconducting properties of ZrNi2-xTMxGa (TM = Cu, Co) Heusler compounds via x-ray diffraction, scanning electron mi croscopy, electrical resistivity, dc magnetization and ac susceptibility measurements. All samples crystallized in the cubic L21 structure at room temperature. For x ≤ 0.25, all the ZrNi2-xCuxGa compounds showed superconducting properties and a decrease in TC with increasing Cu concentration. The dc magnetization data suggested type-II superconductivity for all the Cu-doped compounds. Contrary to the ZrNi2-xCuxGa compounds, no superconductivity was observed in the ZrNi2-xCoxGa compounds. Substitution of Ni by a small concentration of Co destroyed superconductivity in the Co-doped compounds. The experimental results are discussed and possible explanations are provided.

  8. Effects of limited cu supply on soldering reactions between SnAgCu and Ni

    NASA Astrophysics Data System (ADS)

    Ho, C. E.; Lin, Y. W.; Yang, S. C.; Kao, C. R.; Jiang, D. S.

    2006-05-01

    The volume difference between the various types of solder joints in electronic devices can be enormous. For example, the volume difference between a 760-µm ball grid array solder joint and a 75-µm flip-chip solder joint is as high as 1000 times. Such a big difference in volume produces a pronounced solder volume effect. This volume effect on the soldering reactions between the Sn3AgxCu (x=0.4, 0.5, or 0.6 wt.%) solders and Ni was investigated. Three different sizes of solder spheres (300, 500, and 760 µm in diameter) were soldered onto Ni soldering pads. Both the Cu concentration and the solder volume had a strong effect on the type of the reaction products formed. In addition, (Cu,Ni)6Sn5 massively spalled from the interface under certain conditions, including smaller joints and those with lower Cu concentration. We attributed the massive spalling of (Cu,Ni)6Sn5 to the decrease of the available Cu in the solders. The results of this study suggest that Cu-rich SnAgCu solders can be used to prevent this massive spalling.

  9. Structure and mechanical properties of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2015-04-01

    The structural and phase transformations have been studied in aging commercial aluminum-lithium alloy Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg in the as-delivered state and after severe plastic deformation by torsion for 1, 5 and 10 revolutions under a high pressure of 4 GPa. Deformation-induced nanofragmentation and dynamic recrystallization have been found to occur in the alloy. The degree of recrystallization increases with deformation. Nanofragmentation and recrystallization processes are accompanied by the deformation-induced decomposition of solid solution and changes in both the nucleation mechanism of precipitation and the phase composition of the alloy. The influence of a nanostructured nanophase state of the alloy on its mechanical properties (microhardness, plasticity, elastic modulus, and stiffness) is discussed.

  10. Structural features and the microscopic dynamics of the three-component Zr{sub 47}Cu{sub 46}Al{sub 7} system: Equilibrium melt, supercooled melt, and amorphous alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khusnutdinoff, R. M., E-mail: khrm@mail.ru; Mokshin, A. V., E-mail: anatolii.mokshin@mail.ru; Klumov, B. A.

    2016-08-15

    The structural and dynamic properties of the three-component Zr{sub 47}Cu{sub 46}Al{sub 7} system are subjected to a molecular dynamics simulation in the temperature range T = 250–3000 K at a pressure p = 1.0 bar. The temperature dependences of the Wendt–Abraham parameter and the translation order parameter are used to determine the glass transition temperature in the Zr{sub 47}Cu{sub 46}Al{sub 7} system, which is found to be T{sub c} ≈ 750 K. It is found that the bulk amorphous Zr{sub 47}Cu{sub 46}Al{sub 7} alloy contains localized regions with an ordered atomic structures. Cluster analysis of configuration simulation data reveals themore » existence of quasi-icosahedral clusters in amorphous metallic Zr–Cu–Al alloys. The spectral densities of time radial distribution functions of the longitudinal (C̃{sub L}(k, ω)) and transverse (C̃{sub T}(k, ω)) fluxes are calculated in a wide wavenumber range in order to study the mechanisms of formation of atomic collective excitations in the Zr{sub 47}Cu{sub 46}Al{sub 7} system. It was found that a linear combination of three Gaussian functions is sufficient to reproduce the (C̃{sub L}(k, ω)) spectra, whereas at least four Gaussian contributions are necessary to exactly describe the (C̃{sub T}(k, ω)) spectra of the supercooled melt and the amorphous metallic alloy. It is shown that the collective atomic excitations in the equilibrium melt at T = 3000 K and in the amorphous metallic alloy at T = 250 K are characterized by two dispersion acoustic-like branches related with longitudinal and transverse polarizations.« less

  11. Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy

    NASA Astrophysics Data System (ADS)

    Sheng, Liyuan; Yang, Yang; Xi, Tingfei

    2018-03-01

    The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.

  12. Wear resistance of CuZr-based amorphous-forming alloys against bearing steel in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wang, Hui; Bao, Yayun; Zheng, Dingcong

    2017-11-01

    To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s-1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.

  13. Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr

    NASA Astrophysics Data System (ADS)

    Senkova, S. V.; Senkov, O. N.; Miracle, D. B.

    2006-12-01

    The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.

  14. Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids

    NASA Technical Reports Server (NTRS)

    Wessels, V.; Sahu, K. K.; Gangopadhyay, A. K.; Huett, V. T.; Canepari, S.; Goldman, A. I.; Hyers, R. W.; Kramer, M. J.; Rogers, J. R.; Kelton, K. F.; hide

    2008-01-01

    Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.

  15. Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryltsev, R. E.; Ural Federal University, 19 Mira Str., 620002 Ekaterinburg; L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{supmore » 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.« less

  16. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  17. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  18. The influence of Ag+Mg additions on the nucleation of strengthening precipitates in a non-cold-worked Al-Cu-Li alloy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Aluminum-copper-lithium alloys generally require cold work to attain their highest strengths in artificially aged tempers. These alloys are usually strengthened by a combination of the metastable delta prime (Al3Li) and theta prime (Al2Cu) phases and the equilibrium T sub 1 (Al2CuLi) phase, and where the T sub 1 phase is a more potent strengthener than the delta prime. Various investigators have shown that the high strengths obtained after artificial aging associated with cold work result from the heterogeneous precipitation of T sub 1 on matrix dislocations. The objective here is to elucidate the mechanism by which the Ag+Mg additions stimulate the precipitation of T sub 1 type precipitates without cold work. To accomplish this, the microstructure of an Al-6.3Cu-1.3Li-0.14Zr model alloy was evaluated in a T6 type temper with and without the Ag+Mg addition.

  19. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.

    PubMed

    Ledermann, Alexandra; Cademartiri, Ludovico; Hermatschweiler, Martin; Toninelli, Costanza; Ozin, Geoffrey A; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg

    2006-12-01

    Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures.

  20. Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites

    NASA Astrophysics Data System (ADS)

    Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.

    2017-11-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.

  1. Self-Diffusion of small Ag and Ni islands on Ag(111) and Ni(111) using the self-learning kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Islamuddin Shah, Syed; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S.

    2012-02-01

    We have applied a modified Self-Learning Kinetic Monte Carlo (SLKMC) method [1] to examine the self-diffusion of small Ag and Ni islands, containing up to 10 atom, on the (111) surface of the respective metal. The pattern recognition scheme in this new SLKMC method allows occupancy of the fcc, hcp and top sites on the fcc(111) surface and employs them to identify the local neighborhood around a central atom. Molecular static calculations with semi empirical interatomic potential and reliable techniques for saddle point search revealed several new diffusion mechanisms that contribute to the diffusion of small islands. For comparison we have also evaluated the diffusion characteristics of Cu clusters on Cu(111) and compared results with previous findings [2]. Our results show a linear increase in effective energy barriers scaling almost as 0.043, 0.051 and 0.064 eV/atom for the Cu/Cu(111), Ag/Ag(111), and Ni/Ni(111) systems, respectively. For all three systems, diffusion of small islands proceeds mainly through concerted motion, although several multiple and single atom processes also contribute. [1] Oleg Trushin et al. Phys. Rev. B 72, 115401 (2005) [2] Altaf Karim et al. Phys. Rev. B 73, 165411 (2006)

  2. Al{sub 70}Pd{sub 21.5}Mn{sub 8.5}: A quasicrystal showing the de haas-van Alphen effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haanappel, E.G.; Kycia, S.W.; Harmon, B.N.

    1995-07-01

    We have measured the de Haas-van Alphen effect in the icosahedral quasicrystal Al{sub 70}Pd{sub 21.5}Mn{sub 8.5}. We have found two well-defined frequencies with the magnetic field parallel to a five-fold axis, and two different ones with the field parallel to a two-fold axis. On increasing the temperature, the amplitude of the oscillations substantially decreased, suggesting that the carriers have large masses.

  3. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  4. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  5. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  6. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    NASA Astrophysics Data System (ADS)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Huogen; Chen, Liang

    Ti-Zr-Ni quasicrystals have been demonstrated to store a large number of hydrogen atoms, which implies strong potential application in hydrogen energy field for them. However, the desorption of hydrogen atoms in the quasicrystals is quite difficult, with the indication of high desorption temperature and slow desorption rate. The shortage limits their use in the field to a large extent. But this kind of quasicrystals might be used in nuclear fusion energy field, because tritium as a coral fuel for nuclear fusion needs tight storage. However, equilibrium pressure at room temperature of Ti-Zr-Ni quasicrystals, important for their application in fusion energymore » field, has not been clear yet. In this work, we designed a gas-solid reaction system with the pressure resolution of 10{sup −8}Pa and carried out hydrogen desorption investigation at different temperatures on Ti{sub 36}Zr{sub 40}Ni{sub 20}Pd{sub 4} icosahedral quasicrystal. Based on three Pressure-Composition-Temperature desorption curves, we speculate according to Van’t Hoff theory about hydrogen storage that its equilibrium pressure at room temperature could be at the magnitude of 10{sup −6}Pa, displaying good stability of hydrogen in the quasicrystal and also implying application prospects in fusion energy field for quasicrystals of this type.« less

  8. The influence of Sc addition on the welding microstructure of Zr-based bulk metallic glass: The stability of the amorphous phase

    NASA Astrophysics Data System (ADS)

    Wang, Shing Hoa; Kuo, Pei Hung; Tsang, Hsiao Tsung; Jeng, Rong Ruey; Lin, Yu Lon

    2007-10-01

    Pulsed direct current autogeneous tungsten inert gas arc welding was conducted on rods of bulk metallic glasses (BMGs) Zr55Cu30Ni5Al10 and (Zr55Cu30Ni5Al10)99.98Sc0.02 under two different cooling conditions. The crystalline precipitates in the fusion zone of BMG Zr55Cu30Ni5Al10 were confirmed by microfocused x-ray diffraction pattern analysis as Zr2Ni and Zr2(Cu,Al) intermetallic compounds. In contrast, BMG with Sc addition (Zr55Cu30Ni5Al10)99.98Sc0.02 shows an excellent stable glass forming ability. The fusion zone of BMG (Zr55Cu30Ni5Al10)99.98Sc0.02 remains in the same amorphous state as that of the amorphous base metal when the weld is cooled with accelerated cooling.

  9. Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods.

    PubMed

    Xiong, Dehua; Zeng, Xianwei; Zhang, Wenjun; Wang, Huan; Zhao, Xiujian; Chen, Wei; Cheng, Yi-Bing

    2014-04-21

    In this work, we present one-step low temperature hydrothermal synthesis of submicrometer particulate CuAlO2 and AgAlO2 delafossite oxides, which are two important p-type transparent conducting oxides. The synthesis parameters that affect the crystal formation processes and the product morphologies, including the selection of starting materials and their molar ratios, the pH value of precursors, the hydrothermal temperature, pressure, and reaction time, have been studied. CuAlO2 crystals have been synthesized from the starting materials of CuCl and NaAlO2 at 320-400 °C, and from Cu2O and Al2O3 at 340-400 °C, respectively. AgAlO2 crystals have been successfully synthesized at the low temperature of 190 °C, using AgNO3 and Al(NO3)3 as the starting materials and NaOH as the mineralizer. The detailed elemental compositions, thermal stability, optical properties, and synthesis mechanisms of CuAlO2 and AgAlO2 also have been studied. Noteworthy is the fact that both CuAlO2 and AgAlO2 can be stabilized up to 800 °C, and their optical transparency can reach 60%-85% in the visible range. Besides, it is believed the crystal formation mechanisms uncovered in the synthesis of CuAlO2 and AgAlO2 will prove insightful guildlines for the preparation of other delafossite oxides.

  10. Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weizhong, Liang, E-mail: wzliang1966@126.com; Zhiliang, Ning; Zhenqian, Dang

    2013-12-15

    Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentationmore » sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.« less

  11. High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions

    NASA Astrophysics Data System (ADS)

    Kotov, A. D.; Mikhaylovskaya, A. V.; Borisov, A. A.; Yakovtseva, O. A.; Portnoy, V. K.

    2017-09-01

    During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al-Zn-Mg-Cu-Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300-800% elongations at the strain rates of 1 × 10-2-1 × 10-1 s-1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10-2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10-1 s-1.

  12. Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Chenna Krishna, S.; Srinath, J.; Jha, Abhay K.; Pant, Bhanu; Sharma, S. C.; George, Koshy M.

    2013-07-01

    A high-strength Cu-Ni-Si alloy was developed with the additions of Co and Zr. The aging curve for the alloy was generated using hardness. Electron microscopy studies were conducted to analyze the phases in the alloy. Two types of phases, one of copper matrix and the other of Ni-Si-Co-Zr intermetallic phase, could be identified using scanning electron microscopy. Transmission electron microscopy studies confirmed the presence of two types of precipitates in solution-treated and aged (STA) condition, i.e., Ni2Si and Co2Si. Mechanical properties and electrical conductivity were evaluated in solution-treated (ST) and STA conditions. Aging of the ST samples at 500 °C for 3 h has shown an increase of 72 and 15% in yield strength (YS) and electrical conductivity, respectively. This increase in YS and conductivity on aging is primarily attributed to the formation of fine Ni2Si and Co2Si precipitates.

  13. Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Ethridge, E. C.

    1983-01-01

    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil.

  14. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites

    NASA Astrophysics Data System (ADS)

    Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.

    2009-09-01

    In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.

  15. An important factor powerfully influencing the Al Ni-based alloys' glass-forming ability

    NASA Astrophysics Data System (ADS)

    Bo, Zhang; Xiufang, Bian; Chunxia, Fu; Na, Han; Jiankun, Zhou; Weimin, Wang

    2005-12-01

    In order to get better glass-forming abilities (GFAs), Ni atoms are partially replaced by Cu and Co atoms in Al84Ni12Zr4 alloys. Thermal analysis shows that the reduced crystallization temperature Trx has no direct correlation with the GFA of the alloys. However, it is notable that prepeaks have been found in the total structure factors of the amorphous Al84Ni(12-x)Zr4Cux and Al84Ni(12-x)Zr4Cox alloys. In addition, the results prove that the intensity of the prepeaks influences the GFA powerfully. The amorphous alloys with larger intensity of the prepeak show better GFA. The influence of prepeaks on the GFA can be explained by the atomic configuration difference among the liquid, crystal and glass states.

  16. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  17. Microstructure and mechanical properties investigation of in situ TiB2 and ZrB2 reinforced Al-4Cu composites

    NASA Astrophysics Data System (ADS)

    Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar

    2016-02-01

    Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.

  18. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  19. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva

    PubMed Central

    Salgado-Salgado, R. J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R. A.; Salinas-Solano, G.

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN− anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN− anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions. PMID:27660601

  20. Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition

    NASA Astrophysics Data System (ADS)

    Kao, Szu-Tsung; Lin, Yung-Chi; Duh, Jenq-Gong

    2006-03-01

    Nanosized Cu6Sn5 dispersoids were incorporated into Sn and Ag powders and milled together to form Sn-3Ag-0.5Cu composite solders by a mechanical alloying process. The aim of this study was to investigate the interfacial reaction between SnAgCu composite solder and electroless Ni-P/Cu UBM after heating for 15 min. at 240°C. The growth of the IMCs formed at the composite solder/EN interface was retarded as compared to the commercial Sn3Ag0.5Cu solder joints. With the aid of the elemental distribution by x-ray color mapping in electron probe microanalysis (EPMA), it was revealed that the SnAgCu composite solder exhibited a refined structure. It is proposed that the Cu6Sn5 additives were pinned on the grain boundary of Sn after heat treatment, which thus retarded the movement of Cu toward the solder/EN interface to form interfacial compounds. In addition, wetting is an essential prerequisite for soldering to ensure good bonding between solder and substrate. It was demonstrated that the contact angles of composite solder paste was <25°, and good wettability was thus assured.

  1. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  2. Production and properties of high strength Ni free Zr-based BMGs

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wang, W. H.

    2014-06-01

    Bulk metallic glasses (BMGs) are well known for very attractive physical, mechanical and thermal properties. Zr-based BMGs are used as structural materials in sports goods, electronics, jewelry, medical and aerospace applications. Ni free Zr48Cu36Al8M8 (M = Nb, Ti and Ta) BMGs are successfully synthesized by Cu mold casting technique. Differential scanning calorimetery (DSC) results show that the Zr48Cu36Al8Nb8 BMG have good thermal stability, wide supercooled liquid region of 80 K and contain the double stage crystallization. The alloy has fracture strength of 1.953 GPa. Shear angle was measured to be in the range of 43.5±5° for the alloy studied. Vicker's hardness of the BMGs was found to be over 500 Hv for the as cast alloy which enhanced about 11 % more by annealing up to 600 °C/20 min. Intersected shear bands were observed. The observed promising mechanical and thermal properties showed that BMG studied can be used for industrial applications.

  3. ZrCuAl Bulk Metallic Glass spall induced by laser shock

    NASA Astrophysics Data System (ADS)

    Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe

    2017-06-01

    To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.

  4. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy

    NASA Astrophysics Data System (ADS)

    Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng

    2018-02-01

    In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.

  5. Microstructures and fatigue life of SnAgCu solder joints bearing Nano-Al particles in QFP devices

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Fan, Xi-ying; Guo, Yong-huan; He, Cheng-wen

    2014-05-01

    Microstructures and fatigue life of SnAgCu and SnAgCu bearing nano-Al particles in QFP (Quad flat package) devices were investigated, respectively. Results show that the addition of nano-Al particles into SnAgCu solder can refine the microstructures of matrix microstructure. Moreover, the nano-Al particles present in the solder matrix, act as obstacles which can create a back stress, resisting the motion of dislocations. In QFP device, it is found that the addition of nano-Al particles can increase the fatigue life by 32% compared with the SnAgCu solder joints during thermal cycling loading.

  6. Length scale of the dendritic microstructure affecting tensile properties of Al-(Ag)-(Cu) alloys

    NASA Astrophysics Data System (ADS)

    Duarte, Roberto N.; Faria, Jonas D.; Brito, Crystopher; Veríssimo, Nathalia C.; Cheung, Noé; Garcia, Amauri

    2016-12-01

    The dependence of tensile properties on the length scale of the dendritic morphology of Al-Cu, Al-Ag and Al-Ag-Cu alloys is experimentally investigated. These alloys were directionally solidified (DS) under a wide range of cooling rates (Ṫ), permitting extensive microstructural scales to be examined. Experimental growth laws are proposed relating the primary dendritic arm spacing, λ1 to Ṫ and tensile properties to λ1. It is shown that the most significant effect of the scale of λ1 on the tensile properties is that of the ternary alloy, which is attributed to the more homogeneous distribution of the eutectic mixture for smaller λ1 and by the combined reinforcement roles of the intermetallics present in the ternary eutectic: Al2Cu and nonequilibrium Ag3Al.

  7. Development of High Strength Ni-Cu-Zr-Ti-Si-Sn In-Situ Bulk Metallic Glass Composites Reinforced by Hard B2 Phase

    NASA Astrophysics Data System (ADS)

    Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem

    2018-03-01

    In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.

  8. The Electronic Structure and Formation Energies of Ni-doped CuAlO2 by Density Functional Theory Calculation

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Li, Fei; Sheng, Wei; Nie, Guo-Zheng; Yuan, Ding-Wang

    2014-03-01

    The electronic structure and formation energies of Ni-doped CuAlO2 are calculated by first-principles calculations. Our results show that Ni is good for p-type doping in CuAlO2. When Ni is doped into CuAlO2, it prefers to substitute Al-site. NiAl is a shallow acceptor, while NiCu is a deep acceptor and its formation energy is high. Further electronic structure calculations show that strong hybridization happens between Ni-3d and O-2p states for Ni substituting Al-site, while localized Ni-3d states are found for Ni substituting Cu-site.

  9. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  10. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    PubMed

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  11. Structural, vibrational and morphological properties of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra, Débora M.

    2017-03-15

    Layered double hydroxides are anionic clays with formula [M{sup II}{sub 1−x} M{sup III}{sub x}(OH){sub 2}]{sup q+}[A{sup n−}]{sub q/n}·mH{sub 2}O, finding possible uses as catalyst support, adsorbents and so on. In this paper, we address the phase formation of layered double hydroxides containing Ni{sup 2+}, Zn{sup 2+}, Al{sup 3+} and Zr{sup 4+} cations, namely, NiZn-Al, NiZn-AlZr and NiZn-Zr compositions obtained by the coprecipitation method. Such systems were characterized by X-ray diffraction, confirming the phase formation for NiZn-Al and NiZn-AlZr samples. Infrared and Raman spectroscopies elucidated the anion and water molecules occurrence in the interlayer. Nitrogen physisorption (BET method) determined the presencemore » of pores and specific surface area. The isotherm shapes were Type IV, according to the IUPAC, and represent a mesoporous structure. A morphological study was performed by means of scanning and transmission electron microscopies, and particle size values of 120, 131 and 235 nm for NiZn-Al, NiZn-AlZr and NiZn-Zr, respectively, were determined. Thermogravimetric analysis of the decomposition of the systems revealed that their complete disintegration occurred at ~ 450 °C and resulted in mixed oxides.« less

  12. Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.

    1996-01-01

    Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

  13. Atomic structure and transport properties of Cu50Zr45Al5 metallic liquids and glasses: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mattern, N.; Eckert, J.

    2011-11-01

    We have simulated the atomic structure and the transport properties of Cu50Zr45Al5 metallic liquids and glasses within a wide cooling temperature range from 2000 to 300 K, using molecular dynamics simulations. High fractions of Cu- and Al-centered full icosahedra and Zr-centered icosahedra-like clusters have been detected in both supercooled liquids and glasses. The heat capacity and linear thermal expansion coefficients of both liquids and glasses are also calculated, which have not been reported for this off-eutectic composition previously. The critical temperature (Tc) of Cu50Zr45Al5 liquids is determined to be 874.7 K by investigating the self-diffusivity using the mode coupling theory. A dynamics cross-over is detected in the vicinity of Tc, which can be reflected by different diffusion mechanisms and a remarkable deviation from the Einstein-Stokes relation. The results further suggest a fragile to strong transition of Cu50Zr45Al5 liquids between 1500 K and 1300 K upon cooling, which may result from a drastic increase of stable clusters within this temperature range.

  14. Effect of Ag and Cu Contents on the Age Hardning Behavior of Al-Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Watanabe, Katsumi; Kawabata, Tokimasa; Ikeno, Susumu; Yoshida, Tomoo; Murakami, Satoshi; Matsuda, Kenji

    Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg-Si alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2 at.% and 0.2at.%, respectively. The age-hardening behavior and microstructures of those alloys were investigated by hardness measurement, high resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) technique. Ag or Cu added alloy showed higher peak hardness than Ag or Cu free alloy. According to addition of Ag or Cu, the number density of the precipitates increased than Ag or Cu free alloy.

  15. Morphological and Microstructural Evolution of Phosphorous-Rich Layer in SnAgCu/Ni-P UBM Solder Joint

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong

    2007-11-01

    Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.

  16. From Quasicrystals to Crystals with Interpenetrating Icosahedra in Ca–Au–Al: In Situ Variable-Temperature Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Meng, Fanqiang; Lynn, Matthew J.

    The irreversible transformation from an icosahedral quasicrystal (i-QC) CaAu 4.39Al 1.61 to its cubic 2/1 crystalline approximant (CA) Ca 13Au 56.31(3)Al 21.69 (CaAu 4.33(1)Al1.67, Pamore » $$\\bar{3}$$ (No. 205); Pearson symbol: cP728; a = 23.8934(4)), starting at ~570 °C and complete by ~650 °C, is discovered from in situ, high-energy, variable-temperature powder X-ray diffraction (PXRD), thereby providing direct experimental evidence for the relationship between QCs and their associated CAs. The new cubic phase crystallizes in a Tsai-type approximant structure under the broader classification of polar intermetallic compounds, in which atoms of different electronegativities, viz., electronegative Au + Al vs electropositive Ca, are arranged in concentric shells. From a structural chemical perspective, the outermost shell of this cubic approximant may be described as interpenetrating and edge-sharing icosahedra, a perspective that is obtained by splitting the traditional structural description of this shell as a 92-atom rhombic triacontahedron into an 80-vertex cage of primarily Au [Au 59.86(2)Al 17.14⟂ 3.00] and an icosahedral shell of only Al [Al 10.5⟂ 1.5]. Following the proposal that the cubic 2/1 CA approximates the structure of the i-QC and on the basis of the observed transformation, an atomic site analysis of the 2/1 CA, which shows a preference to maximize the number of heteroatomic Au–Al nearest neighbor contacts over homoatomic Al–Al contacts, implies a similar outcome for the i-QC structure. Analysis of the most intense reflections in the diffraction pattern of the cubic 2/1 CA that changed during the phase transformation shows correlations with icosahedral symmetry, and the stability of this cubic phase is assessed using valence electron counts. Finally, according to electronic structure calculations, a cubic 1/1 CA, “Ca 24Au 88Al 64” (CaAu 3.67Al 2.67) is proposed.« less

  17. From Quasicrystals to Crystals with Interpenetrating Icosahedra in Ca–Au–Al: In Situ Variable-Temperature Transformation

    DOE PAGES

    Pham, Joyce; Meng, Fanqiang; Lynn, Matthew J.; ...

    2017-12-29

    The irreversible transformation from an icosahedral quasicrystal (i-QC) CaAu 4.39Al 1.61 to its cubic 2/1 crystalline approximant (CA) Ca 13Au 56.31(3)Al 21.69 (CaAu 4.33(1)Al1.67, Pamore » $$\\bar{3}$$ (No. 205); Pearson symbol: cP728; a = 23.8934(4)), starting at ~570 °C and complete by ~650 °C, is discovered from in situ, high-energy, variable-temperature powder X-ray diffraction (PXRD), thereby providing direct experimental evidence for the relationship between QCs and their associated CAs. The new cubic phase crystallizes in a Tsai-type approximant structure under the broader classification of polar intermetallic compounds, in which atoms of different electronegativities, viz., electronegative Au + Al vs electropositive Ca, are arranged in concentric shells. From a structural chemical perspective, the outermost shell of this cubic approximant may be described as interpenetrating and edge-sharing icosahedra, a perspective that is obtained by splitting the traditional structural description of this shell as a 92-atom rhombic triacontahedron into an 80-vertex cage of primarily Au [Au 59.86(2)Al 17.14⟂ 3.00] and an icosahedral shell of only Al [Al 10.5⟂ 1.5]. Following the proposal that the cubic 2/1 CA approximates the structure of the i-QC and on the basis of the observed transformation, an atomic site analysis of the 2/1 CA, which shows a preference to maximize the number of heteroatomic Au–Al nearest neighbor contacts over homoatomic Al–Al contacts, implies a similar outcome for the i-QC structure. Analysis of the most intense reflections in the diffraction pattern of the cubic 2/1 CA that changed during the phase transformation shows correlations with icosahedral symmetry, and the stability of this cubic phase is assessed using valence electron counts. Finally, according to electronic structure calculations, a cubic 1/1 CA, “Ca 24Au 88Al 64” (CaAu 3.67Al 2.67) is proposed.« less

  18. Refinement of the β-Sn Grains in Ni-Doped Sn-3.0Ag-0.5Cu Solder Joints with Cu-Based and Ni-Based Substrates

    NASA Astrophysics Data System (ADS)

    Chou, Tzu-Ting; Chen, Wei-Yu; Fleshman, Collin Jordon; Duh, Jenq-Gong

    2018-03-01

    A fine-grain structure with random orientations of lead-free solder joints was successfully obtained in this study. The Sn-Ag-Cu solder alloys doped with minor Ni were reflowed with Ni-based or Cu-based substrates to fabricate the joints containing different Ni content. Adding 0.1 wt.% Ni into the solder effectively promoted the formation of fine Sn grains, and reflowing with Ni-based substrates further enhanced the effects of β-Sn grain refinement. The crystallographic characteristics and the microstructures were analyzed to identify the solidification mechanism of different types of microstructure in the joints. The phase precipitating order in the joint altered as the solder composition were modified by elemental doping and changing substrate, which significantly affected the efficiency of grain refinement and the final grain structure. The formation mechanism of fine β-Sn grains in the Ni-doped joint with a Ni-based substrate is attributable to the heterogeneous nucleation by Ni, whereas the Ni in the joint using ChouCu-based substrate is consumed to form an intermetallic compound and thus retard the effect of grain refining.

  19. Laser micro-processing of amorphous and partially crystalline Cu45Zr48Al7 alloy

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.; Kovacs, Z.; Browne, D. J.

    2010-11-01

    This paper presents a microstructural study of laser micro-processed high-purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Microprocessing of the Cu45Zr48Al7 alloy was performed using a Rofin DC-015 diffusion-cooled CO2 slab laser system with 10.6-μm wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300- and 350-W peak power, 30% duty cycle and a 3000-Hz laser pulse repetition frequency (PRF). About 100-micrometer-wide channels were scribed on the surfaces of disk-shaped amorphous and partially crystalline samples at traverse speeds of 500 and 5000 mm/min. These channels were analysed using scanning electron microscopy (SEM) and 2D stylus profilometry. The metallographic study and profile of these processed regions are discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. The results from this work showed that microscale features can be produced on the surface of amorphous Cu-Zr-Al alloys by CO2 laser processing.

  20. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  1. Identification of strengthening phases in Al-Cu-Li alloy Weldalite (tm) 049

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Microstructure property relationships were determined for a family of ultrahigh strength weldable Al-Cu-Li based alloys referred to as Weldalite (tm) alloys. The highest strength variant of this family, Weldalite 049, has a high Cu/Li wt pct. ratio with a nominal composition of Al-6.3Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr. Increasing the alloy's lithium content above 1.3 wt pct. resulted in a decrease in both yield and ultimate tensile strength. Strength was shown to be strongly dependent on lithium content, with a maximum in strength occurring in the range of about 1.1 to 1.4 wt pct. lithium. The strengthening phases present in Weldalite 049 (1.3Li) and an Al-6.3Cu-1.9Li-0.4Mg-0.14Zr alloy were identified using transmission electron microscopy (TEM).

  2. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao

    2017-02-01

    Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

  3. Atomic model of anti-phase boundaries in a face-centred icosahedral Zn Mg Dy quasicrystal

    NASA Astrophysics Data System (ADS)

    Wang, Jianbo; Yang, Wenge; Wang, Renhui

    2003-03-01

    An atomic model in the physical space for an anti-phase boundary (APB) in the ordered face-centred icosahedral Zn-Mg-Dy quasicrystal phase is presented, based on a six-dimensional model suggested by Ishimasa and Shimizu (2000 Mater. Sci. Eng. A 294-296 232, Ishimasa 2001 private communication). The physical space atomic positions of the defected structure were used for the calculation of the corresponding exit-plane wavefunction and high-resolution transmission electron microscopy images. The analysis of the defect by inverse Fourier transformation reveals that when superstructure reflection spots are used for back-transformation, then at the APB, bright lattice fringes are found to turn into dark ones, and vice versa. When fundamental reflections are used, the APB is not visible. This phenomenon is the same as the corresponding experimental study recently published by Heggen et al(2001a Phys. Rev. B 64 014202). Based on this atomic model it is found that the APB perpendicular to a fivefold axis A5 (APB-A5) is a non-conservative boundary, while the APB perpendicular to a pseudo-twofold axis A2P (APB-A2P) is a conservative one. This fact is consistent with the experimental observation (Heggen et al2002 J. Alloys Compounds 342 330) that the frequency of occurrence of APB-A5 is 90% in the heat-treated samples compared with that in the deformed samples (45%), while the frequency of occurrence of APB-A2P is 34% in the deformed samples compared with that in the heat-treated samples.

  4. Thermo-Mechanical Response of Monolithic and NiTi Shape Memory Alloy Fiber Reinforced Sn-3.8Ag-0.7Cu Solder

    DTIC Science & Technology

    2005-09-01

    novel adaptive Tin-Silver-Copper ( SnAgCu ) solder reinforced with NiTi shape-memory alloy (particles or fiber) developed. An experimental...to meet the demands of miniaturization and enhanced performance in severe environments, a novel adaptive Tin-Silver-Copper ( SnAgCu ) solder...4. Crack region of SnAgCu solder after TMF, from reference [1] ............. 5 Figure 5. Phase diagram of 95.5Sn-3.8Ag-0.7Cu solder, from reference

  5. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures

    DTIC Science & Technology

    2015-08-01

    metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes

  6. The characterisation of atomic structure and glass-forming ability of the Zr-Cu-Co metallic glasses studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Celtek, M.; Sengul, S.

    2018-03-01

    In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.

  7. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2017-01-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  8. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  9. Study of Metal-NH[subscript 3] Interfaces (Metal= Cu, Ni, Ag) Using Potentiostatic Curves

    ERIC Educational Resources Information Center

    Nunes, Nelson; Martins, Angela; Leitao, Ruben Elvas

    2007-01-01

    Experiment is conducted to determine the kinetic parameters of metal-solution interfaces. During the experiment the kinetic parameters for the interfaces Cu-NH[subscript 3], Ag-NH[subscript 3] and Ni-NH[subscript 3] is easily determined.

  10. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    NASA Astrophysics Data System (ADS)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  11. Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. G.; Li, Y. Z.; Wang, Z.

    2014-08-28

    The β-relaxation of metallic glasses (MGs) bears nontrivial connections to their microscopic and macroscopic properties. In an effort to elucidate the mechanism of the β-relaxation, we studied by dynamical mechanical measurements the change of its properties on varying the composition of La{sub 60}Ni{sub 15}Al{sub 25} in various ways. The properties of the β-relaxation turn out to be very sensitive to the composition. It is found that the isochronal loss peak temperature of β-relaxation, T{sub β,peak}, is effectively determined by the total (La + Ni) content. When Cu is added into the alloy to replace either La, Ni, or Al, themore » T{sub β,peak} increases with decrease of the (La + Ni) content. The trend is in accordance with data of binary and ternary MGs formed from La, Ni, Al, and Cu. Binary La-Ni MGs have pronounced β-relaxation loss peaks, well separated from the α-relaxation. In contrast, the β-relaxation is not resolved in La-Al and La-Cu MGs, showing up as an excess wing. For the ternary La-Ni-Al MGs, increase of La or Ni content is crucial to lower the T{sub β,peak}. Keeping the Al content fixed, increase of La content lowers the T{sub β,peak} further, indicating the more important role La plays in lowering T{sub β,peak} than Ni. The observed effects on changing the composition of La{sub 60}Ni{sub 15}Al{sub 25} lead to the conclusion that the properties of the β-relaxation are mainly determined by the interaction between the largest solvent element, La, and the smallest element, Ni. From our data, it is further deduced that La and Ni have high mobility in the MGs, and this explains why the β-relaxation in this La-based MGs is prominent and well resolved from the α-relaxation as opposed to Pd- and Zr-based MGs where the solvent and largest atoms, Pd and Zr, are the least mobile.« less

  12. Bio-Diesel Production from Deoxygenation Reaction Over Ce0.6Zr0.4O2 Supported Transition Metal (Ni, Cu, Co, and Mo) Catalysts.

    PubMed

    Shim, Jae-Oh; Jeong, Dae-Woon; Jang, Won-Jun; Jeon, Kyung-Won; Jeon, Byong-Hun; Kim, Seong-Heon; Roh, Hyun-Seog; Na, Jeong-Geol; Han, Sang Sup; Ko, Chang Hyun

    2016-05-01

    Ce0.6Zr0.4O2 supported transition metal (Me = Ni, Cu, Co, and Mo) catalysts have been investigated to screen for the catalytic activity and selectivity for deoxygenation reaction of oleic acid. Me-Ce0.6Zr0.4O2 catalysts were prepared by a co-precipitation method. Ni-Ce0.6Zr0.4O2 catalyst exhibited much higher oleic acid conversion, selectivity for C9 to C17 compounds, and oxygen removal efficiency than the others. This is mainly ascribed to the presence of free Ni species, synergy effects between Ni and Ce0.6Zr0.4O2, and the highest BET surface area.

  13. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  14. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  15. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  16. Interpenetration of a 3D Icosahedral M@Ni12 (M=Al, Ga) Framework with Porphyrin-Reminiscent Boron Layers in MNi9 B8.

    PubMed

    Zheng, Qiang; Wagner, Frank R; Ormeci, Alim; Prots, Yurii; Burkhardt, Ulrich; Schmidt, Marcus; Schnelle, Walter; Grin, Yuri; Leithe-Jasper, Andreas

    2015-11-09

    Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  18. An Icosahedral Quasicrystal and Its 1/0 Crystalline Approximant in the Ca–Au–Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Kreyssig, Andreas; Goldman, Alan I.

    2016-10-17

    A new icosahedral quasicrystalline phase, CaAu4.5–xAl1.5+x [0.11 ≤ x ≤ 0.40(6); CaAu4.4Al1.6, aQC = 5.383(4) Å, and Pm35], and its lowest-order 1/0 cubic crystalline approximant phase, CaAu3+xAl1–x [0 ≤ x ≤ 0.31(1); a = 9.0766(5)–9.1261(8) Å, Pa3(No. 205), and Pearson symbol cP40], have been discovered in the Ca-poor region of the Ca–Au–Al system. In the crystalline approximant, eight [Au3–xAl1+x] tetrahedra fill the unit cell, and each tetrahedron is surrounded by four Ca atoms, thus forming a three-dimensional network of {Ca4/4[Au3–xAl1+x]} tetrahedral stars. A computational study of Au and Al site preferences concurs with the experimental results, which indicate a preferencemore » for near-neighbor Au–Al interactions over Au–Au and Al–Al interactions. Analysis of the electronic density of states and the associated crystal orbital Hamilton population curves was used to rationalize the descriptions of CaAu4.5–xAl1.5+x [0.11 ≤ x ≤ 0.46(6)] and CaAu3+xAl1–x [0 ≤ x ≤ 0.31(1)] as polar intermetallic species, whereby Ca atoms engage in polar covalent bonding with the electronegative, electron-deficient [Au3–xAl1+x] tetrahedral clusters and the observed phase width of the crystalline approximant.« less

  19. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    PubMed

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  20. The effect of hydrogen content on ballistic transport behaviors in the Ni-Nb-Zr-H glassy alloys.

    PubMed

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni(0.39)Nb(0.25)Zr(0.35))(100-) (x)H(x) (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr(5)Nb(5)Ni(3) clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena.

  1. The Effect of Hydrogen Content on Ballistic Transport Behaviors in the Ni-Nb-Zr-H Glassy Alloys

    PubMed Central

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni0.39Nb0.25Zr0.35)100−xHx (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr5Nb5Ni3 clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena. PMID:22312246

  2. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties.

    PubMed

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-22

    A novel ZnO nanorod array (NR)/CuAlO(2) nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO(2) laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of -2 to +2 V were observed in this heterojunction with the increase of Zn(2+) ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm(-2) was obtained under AM 1.5 illumination with 100 mW cm(-2) light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  3. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-01

    A novel ZnO nanorod array (NR)/CuAlO2 nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO2 laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of - 2 to + 2 V were observed in this heterojunction with the increase of Zn2 + ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm - 2 was obtained under AM 1.5 illumination with 100 mW cm - 2 light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  4. Effect of Heat Treatments on Microstructures and Tensile Properties of Cu-3 wt%Ag-0.5 wt%Zr Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, ChuanJie; Zhang, Ying; Yi, Cen; Zhang, Peng

    2018-03-01

    The microstructures and tensile properties of Cu-3 wt%Ag-0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.

  5. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  6. Quasicrystal structure and growth models: discussion of the status quo and the still open questions

    NASA Astrophysics Data System (ADS)

    Steurer, Walter

    2017-02-01

    Where are we now in quasicrystal (QC) research more than three decades after Dan Shechtman’s discovery? Do we fully understand the origin of quasiperiodicity, the formation, growth, thermodynamic stability, structure and properties of quasicrystals? First, I will shortly present the status quo, then I will address the still open questions, and identify potential focus areas for future research. Because of the limited space, I will focus on decagonal quasicrystals (DQCs); the status quo for research on icosahedral quasicrystals (IQCs) is comparable.

  7. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  8. Icosahedral quasicrystal Al71Pd21Mn08 and its ξ' approximant: Linear expansivity, specific heat, magnetic susceptibility, electrical resistivity, and elastic constants

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Fisher, I. R.; Anderson, N. E.; Canfield, P. C.; Migliori, A.

    2002-05-01

    Linear thermal expansivity (α, 1-300 K), heat capacity (Cp, 1-108 K), magnetic susceptibility (χ, 1-300 K), and electrical resistivity (ρ, 1-300 K) measurements are reported for a single-grain i-Al71Pd21Mn08 quasicrystal and its Al72Pd25Mn03 approximant, and 300 K elastic constants for the quasicrystal. The approximant α (αAp) and Cp (CpAp) data show ``metallic'' behavior, while the previously reported onset of a transition to a spin-glass state (Tf<1.8 K) dominates αQ and CpQ below 11 K. CpAp and CpQ superimpose above 16 K when plotted vs T/Θ0 using the experimental Θ0Ap=455(3) K and an adjusted Θ0ApQ=480(4) K. The 300 K elastic constants extrapolated to T=0 give Θel0Q=505(1) K, suggesting that the normalization is valid only above 16 K. The lattice contribution to CpAp (and, indirectly, CpQ) shows strong (unique) deviations from Debye-like behavior (+3% at 0.84 K for the CpAp data fit). The various Grüneisen parameters (Γ) that are calculated from these data all are positive and normal in magnitude except for a large limiting approximant lattice value, Γlat0Ap=11.3, which may be related to the large dispersion effects in Cp. For the approximant, the combination of anisotropic and large resistivities, a small diamagnetic susceptibility, and a ``large'' linear (electronic) contribution to CpAp (γAp=0.794 mJ/mol K2) suggests the existence of a pseudogap in the electronic density of states. The unusually large, highly volume dependent, dispersion at low temperatures for the quasicrystal and its approximant are not consistent with inelastic neutron scattering and other data, and raise questions about the role of phonons in quasicrystals. The present 300 K resistivities can be used with a published correlation to estimate γQ~0.25 mJ/mol K2.

  9. ac impedance analysis of a Ni-Nb-Zr-H glassy alloy with femtofarad capacitance tunnels

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Seto, M.; Inoue, A.

    2010-01-01

    A Nyquist diagram of a (Ni0.36Nb0.24Zr0.40)90H10 glassy alloy shows a semitrue circle, indicating that it is a conducting material with a total capacitance of 17.8 μF. The Bode plots showing the dependencies of its real and imaginary impedances, and phase on frequency suggest a simpler equivalent circuit having a resistor in parallel with a capacitor. Dividing the total capacitance (17.8 μF) by the capacitance of a single tunnel (0.9 fF), we deduced that this material has a high number of dielectric tunnels, which can be regarded as regular prisms separated from the electric-conducting distorted icosahedral Zr5Ni5Nb3 clusters by an average of 0.225 nm.

  10. Excellent glass forming ability and plasticity in high entropy Zr20Ti20Hf20M20Be20 (M = Cu, Ni, Co) alloys

    NASA Astrophysics Data System (ADS)

    Zong, Haitao; Geng, Chenchen; Kang, Chaoyang; Cao, Guohua; Bian, Linyan; Li, Lixin; Zhang, Baoqing; Li, Ming

    2018-03-01

    We reported here the studies of a series of Zr20Ti20Hf20M20Be20 (M = Cu, Ni and Co) quinary high entropy bulk metallic glasses. Glasses with critical diameters (Dc) of 3 mm, 8 mm and 5 mm, respectively has been successfully fabricated by copper mold casting. Strikingly, a plastic strain of 11.6% is achieved in the Zr20Ti20Hf20Cu20Be20 metallic glass. The dynamic fragility the Zr20Ti20Hf20Cu20Be20 alloy is determined from calorimetric measurements. The excellent plasticity is explained to be attributed to relatively higher fragility.

  11. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4; Zhong, Cheng

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cumore » and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.« less

  12. Microstructure and Tensile Properties of Sn-1Ag-0.5Cu Solder Alloy Bearing Al for Electronics Applications

    NASA Astrophysics Data System (ADS)

    Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama

    2012-08-01

    This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.

  13. Cyclic oxidation resistance of a reaction milled NiAl-AlN composite

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.; Whittenberger, J. D.

    1990-01-01

    Based upon recent mechanical property tests a NiAl-AlN composite produced by cryomilling has very attractive high temperature strength. This paper focuses on the oxidation resistance of the NiAl-AlN composite at 1473 and 1573 K as compared to that of Ni-47Al-0.15Zr, one of the most oxidation resistant intermetallics. The results of cyclic oxidation tests show that the NiAl-AlN composite has excellent properties although not quite as good as those of Ni-47Al-0.15Zr. The onset of failure of the NiAl-AlN was unique in that it was not accompanied by a change in scale composition from alumina to less protective oxides. Failure in the composite appears to be related to the entrapment of AlN particles within the alumina scale.

  14. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    PubMed

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  15. Effect of Applied Stress on the Mechanical Properties of a Zr-Cu-Ag-Al Bulk Metallic Glass with Two Different Structure States

    PubMed Central

    Chen, Heng; Zhang, Taihua; Ma, Yi

    2017-01-01

    In order to investigate the effect of applied stress on mechanical properties in metallic glasses, nanoindentation tests were conducted on elastically bent Zr-Cu-Ag-Al metallic glasses with two different structure states. From spherical P-h curves, elastic modulus was found to be independent on applied stress. Hardness decreased by ~8% and ~14% with the application of 1.5% tensile strain for as-cast and 650 K annealed specimens, while it was slightly increased at the compressive side. Yield stress could be obtained from the contact pressure at first pop-in position with a conversion coefficient. The experimental result showed a symmetrical effect of applied stress on strengthening and a reduction of the contact pressure at compressive and tensile sides. It was observed that the applied stress plays a negligible effect on creep deformation in as-cast specimen. While for the annealed specimen, creep deformation was facilitated by applied tensile stress and suppressed by applied compressive stress. Strain rate sensitivities (SRS) were calculated from steady-state creep, which were constant for as-cast specimen and strongly correlated with applied stress for the annealed one. The more pronounced effect of applied stress in the 650 K annealed metallic glass could be qualitatively explained through the variation of the shear transformation zone (STZ) size. PMID:28773065

  16. Electrochemical performance and carbon deposition resistance of M-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells

    PubMed Central

    Li, Meng; Hua, Bin; Pu, Jian; Chi, Bo; Jian, Li

    2015-01-01

    Pd-, Cu-, Ni- and NiCu-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ anodes, designated as M-BZCYYb, were prepared by impregnating M-containing solution into BZCYYb scaffold, and investigated in the aspects of electrocatalytic activity for the reactions of H2 and CH4 oxidation and the resistance to carbon deposition. Impregnation of Pd, Ni or NiCu significantly reduced both the ohmic (RΩ) and polarization (RP) losses of BZCYYb anode exposed to H2 or CH4, while Cu impregnation decreased only RΩ in H2 and the both in CH4. Pd-, Ni- and NiCu-BZCYYb anodes were resistant to carbon deposition in wet (3 mol. % H2O) CH4 at 750°C. Deposited carbon fibers were observed in Pd- and Ni-BZCYYb anodes exposed to dry CH4 at 750°C for 12 h, and not observed in NiCu-BZCYYb exposed to dry CH4 at 750°C for 24 h. The performance of a full cell with NiCu-BZCYYb anode, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd doped CeO2 (LSCF-GDC) cathode was stable at 750°C in wet CH4 for 130 h, indicating that NiCu-BZCYYb is a promising anode for direct CH4 solid oxide fuel cells (SOFCs). PMID:25563843

  17. Graphene-like Networks in the lattice of Ag, Cu and Al metals

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Ge, Xiaoxiao; Isaacs, Romaine; Jaim, Hm Iftekar; Wuttig, Manfred; Rashkeev, Sergey; Kuklja, Maija; Hu, Lianbing; Covetics Team Team

    Graphene-like networks form in the lattice of metals such as silver, copper and aluminum via an electrocharging assisted process. In this process a high current of >80A is applied to the liquid metal containing particles of activated carbon. The resulting material is called M covetic (M =Al, Ag Cu). We have previously reported that this process gives rise to carbon nanostructures with sp2 bonding embedded in the lattice of the metal. The carbon bonds to the metal as evidenced by Raman scattering and first principles simulation of the phonon density of states. With this process we have observed that graphene nanoribbons form along preferential crystalline directions and form 3D epitaxial structures with Al and Ag hosts. Bulk Cu covetic was used to deposit films by e-beam deposition and PLD. The PLD films contain higher C content and show higher transmittance (~90%) and resistance to oxidation than pure copper films of the same thickness. We compare the electrical and mechanical properties of covetics containing C in the 0 to 10 wt % and the transmittance of Cu covetic films compared to pure Cu films of the same thickness. Supported by ONR Grant N000141410042

  18. Variation of Hardness and Modulus across thickness of Zr-Cu-Al Metallic Glass Ribbons

    Treesearch

    Z. Humberto Melgarejo; J.E. Jakes; J. Hwang; Y.E. Kalay; M.J. Kramer; P.M. Voyles; D.S. Stone

    2012-01-01

    We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus...

  19. Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xu, Haiyang; Wang, Zhongqiang; Yu, Hao; Ma, Jiangang; Liu, Yichun

    2016-01-01

    The coexistence of uniform bipolar and unipolar resistive-switching (RS) characteristics was demonstrated in a double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. By changing the compliance current (CC) from 1 mA to 10 mA, the RS behavior can be converted from the bipolar mode (BRS) to the unipolar mode (URS). The temperature dependence of low resistance states further indicates that the CFs are composed of the Ag atoms and Cu vacancies for the BRS mode and URS mode, respectively. For this double-layer structure device, the thicker conducting filaments (CFs) will be formed in the ZnS-Ag layer, and it can act as tip electrodes. Thus, the formation and rupture of these two different CFs are located in the CuAlO2 layer, realizing the uniform and stable BRS and URS.

  20. A study of the vacancy loop formation probability in Ni-Cu and Ag-Pd alloys. [50-keV Kr sup + ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalinskas, K.; Chen, Gengsheng; Haworth, J.

    1992-04-01

    The molten-zone model of vacancy loop formation from a displacement cascade predicts that the loop formation probability should scale with the melting temperature. To investigate this possibility the vacancy loop formation probability has been determined in a series of Cu-Ni and Ag-Pd alloys. The irradiations were performed at room temperature with 50 keV Kr+ ions and the resulting damage structure was examined by using transmission electron microscopy. In the Cu-Ni alloy series, the change in loop formation probability with increasing Ni concentration was complex, and at low- and high- nickel concentrations, the defect yield did not change in the predictedmore » manner. The defect yield was higher in the Cu-rich alloys than in the Ni-rich alloys. In the Ag-Pd alloy the change in the loop formation probability followed more closely the change in melting temperature, but no simple relationship was determined.« less

  1. A Novel Liquid-Liquid Transition in Undercooled Ti-Zr-Ni Liquids

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Bradshaw, R. C.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2004-01-01

    If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, T(sub l), finally 'freezing' into a glass below a characteristic temperature called the glass transition temperature, T(sub g). In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of H2O and Si. Such phase transitions have been predicted in some stable liquids, ie. above T(sub l) at atmospheric pressure, for SiO2 and BeF2, but these have not been verified experimentally. They have been observed in liquids of P, Si and C, but only under high pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity metallic liquid that is driven by an approach to a constant entropy configuration state and correlated with a growing icosahedral order in the liquid. A maximum in the specific heat at constant pressure, similar to what is normally observed near T(sub g), is reported for undercooled liquids of quasicrystal-forming Ti-Zr-Ni alloys. A two-state excitation model that includes cooperativity by incorporating a temperature-dependent excitation energy, fits the specific heat data well, signaling a phase transition. An inflection in the liquid density with decreasing temperature instead of a discontinuity indicates that this is not a typical first order phase transition; it could be a weakly first order or higher order transition. While showing many similarities to a glass transition, this liquid-liquid phase transition occurs in a mobile liquid, making it novel.

  2. Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chee, Sang-Soo; Lee, Jong-Hyun

    2014-05-01

    A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.

  3. Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique

    NASA Astrophysics Data System (ADS)

    Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash

    2017-04-01

    Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.

  4. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    PubMed

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  5. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  6. Nanocomposite SAC Solders: The Effect of Adding Ni and Ni-Sn Nanoparticles on Morphology and Mechanical Properties of Sn-3.0Ag-0.5Cu Solders

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Švec, P.; Orovcik, L.; Bajana, O.; Ipser, H.

    2018-01-01

    This study investigates the effect of minor additions of Ni, Ni3Sn or Ni3Sn2 nanoparticles on the microstructure and mechanical properties of Cu/solder/Cu joints. The nanocomposite Sn-3.0Ag-0.5Cu (SAC305) solders with 0.5, 1.0 and 2.0 wt.% metallic nanoparticles were prepared through a paste mixing method. The employed Ni and Ni-Sn nanoparticles were produced via a chemical reduction method. The microstructure of as-solidified Cu/solder/Cu joints was studied by x-ray diffraction and scanning electron microscopy. The results showed that additions of Ni and Ni-Sn nanoparticles to the SAC305 solder paste lead initially to a decrease in the average thickness of the intermetallic compound layer in the interface between solder and substrate, while further additions up to 2.0 wt.% did not induce any significant changes. In addition, shear strength and microhardness tests were performed to investigate the relationship between microstructure and mechanical properties of the investigated solder joints. The results indicated an increase in both of these properties which was most significant for the solder joints using SAC305 with 0.5 wt.% Ni or Ni-Sn nanoparticles.

  7. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  8. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE PAGES

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.; ...

    2018-02-08

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  9. Microstructure and thermal stability of Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coatings

    NASA Astrophysics Data System (ADS)

    Meng, Jian-ping; Guo, Rui-rui; Li, Hu; Zhao, Lu-ming; Liu, Xiao-peng; Li, Zhou

    2018-05-01

    Solar selective absorbing coatings play a valuable role in photo-thermal conversion for high efficiency concentrating solar power systems (CSP). In this paper, a novel Cu/Zr0.3Al0.7N/Zr0.2Al0.8N/Al34O60N6 cermet-based solar selective absorbing coating was successfully deposited by ion beam assisted deposition. The optical properties, microstructure and element distribution in depth were investigated by spectroscopic ellipsometry, UV-vis-NIR spectrophotometer, transmission electron microscope (TEM) and Auger electron spectroscopy (AES), respectively. A high absorptance of 0.953 and a low thermal emittance of 0.079 at 400 °C are obtained by the integral computation according to the whole reflectance from 300 nm to 28,800 nm. After annealing treatment at 400 °C (in vacuum) for 192 h, the deposited coating exhibits the high thermal stability. Whereas, the photothermal conversion efficiency decreases from 12.10 to 6.86 due to the emittance increase after annealing at 600 °C for 192 h. Meanwhile, the nitrogen atom in the Zr0.3Al0.7N sub-layer diffuses toward the adjacent sub-layer due to the spinodal decomposition of metastable c-ZrAlN and the phase transition from c-AlN to h-AlN, which leads to the composition of the Zr0.3Al0.7N sub-layer deviates the initial design. This phenomenon has a guide effect for the thermal-stability improvement of cermet coatings. Additionally, a serious diffusion between copper and silicon substrate also contributes to the emittance increase.

  10. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    NASA Astrophysics Data System (ADS)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  11. Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2018-01-01

    2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.

  12. Aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB{sub 2}/Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al{sub 3}Li), β′ (Al{sub 3}Zr) and the cubic phase. After aging for 18 h, all precipitates including T{sub 1} (Al{sub 2}CuLi), S (Al{sub 2}CuMg), θ′ (Al{sub 2}Cu), δ′, β′more » and the cubic phase have appeared, and the formation of T{sub 1} and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T{sub 1} and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) or its variant was precipitated. •The hardness change was dominated by the evolution of T{sub 1} (Al{sub 2}CuLi) and S (Al{sub 2}CuMg).« less

  13. Thermal Evaporation Loss Measurements on Quasicrystal (Ti-Zr-Ni) and Glass Forming (Vit 106 and Vit 106a) Liquids

    NASA Astrophysics Data System (ADS)

    Blodgett, M. E.; Gangopadhyay, A. K.; Kelton, K. F.

    2015-04-01

    Thermal evaporation loss measurements made using the electrostatic levitation (ESL) technique for one binary Ti-Zr, two ternary Ti-Zr-Ni, and two glass-forming (Vit 106 and Vit 106a) alloy liquids are reported. The containerless environment enables measurements not only for the equilibrium liquids but also for the metastable supercooled liquids. The data follow the Langmuir equation when the activity coefficient of the solute atoms, a measure for the deviation from the ideal solution behavior, is taken into account. An estimate for the activity coefficient of Ni in the Ti-Zr liquid is made from these data, demonstrating the effectiveness of ESL for such measurements.

  14. Synthesis of an Al-Mn-Based Alloy Containing In Situ-Formed Quasicrystals and Evaluation of Its Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Naglič, Iztok; Samardžija, Zoran; Delijić, Kemal; Kobe, Spomenka; Leskovar, Blaž; Markoli, Boštjan

    2018-05-01

    An Al-Mn alloy with additions of copper, magnesium, and silicon was prepared and cast into a copper mold. It contains in situ-formed icosahedral quasicrystals (iQCs), as confirmed by electron backscatter diffraction. The aim of this work is to present the mechanical and corrosion properties of this alloy and compare its properties with some conventional commercial materials. The compressive strength and compressive yield strength were 751 MPa and 377 MPa, while the compressive fracture strain was 19%. It was observed that intensive shearing caused the final fracture of the specimens and the fractured iQC dendrites still showed cohesion with the α-Al matrix. The polarization resistance and corrosion rate of the artificially aged alloy were 7.30 kΩ and 1.2 μm/year. The evaluated properties are comparable to conventional, discontinuously reinforced aluminum metal-matrix composites and structural wrought aluminum alloys.

  15. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  16. Capture of Hydrogen Using ZrNi

    NASA Technical Reports Server (NTRS)

    Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde

    2005-01-01

    Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.

  17. Magnetic and crystallographic properties of ZrM 2-δZn 20+δ (M=Cr–Cu)

    DOE PAGES

    Svanidze, E.; II, M. Kindy; Georgen, C.; ...

    2016-04-29

    Single crystals of the cubic Laves ternaries ZrM 2-δZn 20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized in this paper using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM 2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length d M–M in ZrM 2-δZn 20+δ compounds, asmore » compared with the ZrM 2 binaries. Additionally, we report two new compounds in this series ZrCrZn 21 and ZrCu 2Zn 20. Finally, analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular.« less

  18. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  19. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    NASA Technical Reports Server (NTRS)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  20. Sigma-phase packing of icosahedral clusters in 780-atom tetragonal crystals of Cr5Ni3Si2 and V15Ni10Si that by twinning achieve 8-fold rotational point-group symmetry

    PubMed Central

    Pauling, Linus

    1988-01-01

    A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 Å is assigned to rapidly solidified Cu5Ni3Si2 and V15Ni10Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45° twinning on the basal plane. PMID:16593915

  1. Sigma-phase packing of icosahedral clusters in 780-atom tetragonal crystals of Cr(5)Ni(3)Si(2) and V(15)Ni(10)Si that by twinning achieve 8-fold rotational point-group symmetry.

    PubMed

    Pauling, L

    1988-04-01

    A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 A is assigned to rapidly solidified Cu(5)Ni(3)Si(2) and V(15)Ni(10)Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45 degrees twinning on the basal plane.

  2. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    NASA Astrophysics Data System (ADS)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  3. Effect of sub-Tg annealing on CuZr and AlSm glasses: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Feng; Zhang, Yue; Ye, Zhuo; Mendelev, Mikhail; Wang, Cai-Zhuang; Ho, Kai-Ming

    Cu65Zr35 and Al90Sm10 glasses, which represent strong and marginal binary metallic glass formers, respectively, were developed with a sub-Tg annealing method using Molecular Dynamics simulations. The short-range order (SRO) in both systems was characterized based on the concept of ``crystal gene'' that we established recently. Furthermore, we found that while the local clusters representing the dominant short-range order form an ever-more pronounced interpenetrating network with slower cooling rates in Cu65Zr35 glasses, the interpenetration of SRO in Al90Sm10 glasses only shows a weak dependence on the cooling rate. This clear difference in the connectivity of the SRO, which can characterize the medium-range order (MRO), could contribute to the different glass forming abilities of both systems. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division, under Contract No. DE-AC02-07CH11358.

  4. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    NASA Astrophysics Data System (ADS)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  5. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    PubMed

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.

  6. Deformation Behavior and Structure of i-Al-Cu-Fe Quasicrystalline Alloy in Vicinity of Nanoindenter Indentation

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Selyanin, I. O.; Smirnova, E. O.; Smirnov, S. V.; Novachek, D. D.

    2018-02-01

    The nanoindentation tests have been carried out for the quasicrystalline polygrain Al62.4Cu25.3Fe12.3 alloy with the icosahedral structure i; the load P-displacement h diagrams have been used to estimate the contributions of plastic deformation (monotonic and intermittent), and the structures of the transverse microscopic sections have been studied in the vicinity of indentations by electron microscopy. It is shown that several systems of deformation bands are formed in the elasto-plastic zone in the vicinity of the indentations along the close-packed planes of the i lattice with the five-fold and two-fold symmetry axes; the bands often begin from cracks and manifest the signs of the dislocation structure. The traces of the phase transformation with the formation of the β-phase areas are observed only in a thin layer under an indenter. The effects of intermittent deformation are up to 50% of the total inelastic deformation and are related to the plastic behavior of the quasicrystal-activation and passage of deformation bands and also the formation of undersurface micro- and nanosized cracks.

  7. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    PubMed

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  8. Correlations between dynamics and atomic structures in Cu64.5Zr35.5 metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, C. Z.; Zhang, Y.; Zhang, F.; Mendelev, M. I.; Kramer, M. J.; Ho, K. M.

    2015-03-01

    The atomic structure of Cu-Zr metallic glasses (MGs) has been widely accepted to be heterogeneous and dominated by icosahedral short range order (ISRO). However, the correlations between dynamics and atomic structures in Cu-Zr MGs remain an enigma. Using molecular dynamics (MD) simulations, we investigated the correlations between dynamics and atomic structures in Cu64.5Zr35.5 MG. The atomic structures are characterized using ISRO and the Bergman-type medium range order (BMRO). The simulation and analysis results show that the majority of the mobile atoms are not involved in ISRO or BMRO, indicating that the dynamical heterogeneity has a strong correlation to structural heterogeneity. Moreover, we found that the localized soft vibration modes below 1.0 THz are mostly concentrated on the mobile atoms. The diffusion was studied using the atomic trajectory collected in an extended time interval of 1.2 μs at 700 K in MD simulations. It was found that the long range diffusion in MGs is highly heterogeneous, which is confined to the liquid-like regions and strongly avoids the ISRO and the Bergman-type MRO. All These results clearly demonstrate strong correlations between dynamics (in terms of dynamical heterogeneity and diffusion) and atomic structures in Cu64.5Zr35.5 MGs. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under the Contract No. DE-AC02-07CH11358.

  9. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  10. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  11. The Reliability of Microalloyed Sn-Ag-Cu Solder Interconnections Under Cyclic Thermal and Mechanical Shock Loading

    NASA Astrophysics Data System (ADS)

    Mattila, Toni T.; Hokka, Jussi; Paulasto-Kröckel, Mervi

    2014-11-01

    In this study, the performance of three microalloyed Sn-Ag-Cu solder interconnection compositions (Sn-3.1Ag-0.52Cu, Sn-3.0Ag-0.52Cu-0.24Bi, and Sn-1.1Ag-0.52Cu-0.1Ni) was compared under mechanical shock loading (JESD22-B111 standard) and cyclic thermal loading (40 ± 125°C, 42 min cycle) conditions. In the drop tests, the component boards with the low-silver nickel-containing composition (Sn-Ag-Cu-Ni) showed the highest average number of drops-to-failure, while those with the bismuth-containing alloy (Sn-Ag-Cu-Bi) showed the lowest. Results of the thermal cycling tests showed that boards with Sn-Ag-Cu-Bi interconnections performed the best, while those with Sn-Ag-Cu-Ni performed the worst. Sn-Ag-Cu was placed in the middle in both tests. In this paper, we demonstrate that solder strength is an essential reliability factor and that higher strength can be beneficial for thermal cycling reliability but detrimental to drop reliability. We discuss these findings from the perspective of the microstructures and mechanical properties of the three solder interconnection compositions and, based on a comprehensive literature review, investigate how the differences in the solder compositions influence the mechanical properties of the interconnections and discuss how the differences are reflected in the failure mechanisms under both loading conditions.

  12. Investigation and modeling of Al3(Sc, Zr) precipitation strengthening in the presence of enhanced supersaturation and within Al-Cu binary alloys

    NASA Astrophysics Data System (ADS)

    Deane, Kyle

    Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications. With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In Chapter 4, rapid solidification was utilized to enhance the achievable supersaturation of the alloy in an effort to increase the achievable precipitate strengthening. In Chapter 5, Additive Friction Stir processing (AFS), a novel method of mechanically combining materials without melting, was employed in an attempt to pass the benefits of supersaturation from melt spun ribbon into a more structurally useful bulk material. In Chapter 6, a Matlab program written to predict precipitate nucleation, growth, and coarsening with a modified Kampmann and Wagner Numerical (KWN) model, was used to predict heat treatment regimens for more efficient strengthening. Those predictions were then tested experimentally to test the validity of the results. And lastly, in Chapter 7, the effect of zirconium on Al-Cu secondary precipitates was studied in an attempt to increase their thermal stability, as much higher phase fractions of Al-Cu precipitates are achievable than Al-Zr precipitates.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  14. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  15. Atomic structure and dynamics properties of Cu50Zr50 films

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Qu, Bingyan; Li, Dongdong; Zhou, Rulong; Zhang, Bo

    2018-01-01

    In this paper, the structural and dynamic properties of Cu50Zr50 films are investigated by molecular dynamics simulations. Our results show that the dynamics of the surface atoms are much faster than those of the bulk. Especially, the diffusion coefficient of the surface atoms is about forty times larger than that of the bulk at 600 K, which qualitatively agrees with the experimental results. Meanwhile, we find that the population of the icosahedral (-like) clusters in the surface region is obviously higher than that of the bulk, which prevents the surface from crystallization. A new method to determine the string-like collective atomic motion is introduced in the paper, and it suggests a possible connection between the glass formation ability and collective atomic motion. By using the method, the effects of surface on collective motion are illustrated. Our results show that the string-like collective atomic motion of surface atoms is weakened while that of the interior atoms is strengthened. The studies clearly explain the effects of surface on the structural and dynamic properties of Cu50Zr50 films from the atomic scale.

  16. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr48Cu48 - x Al4M x (M ≡ Fe or Co, x = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr48Cu48Al4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x = 0.5 (5.5% in Zr48Cu47.5Al4Co0.5 and 6.2% in Zr48Cu47.5Al4Fe0.5) is considerably larger than for Zr48Cu48Al4 or the alloys with x = 1. Slight variations in the Young’s modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  17. Bronze-mean hexagonal quasicrystal

    NASA Astrophysics Data System (ADS)

    Dotera, Tomonari; Bekku, Shinichi; Ziherl, Primož

    2017-10-01

    The most striking feature of conventional quasicrystals is their non-traditional symmetry characterized by icosahedral, dodecagonal, decagonal or octagonal axes. The symmetry and the aperiodicity of these materials stem from an irrational ratio of two or more length scales controlling their structure, the best-known examples being the Penrose and the Ammann-Beenker tiling as two-dimensional models related to the golden and the silver mean, respectively. Surprisingly, no other metallic-mean tilings have been discovered so far. Here we propose a self-similar bronze-mean hexagonal pattern, which may be viewed as a projection of a higher-dimensional periodic lattice with a Koch-like snowflake projection window. We use numerical simulations to demonstrate that a disordered variant of this quasicrystal can be materialized in soft polymeric colloidal particles with a core-shell architecture. Moreover, by varying the geometry of the pattern we generate a continuous sequence of structures, which provide an alternative interpretation of quasicrystalline approximants observed in several metal-silicon alloys.

  18. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    NASA Astrophysics Data System (ADS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  19. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  20. Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

    PubMed Central

    Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther

    2015-01-01

    The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163

  1. The transient oxidation of single crystal NiAl+Zr. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Doychak, J. K.

    1983-01-01

    The 800 C oxidation of oriented single crystals of Zr doped beta-NiAl was studied using transmission electron microscopy. The oxide phases and metal-oxide orientation relationships were determined to characterize the transient stages of oxidation prior to the transformation to or formation of alpha-Al2O3. On (001) and (012) metal orientations, NiAl2O4 was the first oxide to form followed by delta-Al2O3 which becomes the predominant oxide phase. All oxides were highly epitaxially related to the metal; the orientation relationships being function of parallel cation close-packed directions in the meta and oxide. On (011) and (111) metal orientations, gamma-Al2O3 became the predominant oxide phase rather than delta-Al2O3, indicating a structural stability from the highly epitaxial oxides. The relative concentration of aluminum in the oxide scales increased with time indicating preferential gamma-or delta-Al2O3 growth. The striking feature common to the orientation relationships is the alignment of 100 m and 110 ox directions, believed to result from the minimal 3 percent mismatch between the corresponding (100)m and (110)ox planes.

  2. Electroless Cu/Ni Plating on Graphite Flake and the Effects to the Properties of Graphite Flake/Si/Al Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Peng, Xuanyi; Yang, Yiwen; Wu, Haiwei; Sun, Xu; Han, Xiaopeng

    2018-03-01

    Proper process and parameter were investigated to coat Cu or Ni on graphite flake (Gf) by electroless plating. Microstructural characterization indicated that the Cu/Ni was coated on the Gf uniformly and comprehensively. Then aluminum matrix composites reinforced with Si and graphite were fabricated by a unique vacuum gas pressure infiltration. The thermal conductivity and mechanical properties of the composites, both with and without Cu or Ni coating layers on the graphite surface, have been studied. The obtained results indicated that the mechanical property of the Cu or Ni coated Gf/Si/Al composites dramatically increased, as compared with the non-coated Gf/Si/Al composite. In the meantime, Cu or Ni coated Gf proved to have better wettability and interfacial bonding with the aluminum matrix, which were expected to be a highly sustainable and dispersible reinforcement for metal matrix composites.

  3. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  4. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  5. Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9

    NASA Astrophysics Data System (ADS)

    Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.

  6. Phason space analysis and structure modelling of 100 Å-scale dodecagonal quasicrystal in Mn-based alloy

    NASA Astrophysics Data System (ADS)

    Ishimasa, Tsutomu; Iwami, Shuhei; Sakaguchi, Norihito; Oota, Ryo; Mihalkovič, Marek

    2015-11-01

    The dodecagonal quasicrystal classified into the five-dimensional space group P126/mmc, recently discovered in a Mn-Cr-Ni-Si alloy, has been analysed using atomic-resolution spherical aberration-corrected electron microscopy, i.e. high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and conventional transmission electron microscopy. By observing along the 12-fold axis, non-periodic tiling consisting of an equilateral triangle and a square has been revealed, of which common edge length is a = 4.560 Å. These tiles tend to form a network of dodecagons of which size is ?a ≈ 17 Å in diameter. The tiling was interpreted as an aggregate of 100 Å-scale oriented domains of high- and low-quality quasicrystals with small crystallites appearing at their boundaries. The quasicrystal domains exhibited a densely filled circular acceptance region in the phason space. This is the first observation of the acceptance region in an actual dodecagonal quasicrystal. Atomic structure model consistent with the electron microscopy images is a standard Frank-Kasper decoration of the triangle and square tiles that can be inferred from the crystal structures of Zr4Al3 and Cr3Si. Four kinds of layers located at z = 0, ±1/4 and 1/2 are stacked periodically along the 12-fold axis, and the atoms at z = 0 and 1/2 form hexagonal anti-prisms consistently with the 126-screw axis. The validity of this structure model was examined by means of powder X-ray diffraction.

  7. High-resolution electron microscopy observation of a new crystalline approximant W' of Mg-Zn-Y icosahedral quasicrystal

    PubMed

    Luo; Hashimoto

    2000-10-01

    A new ordered structure W' with a lattice parameter (a = 2.05 nm) about three times as large as that of the fundamental face-centered cubic W phase (a = 0.6848 nm) has been found in the Mg-Zn-Y system by means of transmission electron microscopy. The W' and W phases have the cube-to-cube orientation relationship. Moreover, the strong electron diffraction spots of the W' phase showed pseudoicosahedral symmetry, implying that it is a crystalline approximant of the Mg-Zn-Y icosahedral quasicrystal. In the high-resolution electron microscopic images of the W' phase, Penrose tiles of pentagons and boats with an edge length of a(p) = 0.481 nm can be identified. A binary tile of crown subunit has also been deduced from such a tiling. Translation domains of the W' phase have also been observed and the translation vectors at the domain boundary are: a(p), tau x a(p) and (1 + tau) x a(p), respectively, where (1 + tau) x a(p) equals to the edge length a(r) of the big obtuse rhombus of the W' phase and tau = (1 + square root of 5)/2, is the golden ratio.

  8. ONR Tokyo Scientific Bulletin. Volume 5, Number 1, January-March 1980,

    DTIC Science & Technology

    1980-03-01

    alloys studied are in die AI-Zn, Al -Mg, Al -Si. Al - Cu . Cu - Al . and Cu -Fe... alloys Digital processing Measuring N 20. Abstract (cont.) with certain reports also being contributed by visiting stateside scientist. Occasionally a...atomic absorption spectrophotometer with tubes for the determination of Zn, Cu , Pb, Cr, Fe, Mg, Mn, Al , Co, Cd, Si, Ti, Zr, Ga, Au, Ag, Ni, Na, and

  9. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE PAGES

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...

    2018-01-24

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  10. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  11. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Jinshui, Chen; Bin, Yang; Junfeng, Wang; Xiangpeng, Xiao; Huiming, Chen; Hang, Wang

    2018-02-01

    The crystallography and morphology of precipitate particles of Cu-Cr-Zr alloys with varying Zr contents were studied by transmission electron microscopy (TEM) after solution treatments at 950 °C for 1 h and aging treatments at 500 °C for different times ranged from 0.5 h to 24 h. The microhardness and electrical conductivity of Cu-Cr-Zr alloys after various aging process were tested. The results show that the microhardness and electrical conductivity rapidly increased at first, then the microhardness decreased slowly after reaching the peak, while the conductivity continues to increase. Nano-scaled precipitates exhibit two kinds of morphology (coffee bean and ellipse shaped). With increasing Zr content, the Zr-containing precipitation sequence of Cu-Cr-Zr alloys at peak-ageing is Heusler CrCu2ZrCu5ZrCu4Zr. The Heusler CrCu2Zr phase decomposed into fine and homogeneous Cr and Cu4Zr, resulting in improved alloy properties.

  12. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  13. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites.

    PubMed

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Dolors Baró, Maria; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr 48 Cu 48 -  x Al 4 M x (M ≡ Fe or Co, x  = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr 48 Cu 48 Al 4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x  = 0.5 (5.5% in Zr 48 Cu 47.5 Al 4 Co 0.5 and 6.2% in Zr 48 Cu 47.5 Al 4 Fe 0.5 ) is considerably larger than for Zr 48 Cu 48 Al 4 or the alloys with x  = 1. Slight variations in the Young's modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  14. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  15. The characteristics of hot swaged NiAl intermetallic compounds with ternary additions consolidated by HIP techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, S.; Eto, M.; Mishima, Y.

    Stoichiometric and non-stoichiometric NiAl intermetallics with ternary additives, such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or Mo/e, W, Mn, Fe, Cu and B, fabricated with the combination of Hot Isostatic Pressing (HIP) and hot swaging techniques have been investigated. The mechanical properties of hot swaged NiAl with various ternary additives, consolidated by ion beam casting or HIP techniques, have been tested at temperatures ranging from R.T. to 1,000 C. It is found that significant tensile elongation at room temperature can be achieved by hot swaged as-HIP`ed NiAl compounds with Mo or Mo/Re additives, whereas cast and hotmore » swaged compounds with Mo addition resulted in some elongation above 400 C.« less

  16. Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.

    2018-06-01

    The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

  17. Effect of the theta-alpha-Al2O3 transformation on the oxidation behavior of beta-NiAl+Zr

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.; Smialek, James L.

    1989-01-01

    Isothermal oxidation of NiAl+Zr has been performed over the temperature range of 800-1200 C and studied by TGA, XRD, and SEM. A discontinuous decrease in growth rate of two orders of magnitude was observed at 1000 C due to the formation of alpha-Al2O3 from theta-Al2O3. This transformation also resulted in a dramatic change in the surface morphology of the scales, as a whisker topography was changed into a weblike network of oxide ridges and radial transformation cracks. It is believed that the ridges are evidence for a short-circuit outward aluminum diffusion growth mechanism that has been documented in a number of O-18 tracer studies.

  18. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  19. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  20. Effect of Ni-P Plating Temperature on Growth of Interfacial Intermetallic Compound in Electroless Nickel Immersion Gold/Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Seo, Wonil; Kim, Kyoung-Ho; Kim, Young-Ho; Yoo, Sehoon

    2018-01-01

    The growth of interfacial intermetallic compound and the brittle fracture behavior of Sn-3.0Ag-0.5-Cu solder (SAC305) joints on electroless nickel immersion gold (ENIG) surface finish have been investigated using Ni-P plating solution at temperatures from 75°C to 85°C and fixed pH of 4.5. SAC305 solder balls with diameter of 450 μm were mounted on the prepared ENIG-finished Cu pads and reflowed with peak temperature of 250°C. The interfacial intermetallic compound (IMC) thickness after reflow decreased with increasing Ni-P plating temperature. After 800 h of thermal aging, the IMC thickness of the sample prepared at 85°C was higher than for that prepared at 75°C. Scanning electron microscopy of the Ni-P surface after removal of the Au layer revealed a nodular structure on the Ni-P surface. The nodule size of the Ni-P decreased with increasing Ni-P plating temperature. The Cu content near the IMC layer increased to 0.6 wt.%, higher than the original Cu content of 0.5 wt.%, indicating that Cu diffused from the Cu pad to the solder ball through the Ni-P layer at a rate depending on the nodule size. The sample prepared at 75°C with thicker interfacial IMC showed greater high-speed shear strength than the sample prepared at 85°C. Brittle fracture increased with decreasing Ni-P plating temperature.

  1. Mechanical properties of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass with different geometric confinements

    NASA Astrophysics Data System (ADS)

    Zhang, Changqin; Zhang, Haifeng; Sun, Qilei; Liu, Kegao

    2018-03-01

    Zr41.2Ti13.8Ni10Cu12.5Be22.5 (Vit 1) bulk metallic glass with Cu sleeves at different positions was prepared by the Cu mold casting method, and the effects of different geometric confinements offered by Cu sleeves on the mechanical properties of Vit 1 were investigated. It was found that the mechanical properties were prominently influenced by different geometric confinements and the plasticity could be modified by optimizing the positions of Cu sleeves. The results revealed that shear band initiation and propagation could be efficiently intervened by changing the radial boundary restraints, which led to quite different mechanical behaviors.

  2. Electronic structural studies on the improved thermal stability of Li(Ni0.8Co0.15Al0.05)O2 by ZrO2 coating for lithium ion batteries

    DOE PAGES

    Kim, Ji-Young; Kim, Sang Hoon; Kim, Dong Hyun; ...

    2017-03-21

    The electronic structures of bare and ZrO 2-coated Li(Ni 0.8Co 0.15Al 0.05)O 2 electrode systems were investigated using a combination of time-resolved X-ray diffraction and soft X-ray absorption spectroscopy (XAS) techniques. The ZrO 2 coating on the surface of Li(Ni 0.8Co 0.15Al 0.05)O 2 was effective in elevating the onset temperature of the dissociation of charged Li 0.33(Ni 0.8Co 0.15Al 0.05)O 2, which will enhance the safety of Li-ion cells. Lastly, soft XAS spectra of the Ni LII,III-edge in the partial electron yield mode were obtained, which showed that the enhanced electrochemical properties and thermal stability of the cathode materialsmore » by ZrO 2 coating can be attributed to the suppression of unwanted Ni oxidation state changes at the surface.« less

  3. Effects of High-Temperature Treatment on the Reaction Between Sn-3%Ag-0.5%Cu Solder and Sputtered Ni-V Film on Ferrite Substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohu; Jin, Hao; Dong, Shurong; Wong, Hei; Zhou, Jian; Guo, Zhaodi; Wang, Demiao

    2012-11-01

    We have demonstrated a novel sputtering method for lead-free thin metal films on ferrite substrates for surface-mount inductor applications. In a surface-mounting process, the cladding of enameled wire needs to be burnt off at high temperature, which requires the devices to withstand a high-temperature reliability test at 420°C for 10 s. There are no reports that a sputtered film of thickness less than 6 μm can withstand this test. In this work, we used Ag/Ni-7 wt.%V double metal layers for the metallization. The dissolution of Ni-7 wt.%V in Sn-3%Ag-0.5%Cu lead-free solder at various temperatures was studied in detail. Scanning electron microscopy with energy-dispersive x-ray spectroscopy was used to investigate the interfacial reaction between the sputtered films and the solder. The intermetallic compounds are mainly (Cu,Ni)6Sn5 at 250°C; however, (Ni,Cu)3Sn4 becomes the predominant composition at 420°C. In addition, although outdiffusion of V atoms from the Ni-V layer was observed, its effect on the intermetallic compound (IMC) was insignificant. We further confirmed that the proposed metallization is able to pass the aforementioned high-temperature reliability test.

  4. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  5. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  6. Optical and photoelectrochemical performance study based on n-ZnO nanorod arrays/p-CuAlO2 laminar films/Ni heterojunction

    NASA Astrophysics Data System (ADS)

    Ding, Juan; Yang, Haibin; Deng, Weiwen

    2014-06-01

    A novel ZnO nanorod arrays (NRs)/CuAlO2 laminar films heterojunction nanostructure was grown on the substrate of Ni plates using sol-gel synthesis for laminar films and subsequent hydrothermal reaction for nanorod arrays. The surface morphology, structure, optical and photoelectrochemical behaviors of this heterojunction were considered. Two significant absorption peaks of UV-vis spectra and a favorable forward current to reverse current ratio at applied voltage of -0.7 V to +2 V were observed in this heterojunction. Furthermore, the photoelectrochemical property was indicated that the highest photocurrent of 0.67 mA/cm2 was obtained under AM 1.5 illumination (vs Ag/AgCl). This heterojunction will play an important role in the optoelectronic fields and can be extended to other binary or ternary oxide compositions for optoelectronic applications.

  7. Effect of MoSi2 Content on Dry Sliding Tribological Properties of Zr-Based Bulk Metallic Glass Composites

    NASA Astrophysics Data System (ADS)

    Liu, Longfei; Yang, Jun

    2017-12-01

    Zr55Cu30Al10Ni5 bulk metallic glass and its composites were prepared by suction casting into a copper mold. The effect of MoSi2 content on the tribological behavior of Zr55Cu30Al10Ni5 BMG was studied by using a high-speed reciprocating friction and wear tester. The results indicate that the friction coefficient and wear resistance of the BMGs can be improved by a certain amount of crystalline phase induced by MoSi2 content from 1 to 3% and deteriorated with MoSi2 content of 4%. The wear mechanism of both the metallic glass and its composite is abrasive wear. The mechanism of crystalline phase-dependent tribological properties of the composite was discussed based on the wear track and mechanical properties in the present work. The wear behavior of Zr55Cu30Al10Ni5 BMG and its composite indicates that a good combination of the toughness and the hardness can make the composite be well wear resistant.

  8. How closely do many-body potentials describe the structure and dynamics of Cu-Zr glass-forming alloy?

    NASA Astrophysics Data System (ADS)

    Lad, K. N.; Jakse, N.; Pasturel, A.

    2017-03-01

    Molecular dynamics investigations of the structure and dynamics of Cu64.5Zr35.5 metallic glass-forming alloy have been carried out using five different semi-empirical, many-body interaction potentials based on the Finnis-Sinclair model [M. I. Mendelev et al., J. Appl. Phys. 102, 043501 (2007) (MSK); M. I. Mendelev et al., Philos. Mag. 89, 967 (2009) (MKOSYP); L. Ward et al., e-print arXiv:1209.0619 (2012) (WAFW)] and the embedded-atom model [Y. Q. Cheng et al., Phys. Rev. Lett. 102, 245501 (2009) (CMS) and N. Jakse et al., Phys. Rev. B 85, 174201 (2012) (JNP)]. Although the total static structure factor of the alloy for all the five interaction potentials is, in general, found to be in good agreement with the experimental results, the investigation of a local structure in terms of icosahedral short-range order reveals that the effect of the interaction potential (especially the cohesive part) on the structure of the alloy is not as trivial as it seems. For MSK and JNP potentials, the self-intermediate scattering function Fs(q, t), q-dependence of the structural relaxation time τα in the low-q region, and the self-diffusion coefficient, Ds, for Cu-atoms in the alloy are in excellent agreement with the experimental results. The results for MKOSYP, CMS, and WAFW potentials deviate significantly from the experiment and suggest the dynamics of the alloy to be faster. The difference in the description of the dynamics of the alloy by different potentials is found to be due to the difference in the relevant energy scales corresponding to the temperature scales. τα and Ds exhibit Arrhenius temperature dependence in the high temperature regime above the melting temperature. We also suggest that the attractive forces influence the dynamics of the liquid alloy significantly, which is against the mere perturbative role assigned to the attractive forces in the van der Waals picture of liquids that has been challenged in the recent years. As the five interaction potentials

  9. The performances of proto-type Ni/MH secondary batteries using Zr-based hydrogen storage alloys and filamentary type Ni

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Min; Lee, Ho; Kim, Jin-Ho; Lee, Paul S.; Lee, Jai-Young

    2001-04-01

    For the purpose of developing a Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out. After careful alloy design of ZrMn2-based hydrogen storage alloys through varying their stoichiometry by means of substituting or adding alloying elements, the Zr0.9Ti0.1(Mn0.7V0.5Ni1.4)0.92 with high capacity (392 mAh/g at the 0.25C) and improved performance (comparable to that of commercialized AB5 type alloy) was developed. Another endeavor was made to improve the poor activation property and the low rate capability of the developed Zr-based Laves phase alloy for commercialization. The combination method of hot-immersion and slow-charging was introduced. It was found that electrode activation was greatly improved after hot immersion at 80°C for 12h followed by charging at 0.05C. The effects of this method are discussed in comparison with other activation methods. The combination method was successfully applied to the formation process of 80 Ah Ni/MH cells. A series of systematic investigations has been rendered to analyze the inner cell pressure characteristics of a sealed type Ni-MH battery. It was found that the increase of inner cell pressure in the sealed type Ni/MH battery of the above-mentioned Zr-Ti-Mn-V-Ni alloy was mainly due to the accumulation of oxygen gas during charge/discharge cycling. The fact identified that the surface catalytic activity was affected more dominantly by the oxygen recombination reaction than the reaction surface area was also identified. In order to improve the surface catalytic activity of a Zr-Ti-Mn-V-Ni alloy, which is closely related to the inner pressure behavior in a sealed cell, the electrode was fabricated by mixing the alloy with Cu powder and a filamentary type of Ni and replacing 75% of the carbon black with them; thus, the inner cell pressure rarely increases with cycles due to the active gas recombination reaction. Measurements of the surface

  10. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Ming; Liu, Haiqiang, E-mail: Liuhaiqiang1980@126.com

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210more » mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl« less

  11. Solder/Substrate Interfacial Reactions in the Sn-Cu-Ni Interconnection System

    NASA Astrophysics Data System (ADS)

    Yu, H.; Vuorinen, V.; Kivilahti, J. K.

    2007-02-01

    In order to obtain a better understanding of the effects of interconnection microstructures on the reliability of soldered assemblies, one of the most important ternary systems used in electronics, the Sn-Cu-Ni system, has been assessed thermodynamically. Based on the data obtained, some recent experimental observations related to the formation of interfacial intermetallic compounds in solder interconnections have been studied analytically. First, the effect of Cu content on the formation of the interfacial intermetallic compounds between the SnAgCu solder alloys and Ni substrate was investigated. The critical Cu content for (Cu,Ni)6Sn5 formation was evaluated as a function of temperature. Second, we analyzed how the Ni dissolved in the Cu6Sn5 compound affects the driving forces for the diffusion of components and hence the growth kinetics of (Cu,Ni)6Sn5 and (Cu,Ni)3Sn reaction layers. With the thermodynamic description, other experimental observations related to the Sn-Cu-Ni system can be rationalized as well. The system can be used also as a subsystem for industrially important higher order solder systems.

  12. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    NASA Astrophysics Data System (ADS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-08-01

    Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  13. Crystal genes in a marginal glass-forming system of Ni 50Zr 50

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, T. Q.; Tang, L.; Sun, Y.

    Glass-forming motifs with B2 traits are found. A perfect Ni-centered B33 motif deteriorates the glass-forming ability of Ni 50Zr 50. The marginal glass-forming ability (GFA) of binary Ni-Zr system is an issue to be explained considering the numerous bulk metallic glasses (BMGs) found in the Cu-Zr system. Using molecular dynamics, the structures and dynamics of Ni 50Zr 50 metallic liquid and glass are investigated at the atomistic level. To achieve a well-relaxed glassy sample, sub-T g annealing method is applied and the final sample is closer to the experiments than the models prepared by continuous cooling. With the state-of-the-art structuralmore » analysis tools such as cluster alignment and pair-wise alignment methods, two glass-forming motifs with some mixed traits of the metastable B2 crystalline phase and the crystalline Ni-centered B33 motif are found to be dominant in the undercooled liquid and glass samples. A new chemical order characterization on each short-range order (SRO) structure is accomplished based on the cluster alignment method. The significant amount of the crystalline motif and the few icosahedra in the glassy sample deteriorate the GFA.« less

  14. Crystal genes in a marginal glass-forming system of Ni 50Zr 50

    DOE PAGES

    Wen, T. Q.; Tang, L.; Sun, Y.; ...

    2017-10-17

    Glass-forming motifs with B2 traits are found. A perfect Ni-centered B33 motif deteriorates the glass-forming ability of Ni 50Zr 50. The marginal glass-forming ability (GFA) of binary Ni-Zr system is an issue to be explained considering the numerous bulk metallic glasses (BMGs) found in the Cu-Zr system. Using molecular dynamics, the structures and dynamics of Ni 50Zr 50 metallic liquid and glass are investigated at the atomistic level. To achieve a well-relaxed glassy sample, sub-T g annealing method is applied and the final sample is closer to the experiments than the models prepared by continuous cooling. With the state-of-the-art structuralmore » analysis tools such as cluster alignment and pair-wise alignment methods, two glass-forming motifs with some mixed traits of the metastable B2 crystalline phase and the crystalline Ni-centered B33 motif are found to be dominant in the undercooled liquid and glass samples. A new chemical order characterization on each short-range order (SRO) structure is accomplished based on the cluster alignment method. The significant amount of the crystalline motif and the few icosahedra in the glassy sample deteriorate the GFA.« less

  15. Switching properties of SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3 capacitor grown on Cu-coated Si substrate measured at various temperatures

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.

    2014-09-01

    SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.

  16. Investigation on Explosive Welding of Zr53Cu35Al12 Bulk Metallic Glass with Crystalline Copper

    NASA Astrophysics Data System (ADS)

    Feng, Jianrui; Chen, Pengwan; Zhou, Qiang

    2018-05-01

    A Zr53Cu35Al12 bulk metallic glass (BMG) was welded to a crystalline Cu using explosive welding technique. The morphology and the composition of the composite were characterized using optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy and transmission electron microscopy. The investigation indicated that the BMG and Cu were tightly joined together without visible defects, and a thin diffusion layer appeared at the interface. The captured jet at the end of the welding region mostly comes from the Cu side. Amorphous and partially crystallized structures have been observed within the diffusion layer, but the BMG in close proximity to the interface still retains its amorphous state. Nanoindentation tests reveal that the interface exhibits an increment in hardness compared with the matrix on both sides.

  17. Probing the growth and melting pathways of a decagonal quasicrystal in real-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.

    How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on amore » decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.« less

  18. Probing the growth and melting pathways of a decagonal quasicrystal in real-time

    DOE PAGES

    Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.

    2017-12-12

    How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on amore » decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.« less

  19. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi

    2017-09-01

    The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.

  20. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    PubMed

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  1. Homogeneity and structure of CuZrAlY metallic glass ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetić, A. Salčinović, E-mail: amra.s@pmf.unsa.ba; Selimović, A.; Hrvat, K.

    2016-03-25

    Metallic glasses are metastable amorphous structures produced by quenching-rapid cooling technique. Due to very high cooling rates during the production process, it is very difficult to produce homogeneous samples with identical chemical composition. In this paper we will present preliminary results of homogeneity and structure examinations of a CuZrAlY metallic glass ribbon. The ribbon, approximately 1.5 m long and 1 mm wide, was produced using melt spinning technique. Samples from the middle and the end of the ribbon were chosen for further examination. Surface was checked by metallographic and electron scanning microscopy. Chemical composition in different areas of each sample was checkedmore » by energy-dispersive X-ray spectroscopy. Electrical resistivity measurements in the temperature range from 80 K to 280 K were also conducted.« less

  2. The Relevant Role of Dislocations in the Martensitic Transformations in Cu-Al-Ni Single Crystals

    NASA Astrophysics Data System (ADS)

    Gastien, R.; Sade, M.; Lovey, F. C.

    2018-03-01

    The interaction between dislocations and martensitic transformations in Cu-Al-Ni alloys is shortly reviewed. Results from many researchers are critically analyzed towards a clear interpretation of the relevant role played by dislocations on the properties of shape memory alloys in Cu-based alloys. Both thermally and stress-induced transformations are considered and focus is paid on two types of transitions, the β→β' and the formation of a mixture of martensites: β→β' + γ'. After cycling in the range where both martensites are formed, the twinned γ' phase is inhibited and cycling evolves into the formation of only β'. A model which considers the difference in energy of each γ' twin variant due to the introduced dislocations quantitatively explains the inhibition of γ' in both thermally and stress-induced cycling. The type of dislocations which are mainly introduced, mixed with Burgers vector belonging to the basal plane of the β' martensite, enables also to explain the unmodified mechanical behavior during β→β' cycling. The reported behavior shows interesting advantages of Cu-Al-Ni single crystals if mechanical properties are comparatively considered with those in other Cu-based alloys.

  3. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    PubMed

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  4. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE PAGES

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...

    2018-04-10

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  5. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  6. Interfacial Reaction and Shear Strength of SnAgCu/Ni/Bi2Te3-Based TE Materials During Aging

    NASA Astrophysics Data System (ADS)

    Jing, Hongyang; Li, Yuan; Xu, Lianyong; Han, Yongdian; Lu, Guoquan; Zhang, Hao

    2015-12-01

    As a diffusion barrier layer, Ni is widely applied in power electronics packaging, especially in thermoelectric devices. This paper presents the variation of Ni diffusion barrier layer during aging and failure mechanisms of thermoelectric device joints. The thermoelectric joint consists of Sn96.5Ag3.0Cu0.5 (SAC305) solder and Bi2Te3-based thermoelectric materials such as Bi0.5Sb1.5Te3 and Bi1.8Sb0.2Se0.15Te2.85 during service. The result shows that with the increasing aging time, Ni layer was constantly consumed by SAC305 and Bi2Te3-based thermoelectric materials simultaneously. The reaction products are (Cu,Ni)6Sn5 and NiTe or Ni(Bi,Te), respectively. Besides, the shear strength of SAC305/Bi0.5Sb1.5Te3 joint or SAC305/Bi1.8Sb0.2Se0.15Te2.85 joint gets gradually decreased and thermoelectric conversion performance gets worse. Meantime, the different failure mechanisms are also compared between SAC305/Bi0.5Sb1.5Te3 couple joints and SAC305/Bi1.8Sb0.2Se0.15Te2.85 couple joints.

  7. Thermal stability and chemical resistance of (Ti,Al)N-Cu and (Ti,Al)N-Ni metal-ceramic nanostructured coatings

    NASA Astrophysics Data System (ADS)

    Belov, D. S.; Blinkov, I. V.; Volkhonskii, A. O.; Kuznetsov, D. V.; Kiryukhantsev-Korneev, F. V.; Pustov, Yu. A.; Sergevnin, V. S.

    2016-12-01

    This work represents the results of research on thermal stability, oxidation resistance at temperatures of up to 800 °C and electrochemical behaviour of (Ti,Al)N-(∼3 at.%)Cu and (Ti,Al)N-(∼8 at.%)Ni nanocrystalline coatings in acidic and alkaline media. The coatings were deposited by the arc-PVD method with a thickness of approximately 4 μm and crystallite size of less than 20 nm. It has been demonstrated that the composition and properties of the coating structures do not change when the coatings are heated in 10-4 Pa vacuum at temperatures of 600, 700 °C for 1.5 h. Heating up to 800 °C caused an increase of crystallite size and reduction microstrain in the crystal lattice of the ceramic phase. The process is accompanied by deterioration of the coating hardness from 48 to 52 to 33-36 GPa. The (Ti,Al)N-Cu and (Ti,Al)N-Ni metal-ceramic nanostructured coatings are characterized by heat resistance up to the temperatures of 700 and 800 °C respectively. The coatings under study have tendency for self-passivation and resistance to pitting corrosion.

  8. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Venkateswaran, T.; Ravi, K. R.; Sivakumar, D.; Pant, Bhanu; Janaki Ram, G. D.

    2017-08-01

    High-strength copper alloys are used extensively in the regenerative cooling parts of aerospace structures. Transient liquid phase (TLP) bonding of a Cu-Cr-Zr-Ti alloy was attempted in the present study using thin layers of elemental Ni and Mn coatings applied by electroplating. One of the base metals was given a Ni coating of 4 µm followed by a Mn coating of 15 µm, while the other base metal was given only the Ni coating (4 µm). The bonding cycle consisted of the following: TLP stage—heating to 1030 °C and holding for 15 min; homogenization stage—furnace cooling to 880 °C and holding for 2 h followed by argon quenching to room temperature. Detailed microscopy and electron probe microanalysis analysis of the brazed joints were carried out. The braze metal was found to undergo isothermal solidification within the 15 min of holding time at 1030 °C. At the end of TLP stage, the braze metal showed a composition of Cu-17Ni-9Mn (wt.%) at the center of the joint with a steep gradient in Ni and Mn concentrations from the center of the braze metal to the base metal interfaces. After holding for 2 h at 880 °C (homogenization stage), the compositional gradients were found to flatten significantly and the braze metal was found to develop a homogeneous composition of Cu-11Ni-7Mn (wt.%) at the center of the joint. In lap-shear tests, failures were always found to occur in the base metal away from the brazed region. The copper alloy base metal was found to undergo significant grain coarsening due to high-temperature exposure during brazing and, consequently, suffer considerable reduction in yield strength.

  9. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    PubMed

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization

    NASA Astrophysics Data System (ADS)

    Choi, W. J.; Yeh, E. C. C.; Tu, K. N.

    2003-11-01

    Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure (MTTF) have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75×104 A/cm2. In these joints, the under-bump-metallization (UBM) on the chip side is a multilayer thin film of Al/Ni(V)/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni layer covered with 30 nm of Au. When stressed at the higher current densities, the MTTF was found to decrease much faster than what is expected from the published Black's equation. The failure occurred by interfacial void propagation at the cathode side, and it is due to current crowding near the contact interface between the solder bump and the thin-film UBM. The current crowding is confirmed by a simulation of current distribution in the solder joint. Besides the interfacial void formation, the intermetallic compounds formed on the UBM as well as the Ni(V) film in the UBM have been found to dissolve completely into the solder bump during electromigration. Therefore, the electromigation failure is a combination of the interfacial void formation and the loss of UBM. Similar findings in eutectic SnAgCu flip chip solder joints have also been obtained and compared.

  11. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    PubMed

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  12. Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in Al-Zr-Y alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Haiyan, E-mail: gaohaiyan@sjtu.edu.cn

    Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in aged Al-Zr-Y alloy was investigated through atom probe tomography (APT) and transmission electron microscope (TEM) analysis and first principles calculations. The results show that short-bar-shaped D0{sub 19}-Al{sub 3}Y with some Zr atoms dissolved in precipitated at the very beginning of decomposition and worked as heterogeneous nuclei for L1{sub 2}-Al{sub 3}Zr with spherical morphology after being aged at 400 °C for 2 h. Quasi-static coarsening happened as the aging treatment lasted from 2 h to 200 h. However, distribution of Zr and Y atoms in Al{sub 3}(Zr,Y) is nearly uniform and Al{submore » 3}(Zr,Y) do not have the typical “Al{sub 3}RE core-Al{sub 3}Zr shell” structure which observed in other RE containing Al-Zr-RE alloys with L1{sub 2}-Al{sub 3}RE as nuclei. First principles calculations revealed that binding energy between Y and Zr is strong during the growth of Al{sub 3}(Zr,Y), which led to the co-precipitation of Y and Zr atoms and attribute to the evolution of Al{sub 3}(Zr,Y). - Highlights: •Al{sub 3}Y precipitated firstly and then became nuclei for Al{sub 3}Zr during aging of Al-Zr-Y. •Al{sub 3}(Zr,Y) precipitates do not have the typical “Al{sub 3}Y core-Al{sub 3}Zr shell” structure. •Strong binding between Y and Zr led to the co-precipitation of Y and Zr atoms.« less

  13. Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.

    2015-04-15

    Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less

  14. [delta] precipitation in an Al-Li-Cu-Mg-Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, K.S.; Mukhopadhyay, A.K.; Gokhale, A.A.

    1994-05-15

    AlLi based [delta] phase has an NaTl structure (i.e., a diamond cubic) with a = 0.637nm and is an equilibrium phase in the binary Al-Li system. In heat treated binary Al-Li alloys of appropriate compositions, [delta] phase can format grain boundaries as well as within the grains. In commercially heat treated Al-Li-Cu alloys of 2090 specification, the grain boundary precipitate [delta] of the binary Al-Li system is replaced by a combination of T[sub 2](Al[sub 6]CuLi[sub 3]), R(Al[sub 5]CuLi[sub 3]) and T[sub 1](Al[sub 2]CuLi) phases. In similarly treated Al-Li-Cu-Mg alloys of 8090 specification, the copper rich T[sub 2] phase, present inmore » the form of Al[sub 6]CuLi[sub 3[minus]x]Mg[sub x], is known to be the major coarse g.b. precipitate. The presence of an Al-Li-Cu-Mg based C phase at the grain boundaries of the commercially heat treated 8090 alloys has also been documented. No detailed study has yet been carried out to verify whether the [delta] phase can be present at the grain boundaries of the commercially heat treated 8090 alloys. Given the correlations between the g.b. phase morphology, g.b. phase chemistry, and the stress corrosion cracking resistance of these alloys, it is important that the g.b. precipitates be examined and identified. In this paper results using TEM are presented to show that the [delta] phase can be present in varying amounts at the grain boundaries in an 8090 alloy when heat treated in the temperature range of 170--350 C. An examination is also made of the [delta] precipitation within the grain to establish that the T[sub 2]/[alpha]-Al interface is the dominant nucleation site for the noncoherent [delta] phase.« less

  15. Effects of Zr and Si on the Glass Forming Ability and Compressive Properties of Ti-Cu-Co-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Tan; Wu, Yidong; Si, Jiajia; Hui, Xidong

    2015-06-01

    To succeed in finding novel Ti-based bulk metallic glasses, which are free from Be, Ni, and noble metallic elements, a comprehensive study was performed on the effects of Zr and Si on the microstructural evolution, glass-forming ability (GFA), and mechanical properties of Ti46Cu44- x Zr x Co7Sn3 ( x = 0, 5, 10, 12.5, and 16 at. pct) and Ti46Cu31.5Zr12.5- x Co7Sn3Si x ( x = 0.5, 1, and 1.5 at. pct) alloys. It is shown that with the increase of Zr, the sequence of phase formation is β-Ti + α-Ti + (Ti, Zr)3Cu4 ⇒ β-Ti + α-Ti + TiCu ⇒ β-Ti + Ti2Cu + glass ⇒ glass ⇒ β-Ti + Ti2Cu + TiCuSn. The quinary Ti-Zr-Cu-Co-Sn alloy with 12.5 pct Zr exhibits the best GFA. The addition of 1 pct Si results in the improvement of the critical size of glassy rods up to 3 mm in diameter. The yield stress and Young's modulus of Z-series alloys increases, and the plastic strain decreases with the addition of Zr. The yield stress and ultimate compression stress of Ti46Zr11.5Cu31.5Co7Sn3Si1 glassy alloy reach 2477.9 and 2623.3 MPa, respectively. It was found that the addition of Si promotes the generation and multiplication of shear bands, resulting in certain plasticity in these kinds of glassy alloys.

  16. Al-Li-Cu-Mg-(Ag) Products for Lower Wing Skin Applications

    NASA Astrophysics Data System (ADS)

    Karabin, L. M.; Bray, G. H.; Rioja, R. J.; Venema, G.

    Al-Li-Cu-Mg alloy products, with and without Ag additions provide substantial performance advantages over conventional 2xxx products. For lower wing applications, the combination of specific ultimate tensile strength and damage tolerance is of particular importance and this is an area in which the Al-Li alloys can excel. Since Al-Li products have historically suffered with issues surrounding high property gradients through the plate thickness and high degrees of tensile in-plane anisotropy, a great deal of attention has been paid to the thermo-mechanical processing routes used in the fabrication of the current generation of alloy products. In addition, corrosion resistance is an area that has received greater attention recently since it can impact inspection intervals. In this presentation, the microstructures and properties of two new alloy products aimed for lower wing applications, 2199-T86 and 2060-T8E86, will be reviewed and compared with non-Li 2xxx products. It is concluded that the performance improvements of Al-Li alloys/products in addition to their lower density will enable significant weight savings in modern aircraft.

  17. Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Deng, Chuang; Pal, Snehanshu

    2018-01-01

    In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.

  18. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.

  19. Low-cost Fe--Ni--Cr alloys for high temperature valve applications

    DOEpatents

    Muralidharan, Govindarajan

    2017-03-28

    An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.

  20. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  1. Bulk Properties of Ni3Al(gamma') With Cu and Au Additions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1995-01-01

    The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.

  2. Impact-induced shock and the formation of natural quasicrystals in the early solar system

    NASA Astrophysics Data System (ADS)

    Hollister, Lincoln S.; Bindi, Luca; Yao, Nan; Poirier, Gerald R.; Andronicos, Christopher L.; MacPherson, Glenn J.; Lin, Chaney; Distler, Vadim V.; Eddy, Michael P.; Kostin, Alexander; Kryachko, Valery; Steinhardt, William M.; Yudovskaya, Marina; Eiler, John M.; Guan, Yunbin; Clarke, Jamil J.; Steinhardt, Paul J.

    2014-06-01

    The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases. The meteorite also contains heretofore unobserved phases of iron-nickel and iron sulphide with substantial amounts of Al and Cu. The presence of these phases in Khatyrka provides further proof that the Al-Cu alloys are natural products of unusual processes that occurred in the early solar system.

  3. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    PubMed Central

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as −0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at −0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under −0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  4. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

    PubMed

    Czeppe, T; Ochin, P; Sypień, A; Major, L

    2010-03-01

    The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.

  5. Atomistic study of the electronic contact resistivity between the half-Heusler alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the metal Ag

    NASA Astrophysics Data System (ADS)

    He, Yuping; Léonard, François; Spataru, Catalin D.

    2018-06-01

    Half-Heusler (HH) alloys have shown promising thermoelectric properties in the medium- and high-temperature range. To harness these material properties for thermoelectric applications, it is important to realize electrical contacts with low electrical contact resistivity. However, little is known about the detailed structural and electronic properties of such contacts and the expected values of contact resistivity. Here, we employ atomistic ab initio calculations to study electrical contacts in a subclass of HH alloys consisting of the compounds HfCoSb, HfZrCoSb, and HfZrNiSn. By using Ag as a prototypical metal, we show that the termination of the HH material critically determines the presence or absence of strong deformations at the interface. Our study includes contacts to doped materials, and the results indicate that the p -type materials generally form ohmic contacts while the n -type materials have a small Schottky barrier. We calculate the temperature dependence of the contact resistivity in the low- to medium-temperature range and provide quantitative values that set lower limits for these systems.

  6. Evaluation of high-strength Cu-Ni-Mn-Al bolting used in oil and gas service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, O.; Joosten, M.W.; Murali, J.

    1996-08-01

    High strength bolts, nuts, studs and screws manufactured from a precipitation hardening Cu-Ni-Mn-Al alloy have experienced several failures in recent years in oilfield installations with varying degrees of severity and consequence. Such failures have been broadly attributed to Stress Corrosion Cracking (SCC) and Liquid Metal Embrittlement (LME) phenomena. A detailed test program using the Slow Strain Rate Testing (SSRT) method has been conducted to identify the various parameters which could contribute to SCC. Results indicate that the Cu-Ni-Mn-Al alloy is susceptible to SCC in a variety of environments commonly found in oilfield equipment manufacturing and field installations such as amine-containingmore » additives, sulfides and even natural seawater at elevated temperatures. SSRT testing indicated, however, that, in seawater environments, low service temperatures and cathodic protection did not adversely affect the alloy`s performance. Discussion of test program results and qualitative correlations with field failures are presented.« less

  7. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru; Markova, Tat’jana, E-mail: patriot-rf@mail.ru

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  8. Effects of Zr on microstructure and mechanical properties of Al-Cu base ribbons spun by planar flow casting

    NASA Astrophysics Data System (ADS)

    Lee, S. M.; Hong, C. P.

    1998-04-01

    The effects of the Zr addition on the solidification behavior and mechanical properties of the AI-Cu alloy ribbon have been investigated. Zr addition reduced the average grain size of the ribbon at the wheel-side surface, and promoted the microstructural transition into cellular/dendritic structure. Another noteworthy effect of Zr was the homogenization of the microstructure. The addition of Zr up to 0.5 wt.% in the /U-4.3 wt.% Cu ribbon resulted in a considerable increase in hardness at both the wheel-side and the air-side surfaces. The yield strength increased with the addition of Zr due to the grain refincment and more homogeneous distribution of ZrAI, particles. despite no noticeable improvement of the ductility.

  9. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  10. Atomistic Modeling of Quaternary Alloys: Ti and Cu in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Wilson, Allen W.; Noebe, Ronald D.; Garces, Jorge E.

    2002-01-01

    The change in site preference in NiAl(Ti,Cu) alloys with concentration is examined experimentally via ALCHEMI and theoretically using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Results for the site occupancy of Ti and Cu additions as a function of concentration are determined experimentally for five alloys. These results are reproduced with large-scale BFS-based Monte Carlo atomistic simulations. The original set of five alloys is extended to 25 concentrations, which are modeled by means of the BFS method for alloys, showing in more detail the compositional range over which major changes in behavior occur. A simple but powerful approach based on the definition of atomic local environments also is introduced to describe energetically the interactions between the various elements and therefore to explain the observed behavior.

  11. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  12. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  13. Metal carboxylate formation during indoor atmospheric corrosion of Cu, Zn, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, D.; Leygraf, C.

    Chemical analyses of surface films and corrosion products formed on pure Cu, Zn, Ni, and Ag samples exposed up to 12 months in various mild indoor environments have been performed by infrared reflection-absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy. The analyses reveal metal carboxylates to be the main ingredients on the surface of Cu, Zn, and Ni. Other ions, such as sulfate, chloride, nitrate, and ammonium ions are also present but in smaller amounts.The surface region on Ag contains mainly silver sulfide with smaller amounts of sulfate, ammonium, and chloride ions. The growth of the carboxylate layers, as followed bymore » IRAS, exhibits an initial film formation with a thickness of a few nanometers for all exposure sites investigated. Subsequent growth to thicker layers was observed at sites with higher humidity levels. The unexpectedly high content of metal carboxylates found on Cu, Zn, and Ni may provide insight into possible processes involved in the atmospheric indoor corrosion of these metals.« less

  14. Nanoindentation on SnAgCu lead-free solder joints and analysis

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.

    2006-12-01

    The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.

  15. Diffusional transport and predicting oxidative failure during cyclic oxidation of beta-NiAl alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Vinarcik, E. J.; Barrett, C. A.; Doychak, J.

    1992-01-01

    Nickel aluminides (NiAl) containing 40-50 at. percent Al and up to 0.1 at. percent Zr have been studied following cyclic oxidation at 1200, 1300, 1350 and 1400 C. The selective oxidation of aluminum resulted in the formation of protective Al2O3 scales on each alloy composition at each temperature. However, repeated cycling eventually resulted in the gradual formation of less protective NiAl2O4. The appearance of the NiAl2O4, signaling the end of the protective scale-forming capability of the alloy, was related to the presence of gamma-prime-(Ni3Al) which formed as a result of the loss of aluminum from the sample. A simple methodology is presented to predict the protective life of beta-NiAl alloys. This method predicts the oxidative lifetime due to aluminum depletion when the aluminum concentration decreases to a critical concentration. The time interval preceding NiAl2O4 formation (i.e., the lifetime based on protective Al2O3 formation) and predicted lifetimes are compared and discussed. Use of the method to predict the maximum use temperature for NiAl-Zr alloys is also discussed.

  16. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  17. Synthesis of three-dimensional mesoporous Cu-Al layered double hydroxide/g-C3N4 nanocomposites on Ni-foam for enhanced supercapacitors with excellent long-term cycling stability.

    PubMed

    Adhikari, Surya Prasad; Awasthi, Ganesh Prasad; Kim, Kyung-Suk; Park, Chan Hee; Kim, Cheol Sang

    2018-03-26

    In this study, a novel composite of Cu-Al layered double hydroxide (LDH) nanosheets and g-C3N4-covered Ni-foam was fabricated via a simple and facile two-step process. First, g-C3N4 sheets were deposited on Ni-foam by via electrodeposition method on a three-electrode system (Ni-foam@g-C3N4) and then, Cu-Al LDH nanosheets were grown on the Ni-foam via in situ redox reaction using a hydrothermal process (Ni-foam@Cu-Al LDH/g-C3N4). The FE-SEM image confirmed that the Cu-Al LDH nanosheets arose vertically and were anchored on the surface of electrodeposited g-C3N4 sheets, thus generating unique 3D porous interconnected networks. The electrochemical capacitive performances of the as-prepared samples were evaluated by cyclic volatammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS) Nyquist plots. The specific capacitances of the Ni-foam@Cu-Al LDH/g-C3N4 nanocomposite measured from the CV curve (770.98 F g-1 at 50 mV s-1) and the galvanostatic charge/discharge curve (831.871 at 0.4 A g-1) were significantly higher than the others. Moreover, the Ni-foam@Cu-Al LDH/g-C3N4 nanocomposite revealed a remarkable high-current capacitive behavior and the capacitance retention could be maintained at 92.71% even after 5000 cycles of CV. Thus, the obtained results demonstrated that the as-prepared nanocomposite has great potential to be used as a novel supercapacitor electrode.

  18. Microstructure and mechanical properties of aluminium matrix composites reinforced by Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lityńska-Dobrzyńska, Lidia, E-mail: l.litynska@imim.pl; Mitka, Mikołaj; Góral, Anna

    Aluminium matrix composites containing 15, 30 and 50 vol.% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} (in at.%) melt spun ribbons have been prepared by a vacuum hot pressing (T = 673 K, P = 600 MPa). The microstructure of the initial ribbon and the composites was investigated using X-ray, scanning and transmission electron microscopy. In the as-spun ribbon the quasicrystalline icosahedral phase (i-phase) coexisted with the cubic copper rich β-Al(Cu, Fe) intermetallic compound. The phase composition of Al-Cu-Fe particles changed after consolidation process and the i-phase transformed partially to the ω-Al{sub 70}Cu{sub 20}Fe{sub 10} phase. Additionally, the Θ-Al{sub 2}Cu phasemore » formed at the α(Al)/Al-Cu-Fe particle interfaces. With an increase in volume fraction of the reinforcement the hardness of the composites increased up to HV = 180 for the highest amount of added particles. The ultimate compression strength of the same sample reached the value of 545 MPa. - Highlights: • Al and 15, 30, 50% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon were consolidated. • The initial ribbon consisted of the icosahedral i-phase and copper rich β-Al(Cu, Fe). • The i-phase partially transforms to ω-Al{sub 7}Cu{sub 2}Fe phase in all composites. • Increase of microhardness and compressive strength with content of reinforcement • Ultimate compression strength 545 MPa for 50% of added particles.« less

  19. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...

    2017-01-07

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  20. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  1. Deuterium transport in Cu, CuCrZr, and Cu/Be

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.

    This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.

  2. Nanoporous delafossite CuAlO2 from inorganic/polymer double gels: a desirable high-surface-area p-type transparent electrode material.

    PubMed

    Das, Barun; Renaud, Adèle; Volosin, Alex M; Yu, Lei; Newman, Nathan; Seo, Dong-Kyun

    2015-02-02

    Nanoporous structures of a p-type semiconductor, delafossite CuAlO(2), with a high crystallinity have been fabricated through an inorganic/polymer double-gel process and characterized for the first time via Mott-Schottky measurements. The effect of the precursor concentration, calcination temperature, and atmosphere were examined to achieve high crystallinity and photoelectrochemical properties while maximizing the porosity. The optical properties of the nanoporous CuAlO(2) are in good agreement with the literature with an optical band gap of 3.9 eV, and the observed high electrical conductivity and hole concentrations conform to highly crystalline and well-sintered nanoparticles observed in the product. The Mott-Schottky plot from the electrochemical impedance spectroscopy studies indicates a flat-band potential of 0.49 V versus Ag/AgCl. It is concluded that CuAlO(2) exhibits band energies very close to those of NiO but with electrical properties very desirable in the fabrication of photoelectrochemical devices including dye-sensitized solar cells.

  3. Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, Maqsood

    1987-04-01

    The chemical composition of oxide films formed during thermal treatments of an Al-Li-Cu-Mg-Zr alloy has been studied by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The oxide layers formed after oxidation of 2.5 minutes to 30 minutes at 530 °C in lab air have been characterized. In the early stages of oxidation the surface is composed of both the lithium rich oxides and magnesium rich oxides. However, after longer oxidation times the oxidation of lithium becomes predominant and the air/oxide interface is completely covered by lithium compounds. Oxidation products formed on the alloy surface have been studied by X-ray diffraction analysis. The following three phases, namely, Li2CO3, α-Li5AlO4, and γ-LiAlO2, were identified. During heat treatment in lab air at 530 °C and at atmospheric pressure the dominating reaction product is Li2CO3. Due to the selective oxidation of lithium a soft surface layer is developed. The width of the soft layer formed during solution heat treatments carried out in lab air and in salt bath environments has been determined by microhardness measurements. The lithium concentration profiles were calculated from a diffusion equation. The depletion of alloying elements from the near surface region during heat treatments has been investigated using energy dispersive X-ray analysis. The oxide morphology was examined using scanning electron microscopy and optical microscopy.

  4. Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, Maqsood

    1987-05-01

    The chemical composition of oxide films formed during thermal treatments of an Al-Li-Cu-Mg-Zr alloy has been studied by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The oxide layers formed after oxidation of 2.5 minutes to 30 minutes at 530 °C in lab air have been characterized. In the early stages of oxidation the surface is composed of both the lithium rich oxides and magnesium rich oxides. However, after longer oxidation times the oxidation of lithium becomes predominant and the air/oxide interface is completely covered by lithium compounds. Oxidation products formed on the alloy surface have been studied by X-ray diffraction analysis. The following three phases, namely, Li2CO3, α-Li5AlO4, and γ-LiAlO2, were identified. During heat treatment in lab air at 530 °C and at atmospheric pressure the dominating reaction product is Li2CO3. Due to the selective oxidation of lithium a soft surface layer is developed. The width of the soft layer formed during solution heat treatments carried out in lab air and in salt bath environments has been determined by microhardness measurements. The lithium concentration profiles were calculated from a diffusion equation. The depletion of alloying elements from the near surface region during heat treatments has been investigated using energy dispersive X-ray analysis. The oxide morphology was examined using scanning electron microscopy and optical microscopy.

  5. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    DOEpatents

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  6. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  7. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  8. The effect of 0.1 atomic percent zirconium on the cyclic oxidation behavior of beta-NiAl for 300 hours at 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1988-01-01

    The long time effect of 0.1 at percent Zr (0.2 wt percent Zr) on the cyclic oxidation behavior of hipped beta-NiAl was studied. Oxidation testing was performed in static air at 1200 C for up to 3000 one-hour exposure cycles. Specific weight change versus time data was modeled with the COSP computer program to analyze cyclic oxidation behavior. The Zr-free stoichiometric alloy oxidized and spalled randomly to bare metal between cycles at a rate high enough to deplete Al to a low enough level that oxidation breakaway took place as nonprotective NiO replaced the alpha-Al2O3/NiAl2O4 scale as the controlling oxide. The Zr minimized this severe type of spalling maintaining the protective alpha-Al2O3 scale even out to 3000 hours for the stoichiometric alloy with no significant Al depletion. A third beta-NiAl alloy containing 0.1 at percent Zr but with 10 percent less Al than the stoichiometric alloy was also tested and showed some depletion of Al, but the protective Al2O3/NiAl2O4 was still maintained to close to 2700 hours.

  9. Thermodynamic modelling of the C-U and B-U binary systems

    NASA Astrophysics Data System (ADS)

    Chevalier, P. Y.; Fischer, E.

    2001-02-01

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.

  10. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    PubMed

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Toughness of Wear-Resistant Cu-Zr-Based Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Andersen, Laura M.

    Bulk metallic glasses (BMGs) have the potential to exhibit exceptional wear-resistance due to their high hardness and strength. Combined with their other unique properties, this makes them ideal candidates for a wide range of technological applications (e.g. gears, bearings, biomaterials). In the course of this dissertation, high-glass-forming bulk metallic glasses are prepared and characterized in order to identify wear-resistant compositions and optimize their toughness. First, a comprehensive study identifies a class of Cu-Zr-based BMGs that exhibit more exceptional wear performance than other BMGs. The results demonstrate that when BMGs are designed properly, they exhibit wear properties that compete with, and can surpass, state-of-the-art engineering materials. It is identified that, in order to optimize the wear performance of Cu-Zr-based BMG gears, toughness should be maximized. Second, the notch toughness of wear-resistant Cu43Zr 43Al7Be7 BMGs with in-situ crystallization is investigated. In order to identify in-situ crystallization using X-ray diffraction (XRD) with Cu K? radiation, extremely long dwell times and high X-ray fluxes are required. This demonstrates the importance of reporting operating parameters when trying to evaluate the amorphous nature of BMGs. XRD, energy-dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are used to identify the metastable crystalline phase. The notch toughness is found to correlate closely with the amount of crystallization and the composition of the remaining amorphous matrix. Finally, the effect of substituting standard-grade zirconium lump (99.8% excluding up to 4% hafnium) for high-purity zirconium crystal bar (99.5%) in Cu43Zr43Al7Be7 is investigated. Introducing low-purity zirconium significantly decreases the glass-forming-ability and reduces the notch toughness of the BMG. Furthermore, Weibull statistics provide an analysis of the variability in toughness for high-purity ingots

  12. Mixing effects in a ternary Hf-Zr-Ni metallic melt

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Evenson, Z.; Meyer, A.

    2018-03-01

    We study the effect of the substitution of Zr by Hf on the dynamical behavior in the Zr36Ni64 melt. A reduced measured self-diffusion coefficient and a higher measured melt viscosity for an increased amount of Hf were observed. The ternary Hf10Zr25Ni65 melt, which exhibits a pronounced deviation from Arrhenius behavior over a studied temperature range of 550 K, can be accurately described by the scaling law of mode-coupling theory (MCT) with almost equal parameters for the self-diffusion and the viscosity. Although we only substitute alloy components with a nearly equal atomic size and the measured overall packing fraction remains almost unchanged, the dynamics in Hf10Zr25Ni65 are slower compared to Zr36Ni64 . This corresponds also to a higher critical temperature Tc and might be induced by different chemical interactions in the melts. The increased Tc results in a significantly smaller difference between liquidus and critical temperature Δ TLC=TL-Tc for the ternary melt in comparison with Zr36Ni64 , which may favor the glass formation in the Hf10Zr25Ni65 melt.

  13. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  14. Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.

    2017-03-01

    Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.

  15. Structure and magnetic properties of Fe12X clusters

    NASA Astrophysics Data System (ADS)

    Gutsev, G. L.; Johnson, L. E.; Belay, K. G.; Weatherford, C. A.; Gutsev, L. G.; Ramachandran, B. R.

    2014-02-01

    The electronic and geometrical structures of a Fe12X family of binary clusters Fe12Al, Fe12Sc, Fe12Ti, Fe12V, Fe12Cr, Fe12Mn, Fe12Co, Fe12Ni, Fe12Cu, Fe12Zn, Fe12Y, Fe12Zr, Fe12Nb, Fe12Mo, Fe12Tc, Fe12Ru, Fe12Rh, Fe12Pd, Fe12Ag, Fe12Cd, and Fe12Gd are studied using density functional theory within generalized gradient approximation. It is found that the geometrical structures corresponding to the lowest total energy states found for the Fe12X clusters possess icosahedral shape with the substituent atom occupying the central or a surface site. The only exception presents Fe12Nb where a squeezed cage structure is the energetically most favorable. The substitution of an atom in the Fe13 cluster results in the decrease of its total spin magnetic moment of 44 μB, except for Fe12Mn and Fe12Gd. The Fe12X clusters are more stable than the parent Fe13 cluster when X = Al, Sc, Ti, V, Co, Y, Zr, Nb, Mo, Tc, Ru, and Rh.

  16. The Effect of Mo Particles Addition in Ag-Cu-Ti Filler Alloy on Ti(C,N)-Based Cermet/45 Steel-Brazed Joints

    NASA Astrophysics Data System (ADS)

    He, Hu; Du, Xueming; Huang, Xiaokai; Xu, Weijian; Yao, Zhenhua

    2018-05-01

    Reliable brazing of Ti(C,N)-based cermet and 45 steel was successfully achieved by using the Mo-particle-reinforced Ag-Cu-Ti composite filler. The effects of Mo content on the interfacial microstructure and mechanical properties of Ti(C,N)-based cermet/45 steel joints were analyzed. The results showed that the joint microstructure was primarily composed of Ni3Ti+Cu3Ti2, Ag(s,s)+Cu(s.s), CuTi+Mo, Ti-based solid solution, and FeTi+Fe2Ti. With the increase in Mo content in filler, the thickness of the Ni3Ti+Cu3Ti2 layer adjacent to the Ti(C,N)-based cermet decreases, while more blocky Ti-Cu intermetallic were observed in the brazing seam. The shear strength of the joint could be significantly improved by adding suitable amounts of Mo into the Ag-Cu-Ti filler, and the peak value of 263 MPa was achieved when the alloys were brazed with Ag-Cu-Ti+8wt.%Mo composite filler at 920 °C for 20 min.

  17. Nucleation study for an undercooled melt of intermetallic NiZr

    NASA Astrophysics Data System (ADS)

    Kobold, R.; Kolbe, M.; Hornfeck, W.; Herlach, D. M.

    2018-03-01

    Electrostatic levitation is applied in order to undercool liquid glass forming NiZr significantly below its melting temperature. For NiZr large undercoolings are found to be highly reproducible with this experimental method. One single NiZr sample of high purity is undercooled 200 consecutive times which leads to a distribution function of undercooling temperatures. Within a statistical approach of classical nucleation theory, the undercooling distribution is analyzed yielding parameters, e.g., a pre-exponential factor of KV ≈ 1035 m-3 s-1, which indicates homogeneous nucleation. This result is consistent with the crystallization behavior of NiZr at high undercooling and with the corresponding microstructural analysis. Since NiZr is a representative of the very common CrB structure type, with 132 isostructural phases existing, understanding its nucleation behavior adds important knowledge to the nucleation of binary alloys in general.

  18. Interfacial free energy controlling glass-forming ability of Cu-Zr alloys.

    PubMed

    Kang, Dong-Hee; Zhang, Hao; Yoo, Hanbyeol; Lee, Hyun Hwi; Lee, Sooheyong; Lee, Geun Woo; Lou, Hongbo; Wang, Xiaodong; Cao, Qingping; Zhang, Dongxian; Jiang, Jianzhong

    2014-06-04

    Glass is a freezing phase of a deeply supercooled liquid. Despite its simple definition, the origin of glass forming ability (GFA) is still ambiguous, even for binary Cu-Zr alloys. Here, we directly study the stability of the supercooled Cu-Zr liquids where we find that Cu64Zr36 at a supercooled temperature shows deeper undercoolability and longer persistence than other neighbouring compositions with an equivalent driving Gibbs free energy. This observation implies that the GFA of the Cu-Zr alloys is significantly affected by crystal-liquid interfacial free energy. In particular, the crystal-liquid interfacial free energy of Cu64Zr36 in our measurement was higher than that of other neighbouring liquids and, coincidently a molecular dynamics simulation reveals a larger glass-glass interfacial energy value at this composition, which reflects more distinct configuration difference between liquid and crystal phase. The present results demonstrate that the higher crystal-liquid interfacial free energy is a prerequisite of good GFA of the Cu-Zr alloys.

  19. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  20. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  1. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  2. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  3. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  4. Magnetic and electronic properties of the Cu-substituted Weyl semimetal candidate ZrCo2Sn.

    PubMed

    Kushwaha, S K; Wang, Zhijun; Kong, Tai; Cava, Robert

    2018-01-04

    We report that the partial substitution of Cu for Co has a significant impact on the magnetic properties of the Heusler-phase Weyl fermion candidate ZrCo<sub>2</sub>Sn. Polycrystalline samples of ZrCo<sub>2-<i>x</i></sub>Cu<sub><i>x</i></sub>Sn (<i>x</i> = 0.0 to 1.0) exhibited a linearly decreasing ferromagnetic transition temperature and similarly decreasing saturated magnetic moment on increasing Cu substitution x. Materials with Cu contents near <i>x</i> = 1 and several other quaternary materials synthesized at the same <i>x</i> (ZrCo<i>T</i>'Sn (<i>T</i>' = Rh, Pd, Ni)) display what appears to be non-ferromagnetic magnetization behavior with spin glass characteristics. Electronic structure calculations suggest that the half-metallic nature of unsubstituted ZrCo<sub>2</sub>Sn is disrupted significantly by the Cu substitutions, leading to the breakdown of the magnetization vs. electron count guidelines usually followed by Heusler phases, and a more typical metallic non-spin-polarized electronic structure at high <i>x</i>. © 2018 IOP Publishing Ltd.

  5. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  6. Characterization of the interface between the bulk glass forming alloy Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} with pure metals and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroers, Jan; Samwer, Konrad; Szuecs, Frigyes

    The reaction of the bulk glass forming alloy Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} (Vit 1) with W, Ta, Mo, AlN, Al{sub 2}O{sub 3}, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structuremore » and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials. (c) 2000 Materials Research Society.« less

  7. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less

  8. Discovery of superconductivity in quasicrystal.

    PubMed

    Kamiya, K; Takeuchi, T; Kabeya, N; Wada, N; Ishimasa, T; Ochiai, A; Deguchi, K; Imura, K; Sato, N K

    2018-01-11

    Superconductivity is ubiquitous as evidenced by the observation in many crystals including carrier-doped oxides and diamond. Amorphous solids are no exception. However, it remains to be discovered in quasicrystals, in which atoms are ordered over long distances but not in a periodically repeating arrangement. Here we report electrical resistivity, magnetization, and specific-heat measurements of Al-Zn-Mg quasicrystal, presenting convincing evidence for the emergence of bulk superconductivity at a very low transition temperature of [Formula: see text] K. We also find superconductivity in its approximant crystals, structures that are periodic, but that are very similar to quasicrystals. These observations demonstrate that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one. The discovery of the superconducting quasicrystal, in which the fractal geometry interplays with superconductivity, opens the door to a new type of superconductivity, fractal superconductivity.

  9. Nucleation rates of Sn in undercooled Sn-Ag-Cu flip-chip solder joints

    NASA Astrophysics Data System (ADS)

    Arfaei, B.; Benedict, M.; Cotts, E. J.

    2013-11-01

    The nucleation of Sn from the melt in commercial SnAgCu flip chip solder joints was monitored at a number of different temperatures. Nucleation rates were estimated from measurements of nucleation times for 440 solder balls after one reflow and were found to be well epitomized by the expression I = 2 × 109 exp[(-1.6 × 105)/(T × (ΔT)2)] m-3 s-1, as per classical nucleation theory. After an additional reflow, the nucleation rates of the same 440 samples were observed to increase to I = 2 × 109 exp[(-8.9 × 104)/(T × (ΔT)2)] m-3 s-1. Thus it was shown that the expressions of classical nucleation theory well characterize nucleation kinetics for this system. These changes in nucleation kinetics were correlated with continued dissolution of Al and Ni in to the SnAgCu melt. Such increases in nucleation rates meant increases in the average solidification temperatures of the solder balls after reflow. Variations in the Sn grain morphology of the solder joints were correlated with these changes in solidification temperature, with larger Sn grains (beach ball Sn grain morphology) observed at higher solidification temperatures.

  10. Structure and properties during aging of an Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1991-01-01

    An Al-Cu-Li-Ag-Mg alloy, Weldalite (trademark) 049, was recently introduced as an ultra-high strength alloy (7000 MPa yield strength in artificially aged tempers) with good weldability. In addition, the alloy exhibits an extraordinary natural aging response (440 MPa yield strength (YS) in the unstretch condition) and a high ductility reversion condition which may be useful as a cold-forming temper. In contrast to other Al-Li alloys, these properties can essentially be obtained with or without a stretch or other coldworking operation prior to aging. Preliminary studies have revealed that the T4 temper (no stretch, natural age) is strengthened by a combination of GP zones and delta prime (Al3Li). The T6 temper (no stretch, aged at 180 C to peak strength) was reported to be strengthened primarily by T(sub 1) phase (Al2CuLi) with a minor presence of a theta prime like (Al2Cu) phase. On the other hand, a similar but lower solute containing alloy was reported to contain omega, (stoichiometry unknown), theta prime, and S prime in the peak strength condition. The purpose of this study is to further elucidate the strengthening phases in Weldalite (trademark) 049 in the unstretched tempers, and to follow the development of the microstructure from the T4 temper through reversion (180 C for 5 to 45 minutes) to the T6 temper.

  11. Magnetic susceptibility, artifact volume in MRI, and tensile properties of swaged Zr-Ag composites for biomedical applications.

    PubMed

    Imai, Haruki; Tanaka, Yoji; Nomura, Naoyuki; Doi, Hisashi; Tsutsumi, Yusuke; Ono, Takashi; Hanawa, Takao

    2017-02-01

    Zr-Ag composites were fabricated to decrease the magnetic susceptibility by compensating for the magnetic susceptibility of their components. The Zr-Ag composites with a different Zr-Ag ratio were swaged, and their magnetic susceptibility, artifact volume, and mechanical properties were evaluated by magnetic balance, three-dimensional (3-D) artifact rendering, and a tensile test, respectively. These properties were correlated with the volume fraction of Ag using the linear rule of mixture. We successfully obtained the swaged Zr-Ag composites up to the reduction ratio of 96% for Zr-4, 16, 36, 64Ag and 86% for Zr-81Ag. However, the volume fraction of Ag after swaging tended to be lower than that before swaging, especially for Ag-rich Zr-Ag composites. The magnetic susceptibility of the composites linearly decreased with the increasing volume fraction of Ag. No artifact could be estimated with the Ag volume fraction in the range from 93.7% to 95.4% in three conditions. Young's modulus, ultimate tensile strength (UTS), and 0.2% yield strength of Zr-Ag composites showed slightly lower values compared to the estimated values using a linear rule of mixture. The decrease in magnetic susceptibility of Zr and Ag by alloying or combining would contribute to the decrease of the Ag fraction, leading to the improvement of mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  13. History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Johnson, William L.

    2000-07-01

    The crystallization of Zr41Ti14Cu12Ni10Be23 (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by an accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature.

  14. Pseudo-icosahedral Cr 55 Al 232 - δ as a high-temperature protective material

    DOE PAGES

    Rosa, R.; Bhattacharya, S.; Pabla, J.; ...

    2018-03-19

    In this paper, we report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high temperature protective coatings. Cr 55Al 232-δ [δ = 2.70(6)] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. Lastly, the origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  15. Pseudo-icosahedral Cr55Al232 -δ as a high-temperature protective material

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Bhattacharya, S.; Pabla, J.; He, H.; Misuraca, J.; Nakajima, Y.; Bender, A. D.; Antonacci, A. K.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Tritt, T. M.; Aronson, M. C.; Simonson, J. W.

    2018-03-01

    We report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high-temperature protective coatings. Cr55Al232 -δ [ δ =2.70 (6 ) ] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. The origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  16. Pseudo-icosahedral Cr 55 Al 232 - δ as a high-temperature protective material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, R.; Bhattacharya, S.; Pabla, J.

    In this paper, we report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high temperature protective coatings. Cr 55Al 232-δ [δ = 2.70(6)] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. Lastly, the origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  17. Nanoporous Delafossite CuAlO 2 from Inorganic/Polymer Double Gels: A Desirable High-Surface-Area p-Type Transparent Electrode Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Barun; Renaud, Adèle; Volosin, Alex M.

    2015-02-02

    Nanoporous structures of a p-type semiconductor, delafossite CuAlO2, with a high crystallinity have been fabricated through an inorganic/polymer double-gel process and characterized for the first time via Mott–Schottky measurements. The effect of the precursor concentration, calcination temperature, and atmosphere were examined to achieve high crystallinity and photoelectrochemical properties while maximizing the porosity. The optical properties of the nanoporous CuAlO2 are in good agreement with the literature with an optical band gap of 3.9 eV, and the observed high electrical conductivity and hole concentrations conform to highly crystalline and well-sintered nanoparticles observed in the product. The Mott–Schottky plot from the electrochemicalmore » impedance spectroscopy studies indicates a flat-band potential of 0.49 V versus Ag/AgCl. It is concluded that CuAlO2 exhibits band energies very close to those of NiO but with electrical properties very desirable in the fabrication of photoelectrochemical devices including dye-sensitized solar cells.« less

  18. Nanoporous Delafossite CuAlO 2 from Inorganic/Polymer Double Gels: A Desirable High-Surface-Area p-Type Transparent Electrode Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Barun; Renaud, Adèle; Volosin, Alex M.

    2015-02-02

    Nanoporous structures of a p-type semiconductor, delafossite CuAlO 2, with a high crystallinity have been fabricated through an inorganic/polymer double-gel process and characterized for the first time via Mott–Schottky measurements. The effect of the precursor concentration, calcination temperature, and atmosphere were examined to achieve high crystallinity and photoelectrochemical properties while maximizing the porosity. The optical properties of the nanoporous CuAlO 2 are in good agreement with the literature with an optical band gap of 3.9 eV, and the observed high electrical conductivity and hole concentrations conform to highly crystalline and well-sintered nanoparticles observed in the product. The Mott–Schottky plot frommore » the electrochemical impedance spectroscopy studies indicates a flat-band potential of 0.49 V versus Ag/AgCl. It is concluded that CuAlO 2 exhibits band energies very close to those of NiO but with electrical properties very desirable in the fabrication of photoelectrochemical devices including dye-sensitized solar cells.« less

  19. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  20. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    DOE PAGES

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; ...

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr 55Cu 30Ni 5Al 10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr 55Cu 30Ni 5Al 10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α ) β α ], with the isothermal relaxation time, τ α, and the Kohlrausch exponent, β α. The β α exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to themore » dynamic relaxation. The τ α’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods that reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.« less

  1. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  2. Origin of Quantum Criticality in Yb-Al-Au Approximant Crystal and Quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-06-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb15Al34Au51, the approximant crystal Yb14Al35Au51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ˜ T-0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size.

  3. Active metal brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%)

    NASA Astrophysics Data System (ADS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2018-01-01

    The application of an active braze alloy (ABA) known as Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%) to join Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) has been investigated. This ABA was selected to increase the operating temperature of the joint beyond the capabilities of typically used ABAs such as Ag-Cu-Ti-based alloys. Silica present as a secondary phase in the Al2O3 at a level of 5 wt.% enabled the ceramic component to bond to the ABA chemically by forming a layer of Si3Ti5 at the ABA/Al2O3 interface. Appropriate brazing conditions to preserve a near-continuous Si3Ti5 layer on the Al2O3 and a continuous Fe3Si layer on the Kovar® were found to be a brazing time of ≤15 min at 1025 °C or ≤2 min at 1050 °C. These conditions produced joints that did not break on handling and could be prepared easily for microscopy. Brazing for longer periods of time, up to 45 min, at these temperatures broke down the Si3Ti5 layer on the Al2O3, while brazing at ≥1075 °C for 2-45 min broke down the Fe3Si layer on the Kovar® significantly. Further complications of brazing at ≥1075 °C included leakage of the ABA out of the joint and the formation of a new brittle silicide, Ni16Si7Ti6, at the ABA/Al2O3 interface. This investigation demonstrates that it is not straightforward to join Al2O3 to Kovar® using Copper ABA®, partly because the ranges of suitable values for the brazing temperature and time are quite limited. Other approaches to increase the operating temperature of the joint are discussed.

  4. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Investigation of Pd-Modified Ag-CuO Air Braze Filler Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darsell, Jens T.; Hardy, John S.; Kim, Jin Yong

    2006-01-10

    Palladium was added as a ternary component to a series of silver - copper oxide alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Large portions of the silver component of the Ag-CuO system were substituted by palladium forming the following alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase inmore » the solidus and liquidus temperatures of the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments that palladium causes an increase in the wetting angle for all of the samples tested. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicates that the microstructure of the braze consists of Ag-Pd solid solution with CuOx precipitates. In general, a reaction layer consisting of CuAlO2 forms adjacent to the alumina substrate. However, the formation of this layer is apparently hindered by the addition of large amounts of palladium, causing poor wetting behavior, as denoted by substantial porosity

  6. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    PubMed Central

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  7. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Dar; Chen, Ting-Wei

    2018-06-01

    In this work, Cu, Ag, or Ag/Cu was used as a metal catalyst to study the surface texturization of diamond-wire-sawn (DWS) multi-crystalline silicon (mc-Si) wafer by a metal-assisted chemical etching (MACE) method. The DWS wafer was first etched by standard HF-HNO3 acidic etching, and it was labeled as AE-DWS wafer. The effects of ratios of Cu(NO3)2:HF, AgNO3:HF, and AgNO3:Cu(NO3)2 on the morphology of AE-DWS wafer were investigated. After the process of MACE, the wafer was treated with a NaF/H2O2 solution. In this process, H2O2 etched the nanostructure, and NaF removed the oxidation layer. The Si {1 1 1} plane was revealed by etching the wafer in a mixture of 0.03 M Cu(NO3)2 and 1 M HF at 55 °C for 2.5 min. These parallel Si {1 1 1} planes replaced some parallel saw marks on the surface of AE-DWS wafers without forming a positive pyramid or an inverted pyramid structure. The main topography of the wafer is comprised of silicon nanowires grown in <1 0 0> direction when Ag or Ag/Cu was used as a metal catalyst. When silicon is etched in a mixed solution of Cu(NO3)2, AgNO3, HF and H2O2 at 55 °C with a concentration ratio of [Cu2+]/[Ag+] of 50 or at 65 °C with a concentration ratio of [Cu2+]/[Ag+] of 33, a quasi-inverted pyramid structure can be obtained. The reflectivity of the AE-DWS wafers treated with MACE is lower than that of the multiwire-slurry-sawn (MWSS) mc-Si wafers treated with traditional HF + HNO3 etching.

  8. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  9. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  10. Synthesis and thermoelectric properties of tantalum-doped ZrNiSn half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Zuo, Min; Wang, Zhenqing; Teng, Xinying; Geng, Haoran

    2014-04-01

    The Ta-doped ZrNiSn half-Heusler alloys, Zr1-xTaxNiSn, were synthesized by arc melting and hot-press sintering. Microstructure of Zr1-xTaxNiSn compounds were analyzed and the thermoelectric (TE) properties of Zr1-xTaxNiSn compounds were measured from room temperature to 823 K. The electrical conductivity increased with increasing Ta content. The Seebeck coefficient of Zr1-xTaxNiSn compounds was sharply decreased with increasing Ta content. The Hall mobility was proportional to T-1.5 above 673 K, indicating that the acoustic phonon scattering was predominant in the temperature range. The thermal conductivity was effectively depressed by introducing Ta substitution. The figure of merit of ZrNiSn compounds was improved due to the decreased thermal conductivity and increased electrical conductivity. The maximum ZT value of 0.60 was achieved for Zr0.97Ta0.03NiSn sample at 823 K.

  11. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    NASA Astrophysics Data System (ADS)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  12. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  13. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  14. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    DOE PAGES

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; ...

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu 51Zr 14(β), CuZr(B 2), CuZr 2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition andmore » temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.« less

  15. Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-Wen

    2018-07-01

    Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.

  16. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    PubMed

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

  17. Study on the formation of graphene by ion implantation on Cu, Ni and CuNi alloy

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Kim, Hong-Yeol; Jeon, Jeong Heum; An, Sungjoo; Hong, Jongwon; Kim, Jihyun

    2018-09-01

    This study identifies the details for direct synthesis of graphene by carbon ion implantation on Cu, Ni and CuNi alloy. Firstly, diffusion and concentration of carbon atoms in Cu and Ni are estimated separately. The concentrations of carbon atoms near the surfaces of Cu and Ni after carbon ion implantation and subsequent thermal annealing were correlated with the number of atoms and with the coverage or thickness of graphene. Systematic experiments showed that the Cu has higher carbon diffusivity and graphene coverage than Ni but higher temperatures and longer annealing times are required to synthesize graphene, similar to those in chemical vapor deposition method. The CuNi system shows better graphene coverage and quality than that on a single metal catalyst even after a short annealing time, as it has larger carbon diffusivity and lower carbon solubility than Ni and shows lower activation energy than Cu.

  18. Green Synthesis of Ag, Cu and AgCu Nanoparticles using Palm Leaves Extract as the Reducing and Stabilizing Agents

    NASA Astrophysics Data System (ADS)

    Mohamad, N. A. N.; Arham, N. A.; Junaidah, J.; Hadi, A.; Idris, S. A.

    2018-05-01

    This paper reports the green synthesis of Ag, Cu and AgCu nanoparticles at room temperature using palm leaves extract. The purpose of this study is to eliminate the use of chemicals in the synthesis of nanoparticles and evaluate the efficiency of the palm leaves extract as the reducing and stabilizing agents. The palm leaves extract was added to metal salt solution and continuously stirred until reaction completed. The produced nanoparticles were analyzed using atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses revealed that palm leaves extract has efficiently reduced the silver ions, but not the copper ions. During synthesis of AgCu nanoparticles, simultaneous reduction was occurred leading to formation of alloyed nanoparticles. Biomolecules from the palm leaves extract adsorbed on the surface of nanoparticles forming a capping layer thus stabilized the nanoparticles. The produced Ag and Cu nanoparticles were predominantly spherical with the particle size of Cu nanoparticles were larger than Ag nanoparticles. The AgCu nanoparticles closely resembled the Ag nanoparticles due to high Ag content with average size of 13nm. Therefore, palm leaves extract has a potential to be a good reducing and stabilizing agents.

  19. Enhancing the ag precipitation by surface mechanical attrition treatment on Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Zhang, Lehao; Liu, Jingjing; Huang, Liuyi; Gu, Hao; Fang, Youtong; Meng, Liang; Zhang, Jian

    2016-09-01

    The influence of surface mechanical attrition treatment (SMAT) on Ag precipitation in Cu-Ag alloys was investigated. Cu-6 wt% Ag was melt, cold rolled and solution treated to be Cu-Ag solid solution, which was either aged at 250 and 350 °C for 24 h directly or SMAT-ed before aging. Ag precipitates were hard be found in the directly aged Cu-Ag sample while they were observed clearly in the SMAT-ed counterpart at 250 °C. The Ag precipitates formed in the surface layer by SMAT are much coarser than those in the un-SMAT-ed sample. It is obvious that the precipitating behavior of Ag was promoted significantly by SMAT approach. A large number of defects were generated by SMAT and they were acting as fast atomic diffusion channels that facilitated the atomic diffusion of Ag.

  20. Composition and origin of holotype Al-Cu-Zn minerals in relation to quasicrystals in the Khatyrka meteorite

    NASA Astrophysics Data System (ADS)

    Ivanova, Marina A.; Lorenz, Cyril A.; Borisovskiy, Sergey E.; Burmistrov, Andrey A.; Korost, Dmitriy V.; Korochantsev, Alexander V.; Logunova, Maria N.; Shornikov, Sergei I.; Petaev, Michail I.

    2017-05-01

    We investigated the khatyrkite-cupalite holotype sample, 1.2 × 0.5 mm across. It consists of khatyrkite (Cu,Zn)Al2, cupalite (Cu,Zn)Al, and interstitial material with approximate composition (Zn,Cu)Al3. All mineral phases of the holotype sample contain Zn and lack Fe that distinguishes them from khatyrkite and cupalite in the Khatyrka meteorite particles (Bindi et al. , , , ; MacPherson et al. ; Hollister et al. ). Neither highly fractionated natural systems nor geo- or cosmochemical processes capable of forming the holotype sample are known so far. The bulk chemistry and thermal history of khatyrkite-cupalite assemblage in the holotype sample hint for its possible industrial origin. Likewise, the aluminides in the Khatyrka meteorite particles may also be derived from industrial materials and mixed with extraterrestrial matter during gold prospecting in the Listvenitovy Stream valley.

  1. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    NASA Technical Reports Server (NTRS)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  2. Distribution of Ag in Cu-sulfides in Kupferschiefer deposit, SW Poland

    NASA Astrophysics Data System (ADS)

    Kozub, Gabriela A.

    2014-05-01

    reports on high Ag content reaching 49 wt.% Ag in bornite and 1.8 wt.% Ag in chalcocite occurring due to Ag substitution in Cu-minerals without modification of their crystallographic structure (Salamon 1979; Banaś et al 2007; Kucha 2007; Piestrzyński 2007, Pieczonka 2011). Acknowledgements. This work was supported by the National Science Centre research grant (No 2011/03/N/ST10/04619). References: Kucha H and Mayer W (2007) Geochemistry. [In:] Piestrzyński A (Ed) Monografia KGHM Polska Miedź SA., pp 197-207 (In Polish) Pieczonka J (2011) Factors controlling distribution of ore minerals within copper deposit, Fore-Sudetic Monocline, SW Poland. 195 pp (In Polish) Piestrzyński A (2007) Ore minerals. [In:] Piestrzyński A (Ed) Monografia KGHM Polska Miedź SA., pp 167-197 (in Polish) Salamon W (1979) Occurrence of the Ag and Mo in the Zechstein sediments of the Fore-Sudetic Monocline. Prace Mineralogiczne, PAN 62, pp 1-52 (In Polish)

  3. Ab initio Study of Ag-Based Fluoroperovskite AgMF3 (M = Co and Ni) Compounds

    NASA Astrophysics Data System (ADS)

    Mubarak, A. A.

    2018-01-01

    Ab initio calculations of Ag-based fluoroperovskite AgMF3 (M = Co and Ni) compounds are investigated using the full-potential linearized augmented plane wave method. Wien2k and BoltzTrap codes are used to calculate the different physical properties. The structural parameters of the present compounds are within reasonable agreement with previous calculations. This study shows that AgCoF3 and AgNiF3 are anisotropic, ductile, mechanically and thermodynamically stable compounds, where AgCoF3 is found to be stiffer and less compressible than AgNiF3. The spin-polarized electronic band structure illustrates that AgCoF3 is metallic, while AgNiF3 is a semiconductor with indirect (M-D) band gap energy of 0.43 eV. The bonding force between atoms is found to be mainly ionic with some covalent nature. The total magnetic moment of AgCoF3 (3.04 μ B) is found to be higher than that calculated for AgNiF3 (2.00 μ B). Using the magnetic susceptibility calculations, AgCoF3 is classified as antiferromagnetic, whereas AgNiF3 is a ferromagnetic compound. The calculated static refractive index of AgCoF3 (3.85) and AgNiF3 (3.60) is inversely proportional with the energy band gap. Suitable applications are predicted for AgCoF3 and AgNiF3 based on their absorption and reflection properties. Furthermore, beneficial thermoelectric applications are expected for the present compounds due to their large Seebeck coefficient ( S_{{{{AgCoF}}_{ 3} }} = 2.92 × 103 μ {V/K} {and} S_{{{{AgNiF}}3 }} = 2.84 × 103 μ {V/K} ) and their thermoelectric power factor with respect to relaxation time ( S2 σ /t_{{AgNiF3 }} = 1.11 × 109 {W/K}^{ 2} {and} S2 σ /t_{{AgNiF3 }} = 1.28 × 10^{11} {W/K}^{ 2} ).

  4. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  5. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    PubMed

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analyzing and Modelling the Corrosion Behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/Graphene Nanocomposite Coatings

    PubMed Central

    Saeed, Adil; Braun, Wolfgang; Bajwa, Rizwan; Rafique, Saqib

    2017-01-01

    A study has been presented on the effects of intrinsic mechanical parameters, such as surface stress, surface elastic modulus, surface porosity, permeability and grain size on the corrosion failure of nanocomposite coatings. A set of mechano-electrochemical equations was developed by combining the popular Butler–Volmer and Duhem expressions to analyze the direct influence of mechanical parameters on the electrochemical reactions in nanocomposite coatings. Nanocomposite coatings of Ni with Al2O3, SiC, ZrO2 and Graphene nanoparticles were studied as examples. The predictions showed that the corrosion rate of the nanocoatings increased with increasing grain size due to increase in surface stress, surface porosity and permeability of nanocoatings. A detailed experimental study was performed in which the nanocomposite coatings were subjected to an accelerated corrosion testing. The experimental results helped to develop and validate the equations by qualitative comparison between the experimental and predicted results showing good agreement between the two. PMID:29068395

  7. Atomistic simulation of frictional anisotropy on quasicrystal approximant surfaces

    DOE PAGES

    Ye, Zhijiang; Martini, Ashlie; Thiel, Patricia; ...

    2016-06-23

    J. Y. Park et al. [Science 309, 1354 (2005)] have reported eight times greater atomic-scale friction in the periodic than in the quasiperiodic direction on the twofold face of a decagonal Al-Ni-Co quasicrystal. Here we present results of molecular-dynamics simulations intended to elucidate mechanisms behind this giant frictional anisotropy. Simulations of a bare atomic-force-microscope tip on several model substrates and under a variety of conditions failed to reproduce experimental results. On the other hand, including the experimental passivation of the tip with chains of hexadecane thiol, we reproduce qualitatively the experimental anisotropy in friction, finding evidence for entrainment of themore » organic chains in surface furrows parallel to the periodic direction.« less

  8. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  9. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    NASA Astrophysics Data System (ADS)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  10. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  11. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  12. Synthesizing (ZrAl3 + AlN)/Mg-Al composites by a 'matrix exchange' method

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Li, Zengqiang; Hu, Kaiqi; Han, Mengxia; Liu, Xiangfa

    2018-06-01

    A method named 'matrix exchange' to synthesize ZrAl3 and AlN reinforced Mg-Al composite was developed in this paper. By inserting Al-10ZrN master alloy into Mg matrix and reheating the cooled ingot to 550 °C, Al and Mg atoms diffuse to the opposite side. As a result, liquid melt occurs once the interface areas reach to proper compositions. Then dissolved Al atoms react with ZrN, leading to the in-situ formation of ZrAl3 and AlN particles, while the Al matrix is finally replaced by Mg. This study provides a new insight for preparing Mg composites.

  13. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-03-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.

  14. Spin waves in planar quasicrystal of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Rychły, J.; Mieszczak, S.; Kłos, J. W.

    2018-03-01

    We investigated two-dimensional magnonic structures which are the counterparts of photonic quasicrystals forming Penrose tiling. We considered the slab composed of Ni (or Py) disks embedded in Fe (or Co) matrix. The disks are arranged in quasiperiodic Penrose-like structure. The infinite quasicrystal was approximated by its rectangular section with periodic boundary conditions applied. This approach allowed us to use the plane wave method to find the frequency spectrum of eigenmodes for spin waves and their spatial profiles. The calculated integrated density of states shows more distinctive magnonic gaps for the structure composed of materials of high magnetic contrast (Ni and Fe) and relatively high filling fraction. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves. We also investigated the localization of spin wave eingenmodes resulting from the quasiperiodicity of the structure.

  15. Intermetallic Compound Growth between Electroless Nickel/Electroless Palladium/Immersion Gold Surface Finish and Sn-3.5Ag or Sn-3.0Ag-0.5Cu Solder

    NASA Astrophysics Data System (ADS)

    Oda, Yukinori; Fukumuro, Naoki; Yae, Shinji

    2018-04-01

    Using an electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish with a thick palladium-phosphorus (Pd-P) layer of 1 μm, the intermetallic compound (IMC) growth between the ENEPIG surface finish and lead-free solders Sn-3.5Ag (SA) or Sn-3.0Ag-0.5Cu (SAC) after reflow soldering and during solid-state aging at 150°C was investigated. After reflow soldering, in the SA/ENEPIG and SAC/ENEPIG interfaces, thick PdSn4 layers of about 2 μm to 3 μm formed on the residual Pd-P layers ( 0.5 μm thick). On the SA/ENEPIG interface, Sn was detected on the upper side of the residual Pd-P layer. On the SAC/ENEPIG interface, no Sn was detected in the residual Pd-P layer, and Cu was detected in the interface between the Pd-P and PdSn4 layers. After 300 h of aging at 150°C, the residual Pd-P layers had diffused completely into the solders. In the SA/ENEPIG interface, an IMC layer consisting of Ni3Sn4 and Ni3SnP formed between the PdSn4 layer and the nickel-phosphorus (Ni-P) layer, and a (Pd,Ni)Sn4 layer formed on the lower side of the PdSn4 layer. On the SAC/ENEPIG interface, a much thinner (Pd,Ni)Sn4 layer was observed, and a (Cu,Ni)6Sn5 layer was observed between the PdSn4 and Ni-P layers. These results indicate that Ni diffusion from the Ni-P layer to the PdSn4 layer produced a thick (Pd,Ni)Sn4 layer in the SA solder case, but was prevented by formation of (Cu,Ni)6Sn5 in the SAC solder case. This causes the difference in solder joint reliability between SA/ENEPIG and SAC/ENEPIG interfaces in common, thin Pd-P layer cases.

  16. Assessment of microalloying effects on the high temperature fatigue behavior of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Lerch, B. A.; Rao, K. B. S.

    1995-01-01

    Binary NiAl suffers from a lack of strength and poor creep properties at and above 1000 K. Poor creep resistance in turn affects low cycle fatigue (LCF) lives at low strain ranges due to the additional interactions of creep damage. One approach for improving these properties involved microalloying with either Zr or N. As an integral part of a much larger alloying program the low cycle fatigue behavior of Zr and N doped nickel aluminides produced by extrusion of prealloyed powders has been investigated. Strain controlled LCF tests were performed in air at 1000 K. The influence of these microalloying additions on the fatigue life and cyclic stress response of polycrystalline NiAl are discussed.

  17. Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Chayeuski, V. V.; Zhylinski, V. V.; Rudak, P. V.; Rusalsky, D. P.; Višniakov, N.; Černašėjus, O.

    2018-07-01

    This work deals with the features of the structure of combined ZrC/Ni-ultradisperse diamonds (UDD) coating synthesized by electroplating and cathode arc evaporation physical vapor deposition (CAE-PVD) techniques on the tungsten carbide WC - 2 wt% Co on cutting inserts to improve tool life. The microstructure, phase composition, and micro-scratch test analysis of the ZrC/Ni-UDD coating were studied. The ZrC/Ni-UDD coating consists of separate phases of zirconium carbide ZrC, α-Ni, and Ni-UDD phase. The surface morphology of the coating shows a pattern with pits, pores, and particles. Separated nanodiamond particles are present in the pores of the combined coating. Therefore, the structure of the bottom layer of Ni-UDD affects the morphology of the surface of the ZrC/Ni-UDD coating. The obtained value of the critical loads on the scratch track of the coating in 26 N proves a sufficiently high value of the adhesion strength of the intermediate Ni-UDD-layer with hard alloy of WC-Co substrate. Due to their unique structure ZrC/Ni-UDD-coatings can be used to increase the durability period of a wood-cutting milling tool for cutting chipboard by CNC machines.

  18. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase

  19. Solidification studies of nanocrystalline and quasicrystalline materials from the undercooled state

    NASA Astrophysics Data System (ADS)

    Croat, Thomas Kevin

    2001-07-01

    Nanocrystallization occurring during metallic glass devitrification is studied in Zr-Al-Ni-Cu bulk metallic glasses (BMGs) and Al-RE-TM (RE = rare-earth, TM = transition metal) metallic glasses. The importance of transient nucleation in BMG devitrification was established by a direct transmission electron microscopy (TEM) measurement of the grain density in two-stage annealed samples. TEM examination of low temperature annealed BMGs also suggest that amorphous phase separation is occurring prior to crystallization. Nanocrystallization of rapidly quenched Al-RE-Ni glasses was preceded by the compositional segregation of the initially homogeneous glass into Al-rich and solute-rich regions (mainly nickel-enriched) on a ≈50--100 nm length scale, suggesting amorphous phase separation. This pre-existing compositional modulation on a nanometer scale leads naturally to the development of nanocrystals. The average rare earth radius (rRE) in Al-RE-Ni alloys was altered by co-substitution of chemically similar rare earth elements. In glasses with smaller r RE, nucleation of alpha-Al occurred preferentially near the boundaries of the phase-separated regions. However, phase separation did not universally lead to alpha-Al nanocrystallization; glasses with larger rRE crystallized to metastable intermetallic phases with a 50--100 nm grain size. Kinetic analysis of the alpha-Al crystallization was performed using isothermal DSC, yielding abnormally low Avrami exponents (n = 1.0--1.5); these values were found to be consistent with the observed transformation using a model that considers the overlapping diffusion fields of the alpha-Al grains during growth within the phase separated region. Containerless solidification experiments on Ti-based quasicrystal-forming alloys have been performed using various techniques, including drop-tube solidification, electromagnetic levitation (EML) and electrostatic levitation (ESL). In Ti-Fe-Si-O, the alpha-1/1 quasicrystal approximant phase is

  20. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystal and Polytetrahedral-Phase Forming Alloys

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, Anup K.; Lee, G. W.; Hyers, Robert W.; Rathz, T. J.; Robinson, Michael B.; Rogers, Jan R.

    2003-01-01

    From extensive ground based work on the phase diagram and undercooling studies of Ti-Zr-Ni alloys, have clearly identified the composition of three different phases with progressively increasing polytetrahedral order such as, (Ti/Zr), the C14 Laves phase, and the i-phase, that nucleate directly from the undercooled liquid. The reduced undercooling decreases progressively with increasing polytetrahedral order in the solid, supporting Frank s hypothesis. A new facility for direct measurements of the structures and phase transitions in undercooled liquids (BESL) was developed and has provided direct proof of the primary nucleation of a metastable icosahedral phase in some Ti-Zr-Ni alloys. The first measurements of specific heat and viscosity in the undercooled liquid of this alloy system have been completed. Other than the importance of thermo-physical properties for modeling nucleation and growth processes in these materials, these studies have also revealed some interesting new results (such as a maximum of C(sup q, sub p) in the undercooled state). These ground-based results have clearly established the necessary background and the need for conducting benchmark nucleation experiments at the ISS on this alloy system.

  1. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-01

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed C u64.5Z r35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. By mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  2. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  3. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    PubMed

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Influence of Solvent on Liquid Phase Hydrodeoxygenation of Furfural-Acetone Condensation Adduct using Ni/Al2O3-ZrO2 Catalysts

    NASA Astrophysics Data System (ADS)

    Ulfa, S. M.; Mahfud, A.; Nabilah, S.; Rahman, M. F.

    2017-02-01

    Influence of water and acidic protic solvent on hydrodeoxygenation (HDO) of the furfural-acetone adduct (FAA) over Ni/Al2O3-ZrO2 (NiAZ) catalysts were investigated. The HDO of FAA was carried out in a batch reactor at 150°C for 8 hours. The NiAZ catalysts were home-made catalysts which were prepared by wet impregnation method with 10 and 20% nickel loading. The HDO reaction of FAA using 10NiAZ in water at 150°C gave alkane and oxygenated hydrocarbons at 31.41% with selectivity over tridecane (C13) in 6.67%. On the other hand, a reaction using acetic acid:water (1:19 v/v) in similar reaction condition gave only oxygenated compounds and hydrocracking product (C8-C10). The formation of tridecane (C13) was proposed by hydrogenation of C=O and C=C followed by decarboxylation without hydrocracking process. The presence of water facilitated decarboxylation mechanism by stabilized dehydrogenated derivatives of FAA.

  5. The effect of zinc additions on the environmental stability of Alloy 8090 (Al-Li-Cu-Mg-Zr)

    NASA Technical Reports Server (NTRS)

    Kilmer, Raymond J.; Stoner, G. E.

    1991-01-01

    Stress corrosion cracking (SCC) remains a problem in both Al-Li and conventional Al heat treatable alloys. It has recently been found that relatively small additions (less than or approximately 1 wt-percent) of Zn can dramatically improve the SCC performance of alloy 8090 (Al-Li-Cu-Mg-Zr). Constant load time to failure experiments using cylindrical tensile samples loaded between 30 and 85 percent of TYS indicate improvements of orders of magnitude over the baseline 8090 for the Zn-containing alloys under certain aging conditions. However, the toughnesses of the alloys were noticeably degraded due to the formation of second phase particles which primarily reside on grain and subgrain boundaries. EDS revealed that these intermetallic particles were Cu and Zn rich. The particles were present in the T3 condition and were not found to be the result of quench rate, though their size and distribution were. At 5 hours at 160 C, the alloys displayed the greatest susceptibility to SCC but by 20 hours at 160 C the alloys demonstrated markedly improved TTF lifetimes. Aging past this time did not provide separable TTF results, however, the alloy toughnesses continued to worsen. Initial examination of the alloys microstructures at 5 and 20 hours indicated some changes most notably the S' and delta' distributions. A possible model by which this may occur will be explored. Polarization experiments indicated a change in the trend of E(sub BR) and passive current density at peak aging as compared to the baseline 8090. Initial pitting experiments indicated that the primary pitting mechanism in chloride environments is one occurring at constituent (Al-Fe-Cu) particles and that the Cu and Zn rich boundary precipitates posses a breakaway potential similar to that of the matrix acting neither anodic or cathodic in the first set of aerated 3.5 w/o NaCl experiments. Future work will focus on the identification of the second phase particles, evaluation of K(sub 1SCC) and plateau da/dt via

  6. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  7. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  8. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    NASA Astrophysics Data System (ADS)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the

  9. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  10. A pseudopotential approach to the superconducting state properties of Cu Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Sharma, Smita; Sharma, K. S.; Khan, Haniph

    2004-03-01

    The superconducting state properties of the nine metallic glasses of Cu1-cZrc system have been investigated in the BCS-Eliashberg-McMillan framework by extending this theory to the binary metallic glasses. The values of superconducting state parameters, namely, the electron-phonon coupling strength (lgr), Coulomb pseudopotential (mgr*), transition temperature (Tc), isotope effect exponent (agr) and interaction strength (NoV) of Cu-Zr metallic glasses in the range 0.40 \\le c \\le 0.75 of Zr in Cu have been worked out using Ashcroft's potential along with the RPA form of the dielectric screening. The present results for Tc show an excellent agreement with the experimental data. The values of Tc, agr and NoV are found to decrease continuously with increase of the Cu concentration in Zr, showing that Zr rich Cu-Zr glasses are favoured materials for superconductivity.

  11. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.t

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggestsmore » that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.« less

  12. Structure and energetics of high index Fe, Al, Cu and Ni surfaces using equivalent crystal theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and surface energies of high-index faces of Fe, Al, Ni, and Cu. Changes in interplanar spacing as well as registry of planes close to the surface and the ensuing surface energies changes are discussed in reference to available experimental data and other theoretical calculations. Since ECT is a semiempirical method, the dependence of the results on the variation of the input used was investigated.

  13. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    NASA Astrophysics Data System (ADS)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  14. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  15. Skin effect suppression for Cu/CoZrNb multilayered inductor

    NASA Astrophysics Data System (ADS)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  16. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    PubMed Central

    Lei, Qian; Xiao, Zhu; Wang, Mingpu

    2017-01-01

    Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C), while the precipitation nucleation was scarce in the low-temperature zone (<250 °C) and in the high-temperature zone (>400 °C). Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C), and corresponding time-temperature-property (TTP) curves of the studied alloy have been established. PMID:28925964

  17. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.

    PubMed

    Korányi, Tamás I; Huang, Xiaoming; Coumans, Alessandro E; Hensen, Emiel J M

    2017-04-03

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu-Mg-Al oxide (CuMgAlO x ) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO 2 , Ni 2 P/SiO 2 , and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlO x . A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlO x with Ni/SiO 2 and especially Ni 2 P/SiO 2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni 2 P/SiO 2 , the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products.

  18. Critical Slowing Down in Zn-Mg-Ho Quasicrystal

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Ansaldo, Eduardo J.; Morris, Gerald D.; Brewer, Jess H.; Sato, Taku J.

    By means of longitudinal field muon-spin spectroscopy, we have found a clear critical slowing down caused by spin fluctuation of Ho moments in the icosahedral quasicrystal (QC), i-ZnMgHo, with freezing temperature (Tf =1.95 K), for which the susceptibility showed an anomaly at5K. The difference is attributed to crystalline elec-tric field (CEF) effects. The muons experience a broad, fluctuating, field distribution, of width Δ ∼6.3Taround Tf . The effect of the CEF is also apparent in zero field and weak applied transverse field measurements, with an onset around 60 K. For the Cd-based QCs (CdMgHo and CdMgGd), which exhibited two freezing temperatures in the susceptibility, the change in fluctuation rate, i.e. freezing, occurs at the lower Tf .

  19. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Bing; Zeng, Zhongming

    2017-12-01

    A high-performance selector with bidirectional threshold switching (TS) characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of <1 nA and adjustable selectivity (from 102 to 107). The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R) memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  20. Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects

    PubMed Central

    Chia, Pay Ying; Haseeb, A. S. M. A.; Mannan, Samjid Hassan

    2016-01-01

    Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs) after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu3Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni)6Sn5 and (Cu,Ni)3Sn, respectively. Details of the reaction sequence and mechanisms are discussed. PMID:28773552

  1. A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2003-01-01

    If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.

  2. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1990-01-01

    The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.

  3. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    NASA Astrophysics Data System (ADS)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  5. Effect of Annealing Processes on Cu-Zr Alloy Film for Copper Metallization

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Li, Fu-yin; Tang, Bin-han

    2017-12-01

    The effect of two different annealing processes on the microstructure and barrier-forming ability of Cu-Zr alloy films has been investigated. Cu-Zr alloy films were deposited directly onto SiO2/Si substrates via direct current magnetron sputtering and subsequently annealed by the vacuum annealing process (VAP) or rapid annealing process under argon atmosphere at temperatures 350°C, 450°C, and 550°C. Then, the microstructure, interface characteristics, and electrical properties of the samples were measured. After annealing, the samples showed a preferential (111) crystal orientation, independent of the annealing process. After two annealing methods, Zr aggregated at the Cu-Zr/SiO2 interface and no serious interdiffusion occurred between Cu and Si. The leakage current measurements revealed that the samples annealed by VAP show a higher reliability. According to the results, the vacuum annealing has better barrier performance than the rapid annealing when used for the fabrication of Cu-based interconnects.

  6. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag/Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} current-perpendicular-to-plane pseudo spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.

    2016-03-07

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) atmore » room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.« less

  7. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  8. Determination of Anand parameters for SnAgCuCe solder

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Xue, Songbai; Gao, Lili; Zeng, Guang; Sheng, Zhong; Chen, Yan; Yu, Shenglin

    2009-10-01

    A unified viscoplastic constitutive model, Anand equations, was used to represent the inelastic deformation behavior for Sn3.8Ag0.7Cu/Sn3.8Ag0.7 Cu0.03Ce solders in surface mount technology. The Anand parameters of the constitutive equations for the SnAgCu and SnAgCuCe solders were determined from separated constitutive relations and experimental results. Non-linear least-squares fitting was selected to determine the model constants. Comparisons were then made with experimental measurements of the stress-inelastic strain curves: excellent agreement was found. The model accurately predicted the overall trend of steady-state stress-strain behavior of SnAgCu and SnAgCuCe solders for the temperature ranges from -55 to 125 °C and for the strain rate range from 1% s-1 to 0.01% s-1. It is concluded that the Anand model can be applied to represent the inelastic deformation behavior of solders at high homologous temperatures and can be recommended for finite element simulation of the stress-strain response of lead-free soldered joints. Based on the Anand model, the investigations of thermo-mechanical behavior of SnAgCu and SnAgCuCe soldered joints in fine pitch quad flat package by the finite element code have been done under thermal cyclic loading, and it is found that the reliability of the SnAgCuCe soldered joints is better than that of the SnAgCu soldered joints.

  9. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  10. Corrosion behavior and oxide properties of Zr 1.1 wt%Nb 0.05 wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Choi, Byung-Kwon; Yoo, Seung Jo; Jeong, Yong Hwan

    2006-12-01

    The corrosion behavior and oxide properties of Zr-1.1 wt%Nb-0.05 wt%Cu (ZrNbCu) and Zircaloy-4 have been investigated. The corrosion rate of the ZrNbCu alloy was much lower than that of the Zirclaoy-4 in the 360 °C water and 360 °C PWR-simulating loop condition without a neutron flux and it was increased with an increase of the final annealing temperature from 470 °C to 570 °C. TEM observations revealed that the precipitates in the ZrNbCu were β-Nb and ZrNbFe-precipitate with β-Nb being more frequently observed and that the precipitates were more finely distributed in the ZrNbCu alloy. It was also observed that the oxides of the ZrNbCu and Zircaloy-4 consisted of two and seven layers, respectively, after 1000 days in the PWR-simulating loop condition and that the thickness of a fully-developed layer was higher in the ZrNbCu than in the Zircaloy-4. It was also found that the β-Nb in ZrNbCu was oxidized more slowly when compared to the Zr(Fe, Cr) 2 in Zirclaoy-4 when the precipitates in the oxide were observed by TEM. Cracks were observed in the vicinity of the oxidized Zr(Fe, Cr) 2, while no cracks were formed near β-Nb which had retained a metallic state. From the results obtained, it is suggested that the oxide formed on the ZrNbCu has a more protective nature against a corrosion when compared to that of the Zircaloy-4.

  11. Modeling degradation and failure of Ni-Cr-Al overlay coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    Degradation of a Ni-16Cr-25Al-0.06Zr overlay coating on a Ni-22Cr substrate was examined after oxidation accompanied by thermal cycling. Concentration/distance profiles were measured in the coating and substrate after various one-hour cycles at 1150 C. A numerical model was developed to simulate coating degradation by simultaneous oxidation and coating/substrate interdiffusion. The validity of the model was confirmed by comparison of predicted and measured concentration/distance profiles. The ability of the model to identify critical system parameters was demonstrated for the case of the initial Al and Cr content of the coating and substrate.

  12. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  13. [Ni(cod) 2][Al(OR F) 4], a Source for Naked Nickel(I) Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, Miriam M.; Himmel, Daniel; Kacprzak, Sylwia

    The straightforward synthesis of the cationic, purely organometallic Ni I salt [Ni(cod) 2] +[Al(OR F) 4] - was realized through a reaction between [Ni(cod) 2] and Ag[Al(OR F) 4] (cod=1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic NiI olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic NiI complexes.

  14. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  15. On the effect of stress on nucleation and growth of precipitates in an Al-Cu-Mg-Ag alloy

    NASA Astrophysics Data System (ADS)

    Skrotzki, B.; Shiflet, G. J.; Starke, E. A.

    1996-11-01

    A study has been made of the effect of an externally applied tensile stress on Ω and Θ' precipitate nucleation and growth in an Al-Cu-Mg-Ag alloy and a binary Al-Cu alloy which was used as a model system. Both solutionized and solutionized and aged conditions were studied. The mechanical properties have been measured and the microstructures have been characterized by transmission electron microscopy (TEM). The volume fraction and number density, as well as the precipitate size, have been experimentally determined. It was found that for as-solutionized samples aged under stress, precipitation occurs preferentially parallel to the stress axis. A threshold stress has to be exceeded before this effect can be observed. The critical stress for influencing the precipitate habit plane is between 120 and 140 MPa for Ω and between 16 and 19 MPa for Θ' for the aging temperature of 160 °C. The major effect of the applied stress is on the nucleation process. The results are discussed in terms of the role of the lattice misfit between the matrix and the precipitate nucleus.

  16. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.

    PubMed

    Hu, Tiezheng; Yang, Dongwang; Su, Xianli; Yan, Yonggao; You, Yonghui; Liu, Wei; Uher, Ctirad; Tang, Xinfeng

    2018-01-10

    The ZrNiSn alloy, a member of the half-Heusler family of thermoelectric materials, shows great potential for mid-to-high-temperature power generation applications due to its excellent thermoelectric properties, robust mechanical properties, and good thermal stability. The existing synthesis processes of half-Heusler alloys are, however, rather time and energy intensive. In this study, single-phase ZrNiSn bulk materials were prepared by self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering (SPS) for the first time. The analysis of thermodynamic and kinetic processes shows that the SHS reaction in the ternary ZrNiSn alloy is different from the more usual binary systems. It consists of a series of SHS reactions and mass transfers triggered by the SHS fusion of the binary Ni-Sn system that eventually culminates in the formation of single-phase ternary ZrNiSn in a very short time, which reduced the synthesis period from few days to less than an hour. Moreover, the nonequilibrium feature induces Ni interstitials in the structure, which simultaneously enhances the electrical conductivity and decreases the thermal conductivity, which is favorable for thermoelectric properties. The maximum thermoelectric figure of merit ZT of the SHS + SPS-processed ZrNiSn 1-x Sb x alloy reached 0.7 at 870 K. This study opens a new avenue for the fast and low-cost fabrication of half-Heusler thermoelectric materials.

  17. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    NASA Astrophysics Data System (ADS)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat® flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat® CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  18. The effect of Ti-B on stabilization of Cu-Zn-Al martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stipcich, M.; Romero, R.

    1998-10-05

    The application of shape memory effect in devices requires, in many cases, stable and reliable transformation temperatures. However, as a consequence of diffusional processes, in Cu-based shape memory alloys, reverse transformation temperature significantly rises after aging at temperatures above room temperature. This generally unwanted behavior is usually referred to as the stabilization of martensite. Numerous investigations have been carried out on this subject as reviewed by Ahlers and Chandrasekaran et al. Within the Cu-based alloys the Cu-Zn-Al are claimed to be more prone to stabilization than Cu-Al-Ni on aging. It has been proposed that in the Cu-Zn-Al the stabilization ismore » due to the interchange of Cu and Zn atoms assisted by vacancies, changing, consequently, the long range order inherited from the {beta} phase. In the present work, the authors investigate the stabilization behavior of polycrystalline samples of stress induced Cu-Zn-Al and Cu-Zn-Al-B martensite.« less

  19. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less

  20. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  1. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-06-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  2. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  3. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found formore » a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.« less

  4. Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Yu-Jin; Huo, Si-Jia; Zhao, Yan-Wei; Ouyang, Jia-Hu; Song, Gui-Ming; Zhou, Yu

    2018-03-01

    W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.

  5. Evaluation of Zr(Ni, Mn){sub 2} Laves phase alloys as negative active material for Ni-MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knosp, B.; Jordy, C.; Blanchard, P.

    1998-05-01

    Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge ratesmore » and 80% depth of discharge.« less

  6. Influence of Severe Plastic Deformation on the Structure and Properties of Al-Li-Cu-Mg-Zr-Sc-Zn Alloy

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2018-02-01

    The structural and phase transformations in the Al-Li-Cu-Mg-Zr-Sc-Zn alloy have been studied by the electron microscopy after the aging for the maximum strength and in the nanostructured state after severe plastic deformation by high-pressure torsion. It has been shown that severe plastic deformation leads to the formation of a nanostructured state in the alloy, the nature of which is determined by the magnitude of deformation and the degree of completeness of the dynamic recrystallization. It has been established that deformation also causes a change in the phase composition of the alloy. The influence of the structural components of the severely deformed alloy on the level of mechanical properties, such as the hardness, plasticity, elastic modulus, and stiffness has been discussed.

  7. Recent results on the neutron irradiation of ITER candidate copper alloys irradiated in DR-3 at 250{degrees}C to 0.3 dpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.J.; Singh, B.N.; Toft, P.

    1997-04-01

    Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing and bonding thermal treatment with additional specimens re-aged and given a reactor bakeout treatment at 350{degrees}C for 100 h. CuAl-25 was also heat treated to simulate the effects of a bonding thermal cycle on the material. A number of heat treated specimens were neutron irradiated at 250{degrees}C to a dose level of {approximately}0.3 dpa in the DR-3 reactor as Riso. The main effect of the bonding thermal cycle heat treatment was a slight decrease in strength of CuCrZr and CuNiBe alloys. The strengthmore » of CuAl-25, on the other hand, remained almost unaltered. The post irradiation tests at 250{degrees}C showed a severe loss of ductility in the case of the CuNiBe alloy. The irradiated CuAl-25 and CuCrZr specimens exhibited a reasonable amount of uniform elongation, with CuCrZr possessing a lower strength.« less

  8. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol

    PubMed Central

    2017-01-01

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu–Mg–Al oxide (CuMgAlOx) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO2, Ni2P/SiO2, and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlOx. A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlOx with Ni/SiO2 and especially Ni2P/SiO2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni2P/SiO2, the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products. PMID:28405528

  9. Characterization of CuCrZr and CuCrZr/SS joint strength for different blanket components manufacturing conditions

    NASA Astrophysics Data System (ADS)

    Gillia, Olivier; Briottet, Laurent; Chu, Isabelle; Lemoine, Patrick; Rigal, Emmanuel; Peacock, Alan

    2009-04-01

    This work describes studies on the strength of CuCrZr/SS joints for different manufacturing conditions foreseen for the fabrication of blanket components. In the meantime, as junction strength is expected to be strongly related to CuCrZr properties, investigation on the properties of the CuCrZr itself after the different manufacturing conditions is also presented. The initial manufacturing conditions retained were made of a HIP treatment combined with a fast cooling plus a subsequent ageing treatment. For security reasons, the HIP-quenching operation was not possible. A supplementary solutionning cycle with fast cooling has thus been inserted in the heat treatment process just after the HIP bonding treatment. The influence of solutionning temperature (1040 °C or 980 °C), the cooling rate after solutionning (70 °C/min to water quench), the ageing temperature (480 °C or 560 °C) and the HIP temperature (1040 °C or 980 °C) have been addressed. Test results show that the ageing temperature is very important for keeping high strength of material whereas elongation properties are not very sensible to the manufacturing conditions. 1040 °C HIP or solutionning temperature gives better strength properties, as well as a higher cooling rate after solutionning. Concerning samples with joints, it appears that CT test is more selective than other tests since tensile test does not give rupture at joint and KCU test eliminates a route without classifying other routes.

  10. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials

    PubMed Central

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G. Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-01-01

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0×1019 to 2.3×1021 cm−3 by changing Sb dopant content. The optimized carrier concentration nH ≈ 3–4×1020 cm−2 results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features. PMID:25363573

  11. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  12. Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique

    NASA Astrophysics Data System (ADS)

    Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan

    2017-12-01

    Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.

  13. Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr

    NASA Astrophysics Data System (ADS)

    Wei, Zi-Yang; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-06-01

    The prediction for the stability of glassy material is a key challenge in physical science. Here, we report a theoretical framework to predict the glass stability based on stochastic surface walking global optimization and reaction pathway sampling. This is demonstrated by revealing for the first time the global potential energy surface (PES) of two systems, CuZr binary metallic glass and nonglassy pure Cu systems, and establishing the lowest energy pathways linking glassy/amorphous structures with crystalline structures. The CuZr system has a significant number of glassy structures on PES that are ˜0.045 eV /atom above the crystal structure. Two clear trends are identified from global PES in the glass-to-crystal transition of the CuZr system: (i) the local Zr-Cu coordination (nearest neighbor) increases, and (ii) the local Zr bonding environment becomes homogeneous. This allows us to introduce quantitative structural and energetics conditions to distinguish the glassy structures from the crystalline structures. Because of the local Zr-Cu exchange in the glass-to-crystal transition, a high reaction barrier (>0.048 eV /atom ) is present to separate the glassy structures and the crystals in CuZr. By contrast, the Cu system, although it does possess amorphous structures that appear at much higher energy (˜0.075 eV /atom ) with respect to the crystal structure, has very low reaction barriers for the crystallization of amorphous structures, i.e. <0.011 eV /atom . The quantitative data on PES now available from global optimization techniques deepens our understanding on the microscopic nature of glassy material and might eventually facilitate the design of stable glassy materials.

  14. Microstructure, Surface Characterization, and Electrochemical Behavior of New Ti-Zr-Ta-Ag Alloy in Simulated Human Electrolyte

    NASA Astrophysics Data System (ADS)

    Vasilescu, Cora; Drob, Silviu Iulian; Osiceanu, Petre; Moreno, Jose Maria Calderon; Prodana, Mariana; Ionita, Daniela; Demetrescu, Ioana; Marcu, Maria; Popovici, Ion Alexandru; Vasilescu, Ecaterina

    2017-01-01

    A new Ti-20Zr-5Ta-2Ag alloy was elaborated and characterized regarding its microstructure, its native passive film composition and thickness, its surface wettability, its electrochemical behavior in Ringer solution of different pH values, and its ion release. The new alloy has a bi-phase, α + β, acicular, homogeneous microstructure (scanning electron microscopy (SEM)). Its native passive film (12-nm thicknesses) consists of the protective TiO2, ZrO2, and Ta2O5 oxides, Ti and Ta suboxides, and metallic Ag (X-ray photoelectron spectroscopy (XPS) data). The alloy possesses high hydrophilic properties. The main electrochemical parameters of the new alloy are superior to those of Ti as a result of the beneficial influence of Zr, Ta, and Ag alloying elements, which reinforce its native passive film. Electrochemical impedance spectroscopy (EIS) spectra in Ringer solutions for the new alloy displayed better values of impedances and phase angles, proving a more insulate passive film than that on the Ti surface. The main corrosion parameters for the new Ti-20Zr-5Ta-2Ag alloy are more favorable by about 25 to 38 times than those of Ti, confirming extremely resistant passive film. The new Ti-20Zr-5Ta-2Ag alloy releases into Ringer solution low quantities of Ti4+, Zr4+ metallic ions (inductively coupled plasma-mass spectroscopy (ICP-MS)). The Ag+ ions are released in low quantity, conferring to this alloy's low antibacterial activity. All experimental results show that the new Ti-20Zr-5Ta-2Ag alloy fulfills the requirements for biocompatibility, corrosion resistance, and antibacterial protection.

  15. Simulation of K-α Emission from Highly Charged Cu ions for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Giuliani, J. L.; Clark, R. W.; Ouart, N. D.; Jones, B.; Ampleford, D. J.

    2012-10-01

    Recent spectral data of Cu shots Z1975 and Z2122 from Sandia's ZR machine are believed to show strong K-α emissions. As these K-α lines provide good diagnostics, a detailed spectral model will be developed to investigate these line emissions for analyzing the data. In a Z pinch plasma, K-α emission can occur due to e-beams, hot electrons at the tail of a Maxwellian and also pumping from hot photons emitted near the axis. K-α emission that originates from collisional processes involving hot electrons in the final phase of the pinching plasmas are associated with radiationless electron capture, inner-shell electron collisional excitation and ionization. K-α lines from various ionization stages of various materials such as Fe, Cr, Ni, and Mn were also observed in the ZR data. Contributions from ions with strong K-α transitions will be included for this study which is a preliminary attempt to investigate Cu K-α lines due to hot electrons and photons. Photo-pumped K-α emission from an outer shell is spatially distinguishable from that produced by e-beam on axis.

  16. Effect of Pd substitution for Ni on magnetism in UNiAl

    NASA Astrophysics Data System (ADS)

    Dremov, R. V.; Andreev, A. V.; Šebek, J.; Mushnikov, N. V.; Goto, T.; Havela, L.; Sechovský, V.; Shiokawa, Y.; Homma, Y.

    1999-01-01

    Itinerant 5f-electron antiferromagnet UNiAl ( TN=19.3 K) undergoes a metamagnetic transition in fields ( Bc≈11 T) applied along the c-axis of the hexagonal ZrNiAl-type structure. The same structure is preserved in the UNi 1- xPd xAl solid solutions x⩽0.4 characterized by isotropic lattice expansion with increasing x. The gradual increase of Bc and TN due to the Pd doping can be tentatively attributed to enhancement of antiferromagnetic exchange interactions.

  17. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition.

    PubMed

    Leong, Yee Mei; Haseeb, A S M A

    2016-06-28

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1-0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu₃Al₂. Cu₃Al₂ resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu₆Sn₅ intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu₆Sn₅ IMC but has no significant effect on the thickness of Cu₃Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  18. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  19. Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3.

    PubMed

    Beneš, Vojtěch; Hložková, Kateřina; Matěnová, Michaela; Borovička, Jan; Kotrba, Pavel

    2016-04-01

    Macrofungi can accumulate in their sporocarps remarkably high concentrations of Cu and Ag. We have previously demonstrated that the non-essential Ag is in the ectomycorrhizal, Ag-hyperaccumulating Amanita strobiliformis sequestered by 3.4-kDa metallothioneins (MTs) produced as AsMT1a, 1b and 1c isoforms. Here, we describe two populations of wild-grown A. strobiliformis sporocarps, which showed certain correlation between the concentrations of accumulated Ag (284 ± 64 and 67 ± 15 mg kg(-1)) and Cu (76 ± 13 and 30 ± 12 mg kg(-1)), suggesting that an overlap may exist in the cell biology of Ag and Cu in this species. Metal speciation analysis revealed that the intracellular Cu in the sporocarps of both populations was, like Ag, associated with the 3.4-kDa MTs. A search of A. strobiliformis transcriptome for sequences encoding proteins of the Cu transporter (CTR) family identified four AsCTR cDNAs, which were, like AsMT1s, confirmed in both populations. The predicted AsCTR proteins showed homology to vacuolar (AsCTR1 and AsCTR4) and plasma membrane (AsCTR2 and AsCTR3) CTRs. Heterologous expression of AsCTR2, AsCTR3 and their translational fusions with green fluorescent protein (GFP) in Cu uptake-deficient S. cerevisiae indicated that both AsCTRs are functional Cu and Ag uptake transporters: recombinant genes complemented growth defects and increased Cu and Ag uptake rates in yeasts and the GFP-tagged protein localized to the cell periphery. Site directed mutagenesis revealed the importance of the conserved-among-CTRs M-X3-M motif for the AsCTR2- and AsCTR3-mediated transport of both Cu and Ag. These results provide the first evidence that fungal CTRs can recognize Ag for transport.

  20. Effects of Aging on the Evolution of Microstructure and Mechanical Properties of an Al - Li - Cu - Mg Alloy with Ag, Zr, Mn, and Zn Additives

    NASA Astrophysics Data System (ADS)

    Sun, Zhong-gang; Bao, Peng-li; Ma, Chao; Chen, Jie; Guo, Xuan; Li, Hua-guan; Ling, Juan

    2016-03-01

    The microstructure and the post-aging hardness of an Al - Li - Cu - Mg alloy is studied by the methods of transmission electron microscopy. Tensile tests are performed. The volume fraction and the size of the particles of the δ', S and T 1 phases are shown to be dependent on the aging temperature and time. The effect of the precipitates of the δ', S and T 1 phases on the hardening of the Al - Li - Cu - Mg alloy during aging is determined.

  1. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  2. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ming

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientationmore » evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.« less

  3. Thermal cycling reliability of Cu/SnAg double-bump flip chip assemblies for 100 μm pitch applications

    NASA Astrophysics Data System (ADS)

    Son, Ho-Young; Kim, Ilho; Lee, Soon-Bok; Jung, Gi-Jo; Park, Byung-Jin; Paik, Kyung-Wook

    2009-01-01

    A thick Cu column based double-bump flip chip structure is one of the promising alternatives for fine pitch flip chip applications. In this study, the thermal cycling (T/C) reliability of Cu/SnAg double-bump flip chip assemblies was investigated, and the failure mechanism was analyzed through the correlation of T/C test and the finite element analysis (FEA) results. After 1000 thermal cycles, T/C failures occurred at some Cu/SnAg bumps located at the edge and corner of chips. Scanning acoustic microscope analysis and scanning electron microscope observations indicated that the failure site was the Cu column/Si chip interface. It was identified by a FEA where the maximum stress concentration was located during T/C. During T/C, the Al pad between the Si chip and a Cu column bump was displaced due to thermomechanical stress. Based on the low cycle fatigue model, the accumulation of equivalent plastic strain resulted in thermal fatigue deformation of the Cu column bumps and ultimately reduced the thermal cycling lifetime. The maximum equivalent plastic strains of some bumps at the chip edge increased with an increased number of thermal cycles. However, equivalent plastic strains of the inner bumps did not increase regardless of the number of thermal cycles. In addition, the z-directional normal plastic strain ɛ22 was determined to be compressive and was a dominant component causing the plastic deformation of Cu/SnAg double bumps. As the number of thermal cycles increased, normal plastic strains in the perpendicular direction to the Si chip and shear strains were accumulated on the Cu column bumps at the chip edge at low temperature region. Thus it was found that the Al pad at the Si chip/Cu column interface underwent thermal fatigue deformation by compressive normal strain and the contact loss by displacement failure of the Al pad, the main T/C failure mode of the Cu/SnAg flip chip assembly, then occurred at the Si chip/Cu column interface shear strain deformation

  4. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This lastmore » phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)« less

  5. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    A prerequisite for the determination of pressure in static high pressure measurements, such as in diamond anvil cells is the availability of accurate equations of state for reference materials. These materials serve as luminescence gauges or as X-ray gauges and equations of state for these materials serve as secondary pressure scales. Recently, successful progress has been made in the development of consistency between static, dynamic shock-wave and ultrasonic measurements of equations of state (e.g. Dewaele et al. Phys. Rev. B70, 094112, 2004, Dorogokupets and Oganov, Doklady Earth Sciences, 410, 1091-1095, 2006, Holzapfel, High Pressure Research 30, 372-394, 2010) allowing testing models to arrive at consistent thermodynamic descriptions for X-ray gauges. Apart from applications of metallic elements in high-pressure work, thermodynamic properties of metallic elements are also of mandatory interest in the field of metallurgy for studying phase equilibria of alloys, kinetics of phase transformation and diffusion related problems, requiring accurate thermodynamic properties in the low pressure regime. Our aim is to develop a thermodynamic data base for metallic alloy systems containing Ag, Al, Au, Cu, Fe, Ni, Pt, from which volume properties in P-T space can be predicted when it is coupled to vibrational models. This mandates the description of metallic elements as a first step aiming not only at consistency in the pressure scales for the elements, but also at accurate representations of thermodynamic properties in the low pressure regime commonly addressed in metallurgical applications. In previous works (e.g. Jacobs and de Jong, Geochim. Cosmochim. Acta, 71, 3630-3655, 2007, Jacobs and van den Berg, Phys. Earth Planet. Inter., 186, 36-48, 2011) it was demonstrated that a lattice vibrational framework based on Kieffer's model for the vibrational density of states, is suitable to construct a thermodynamic database for Earth mantle materials. Such a database aims at

  6. Growth of Ni-Al alloys on Ni(1 1 1), from Al deposits of various thicknesses: (II) Formation of NiAl over a Ni 3Al interfacial layer

    NASA Astrophysics Data System (ADS)

    Le Pévédic, S.; Schmaus, D.; Cohen, C.

    2007-01-01

    This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni 3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 10 15 Al/cm 2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 10 15 Al/cm 2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni 3Al "interfacial" layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni 3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L1 2 Ni 3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni 3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the

  7. Insight into CH4 dissociation on NiCu catalyst: A first-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyan; Zhang, Riguang; Yan, Ruixia; Li, Jingrui; Wang, Baojun; Xie, Kechang

    2012-08-01

    A density-functional theory method has been conducted to investigate the dissociation of CH4 on NiCu (1 1 1) surface. Two models: uniform surface slab model (Model A) and Cu-rich surface slab model (Model B) have been constructed to represent the NiCu (1 1 1) surface, in which the ratio of Ni/Cu is unit. The obtained results on the two models have been compared with those obtained on pure Ni (1 1 1) and Cu (1 1 1). It is found that the adsorption of CHx(x = 1-3) on Model B are weaker than on Model A. The rate-determining steps of CH4 dissociation on Model A and B both are the dissociation of CH, and the corresponding activation barriers are 1.37 and 1.63 eV, respectively. Obviously, it is approximately equal on Model A to that on pure Ni (1 1 1) [H. Liu, R. Zhang, R. Yan, B. Wang, K. Xie, Applied Surface Science 257 (2011) 8955], while it is lower by 0.58 eV on Model B compared to that on pure Cu (1 1 1). Therefore, the Cu-rich surface has better carbon-resistance ability than the uniform one. Those results well explain the experimental facts that NiCu/SiO2 has excellent catalytic performance and long-term stability [H.-W. Chen, C.-Y. Wang, C.-H. Yu, L.-T. Tseng, P.-H. Liao, Catalysis Today 97 (2004) 173], however, there is serious carbon deposition on NiCu/MgO-Al2O3 in CO2 reforming of methane [J. Zhang, H. Wang, A. K. Dalai, Journal of Catalysis 249 (2007) 300].

  8. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.

    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. Themore » activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.« less

  9. Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, W.; Tsukada, K.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.; Arai, K.; Yamasaki, H.

    2010-02-01

    We have studied environment-resistive coatings (ERC) for the thin-film-based superconducting fault-current limiter (SFCL) Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3. We evaluated nine candidate ERC materials by two accelerating-environment tests, and revealed that the shellac- and the fluorine-resin have a high environmental resistance. Especially, the shellac resin almost completely protected Jc of an element exposed to 60 °C saturated water vapor for 2 h (3.4->3.2 MA/cm 2). We also performed a practical operation test of SFCL using an element half covered by shellac, and found that the ERC does not diminish the current limiting properties similarly to the previous results of the Teflon-coated SFCL [1].

  10. Effect of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kao, Szu-Tsung; Duh, Jenq-Gong

    2004-12-01

    The mechanical alloying (MA) process is considered an alternative approach to produce solder materials. In this study, the effect of Cu concentration in the ternary Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by MA was investigated. The (Cu,Sn) solid solution was precipitated as the Cu6Sn5 intermetallic compound (IMC), which was distributed nonuniformly through the microstructure. The Cu6Sn5 IMC, which was present in the SnAgCu solder with high Cu composition, causes the as-milled MA particle to fracture to a smaller size. Appreciable distinction on morphology of as-milled MA powders with different Cu content was revealed. When the Cu concentration was low (x=0.2), MA particle aggregated to a spherical ingot with large particle size. For higher Cu concentration (x=0.7 and x=1), the MA particle turned to flakes with smaller particle size. The distinction of the milling mechanism of Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by the MA process was discussed. An effective approach was developed to reduce the particle size of the SnAgCu solder from 1 mm down to 10-100 µm by doping the Cu6Sn5 nanoparticle during the MA process. In addition, the differential scanning calorimetry (DSC) results also ensure the compatibility to apply the solder material for the reflow process.

  11. Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass

    DOE PAGES

    Liontas, Rachel; Jafary-Zadeh, Mehdi; Zeng, Qiaoshi; ...

    2016-08-04

    We investigate the mechanical behavior and atomic-level structure of glassy Zr-Ni-Al nano-tensile specimens with widths between 75 and 215 nm. We focus our studies on two different energy states: (1) as-sputtered and (2) sputtered then annealed below the glass transition temperature (T g). In-situ tensile experiments conducted inside a scanning electron microscope (SEM) reveal substantial tensile ductility in some cases reaching >10% engineering plastic strains, >150% true plastic strains, and necking down to a point during tensile straining in specimens as wide as ~150 nm. We found the extent of ductility depends on both the specimen size and the annealingmore » conditions. Using molecular dynamics (MD) simulations, transmission electron microscopy (TEM), and synchrotron x-ray diffraction (XRD), we explain the observed mechanical behavior through changes in free volume as well as short- and medium-range atomic-level order that occur upon annealing. This work demonstrates the importance of carefully choosing the metallic glass fabrication method and post-processing conditions for achieving a certain atomic-level structure and free volume within the metallic glass, which then determine the overall mechanical response. Lastly, an important implication is that sputter deposition may be a particularly promising technique for producing thin coatings of metallic glasses with significant ductility, due to the high level of disorder and excess free volume resulting from the sputtering process and to the suitability of sputtering for producing thin coatings that may exhibit enhanced size-induced ductility.« less

  12. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Ahmad, Zubair; Haq, A. ul; Akhtar, Saleem

    2017-11-01

    Alnico-8 permanent magnets were produced through casting and subsequent thermal treatment process. Magnetic alloy of nominal composition 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti were prepared by arc melting and casting technique. The Zr was added to 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti alloy ranging from 0.3 to 0.9 wt%. The magnets were developed by employing two different heat treatment cycles known as conventional treatment and thermo-magnetic annealing treatment. The samples were characterized by X-ray diffraction method, Scanning electron microscope and magnetometer by plotting magnetic hysteresis demagnetization curves. The results indicate that magnetic properties are strongly depended upon alloy chemistry and process. The 0.6 wt% Zr added alloys yielded the best magnetic properties among the studied alloys. The magnetic properties obtained through conventional heat treatment are Hc = 1.35 kOe, Br = 5.2 kG and (BH)max = 2 MGOe. These magnetic properties were enhanced to Hc = 1.64 kOe, Br = 6.3 kG and (BH)max = 3.7 MGOe by thermo-magnetic annealing treatment.

  13. Nonoscillatory behavior in the magnetoresistance of Cu/Ni superlattice (abstract)

    NASA Astrophysics Data System (ADS)

    Abdul-Razzaq, W.

    1994-05-01

    It was reported that in many magnetic/nonmagnetic metallic multilayered systems, the interlayer-coupling oscillates between antiferromagnetic and ferromagnetic upon increasing the thickness of the nonmagnetic layer. This was evident by the oscillation of the magnetoresistance (MR) in these materials. Recently however, Harp, Parkin et al.1 found that the MR and coupling strength change monotonically with increasing Cu thickness in Co/Cu multilayers deposited by MBE, contradicting results on similar samples made by sputtering in which the MR was oscillatory. In this study, we show that in the Cu/Ni superlattice made by sputtering, the MR varies monotonically with increasing Cu thickness. This nonoscillatory behavior was observed at room temperature and at 77 K and, regardless of the direction of the magnetic field in relation to the direction of the current. The resistivity at zero magnetic field as a function of temperature also changes systematically with reducing the Cu layer thickness. The nature of the magnetic state in Cu/Ni superlattice is discussed in light of the transport property measurements.

  14. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  15. Electron affinities and ionization energies of Cu and Ag delafossite compounds: A hybrid functional study

    NASA Astrophysics Data System (ADS)

    Miao, Mao-Sheng; Yarbro, Sam; Barton, Phillip T.; Seshadri, Ram

    2014-01-01

    Using density functional theory with a hybrid functional, we calculate the ionization energies and electron affinities of a series of delafossite compounds (AMO2: A =Cu, Ag; M =B, Al, Ga, In, Sc). The alignments of the valence band maximum and the conduction band minimum, which directly relate to the ionization energies and electron affinities, were obtained by calculations of supercell slab models constructed in a nonpolar orientation. Our calculations reveal that the ionization energy decreases with an increasing atomic number of group-III elements, and thus suggest an improved p-type doping propensity for heavier compounds. For keeping both a low ionization energy and a band gap of sufficient size, CuScO2 is superior to the Cu-based group-III delafossites. By analyzing the electronic structures, we demonstrate that the compositional trend of the ionization energies and electron affinities is the result of a combined effect of d-band broadening due to Cu(Ag)-Cu(Ag) coupling and a repositioning of the d-band center.

  16. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  17. Bulk Al-Al3Zr composite prepared by mechanical alloying and hot extrusion for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Pourkhorshid, E.; Enayati, M. H.; Sabooni, S.; Karimzadeh, F.; Paydar, M. H.

    2017-08-01

    Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600°C for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550°C. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600°C for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300°C is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.

  18. Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space.

    PubMed

    Lin, Chaney; Hollister, Lincoln S; MacPherson, Glenn J; Bindi, Luca; Ma, Chi; Andronicos, Christopher L; Steinhardt, Paul J

    2017-05-09

    We report on a fragment of the quasicrystal-bearing CV3 carbonaceous chondrite Khatyrka recovered from fine-grained, clay-rich sediments in the Koryak Mountains, Chukotka (Russia). We show higher melting-point silicate glass cross-cutting lower melting-point Al-Cu-Fe alloys, as well as unambiguous evidence of a reduction-oxidation reaction history between Al-Cu-Fe alloys and silicate melt. The redox reactions involve reduction of FeO and SiO 2 to Fe and Fe-Si metal, and oxidation of metallic Al to Al 2 O 3 , occurring where silicate melt was in contact with Al-Cu-Fe alloys. In the reaction zone, there are metallic Fe and Fe-Si beads, aluminous spinel rinds on the Al-Cu-Fe alloys, and Al 2 O 3 enrichment in the silicate melt surrounding the alloys. From this and other evidence, we demonstrate that Khatyrka must have experienced at least two distinct events: first, an event as early as 4.564 Ga in which the first Al-Cu-Fe alloys formed; and, second, a more recent impact-induced shock in space that led to transformations of and reactions between the alloys and the meteorite matrix. The new evidence firmly establishes that the Al-Cu-Fe alloys (including quasicrystals) formed in outer space in a complex, multi-stage process.

  19. Fabrication of nanocrystalline surface composite layer on Cu plate under ball collisions.

    PubMed

    Romankov, S; Park, Y C; Yoon, J M

    2014-10-01

    It was demonstrated that the severe plastic deformation of a surface induced by repeated ball collisions can be effectively used for fabrication of the nanocrystalline surface composite layers. The Cu disk was fixed at the top of a vibration chamber and ball treated. Al, Zr, Ni, Co and Fe were introduced into a Cu plate as contaminants from the grinding media one after the other by 15-min ball treatment. The composite structure was formed as a result of mechanical intermixing of the components. The particle size in as-fabricated layer ranged from 2 nm to 20 nm, with average values of about 7 nm. As-fabricated layer contained non-equilibrium multicomponent solid solution based on FCC Cu crystal structure, Zr-based phase, nanosized steel debris and amorphous phase. The hardness of the as-fabricated composite was almost ten times that of the initial Cu plate.

  20. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.

    PubMed

    Zhang, W B; Liu, J; Lu, S H; Zhang, H; Wang, H; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-08-04

    The size effect on atomic structure of a Cu 64 Zr 36 amorphous system, including zero-dimensional small-size amorphous particles (SSAPs) and two-dimensional small-size amorphous films (SSAFs) together with bulk sample was investigated by molecular dynamics simulations. We revealed that sample size strongly affects local atomic structure in both Cu 64 Zr 36 SSAPs and SSAFs, which are composed of core and shell (surface) components. Compared with core component, the shell component of SSAPs has lower average coordination number and average bond length, higher degree of ordering, and lower packing density due to the segregation of Cu atoms on the shell of Cu 64 Zr 36 SSAPs. These atomic structure differences in SSAPs with various sizes result in different glass transition temperatures, in which the glass transition temperature for the shell component is found to be 577 K, which is much lower than 910 K for the core component. We further extended the size effect on the structure and glasses transition temperature to Cu 64 Zr 36 SSAFs, and revealed that the T g decreases when SSAFs becomes thinner due to the following factors: different dynamic motion (mean square displacement), different density of core and surface and Cu segregation on the surface of SSAFs. The obtained results here are different from the results for the size effect on atomic structure of nanometer-sized crystalline metallic alloys.

  1. Fabrication of CuAl1-xMxO2 (M = Fe, Cr)/Ni film delafossite compounds using spin coating and their microstructure and dielectric constant

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Yuwita, Pelangi Eka; Olenka, Desyana; Nasikhudin

    2014-09-01

    The discovery of delafossite compound has encouraged more rapid technological developments particularly in transparent electronic devices. Copper oxide-based transparent thin films delafossite semiconductor recently give much attention in the field of optoelectronic technology, after the discovery of p-type CuAlO2. The potential applications of a p-type semiconductor transparent conductive oxides (TCO) have been applied in broad field of optoelectronics. To explore a broad physical properties interms of magnetic conducting subtitution is understudied. In this work we report the fabrication of delafossite film on Ni substrate and their characterization of CuAl1-xMxO2 delafossite compounds doped with Cr3+ and Fe3+ from the raw material of Cu(NO3)2˙3H2O, Al(NO3)3˙9H2O, Fe(NO3)3˙9H2O and Cr(NO3)3˙9H2O. The films were prepared using spin coating through a sol-gel technique at various concentrations of x = 0, 0.03, 0.04, and 0.05 for chromium and x = 0, 0.02, 0.04, 0.06, and 0.08 for iron doped. Crystal and microstructure were characterized by means of Cu-Kα Bragg-Brentano X-RD followed by High Score Plus and SEM-EDAX. The dielectric constants of the films were characterized using LCR meter. It was found that the CuAl1-xMxO2/Ni delafossite films were successfully fabricated. The CuAl1-xFexO2 compound crystallized with lattice parameters of a = b ranged from 2.8603 Å to 2.8675 Å and c ranged from 16.9576 to 17.0763 Å. The increase of the dopant give rise to the increase of the lattice parameters. Since iron has bigger ionic radius (69 pm) than original site of Al3+ with radius of 53 pm the crystal volume lattice also increase. Further analyses of increasing volume of the crystal, as expected, affected to the decreasing of its dielectric constant. The similar trends also shown by Cr3+ doped of CuAl1-xCrxO2 films with smaller effects.

  2. Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation

    NASA Astrophysics Data System (ADS)

    Villa-Sanchéz, G.; Mendoza-Anaya, D.; Gutiérrez-Wing, C.; Pérez-Hernández, R.; González-Martínez, P. R.; Ángeles-Chavez, C.

    2007-07-01

    The goal of this work was to analyse ZrO2 in the pure state and when doped with Ag nanoparticles, by electron microscopy, x-ray diffraction and thermoluminescence methods. According to the results obtained, Ag nanoparticles did not modify the morphology or the crystalline structure of the ZrO2. The thermoluminescent (TL) response of pure ZrO2 showed two peaks, one at 334 K and the other at 417 K, when it was exposed to ultraviolet (UV) radiation, and at 342 and 397 K when gamma radiation was used. For ZrO2 impregnated with Ag nanoparticles a diminished TL intensity due to nanoparticle shielding was observed, but the glow curve shape was similar. However, when Ag nanoparticles were added during the ZrO2 synthesis, a shift of the TL peaks towards higher temperature values with reference to pure ZrO2 was observed. A linear dependence of the integrated TL signal as a function of the irradiation dose was observed in all analysed samples. It was possible to determine some kinetic parameters, such as activation energy, kinetic order and frequency factor, using the sequential quadratic programming glow curve deconvolution; it was found that these values are highly dependent on the type of radiation used. Ag nanoparticles present in ZrO2 also modified the kinetic parameters, mainly when they were added during the synthesis of ZrO2. Our results reinforce the possibilities of using pure and doped ZrO2 as an appropriate dosimetric material in radiation physics.

  3. Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica

    Here, the mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe 3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni 0.01ZrTe 3 to Ni 0.05ZrTe 3. In the highest doped samples, bulk superconductivity with T c < T CDW is observed, with a reduced T CDW compared with pure ZrTe 3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalationmore » indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of T CDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in Ni xZrTe 3.« less

  4. Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation

    DOE PAGES

    Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica; ...

    2018-04-03

    Here, the mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe 3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni 0.01ZrTe 3 to Ni 0.05ZrTe 3. In the highest doped samples, bulk superconductivity with T c < T CDW is observed, with a reduced T CDW compared with pure ZrTe 3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalationmore » indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of T CDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in Ni xZrTe 3.« less

  5. Deformation behavior of a Ni-30Al-20Fe-0.05Zr intermetallic alloy in the temperature range 300 to 1300 K

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Noebe, R. D.

    1992-01-01

    The deformation properties of an extruded Ni-30Al-20Fe-0.05Zr (at. pct) alloy in the temperature range 300-1300 K were investigated under initial tensile strain rates that varied between 10 exp -6 and 10 exp -3/sec and in constant load compression creep between 1073 and 1300 K. Three deformation regimes were observed: region I, occurring between 400 and 673 K, which consisted of an athermal regime of less than 0.3 percent tensile ductility; region II, between 673 and 1073, where exponential creep was dominant; and region III, between 1073 and 1300 K, where a significant improvement in tensile ductility was observed.

  6. Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation

    NASA Astrophysics Data System (ADS)

    Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica; Nowell, Hariott; Barnett, Sarah A.; Lei, Hechang; Zhu, Xiangde; Petrovic, Cedomir; Scanlon, David O.; Hoesch, Moritz

    2018-04-01

    The mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni0.01ZrTe3 to Ni0.05ZrTe3 . In the highest doped samples, bulk superconductivity with TcZrTe3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalation indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of TCDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in NixZrTe3 .

  7. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  8. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles

    NASA Astrophysics Data System (ADS)

    Tchaplyguine, M.; Andersson, T.; Zhang, Ch.; Björneholm, O.

    2013-03-01

    Core-shell segregation of copper and silver in self-assembled, free nanoparticles is established by means of photoelectron spectroscopy in a wide range of relative Cu-Ag concentrations. These conclusions are based on the analysis of the photon-energy-dependent changes of the Cu 3d and Ag 4d photoelectron spectra. The nanoparticles are formed from mixed Cu-Ag atomic vapor created by magnetron sputtering of a bimetallic sample in a gas-aggregation cluster source. Even at similar Cu and Ag fractions in the primary vapor the surface of the nanoparticles is dominated by silver. Only at low Ag concentration copper appears on the surface of nanoparticles. For the latter case, a threefold decrease in the Ag 4d spin-orbit splitting has been detected. The specific component distribution and electronic structure changes are discussed in connection with the earlier results on Cu-Ag macroscopic and surface alloys.

  9. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Tao, Yang; Huo, Quan

    2015-01-01

    To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30) x ( x = 0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50- y Cu y Mn0.30Al0.30)0.70 ( y = 0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase; in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Thermodynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with increasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ameliorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.

  10. Tunable synthesis of hierarchical NiCo2O4 nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Kuang, Min; Zhang, Yu Xin; Li, Tong Tao; Li, Kai Feng; Zhang, Sheng Mao; Li, Gang; Zhang, Wei

    2015-06-01

    We demonstrate a facile and tunable preparative strategy of porous NiCo2O4 nanosheets-decorated Cu-based nanowires hybrids as high-performance supercapacitor electrodes. A fast faradic reaction has been realized by inducing elementary copper core in the composite, which assists in high electric conductivity of the cell and creates intimate channels for fast charge collection and electron transfer. As a result, this hybrid composite electrode displays high specific capacitance (578 F g-1 at current density of 1.0 A g-1) and rate capability (80.1% capacitance retention from 1 A g-1 to 10 A g-1). Additionally, asymmetric device is constructed from NiCo2O4/Cu-based NWs and activated graphene (AG) with an operation potential from 0 to 1.4 V. The asymmetric device exhibits an energy density of 12.6 Wh kg-1 at a power density of 344 W kg-1 and excellent long-term cycling stability (only 1.8% loss of its initial capacitance after 10,000 cycles). These attractive findings suggest that such unique NiCo2O4/Cu-based NWs hybrid architecture is promising for electrochemical applications as efficient electrode material.

  11. Specific Volumes of the Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) Alloy in the Liquid, Glass, and Crystalline States

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Chung, S. K.; Rhim, W. K.; Johnson, W. L.; Peker, A.; Scruggs, D.

    1997-01-01

    The specific volumes of the Zr(41.2)Ti(3.8)Cu(2.5)Ni(10.0)Be(22.5) alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V(sub l), glass, V(sub g) and crystalline V(sub c), states in the temperature ranges shown in parentheses are V(sub l)(T) = 0.1583 + 8.877 x 10(exp -6) T(cu cm/g) (700-1300 K);V(sub g)(T) = 0.1603 + 5.528 x 10(exp -6) T (400-550 K);V(sub c)(T) = 0.1583 + 6.21 x 10(exp -6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39. and 3.83 x 10(exp -5) (1/K) for the liquid, glass, and crystalline states, respectively.

  12. Fracture Behavior of Zr-BASED Bulk Metallic Glass Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Kim, Ki-Hyun; Oh, Sang-Yeob

    The fracture behavior of a Zr-based bulk amorphous metal under impact loading using subsize V-shaped Charpy specimens was investigated. Influences of loading rate on the fracture behavior of amorphous Zr-Al-Ni-Cu alloy were examined. As a result, the maximum load and absorbed fracture energy under impact loading were lower than those under quasi-static loading. A large part of the absorbed fracture energy in the Zr-based BMG was consumed in the process for crack initiation and not for crack propagation. In addition, fractographic characteristics of BMGs, especially the initiation and development of shear bands at the notch tip were investigated. Fractured surfaces under impact loading are smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the appearance of the shear bands developed. It can be found that the fracture energy and fracture toughness of Zr-based BMG are closely related with the extent of shear bands developed during fracture.

  13. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  14. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only controlmore » samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and η = 13.0%.« less

  15. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0Ni and Zn-doped samples show a small amount of spurious phases for concentrations above x=0.05. Based on these results, a defect disorder study for using atomistic computational simulations which is based on the lattice energy minimization technique is employed to predict the location of the dopant ions in the structure. In agreement with XRD data, our computational results indicate that the trivalent (Al and Fe ions) are more favorable to be incorporated into CuO matrix than the divalent (Ni and Zn ions).

  16. Physical Characterization of Cu-Ni-P Thin Films aiming at Cu/Cu-Ni-P Thermocouples

    NASA Astrophysics Data System (ADS)

    Tomachevski, F.; Sparvoli, M.; dos Santos Filho, S. G.

    2015-03-01

    Cu-Ni-P thin films have a high-thermoelectric power, which allows the fabrication of very sensitive heat-flux sensors based on planar technology. In this work, (100) silicon surfaces were pre-activated in a diluted hydrofluoric acid solution containing PdCl2. Following, Cu-Ni-P thin films were chemically deposited using an alkaline chemical bath containing 15 g/l NiSO4.6H2O; 0.2 g/l CuSO4.5H2O; 15 g/l Na2HPO2.H2O and 60 g/l Na3C6H5O7.2H2O at temperature of 80 °C where NH4OH was added until pH was 8.0. It was noteworthy that the stoichiometric percentages of Ni and Cu vary substantially for immersion times in the range of 1 to 3 min and they become almost stable at 50% and 35%, respectively, when the immersion time is higher than 3 min. In addition, the percentage of P remains almost constant around 1718 % for all the immersion times studied. On the other hand, the sheet resistance also varies substantially for immersion times in the range of 1 to 3 min. Based on the surface morphology, smaller grains with size in the range of 0.02 to 0.1 μm are initially grown on the silicon surface and exposed regions of silicon without deposits are also observed for immersion times in the range of 1 to 3min. Therefore, the discontinuities and non uniformities of the films are promoting, respectively, the observed behaviours of sheet resistance and stoichiometry.

  17. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    PubMed

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  19. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  20. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.