Science.gov

Sample records for icp atomic emission

  1. Spectroscopic characteristics of spiral flow ICP for axially viewing ICP optical emission spectrometry.

    PubMed

    Ohata, Masaki; Kurosawa, Satoru; Shinoduka, Isao; Takaku, Yuichi; Kishi, Yoko

    2015-01-01

    Spectroscopic characteristics of a spiral flow inductively coupled plasma (ICP), which could be sustained stably at 9 L min(-1) of Ar plasma gas flow rate with 1.5 kW RF forward power, were studied for axially viewing ICPOES. The emission intensity profile, excitation temperature and plasma robustness were evaluated, and were similar to those of the standard ICP. The background and emission intensities of elements as well as the excitation behavior for both atom and ion lines were also examined and compared to those of the standard ICP. Since the spectroscopic characteristics of the spiral flow ICP were similar to those of the standard ICP, it could be used as a new low gas flow ICP in axially viewing ICPOES.

  2. The use of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) in the determination of lithium in cleaning validation swabs.

    PubMed

    Lewen, Nancy; Nugent, Dennis

    2010-09-05

    The pharmaceutical industry is required to perform cleaning validation studies to verify that equipment used in the manufacture of pharmaceuticals is adequately cleaned from one product or process to the next. Typically, these cleaning validation studies require an analytical method that uses some form of chromatographic technique. In the case of products that may have an inorganic constituent, however, if can often be easier to verify the cleanliness of equipment by using a non-chromatographic technique. A method is described to certify the cleanliness of processing equipment by determining lithium in cleaning validation swabs using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  3. Development and Characterization of a 9-mm Inductively Coupled Argon Plasma (ICP) Source for Atomic Emission Spectrometry.

    DTIC Science & Technology

    1980-09-30

    plus inter- fereni (S.,0:l ol; raio Pal :Ca). Rcati\\,e :;talcs X , 10" V. I0(’ V - ,. ’::ire tO. lffect of P0,, on Ca 11 (393.4 tin) emission profiles...mL- I of Ca while 10 curve B is from tile same solution but with phosphate added at a molar ratio of 50 to 1 (P0 4 : Ca). Profile X was obtained at...emission profiles with changing rf power levels klramne X , 500 W; Y, 750 W). Curve A represcnts amalytc (50 jig mLŕ Ca) signal and curve B awi ]ytc

  4. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    PubMed

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  5. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    SciTech Connect

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

  6. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  7. Atomic emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  8. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  9. Determination of trace elements in coal and coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry.

    PubMed

    Iwashita, Akira; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira; Fujita, Yoshio; Yamashita, Toru

    2007-01-15

    Microwave-acid digestion (MW-AD) followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES), graphite furnace atomic absorption spectrometry (GFAAS), and hydride generation atomic absorption spectrometry (HGAAS) were examined for the determination of various elements in coal and coal fly ash (CFA). Eight certified reference materials (four coal samples and four CFA samples) were tested. The 10 elements (As, Be, Cd, Co, Cr, Mn, Ni, Pb, Sb, and Se), which are described in the Clean Air Act Amendments (CAAA), were especially considered. For coal, the HF-free MW-AD followed by ICP-AES was successful in the determination of various elements except for As, Be, Cd, Sb, and Se. These elements (except for Sb) were well-determined by use of GFAAS (Be and Cd) and HGAAS (As and Se). For CFA, the addition of HF in the digestion acid mixture was needed for the determination of elements, except for As, Sb, and Se, for which the HF-free MW-AD was applicable. The use of GFAAS (Be and Cd) or HGAAS (Sb and Se) resulted in the successful determination of the elements for which ICP-AES did not work well. The protocol for the determination of the 10 elements in coal and CFA by MW-AD followed by the joint-use of ICP-AES, GFAAS, and HGAAS was established.

  10. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  11. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  12. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  13. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  14. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples.

  15. Study on Mass Discrimination Effect of Resonance Ionization Mass Spectrometry Using an Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    SciTech Connect

    Higuchi, Y.; Watanabe, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have proposed a novel concept of Resonance Ionization Mass Spectrometry using an Inductively Coupled Plasma as an Atomic Source (ICP-RIMS). Isotope ratio analysis using ICP-RIMS is expected to be a convenient and precise technique with high throughput. However, the mass discrimination effect caused from difference in kinetic energy of neutral atoms in ICP-RIMS is crucial for precise isotope analysis. We, therefore, investigated the atom kinetic energy distribution introduced into the laser ionization region. The mass-dependent kinetic energy was confirmed in the initial kinetic energy distributions. We preliminary estimated a mass discrimination effect caused by mass-dependent kinetic energy in ICP-RIMS for various detector sizes. We proposed that this effect can be suppressed by selecting the appropriate detector size and adopting the scanning mode of the deflecting voltage.

  16. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  17. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.

    1997-04-01

    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  18. Quantification of 60Fe atoms by MC-ICP-MS for the redetermination of the half-life.

    PubMed

    Kivel, Niko; Schumann, Dorothea; Günther-Leopold, Ines

    2013-03-01

    In many scientific fields, the half-life of radionuclides plays an important role. The accurate knowledge of this parameter has direct impact on, e.g., age determination of archeological artifacts and of the elemental synthesis in the universe. In order to derive the half-life of a long-lived radionuclide, the activity and the absolute number of atoms have to be analyzed. Whereas conventional radiation measurement methods are typically applied for activity determinations, the latter can be determined with high accuracy by mass spectrometric techniques. Over the past years, the half-lives of several radionuclides have been specified by means of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) complementary to the earlier reported values mainly derived by accelerator mass spectrometry. The present paper discusses all critical aspects (amount of material, radiochemical sample preparation, interference correction, isotope dilution mass spectrometry, calculation of measurement uncertainty) for a precise analysis of the number of atoms by MC-ICP-MS exemplified for the recently published half-life determination of 60Fe (Rugel et al, Phys Rev Lett 103:072502, 2009).

  19. Comparative determination of Ba, Cu, Fe, Pb and Zn in tea leaves by slurry sampling electrothermal atomic absorption and liquid sampling inductively coupled plasma atomic emission spectrometry.

    PubMed

    Mierzwa, J; Sun, Y C; Chung, Y T; Yang, M H

    1998-12-01

    The comparative determination of barium, copper, iron, lead and zinc in tea leaf samples by two atomic spectrometric techniques is reported. At first, slurry sampling electrothermal atomization atomic absorption spectrometry (ETAAS) was applied. The results of Ba and Pb determination were calculated using the method of standard additions, and results of Cu, Fe and Zn from the calibration graphs based on aqueous standards. These results were compared with the results obtained after microwave-assisted wet (nitric+hydrochloric+hydrofluoric acids) digestion in closed vessels followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination with the calibration by means of aqueous standards. The exception was lead determined after a wet digestion procedure by ETAAS. The accuracy of the studied methods was checked by the use of the certified reference material Tea GBW-07605. The recoveries of the analytes varied in the range from 91 to 99% for slurry sampling ETAAS, and from 92.5 to 102% for liquid sampling ICP-AES. The advantages of slurry sampling ETAAS method are simplicity of sample preparation and very good sensitivity. Slurry sampling ETAAS method is relatively fast but if several elements must be determined in one sample, the time of the whole microwave-assisted digestion procedure and ICP-AES determination will be shorter. However, worse detection limits of ICP-AES must also be taken into the consideration in a case of some analytes.

  20. [Determination of trace elements in shark cartilage by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Deng, B; Zhang, Z

    1998-10-01

    Semiquantitative estimation of all elements in shark cartilage was investigated by inductively coupled plasma mass spectrometry (ICP-MS). The determination of trace elements, namely Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr in shark cartilage, was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES). The matrix effects were overcome by using yttrium as an internal standard element. The recoveries are in the range of 81.6 to 100.7%. The determination limits of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr are 0.60, 0.55, 0.21, 0.39, 0.042, 0.27, 0.038 and 0.48 microg x g(-1), respectively. The results showed that the shark cartilage contains higher amount of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr than those in other fishes and in other animal bones.

  1. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  2. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry.

    PubMed

    López-Artíguez, M; Cameán, A; Repetto, M

    1993-01-01

    This paper describes a method for the determination of heavy metals (Co, Ni, Cu, Cd, Pb) in urine by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method proposed requires purification of the samples with activated charcoal under acidic conditions before preconcentration by complexation with ammonium pyrrolidinedithiocarbamate (APDC). The formed complexes are extracted with methyl isobutyl ketone (MIBK) and the resulting residue is finally digested under acid oxidant conditions. Because of its low detection limit (below 10 micrograms/L), this procedure can be applied conveniently for toxicological diagnostic purposes.

  3. [Determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Liu, Dong-yan; Zhang, Yuan-li

    2002-02-01

    A direct method was reported for the determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution conditions of coal samples as well as interference conditions of hydrochloric acid and matrix were studied. The recommended method not only proved to be simple and rapid than traditional gravimetric method but show satisfying precision and accuracy as well. The results of samples are as same as gravimetry. The recoveries are more than 96%, and the relative standard deviation of six samples are less than 3%.

  4. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  5. Depth profiles and bulk analysis of semiconductor materials using ICP mass spectroscopy with electrothermal atomization

    NASA Astrophysics Data System (ADS)

    Faulkner, William; Henderson, William; Rogers, Michael

    1988-10-01

    The purpose of the contract was to build the equipment necessary to show technical feasibility of a Demand Modulated Electrothermal Atomization System. This system was thought to have advantages over current technology as follows: (1) Prevents excessive analyte concentrations in the plasma giving the analyst control over matrix suppression effects. (2) Allows the analyst to control atomization rates and avoid buildup of deposits in the throat of the sample cone opening. (3) Allows the analyst to work in the optimum counting range for isotropic ratio work regardless of concentration variations. (4) Allows the data to be taken over the temperature dimension, thus resolving isobaric interferences as well as improving the signal to noise ratio resulting in improved detection limits across the entire mass range.

  6. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1990--December 31, 1992

    SciTech Connect

    Montaser, A.

    1992-09-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  7. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  8. [Modern spectral estimation of ICP-AES].

    PubMed

    Zhang, Z; Jia, Q; Liu, S; Guo, L; Chen, H; Zeng, X

    2000-06-01

    The inductively coupled plasma atomic emission spectrometry (ICP-AES) and its signal characteristics were discussed using modern spectral estimation technique. The power spectra density (PSD) was calculated using the auto-regression (AR) model of modern spectra estimation. The Levinson-Durbin recursion method was used to estimate the model parameters which were used for the PSD computation. The results obtained with actual ICP-AES spectra and measurements showed that the spectral estimation technique was helpful for the better understanding about spectral composition and signal characteristics.

  9. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  10. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, nutrition, and biomedicine. Emphasis is being placed on: (1) generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; (2) computer modelings of ICP discharges to predict the behavior of new and existing plasmas; (3) diagnostic studies of high temperature plasmas and sample introduction systems to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; (4) development and characterization of new, low cost sample introduction systems that consume microliter or microgram quantities of samples; and (5) investigation of new membrane separators for stripping solvent from sample aerosol to reduce various interferences and to enhance sensitivity and selectivity in plasma spectrometry.

  11. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  12. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Himadri S.; McCune, Matthew A.; Madjet, Mohamed E.; Hopper, Dale E.; Manson, Steven T.

    2009-12-01

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C60.

  13. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    SciTech Connect

    Chakraborty, Himadri S.; McCune, Matthew A.; Hopper, Dale E.; Madjet, Mohamed E.; Manson, Steven T.

    2009-12-03

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C{sub 60}.

  14. In situ digestion for the determination of Ca in beverages by tungsten coil atomic emission spectrometry.

    PubMed

    Santos, Luana N; Gonzalez, Mário H; Moura, Monise F; Donati, George L; Nóbrega, Joaquim A

    2012-08-15

    Tungsten coil atomic emission spectrometry (WCAES) is employed for the determination of calcium in juice, mineral and coconut water samples. A sample aliquot of 20 μL is placed directly on the coil and a constant-voltage power source is used to dry and atomize the sample, as well as to promote Ca atomic emission. Analytical signals are resolved and detected using a Czerny-Turner spectrometer and a charge coupled device detector. Some experimental parameters such as coil position related to the spectrometer entrance slit and integration time are critically evaluated. A heating program with relatively constant drying temperatures is used in all measurements. An in situ digestion procedure is used to partially decompose organic matrices and improve WCAES precision and accuracy. By adding an oxidizing mixture to the sample and including a digestion step in the heating cycle, no statistical difference was observed between WCAES and ICP OES results for Ca in juice and coconut water samples. Mineral water samples were simply diluted with 1% vv(-1) HNO(3) before analysis and no significant interference was observed for concomitants such as Na and K. Despite severe positive interference caused by Mg, good agreement was obtained between WCAES and ICP OES results for Ca in several mineral water samples. Limits of detection and quantification obtained were 0.02 and 0.07 mg L(-1), respectively. The method precision, calculated as the relative standard deviation for 10 consecutive measurements of a 2.5 mg L(-1) Ca solution, is 3.8%.

  15. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  16. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  17. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  18. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  19. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  20. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    ERIC Educational Resources Information Center

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  1. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  2. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry - Critical review

    NASA Astrophysics Data System (ADS)

    Bings, N. H.; Orlandini von Niessen, J. O.; Schaper, J. N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally suited

  3. Determination of silver in nano-plastic food packaging by microwave digestion coupled with inductively coupled plasma atomic emission spectrometry or inductively coupled plasma mass spectrometry.

    PubMed

    Lin, Q-B; Li, B; Song, H; Wu, H-J

    2011-08-01

    The detection of silver in nano-plastic food packaging by microwave digestion coupled with either inductively coupled plasma atomic emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) was investigated. Microwave digestion was optimised by trialling different acid mixtures. Both ICP-AES and ICP-MS showed good reproducibility, repeatability and recovery. For ICP-AES the limit of detection of the method (LODm) was 25.0 µg g(-1), the limit of detection of the instrument (LODi) was 30.0 ng ml(-1), the linear range was 0.10-10.0 µg ml(-1). The average recoveries for blank samples spiked with silver at 100, 250 and 500 µg g(-1) ranged from 82.53% to 87.60%, and the relative standard deviations (RSDs) were from 1.79% to 8.30%. For ICP-MS analysis the LODm was 0.75 µg g(-1), the LODi was 0.04 ng ml(-1), the linear range was 0.20-500.0 ng ml(-1), the RSDs were 2.26-4.79%, and the recoveries were 78.09-92.72% (spiked concentrations of 2.5, 5.0 and 10.0 µg g(-1)). These results indicate that the proposed method could be employed to analyse silver in nano-plastic food packaging.

  4. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  5. Inductively coupled plasma-atomic emission spectrometer warning diagnosis procedure using blank solution data

    NASA Astrophysics Data System (ADS)

    Sartoros, Christine; Salin, Eric D.

    1998-05-01

    Lines available while running a blank solution were used to monitor the analytical performance of an inductively coupled plasma atomic emission spectrometry (ICP-AES) system in real time. Using H and Ar lines and their signal-to-background ratios (SBRs), simple rules in the form of a prediction table were developed by inspection of the data. These rules could be used for predicting changes in radio-frequency power, carrier gas flow rates, and sample introduction rate. The performance of the prediction table was good but not excellent. Another set of rules in the form of a decision tree was developed in an automated fashion using the C4.5 induction engine. The performance of the decision tree was superior to that of the prediction table. It appears that blank spectral information can be used to predict with over 90% accuracy when an ICP-AES is breaking down. However this is not as definitive at identifying the exact fault as some more exhaustive approaches involving the use of standard solutions.

  6. Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanicky, V.; Otruba, V.; Mermet, J.-M.

    2000-06-01

    Tungsten carbide coatings (thickness 0.1-0.2 mm) containing 8.0, 12.2, 17.2 and 22.9% Co were studied with laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Composition of these plasma sprayed deposits on steel disks was determined using X-ray fluorescence spectrometry and electron microprobe energy/wavelength dispersive X-ray spectrometry. The coatings were ablated by means of a Q-switched Nd:YAG laser at 266 nm (10 Hz, 10 mJ per shot) coupled to an ICP echelle-based spectrometer equipped with a segmented charge-coupled device detector. Non-linear dependences of cobalt lines intensities on the Co percentage were observed both at a single spot ablation and at a sample translation. This behaviour could be attributed to a complex phase composition of the system W-C-Co. However, employing tungsten as internal standard the linear calibration was obtained for studied analytical lines Co II 228.616 nm, Co II 230.786 nm, Co II 236.379 nm and Co II 238.892 nm.

  7. Simultaneous multielemental analysis of some environmental and biological samples by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Hee, S.S.Q.; Boyle, J.R.

    1988-05-15

    The Parr bomb technique is found to be the preferred acid digestion method for multielemental analysis by simultaneous inductively coupled plasma atomic emission spectroscopy (ICP-AES) when compared with microwave and hot plate methods for many environmental and biological specimens, but especially for the latter. One digestion alone often did not produce quantitative results compared with a sequential digestion scheme. The digestions were then refined to be as similar as possible for the various substrates studied. The interference of carbon on As and Se had to be corrected at less than or equal to 3000 ..mu..g of C/mL in the analysis solution, and thus the C content had to be monitored to assess the efficiency of the digestions and to determine if interelemental correction for C presence was required. The C correction was adequate in the range 3000-10,000 ..mu..g of C/ml. The use of modified k values was demonstrated to provide accuracy and had to be used for ICP-AES spectrometers where background corrections were performed first for fixed channels. The results on Cincinnati soils and feces of Cincinnati children showed that Si and Ti were possible tracer elements for soil ingestion by the children.

  8. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  9. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan

    2017-03-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage ( C- V) and current-voltage ( I- V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density ( N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  10. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan

    2016-12-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage (C-V) and current-voltage (I-V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density (N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  11. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  12. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, Akbar

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  13. Atomic emission in the ultraviolet nightglow

    SciTech Connect

    Sharp, W.E.; Siskind, D.E. )

    1989-12-01

    An observation of the ultraviolet nightglow between 2,670 {angstrom} and 3,040 {angstrom} was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter uv spectrometer operating at 3.5 {angstrom} resolution viewed the Earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2,852 {angstrom} is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2,972 {angstrom} line from O({sup 1}S) was less than that predicted from the accepted O({sup 1}S) branching ratio and acceptable ratios of Herzberg I to 5,577 {angstrom} emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  14. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    PubMed

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  15. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized.

  16. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  17. Direct determination of trace elements in niobium, tantalum and their oxides by inductively coupled plasma atomic emission spectrometry after microwave dissolution

    NASA Astrophysics Data System (ADS)

    Grebneva, O. N.; Kubrakova, I. V.; Kudinova, T. F.; Kuz'min, N. M.

    1997-07-01

    Analytical schemes for the determination of trace elements in high-purity niobium, tantalum and their oxides are proposed. The schemes are based on microwave dissolution of the metals and oxides followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of impurities in the solutions. The possibilities of interelement and off-peak background corrections in ICP-AES analysis are discussed. The accuracy of the results obtained is confirmed by the determination of trace elements after a matrix sorption separation procedure. For a number of elements, a comparison of the results obtained by ICP-AES without and with the matrix separation procedure and by electrothermal atomic absorption spectrometry (ETAAS) shows good agreement. The limits of detection for direct ICP-AES determination are in the range 0.4*1.0 μg g -1 for Ba, Ca, Fe, Mg, Mn, Y and La; between 2.0 and 10.0 μ g -1 for B, Cd, Co, Cr, Cu, Hf, Mo, Na, Nb, Ni, Pb, Sr, Ti, Zr and Ta; and for K, Sb and W a detection limit of 20 μ g -1 is achieved. The schemes proposed are intended for rapid routine analysis.

  18. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Barnes, Ramon M.

    An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Si/ml and 10 ng Al/ml from aqueous and synthetic standards was 80-85% and 96-103%, respectively.

  19. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-06-06

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids.

  20. Master equation for collective spontaneous emission with quantized atomic motion

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-02-01

    We derive a Markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and applies equally well to distinguishable and indistinguishable atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find closed-form formulas for a number of relevant states (Gaussian states, Fock states, and thermal states). In particular, we show that dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion.

  1. Negative spontaneous emission by a moving two-level atom

    NASA Astrophysics Data System (ADS)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2017-01-01

    In this paper we investigate how the dynamics of a two-level atom is affected by its interaction with the quantized near field of a plasmonic slab in relative motion. We demonstrate that for small separation distances and a relative velocity greater than a certain threshold, this interaction can lead to a population inversion, such that the probability of the excited state exceeds the probability of the ground state, corresponding to a negative spontaneous emission rate. It is shown that the developed theory is intimately related to a classical problem. The problem of quantum friction is analyzed and the differences with respect to the corresponding classical effect are highlighted.

  2. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  3. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

    PubMed

    Mitchell, D G; Brandt, P C; Roelof, E C; Dandouras, J; Krimigis, S M; Mauk, B H

    2005-05-13

    The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.

  4. Modelling of Atomic Oxygen Visible emissions from Comets

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil

    Green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms of O((1) S) and O((1) D) respectively, that have been observed in several comets. The observed red-doublet emission intensity is used to estimate the H_{2}O production rate, whereas the green to red-doublet intensity ratio (G/R ratio) has been used to confirm the parent molecule of oxygen lines as H_{2}O. The observed higher G/R ratio values are ascribed to higher CO_{2} and CO relative abundances. A coupled chemistry-emission model is developed to study the production and loss mechanisms of O((1) S) and O((1) D) atoms and the generation of red and green lines in comets. Our model calculations on different comets suggest that the G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Our calculated mean excess energy in various photodissociation processes show that the high energy photons dissociate CO_{2} and produce O((1) S) with large velocities than that in photodissociation of H_{2}O which is consistent with larger width of green line compared to that of the red-doublet lines observed in several comets The photodissociation of H_{2}O mainly governs the red-doublet emission, whereas CO_{2} plays an important role in controlling the green line emission. The collisional quenching of O((1) S) and O((1) D) can alter the G/R ratio more than that can be due to variation in the CO_{2} and CO relative abundances. The role of CO photodissociation is found to be insignificant in producing green and red-doublet emission lines and consequently in determining the G/R ratio. If a comet has equal composition of CO_{2} and H_{2}O, which happens when comet is at larger heliocentric distances, then ˜50% of red-doublet emission intensity is controlled by the photodissociation of CO_{2}. References: Festou, M.C., & Feldman, P.D., Astron

  5. Stimulated emission in optically pumped atomic-copper vapor

    SciTech Connect

    Jin Joong Kim; Nackchin Sung

    1987-11-01

    We have observed, for the first time to our knowledge, stimulated emission in atomic-copper vapor that is excited by a resonant tunable laser beam. One of the important and interesting results obtained in this experiment is that excitation of the /sup 2/P/sub 1/2/ level of the copper atoms generates strong amplified spontaneous emission (ASE) for both /sup 2/P/sub 1/2/--/sup 2/D/sub 3/2/ and /sup 2/P/sub 3/2/--/sup 2/D/sub 5/2/ transitions. This is the first reported direct experimental evidence observed for collisional mixing between the /sup 2/P/sub 1/2/ and /sup 2/P/sub 3/2/ levels in a copper-vapor laser. Excitation of the /sup 2/P/sub 3/2/ level induces substantially weaker ASE for the /sup 2/P/sub 1/2/--/sup 2/D/sub 3/2/ transition. In addition, we observed collision-induced ASE for both transitions over a wide range of detuning of the pump frequency. The preliminary results of the experiment are presented, and the implications of the results for high-pressure copper-vapor lasers are discussed.

  6. Metallomics approach to trace element analysis in ustilago maydis using cellular fractionation, atomic absorption spectrometry, and size exclusion chromatography with ICP-MS detection.

    PubMed

    Muñoz, Alma Hortensia Serafin; Kubachka, Kevin; Wrobel, Kazimierz; Corona, Felix Gutierrez; Yathavakilla, Santha K V; Caruso, Joseph A; Wrobel, Katarzyna

    2005-06-29

    Huitlacoche is the ethnic name of the young fruiting bodies of Ustilago maydis, a common parasite of maize. In Mexico and other Latin American countries, this fungus has been traditionally appreciated as a local delicacy. In this work a metallomics approach was used with the determination of eight elements in huitlacoche by electrothermal atomic absorption spectrometry as one facet of this approach. The results obtained indicated relatively lower concentrations of commonly analyzed metals, as referred to the data reported for other mushroom types. This effect was ascribed to different accessibilities of elements, depending on fungus substrate (lower from plant than from soil). Subcellular fractionation was accomplished by centrifugation of cell homogenates suspended in Tris-HCl buffer. Recoveries of the fractionation procedure were in the range of 71-103%. For six elements (Cr, Cu, Fe, Mn, Ni, and Pb), the mean relative contributions in cytosol, cell walls, and mixed membrane fraction were 50.7, 48.2, and 1.1% respectively. To attain the molecular weight distribution of compounds containing target elements as an additional aspect of the metallomics approach, the fungus extract (1% sodium dodecyl sulfate in Tris-HCl, 30 mmol L(-)(1), pH 7.0) was analyzed by size exclusion chromatography with UV and ICP-MS detection. With spectrophotometric detection (280 nm), the elution of high molecular weight compounds was observed in the form of one peak (MW > 10 kDa), and several lower peaks appeared at higher retention times (MW < 10 kDa). On ICP-MS chromatograms, a coelution of (59)Co, (63)Cu, (57)Fe, (202)Hg, (60)Ni, and (80)Se with the first peak on the UV chromatogram was clearly observed, indicating that a fraction of each element incorporated with high molecular weight compounds (12.7, 19.8, 33.7, 100, 19.4, and 45.8%, respectively, based on the peak area measurements). From a comparison of (80)Se and (33)S chromatograms (for sulfur analysis, the extract was obtained in

  7. Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures.

    PubMed

    Tuncel, S G; Yenisoy-Karakas, S; Dogangün, A

    2004-05-28

    Three digestion procedures have been tested on lichen samples for application in the determination of major, minor and trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V and Zn) in lichen samples collected in Aegean Region of Turkey by inductively coupled plasma atomic emission spectrometer (ICP-AES). The acid mixture of concentrated HNO(3), H(2)O(2) and HF were used. The instrument was optimized using lichen matrix considering RF power, nebulizer pressure, auxiliary flow rate and pump rate. The accuracy of the overall analyses was first estimated by analysis of two certified reference materials. Good agreement between measured and reference values were found for almost all elements. As the second way of determining the accuracy, results obtained from independent analytical techniques (ICP-AES and instrumental neutron activation analysis (INAA)) were compared for all elements by analyzing real samples. Correlation coefficients of two techniques for the elements ranged between 0.70 (Mg) and 0.96 (Fe). Among the three digestion systems, namely microwave, open vessel and acid bomb, microwave digestion system gave the best recovery results. The method detection limit (MDL) was computed using reagent blanks of microwave digestion system since it provides cleaner sample preparation. Detection limit is adequate for all elements to determine the elements in lichen samples. The precision was assessed from the replicate analyses of reagent blanks of microwave digestion system and was found to be less than 1.5% relative standard deviation (R.S.D.).

  8. Inductively coupled plasma atomic emission spectrometric determination of 27 trace elements in table salts after coprecipitation with indium phosphate.

    PubMed

    Kagaya, Shigehiro; Mizuno, Toshiyuki; Tohda, Koji

    2009-07-15

    The coprecipitation method using indium phosphate as a new coprecipitant has been developed for the separation of trace elements in table salts prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). Indium phosphate could quantitatively coprecipitate 27 trace elements, namely, Be, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, in a table salt solution at pH 10. The rapid coprecipitation technique, in which complete recovery of the precipitate was not required in the precipitate-separation process, was completely applicable, and, therefore, the operation for the coprecipitation was quite simple. The coprecipitated elements could be determined accurately and precisely by ICP-AES using indium as an internal standard element after dissolution of the precipitate with 5 mL of 1 mol L(-1) nitric acid. The detection limits (three times the standard deviation of the blank values, n=10) ranged from 0.001 microg (Lu) to 0.11 microg (Zn) in 300 mL of a 10% (w/v) table salt solution. The method proposed here could be applied to the analyses of commercially available table salts.

  9. Plutonium concentration and (240)Pu/(239)Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS.

    PubMed

    Bu, Kaixuan; Cizdziel, James V; Dasher, Douglas

    2013-10-01

    Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p < 0.001); lichen and moss averaged 0.184 ± 0.007, similar to the integrated global fallout ratio, whereas kelp and mussel (soft tissue) averaged 0.226 ± 0.003. These observations provide supporting evidence that a large input of isotopically heavier Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and

  10. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  11. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    PubMed

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  12. Electron emission in collisions between atoms and dressed projectiles

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Ghosh, T. K.; Mandal, C. R.; Purkait, M.

    2016-12-01

    We present theoretical results for electron emission in collisions between helium atoms and dressed projectiles at high energies. Double-differential cross sections (DDCSs) as a function of the emitted electron energies and angles are calculated. In our study we have applied the three-body formalism using the three-Coulomb wave (3CW-3B) model. The interaction between the dressed projectile and the active electron in the target has been approximated by a model potential having both a long-range Coulomb potential part and a short-range part. However, the active electron in the target has been treated as hydrogenic. We have also studied the projectile charge state dependence of the DDCS. Our theoretical results are compared with available experimental data as well as other theoretical calculations. The comparison shows a good agreement between the present calculations and the measurements. The obtained results are also compatible with other theoretical findings.

  13. Determination of verapamil in pharmaceutical formulations using atomic emission spectrometry.

    PubMed

    Khalil, Sabry; Kelzieh, Ahmed

    2002-01-01

    Ion-associate complexes of verapamil hydrochloride (VpCl) with (Cd(II), Co(II), Mn(II), and Zn(II)) thiocyanates, potassium ferricyanide, and ammonium reineckate are precipitated. The solubility of the solid complexes at the recommended optimum conditions of pH and ionic strength values have been studied. Saturated solutions of each ion associate at different temperatures under the optimum precipitation conditions were prepared and the metal ion contents in the supernatant were determined. The solubility products were thus calculated at different temperatures and the thermodynamic parameters DeltaH, DeltaG, and DeltaS were calculated. A new accurate and precise method based on direct coupled plasma atomic emission spectrometry for the determination of VpCl (1.96-62.86 microg ml(-1)) in pure solutions and pharmaceutical preparations is given.

  14. Quantification of gadodiamide as Gd in serum, peritoneal dialysate and faeces by inductively coupled plasma atomic emission spectroscopy and comparative analysis by high-performance liquid chromatography.

    PubMed

    Normann PT-; Joffe, P; Martinsen, I; Thomsen, H S

    2000-07-01

    An inductively coupled plasma atomic emission spectroscopy (ICP-AES) method for determination of gadodiamide as Gd in serum, peritoneal dialysate and faeces was developed. The within-day and between-day precision for determination of Gd in serum and peritoneal dialysate were 0.60-2.9 and 1.8-4.4%, respectively, and the accuracy was 98.0-99.3%. The quantification limits in serum and peritoneal dialysate were 6.5 and 1.6 microM Gd, respectively. The within-day and between-day precision determination of gadolinium in faeces were 1.0-5.3 and 2.2-7.9%, respectively, and the accuracy was 104-116%. The quantification limit was 11 nmol Gd/g dry weight. For the high-performance liquid chromatography (HPLC) method, the within-day precision in determination of gadodiamide in peritoneal dialysate was 1.2% and the accuracy was 103%. The quantification limit was 0.9 microM Gd. Comparative analysis of gadodiamide in serum and peritoneal dialysate from severely impaired renal patients by ICP-AES and HPLC revealed no metabolism of chelator or transmetallation of gadolinium, even in samples obtained as long as 7 days after dosing. Furthermore, the ICP-AES determination of Gd in faeces allows for the determination of faeces content of Gd corresponding to less than 0.1% of a clinical dosage of a Gd-based contrast medium.

  15. Use of gradient dilution to flag and overcome matrix interferences in axial-viewing inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Cheung, Yan; Schwartz, Andrew J.; Hieftje, Gary M.

    2014-10-01

    Despite the undisputed power of inductively coupled plasma-atomic emission spectrometry (ICP-AES), its users still face serious challenges in obtaining accurate analytical results. Matrix interference is perhaps the most important challenge. Dilution of a matrix-containing sample is a common practice to reduce matrix interference. However, determining the optimal dilution factor requires tedious and time-consuming offline sample preparation, since emission lines and the effect of matrix interferences are affected differently by the dilution. The current study exploits this difference by employing a high-performance liquid chromatography gradient pump prior to the nebulizer to perform on-line mixing of a sample solution and diluent. Linear gradient dilution is performed on both the calibration standard and the matrix-containing sample. By ratioing the signals from two emission lines (from the same or different elements) as a function of dilution factor, the analyst can not only identify the presence of a matrix interference, but also determine the optimal dilution factor needed to overcome the interference. A ratio that does not change with dilution signals the absence of a matrix interference, whereas a changing ratio indicates the presence of an interference. The point on the dilution profile where the ratio stabilizes indicates the optimal dilution factor to correct the interference. The current study was performed on axial-viewing ICP-AES with o-xylene as the solvent.

  16. Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate.

    PubMed

    Talebi, S M; Malekiha, M

    2008-07-01

    The simultaneous determination of heavy metals associated with airborne particulate matter in the atmosphere of the city Isfahan (Iran) was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) after pre-concentration with sodium diethyldithiocarbamate. The preconcentration procedure developed found instrumental to determine the trace heavy metals associated with ambient aerosols collected at a short sampling period or collected from rural areas where the concentrations of these metals are much less than those in urban areas. Several samples were analyzed by both flame atomic absorption spectrometry (FAAS) as a conventional method and the proposed method. The results obtained by the two methods were found in good agreement. The method was applied to the determination of atmospheric level of heavy metals in rural area and also for study of variation in levels of heavy metals in urban atmosphere during the days and nights.

  17. Portable Dielectric Barrier Discharge-Atomic Emission Spectrometer.

    PubMed

    Li, Na; Wu, Zhongchen; Wang, Yingying; Zhang, Jing; Zhang, Xiangnan; Zhang, Hengnan; Wu, Wenhai; Gao, Jing; Jiang, Jie

    2017-02-21

    This paper describes the first demonstration of a portable dielectric barrier discharge-atomic emission spectrometer (DBD-AES). The instrument primarily consists of a miniature electro-thermal vaporizer (ETV), DBD, and optical signal acquisition units. It weighs only 4.5 kg and is powered by a 24 V DC battery with a maximum power consumption of 37 W. The accompanying software can be operated on a laptop computer. A specially designed quartz tube integrates the ETV unit with the DBD chamber. The effects of experimental parameters were investigated. The limit of detection (LOD) for mercury was 0.4 μg L(-1) (1.2 pg) with a sampling volume of 3 μL. The instrument is applicable for multielement analysis, and the LODs ranged from 0.16 to 11.65 μg L(-1) for Zn, Pb, Ag, Cd, Au, Cu, Mn, Fe, Cr, and As. The instrument was also validated by in-field analysis of seawater samples. The experimental results demonstrated the sensitivity, reliability, and practicality of the instrument.

  18. ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland.

    PubMed

    Falandysz, J; Szymczyk, K; Ichihashi, H; Bielawski, L; Gucia, M; Frankowska, A; Yamasaki, S

    2001-06-01

    Thirty-eight elements, including toxic cadmium, lead, mercury, silver and thallium, were determined in 18 species of wild edible mushrooms collected from several sites in Pomorskie Voivodeship in northern Poland in 1994. Elements were determined by double focused high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), after wet digestion of the dried samples with concentrated nitric acid in closed PTFE vessels using a microwave oven. K, P and Mg were present at levels of mg/g dry matter; Na, Zn, Ca, Fe, Cu, Mn, Rb, Ag, Cd, Hg, Pb, Cs, Sr, Al and Si were present at microg/g levels, while Tl, In, Bi, Th, U, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, La, Lu and Ba were present at ng/g levels.

  19. The emission of atoms and molecules accompanying fracture of single-crystal MgO

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Jensen, L. C.; Mckay, M. R.; Freund, F.

    1986-01-01

    The emission of particles due to deformation and fracture of materials has been investigated. The emission of electrons (exoelectron emission), ions, neutral species, photons (triboluminescence), as well as long wavelength electromagnetic radiation was observed; collectively these emissions are referred to as fractoemission. This paper describes measurements of the neutral emission accompanying the fracture of single-crystal MgO. Masses detected are tentatively assigned to the emission of H2, CH4, H2O, CO, O2, CO2, and atomic Mg. Other hydrocarbons are also observed. The time dependencies of some of these emissions relative to fracture are presented for two different loading conditions.

  20. Theoretical study of Na-atom emission from NaCl (100) surfaces

    NASA Astrophysics Data System (ADS)

    Puchin, Vladimir; Shluger, Alexander; Nakai, Yasuo; Itoh, Noriaki

    1994-04-01

    Several models for the elementary processes causing the emission of alkali atoms by electronic excitation of NaCl (100) surfaces have been investigated theoretically. First, the desorption of a Na atom neighboring an electronically excited F center on the surface is simulated using a quantum-mechanical embedded-cluster technique. It is shown that emission of a Na atom is energetically favorable. The kinetics of this process is shown to be controlled by the probability of a nonradiative transition between the two states: the excited state of the F center and that corresponding to a Na atom desorbing from the surface. The potential barrier for desorption of an excited Na atom from the excited F-center state is found to be 2.1 eV. It is also found that the energy for emission of a Na atom from a cluster of F centers (the F3 center) is considerably reduced (for a certain configuration of the defect) with respect to the similar energy for a single F center. The energy barrier for emission of a Na atom neighboring an F' center on the surface is calculated to be 1 eV. It is shown that the electronic excitation of kinklike sites, with a Na atom at the edge, can lead to a barrierless emission of a Na atom, leaving a Vk-type defect behind. The results of calculations are discussed critically on the basis of existing experimental data.

  1. Investigation of the atomic emission spectroscopy of F atoms and CF2 molecules in CF4 plasma processing

    NASA Astrophysics Data System (ADS)

    Jin, Huiliang; Li, Jie; Tang, Caixue; Deng, Wenhui; Chen, Xianhua

    2016-10-01

    The surface chemistry reaction involved in the processing of Atmospheric Pressure Plasma Jet (APPJ) produced from CF4 precursor has been explored. The atomic emission spectroscopy of F atoms and CF2 molecules was investigated as they contribute to substrate etching and FC film formation during APPJ processing. Optical emission spectroscopy (OES) spectra were acquired for CF4 plasma, relative concentrations of excited state species of F atoms and CF2 molecules were also dependent upon plasma parameters. The densities of F atoms increased dramatically with increasing applied RF power, whereas CF2 molecules decreased monotonically over the same power range, the subsequent electron impacted decomposition of plasma species after CF4 precursor fragmentation. The spectrum of the F atoms and CF2 molecules fallowed the same tendency with the increasing concentration of gas CF4, reaching the maximum at the 20sccm and 15sccm respectively, and then the emission intensity of reactive atoms decreased with more CF4 molecules participating. Addition certain amount O2 into CF4 plasma resulted in promoting CF4 dissociation, O2 can easily react with the dissociation product of CF2 molecules, which inhibit the compound of the F atoms, so with the increasing concentration of O2, the concentration of the CF2 molecules decreased and the emission intensities of F atoms showed the maximum at the O2/CF4 ratio of 20%. These results have led to the development of a scheme that illustrates the mechanisms of surface chemistry reaction and the affection of plasma parameters in CF4 plasma systems with respect to F and CF2 gas-phase species.

  2. Spatial and temporal variations in infrared emissions of the upper atmosphere. 1. Atomic oxygen (λ 63 μm) emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Khomich, V. Yu.

    2016-09-01

    Rocket and balloon measurement data on atomic-oxygen (λ 63 µm) emission in the upper atmosphere are presented. The data from the longest (1989-2003) period of measurements of the atomic-oxygen (λ 63 µm) emission intensity obtained by spectral instruments on sounding balloons at an altitude of 38 km at midlatitudes have been systematized and analyzed. Regularities in diurnal and seasonal variations in the intensity of this emission, as well as in its relation with solar activity, have been revealed.

  3. Development of laboratory control samples for the ICP-ES determination of nutrient elements in rat tissues

    NASA Astrophysics Data System (ADS)

    Wolnik, Karen A.; Rader, Jeanne I.; Gaston, Cynthia M.; Fricke, Fred L.

    Laboratory control samples have been prepared from rabbit bones and duodenum and from bovine kidney and spleen for use in quality control and development of methodology for the inductively coupled plasma emission spectroscopy (ICP-ES) determination of 9 elements in weanling rat tissues. Analysis by ICP-ES following wet acid digestion was used to characterize these control samples with respect to mineral content and homogeneity. Results of the investigation of alternative pretreatment techniques are included.

  4. New method for removal of spectral interferences for beryllium assay using inductively coupled plasma atomic emission spectrometry.

    PubMed

    Maxwell, Sherrod L; Bernard, Maureen A; Nelson, Matthew R; Youmans, Linda D

    2008-07-15

    Beryllium (Be) has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S. Department of Energy (DOE) facilities is required to identify potential health risks and to protect U.S. DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES) that allows lower detection limits. The ion exchange separation removes uranium (U), plutonium (Pu), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin and TEVA Resin reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material (CRM) standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. This new method offers improvements over other separation methods that have been used by removing large amounts of all the significant spectral interferences with greater simplicity and effectiveness. The effective removal of spectral interferences allows lower method detection limits (MDL) using inductively coupled atomic emission spectrometry. A vacuum box system is employed to reduce analytical time and reduce labor costs.

  5. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuichi; Tang, Jiayi; Takakuwa, Yuji

    2015-08-01

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at SB steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  6. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  7. Integrated Design for Marketing and Manufacturing team: An examination of LA-ICP-AES in a mobile configuration. Final report

    SciTech Connect

    Not Available

    1994-05-01

    The Department of Energy (DOE) has identified the need for field-deployable elemental analysis devices that are safer, faster, and less expensive than the fixed laboratory procedures now used to screen hazardous waste sites. As a response to this need, the Technology Integration Program (TIP) created a mobile, field-deployable laser ablation-inductively coupled plasma-atomic emission spectrometry (LA-ICP-AES) sampling and analysis prototype. Although the elemental. screening prototype has been successfully field-tested, continued marketing and technical development efforts are required to transfer LA-ICP-AES technology to the commercial sector. TIP established and supported a student research and design group called the Integrated Design for Marketing and Manufacturing (IDMM) team to advance the technology transfer of mobile, field-deployable LA-ICP-AES. The IDMM team developed a conceptual design (which is detailed in this report) for a mobile, field-deployable LA-ICP-AES sampling and analysis system, and reports the following findings: Mobile, field-deployable LA-ICP-AES is commercially viable. Eventual regulatory acceptance of field-deployable LA-ICP-AES, while not a simple process, is likely. Further refinement of certain processes and components of LA-ICP-AES will enhance the device`s sensitivity and accuracy.

  8. The stability of calibration standards for ICP/AES analysis: Six-month study

    SciTech Connect

    Huff, E.A.; Huff, D.R.

    1992-05-01

    The stability of instrument calibration standards for Inductively Coupled Plasma/Atomic Emission Spectrometric (ICP/AES) analysis was studied over a six-month period. Data were obtained as functions of analyte concentration, acid type, and acidity. The impact of acid concentration on signal-to-background ratios (S/B) was also assessed. The results show that analytes maintain their integrity over extended periods with appropriate inorganic acid preservatives. Thus, frequent standard preparations become unnecessary to obtain valid analytical data.

  9. Emission of fast non-Maxwellian hydrogen atoms in low-density laboratory plasma

    NASA Astrophysics Data System (ADS)

    Brandt, Christian; Marchuk, Oleksandr; Pospieszczyk, Albrecht; Dickheuer, Sven

    2017-03-01

    The source of strong and broad emission of the Balmer-α line in mixed plasmas of hydrogen (or deuterium) and noble gases in front of metallic surfaces is a subject of controversial discussion of many plasma types. In this work the excitation source of the Balmer lines is investigated by means of optical emission spectroscopy in the plasma device PSI-2. Neutral fast non-Maxwellian hydrogen atoms are produced by acceleration of hydrogen ions towards an electrode immersed into the plasma. By variation of the electrode potential the energy of ions and in turn of reflected fast atoms can be varied in the range of 40-300 eV. The fast atoms in front of the electrode are observed simultaneously by an Echelle spectrometer (0.001 nm/channel) and by an imaging spectrometer (0.01 nm/channel) up to few cm in the plasma. Intense excitation channels of the Balmer lines are observed when hydrogen is mixed with argon or with krypton. Especially in Ar-H and Ar-D mixed plasmas the emission of fast hydrogen atoms is very strong. Intermixing hydrogen with other noble gases (He, Ne or Xe) one observes the same effect however the emission is one order of magnitude less compared to Kr-H or Kr-D plasmas. It is shown, that the key process, impacting this emission, is the binary collision between the fast neutral hydrogen atom and the noble gas atom. Two possible sources of excitation are discussed in details: one is the excitation of hydrogen atoms by argon atoms in the ground state and the second one is the process of the so-called excitation transfer between the metastable states of noble gases and hydrogen. In the latter case the atomic data for excitation of Balmer lines are still not available in literature. Further experimental investigations are required to conclude on the source process of fast atom emission.

  10. ICP Source with Immersed Ferromagnetic Inductor

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2013-09-01

    Inductively coupled plasma (ICP) sources have found a wide range of applications in various areas of plasma science and technology. Among different ICP topology, ICPs with immersed inductors have benefits (compared to ICPs with helical side or flat top inductors) of better coupling and electromagnetic (EM) field self-screening by the plasma surrounding the inductor. This allows for EM-free otter plasma boundary, thus making an ICP chamber entirely of metal or glass, with no EM radiation outside the plasma. It's been long known that ICP enhanced with ferromagnetic core immersed inductor is applicable in rf light sources and has demonstrated good performance. In this presentation we report a detailed experimental study of the electrical and plasma characteristics of compact ICPs with immersed ferromagnetic inductors in argon and xenon gas. The extremely high plasma transfer efficiency of this plasma source has been demonstrated in a wide range of gas pressure and rf power. A compact plasma cathode built with ICP having an immersed ferromagnetic inductor, and operating at 70-200 W has shown high power transfer efficiency of 97%, and electron emission efficiency of 25 mA/W. These data are superior compared to those demonstrated for other plasma cathodes.

  11. Visualization of Fermi's golden rule through imaging of light emission from atomic silver chains.

    PubMed

    Chen, Chi; Bobisch, C A; Ho, W

    2009-08-21

    Atomic-scale spatial imaging of one-dimensional chains of silver atoms allows Fermi's golden rule, a fundamental principle governing optical transitions, to be visualized. We used a scanning tunneling microscope (STM) to assemble a silver atom chain on a nickel-aluminum alloy surface. Photon emission was induced with electrons from the tip of the STM. The emission was spatially resolved with subnanometer resolution by changing the tip position along the chain. The number and positions of the emission maxima in the photon images match those of the nodes in the differential conductance images of particle-in-a-box states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions and provides an understanding of the mechanism of STM-induced light emission.

  12. Applications of high resolution ICP-AES in the nuclear industry

    SciTech Connect

    Johnson, S.G.; Giglio, J.J.; Goodall, P.S.; Cummings, D.G.

    1998-07-01

    Application of high resolution ICP-AES to selected problems of importance in the nuclear industry is a growing field. The advantages in sample preparation time, waste minimization and equipment cost are considerable. Two examples of these advantages are presented in this paper, burnup analysis of spent fuel and analysis of major uranium isotopes. The determination of burnup, an indicator of fuel cycle efficiency, has been accomplished by the determination of {sup 139}La by high resolution inductively coupled plasma atomic emission spectroscopy (HR-ICP-AES). Solutions of digested samples of reactor fuel rods were introduced into a shielded glovebox housing an inductively coupled plasma (ICP) and the resulting atomic emission transmitted to a high resolution spectrometer by a 31 meter fiber optic bundle. Total and isotopic U determination by thermal ionization mass spectrometry (TIMS) is presented to allow for the calculation of burnup for the samples. This method of burnup determination reduces the time, material, sample handling and waste generated associated with typical burnup determinations which require separation of lanthanum from the other fission products with high specific activities. Work concerning an alternative burnup indicator, {sup 236}U, is also presented for comparison. The determination of {sup 235}U:{sup 238}U isotope ratios in U-Zr fuel alloys is also presented to demonstrate the versatility of HR-ICP-AES.

  13. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  14. Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry.

    PubMed

    Kanický, V; Otruba, V; Mermet, J M

    2001-12-01

    Infrared laser ablation (IR-LA) has been studied as a sample introduction technique for the analysis of sintered cobalt-cemented tungsten carbide materials by inductively coupled plasma atomic emission spectrometry (ICP-AES). Fractionation of cobalt was observed. Linearity of calibration plots was verified at least up to 15% Ti, 8% Ta, and 3% Nb. Above 1% (m/m) Ti, Ta, and Nb, the repeatability of results was better than 3% R.S.D. The relative uncertainty at the centroid of the calibration line was in the range from +/- 3% to +/- 4% for Ti, Ta, and Nb with internal standardization by tungsten and up to +/- 5% without internal standardization. The limits of detection were 0.004% Ti, 0.001% Ta, and 0.004% Nb. Elimination of the cemented hardmetal dissolution procedure is the main advantage of this method.

  15. Inductively coupled plasma atomic emission spectroscopic determination of rare earth elements in geological samples after preconcentration by countercurrent chromatography—I

    NASA Astrophysics Data System (ADS)

    Pukhovskaya, V. M.; Maryutina, T. A.; Grebneva, O. N.; Kuz'min, N. M.; Spivakov, B. Ya.

    1993-09-01

    Countercurrent chromatography (CCC) was applied to group pre-separation of rare earth elements (REE) in rocks. A 0.5 mol/l solution of di-2-ethylhexylphosphoric acid (D2EHPA) in n-decane as stationary phase, and aqueous HC1 solution as mobile phase were used. Experimental conditions were found for quantitative separation of REE from the rock constituents that interfere with their inductively coupled plasma atomic emission spectrometry (ICP-AES) determination. The complete preseparation procedure takes 40 min at a mobile phase pumping rate of 2 ml/min. Interelement and off-peak background corrections were applied to compensate for the contributions of mutual spectral interferences to the analyte line and background intensities. Standard reference rock materials and samples of different composition with well known REE contents were analysed. The data obtained are in good agreement with certified and previously determined values, except for "heavy" REE such as Tm, Yb and Lu.

  16. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  17. Forbidden line emission from highly ionized atoms in tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Bhatia, A. K.

    1982-01-01

    Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature

  18. Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Hazer, Orhan; Yilmaz, Hayriye

    2014-01-01

    This work reports the preparation of a novel Cu(II)-ion imprinted polymer using 2-thiozylmethacrylamide (TMA) for on-line preconcentration of Cu(II) prior to its determination by inductively coupled optical emission spectroscopy (ICP-OES). Cu(II)-TMA monomer (complex) was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was washed with 5% (v/v) HNO3 to remove Cu(II) ions and then with water until a neutral pH. The ion imprinted polymer was characterized by FT-IR and scanning electron microscopy. The experimental conditions were optimized for on-line preconcentration of Cu(II) using a minicolumn of ion imprinted polymer (IIP). Quantitative retention was achieved between pH 5.0 and 6.0, whereas the recoveries for the non-imprinted polymer (NIP) were about 61%. The IIP showed about 30 times higher selectivity to Cu(II) in comparison to NIP. The IIP also exhibited excellent selectivity for Cu(II) against the competing transition and heavy metal ions, including Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn. Computational calculations revealed that the selectivity of IIP was mediated by the stability of Cu(II)-TMA complex which was far more stable than those of Co(II), Ni(II) and Zn(II) that have similar charge and ionic radii to Cu(II). A volume of 10 mL sample solution was loaded onto the column at 4.0 mL min−1 by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 2% (v/v) HNO3. The relative standard deviation (RSD) and limit of detection (LOD, 3s) of the method were 3.2% and 0.4 μg L−1, respectively. The method was successfully applied to determination of Cu(II) in fish otoliths (CRM 22), bone ash (SRM 1400) and coastal seawater and estuarine water samples. PMID:24511158

  19. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  20. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  1. Multi-element analysis using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy for provenancing of animals at the continental scale.

    PubMed

    Kreitals, Natasha M; Watling, R John

    2014-11-01

    Chemical signatures within the environment vary between regions as a result of climatological, geochemical and anthropogenic influences. These variations are incorporated into the region's geology, soils, water and vegetation; ultimately making their way through the food chain to higher level organisms. Because the variation in chemical signatures between areas is significant, a specific knowledge of differences in elemental distribution patterns between, and within populations, could prove beneficial for provenancing animals or animal related products when applied to indigenous and feral faunal populations. The domestic pig (Sus scrofa domestica) was used as an investigative model to determine the feasibility of using a chemical traceability method for the provenance determination of animal tissue. Samples of pig muscle, tongue, stomach, heart, liver and kidney were collected from known farming areas around Australia. Samples were digested in 1:3 H2O2:HNO3 and their elemental composition determined using solution based Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Pigs from different growing regions in Australia could be distinguished based on the chemical signature of each individual tissue type. Discrimination was possible at a region, state and population level. This investigation demonstrates the potential for multi-element analysis of low genetic variation native and feral species of forensic relevance.

  2. Determination of rare earth elements in geological samples by inductively coupled plasma atomic emission spectrometry with flow injection liquid-liquid extraction.

    PubMed

    Xu, Zhifang; Liu, Congqiang; Zhang, Hongxiang; Ma, Yingjun; Lin, Soulin

    2003-12-01

    A direct sampling with organic solvent extracts for simultaneous multi-element determination implemented with inductively coupled plasma atomic emission spectrometry (ICP-AES) associated with a flow injection liquid-liquid extraction (FI-LLE) sample preconcentration method was studied. The "robustness" of the plasma discharge with tributyl phosphate (TBP) loading was diagnosed by using the Mg II 279.55 nm and Mg I 285.21 nm lines intensity ratio. A FI-LLE preconcentration system for rare earth elements (REEs)-nitrate-TBP was established by using a laboratory-designed phase separator. For these elements, an average sensitivity enhancement factor of 64 was obtained with respect to ICP-AES sampling with aqueous solutions. The precision of the method was characterized by a relative standard deviation (%RSD) of 1.8 - 5.2%. A throughput of 27 samples per hour can be achieved with an organic solvent consumption of less than 200 microl per determination. Good results were obtained for the analysis of standard reference materials.

  3. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  4. Multielement plant tissue analysis using ICP spectrometry.

    PubMed

    Hansen, T H; de Bang, T C; Laursen, K H; Pedas, P; Husted, S; Schjoerring, J K

    2013-01-01

    Plant tissue analysis is a valuable tool for evaluating the nutritional status and quality of crops and is widely used for scientific and commercial purposes. The majority of plant analyzes are now performed by techniques based on ICP spectrometry such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) or ICP-mass spectrometry (ICP-MS). These techniques enable fast and accurate measurements of multielement profiles when combined with appropriate methods for sample preparation and digestion. This chapter presents state-of-the-art methods for digestion of plant tissues and subsequent analysis of their multielement composition by ICP spectrometry. Details on upcoming techniques, expected to gain importance within the field of multielement plant tissue analysis over the coming years, are also provided. Finally, attention is given to laser ablation ICP-MS (LA-ICP-MS) for multielement bioimaging of plant tissues. The presentation of the methods covers instructions on all steps from sampling and sample preparation to data interpretation.

  5. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    SciTech Connect

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-04-15

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  6. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  7. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-07

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures.

  8. Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device

    SciTech Connect

    Fujii, K.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2013-01-15

    We observe the Balmer-{alpha}, -{beta}, and -{gamma} lines of hydrogen atoms and Q branches of the Fulcher-{alpha} band of hydrogen molecules simultaneously with their polarization resolved for large helical device. From the fit including the line splits and the polarization dependences by the Zeeman effect, the emission locations, intensities, and the temperatures of the atoms and molecules are determined. The emission locations of the hydrogen atoms are determined outside but close to the last closed flux surface (LCFS). The results are consistent with a previous work (Phys. Plasmas 12, 042501 (2005)). On the other hand, the emission locations of the molecules are determined to be in the divertor legs, which is farer from those of the atoms. The kinetic energy of the atoms is 1 {approx} 20 eV, while the rotational temperature of molecules is {approx}0.04 eV. Additionally, substantial wings, which originate from high velocity atoms and are not reproduced by the conventional spectral analysis, are observed in the Balmer line profiles. We develop a one-dimensional model to simulate the transport of the atoms and molecules. The model reproduces the differences of the emission locations of the atoms and molecules when their initial temperatures are assumed to be 3 eV and 0.04 eV, respectively. From the model, the wings of the Balmer-{alpha} line is attributed to the high velocity atoms exist deep inside the LCFS, which are generated by the charge exchange collisions with hot protons there.

  9. Cost and Performance Report: Innovative Welding Technologies Using Silicon Additives to Control Hazardous Air Pollutant (HAP) Emissions

    DTIC Science & Technology

    2013-08-30

    AES inductively coupled plasma -atomic emission spectroscopy IDST insulated double shroud torch Ipm inches per minute KIGAM Korean Institute of...exposure limit PERC Particle Engineering Research Center PPE personal protective equipment PTFE polytetrafluoroethylene (teflon) PVC polyvinyl...Analysis of total metals (Fe, Cu, Cr, Ni, and Mn) was carried out with inductively coupled plasma -atomic emission spectroscopy (ICP-AES

  10. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  11. Single-Photon Emission of a Hydrogenlike Atom

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2016-11-01

    Implementing a previously obtained, original solution of the Dirac equation for an electron in the field of a nucleus ( Ze) expressed in terms of the wave function of the corresponding Schrödinger equation and its derivatives in spherical coordinates and the spin projection operator Σ3 associated with the eigenfunction, taking into account in each component of the spinor the leading term of the expansion in the small parameter ( Zα), α = e 2 / ħc ≈ 1 / 137, the partial probabilities W of emission of a photon ( Zα)* → ( Zα) + γ have been calculated. Here two orthogonal states of the linear polarization of the photon, and also the spin states of the electron, which previously had not been taken into consideration, have been taken into account in the transverse gauge. It turns out that the probabilities W of emission of a photon per unit time for any allowed transitions are proportional to (Zα)4, as was previously accepted, and the selection rules for the quantum number m have the usual form ∆ m = 0,±1. It was found that a spin flip does not take place during emission. In contrast to the customary situation with the selection rules for the quantum number l being of the form ∆ l = ±1, for ∆ m = ±1 there also exist integrals over dcosθ which are not equal to zero for undetermined odd values of ∆ l. In this, and also in a fundamentally different dependence of the amplitude on the quantum numbers consist the differences from the traditional approach to the problem. Necessary conditions are formulated, under the fulfillment of which the selection rules for l are not changed, having values ∆ l = ±1 for arbitrary ∆ m, but it was not possible, however, to give a complete proof of these rules.

  12. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    PubMed

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  13. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  14. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    SciTech Connect

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences is necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.

  15. Chemical analysis of impurity boron atoms in diamond using soft X-ray emission spectroscopy.

    PubMed

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D

    2008-07-01

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  16. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  17. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  18. Effects of atomic oxygen on OH Meinel emission bands in the MLT region

    NASA Astrophysics Data System (ADS)

    Von Savigny, Christian; Lednyts'kyy, Olexandr

    The OH Meinel airglow is one of the most prominent features of the terrestrial nightglow and has been employed for several decades to remotely sense the mesopause region. However, some aspects of the OH kinetics are still not fully understood. In this contribution we present recent results on the importance of quenching by atomic oxygen on the vertical distribution of different OH Meinel bands. OH Meinel emissions from different vibrational levels are known to occur at slightly different altitudes in the terrestrial airglow with emissions originating from higher vibrational levels peaking at higher altitudes. Our earlier model studies suggested quenching by atomic oxygen to be a principal cause of these vertical shifts. Here we employ the tropical mesopause region - characterized by pronounced semiannual variations - as a natural laboratory to test the hypothesis that vertical shifts between different OH Meinel bands are a consequence of quenching by atomic oxygen. Multiyear nighttime satellite measurements of OH(3-1) and OH(6-2) volume emission rate profiles and atomic oxygen with SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) on Envisat are used. The MLT atomic oxygen profiles are retrieved from measurements of the O(1S-1D) green line emission based on the accepted 2-step excitation scheme and a semi-empirical photochemical model. The results clearly demonstrate that vertical shifts between the OH bands investigated are indeed correlated with the amount of atomic oxygen in the upper mesosphere, corroborating the hypothesis that quenching by atomic oxygen is a driver for the vertical shifts between different OH Meinel bands.

  19. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  20. Atomic nuclei decay modes by spontaneous emission of heavy ions

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Ivaşcu, M.; Sndulescu, A.; Greiner, Walter

    1985-08-01

    The great majority of the known nuclides with Z>40, including the so-called stable nuclides, are metastable with respect to several modes of spontaneous superasymmetric splitting. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relative to the alpha decay for these natural radioactivities. From a huge amount of systematic calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained from parent-emitted heavy ion combinations leading to a magic (208Pb) or almost magic daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-lives in the range of 1010-1030 s: 5He, 8-10Be, 11,12B, 12-16C, 13-17N, 15-22O, 18-23F, 20-26Ne, 23-28Na, 23-30Mg, 27-32Al, 28-36Si, 31-39P, 32-42S, 35-45Cl, 37-47Ar, 40-49 K, 42-51. . .Ca, 44-53 Sc, 46-53Ti, 48-54V, and 49-55 Cr. The shell structure and the pairing effects are clearly manifested in these new decay modes.

  1. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  2. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  3. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  4. DYNAMICS OF ATOMIC AND MOLECULAR EMISSION FEATURES FROM NANOSECOND, FEMTOSECOND LASER AND FILAMENT PRODUCED PLASMAS

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    In this presentation, the persistence of atomic, and molecular emission features and its relation to fundamental properties (temperature and density) of ablation plumes generated using various irradiation methods (ns, fs, filaments) will be discussed in detail along with its implications for remote sensing applications.

  5. Direct determination of Cu by liquid cathode glow discharge-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Lu, Quanfang; Yang, Shuxiu; Sun, Duixiong; Zheng, Jidong; Li, Yun; Yu, Jie; Su, Maogen

    2016-11-01

    In this study, a novel liquid cathode glow discharge-atomic emission spectrometry was developed for the direct determination of Cu in aqueous solutions, in which the glow discharge plasma was produced in the solution between the needle-like Pt cathode and the electrolyte around it. The effects of discharge voltage, solution pH, and the ionic surfactant cetyltrimethylammonium chloride (CTAC) on emission intensities were investigated. The limit of detection (LOD) of Cu was compared with those measured by closed-type electrolyte cathode discharge-atomic emission spectrometry (ELCAD-AES). The results showed that the optimal operation conditions are voltage of 135 V, a pH of 1, and addition of 0.15% CTAC. CTAC can enhance the emission intensity and lower the LOD of Cu I. The net intensity of atomic emission lines of Cu I at 324.8 nm with 0.15% CTAC improved by 1.5 fold, and the LODs of the Cu at 135 V with 0.15% CTAC and without CTAC are 0.019 and 0.234 mg L- 1, respectively. The analytical capability of Cu in this study is comparable to the closed-type ELCAD-AES, and it satisfied the recommended levels of Cu in the WHO standards for drinking-water quality. This technique can be effectively used for on-line monitoring of metal ions in aqueous samples.

  6. [Research on the atomic emission spectroscopy of atmospheric pressure plasma process].

    PubMed

    Jin, Jiang; Li, Na; Xu, Lu; Wang, Bo; Jin, Hui-Liang

    2013-02-01

    In the reaction of the atmospheric pressure plasma process, the heat stable process of the atmospheric pressure plasma jet has a direct impact on the removal rate, CF4 is the provider of active F* atom, O2 is important auxiliary gas, and they play an important role in the process. In order to research the rule of the concentration of the 3 parameters upon the atmospheric pressure plasma processing, the atmospheric pressure plasma jet was used for processing and the spectrometer was used to monitor the changes in the process. The experiment indicates that: when the heat is stable, the concentration of the active F* atom essentially remains unchanged; with increasing the concentration of gas CF4, the spectrum of the active F* atom has self-absorption phenomena, so using the atomic emission spectroscopy method to monitor the changes in the concentration of active F* atom generated by CF4 is not completely exact; because O2 can easily react with the dissociation product of CF4, which inhibits the compound of the active F* atom, so in a certain range with increasing the concentration of gas O2, the concentration of the active F* atom becomes strong.

  7. Spectral Emission of fast non-Maxwellian Atoms at metallic Surfaces in low density Plasmas

    NASA Astrophysics Data System (ADS)

    Dickheuer, Sven; Marchuk, Oleksandr; Brandt, Christian; Pospieszczyk, Albrecht

    2016-09-01

    We have observed Doppler shifted components of the Balmer-lines emitted by fast non-Maxwellian atoms using different targets in a linear magnetized plasma in the PSI-2 device. In a pure hydrogen plasma the Doppler shifted components of the Balmer emission lines cannot be detected above the signal-to-noise-ratio. However, in a mixed H/Ar plasma with composition of 1:1 the Doppler red- and blue-shifted components can be clearly observed. The Balmer-lines are analyzed by optical emission spectroscopy at observations angles of 35° and 90°. For target materials we use Ag, Pd, Fe and C. An acceleration potential can be applied to the target to change the kinetic energy of the incoming ions between 40 and 200 eV enabling the observation of the Doppler shifted components. The emission mechanism is discussed in details and is probably due to excitation transfer from metastable argon atoms to the fast hydrogen atoms. The Doppler shifted signal can be used to determine the properties of the surfaces, e.g., the energy and angular distribution of reflected atoms. Also the spectral reflectance of the target surface can be obtained and tested against the reference data and measurements with light calibration sources.

  8. Angle-resolved 2D imaging of electron emission processes in atoms and molecules

    SciTech Connect

    Kukk, E.; Wills, A.A.; Langer, B.; Bozek, J.D.; Berrah, N.

    2004-09-02

    A variety of electron emission processes have been studied in detail for both atomic and molecular systems, using a highly efficient experimental system comprising two time-of-flight (TOF) rotatable electron energy analyzers and a 3rd generation synchrotron light source. Two examples are used here to illustrate the obtained results. Firstly, electron emissions in the HCL molecule have been mapped over a 14 eV wide photon energy range over the Cl 2p ionization threshold. Particular attention is paid to the dissociative core-excited states, for which the Auger electron emission shows photon energy dependent features. Also, the evolution of resonant Auger to the normal Auger decay distorted by post-collision interaction has been observed and the resonating behavior of the valence photoelectron lines studied. Secondly, an atomic system, neon, in which excitation of doubly excited states and their subsequent decay to various accessible ionic states has been studied. Since these processes only occurs via inter-electron correlations, the many body dynamics of an atom can be probed, revealing relativistic effects, surprising in such a light atom. Angular distribution of the decay of the resonances to the parity unfavored continuum exhibits significant deviation from the LS coupling predictions.

  9. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  10. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    SciTech Connect

    Jen, H.H.

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  11. Electron ionization of metastable nitrogen and oxygen atoms in relation to the auroral emissions

    NASA Astrophysics Data System (ADS)

    Pandya, Siddharth; Joshipura, K. N.

    Atomic and molecular excited metastable states (EMS) are exotic systems due to their special properties like long radiative life-time, large size (average radius) and large polarizability along with relatively smaller first ionization energy compared to their respective ground states (GS). The present work includes our theoretical calculations on electron impact ionization of metastable atomic states N( (2) P), N( (2) D) of nitrogen and O( (1) S), O( (1) D) of oxygen. The targets of our present interest, are found to be present in our Earth's ionosphere and they play an important role in auroral emissions observed in Earth’s auroral regions [1] as also in the emissions observed from cometary coma [2, 3] and airglow emissions. In particular, atomic oxygen in EMS can radiate, the visible O( (1) D -> (3) P) doublet 6300 - 6364 Å red doublet, the O( (1) S -> (1) D) 5577 Å green line, and the ultraviolet O( (1) S -> (3) P) 2972 Å line. For metastable atomic nitrogen one observes the similar emissions, in different wavelengths, from (2) D and (2) P states. At the Earth's auroral altitudes, from where these emissions take place in the ionosphere, energetic electrons are also present. In particular, if the metastable N as well as O atoms are ionized by the impact of electrons then these species are no longer available for emissions. This is a possible loss mechanism, and hence it is necessary to analyze the importance of electron ionization of the EMS of atomic O and N, by calculating the relevant cross sections. In the present paper we investigate electron ionization of the said metastable species by calculating relevant total cross sections. Our quantum mechanical calculations are based on projected approximate ionization contribution in the total inelastic cross sections [4]. Detailed results and discussion along with the significance of these calculations will be presented during the COSPAR-2014. References [1] A.Bhardwaj, and G. R. Gladstone, Rev. Geophys., 38

  12. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    PubMed

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-03-30

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.

  13. On-line collection/concentration and determination of transition and rare-earth metals in water samples using Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Katarina, Rosi Ketrin; Oshima, Mitsuko; Motomizu, Shoji

    2009-05-15

    On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N'-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.

  14. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  15. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    SciTech Connect

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  16. Optimized microwave-assisted decomposition method for multi-element analysis of glass standard reference material and ancient glass specimens by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Zachariadis, G; Dimitrakoudi, E; Anthemidis, A; Stratis, J

    2006-02-28

    A novel microwave-assisted wet-acid decomposition method for the multi-element analysis of glass samples using inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed and optimized. The SRM 621 standard reference glass material was used for this purpose, because it has similar composition with either archaeological glass specimens or common modern glasses. For the main constituents of SRM 621 (Ca, Na, Al, Fe, Mg, Ba and Ti), quality control data are given for all the examined procedures. The chemical and instrumental parameters of the method were thoroughly optimized. Thirteen acid mixtures of hydrochloric, nitric, and hydrofluoric acids in relation to two different microwave programs were examined in order to establish the most efficient protocol for the determination of metals in glass matrix. For both microwave programs, an intermediate step was employed with addition of H(3)BO(3) in order to compensate the effect of HF, which was used in all protocols. The suitability of the investigated protocols was evaluated for major (Ca, Na, Al), and minor (Fe, Mg, Ba, Ti, Mn, Cu, Sb, Co, Pb) glass constituents. The analytes were determined using multi-element matrix matched standard solutions. The analytical data matrix was processed chemometrically in order to evaluate the examined protocols in terms of their accuracy, precision and sensitivity, and eventually select the most efficient method for ancient glass. ICP-AES parameters such as spectral line, RF power and sample flow rate were optimized using the proposed protocol. Finally, the optimum method was successfully applied to the analysis of a number of ancient glass fragments.

  17. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  18. Automated diagnostics of a magnetron discharge plasma based on atomic molecular emission spectra

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Zimin, A. M.; Krivitskiy, S. E.; Serushkin, S. V.; Troynov, V. I.

    2012-12-01

    A software-hardware complex intended for investigating spatial distributions of the plasma spectral emissivity is described. It allows us to record and identify the lines and systems of molecular bands in an automatic mode and to perform computer processing of spectra. Molecular bands of deuterium for different electronic-vibrational-rotational transitions are identified. The excitation temperatures of atomic levels, translational, rotational and vibrational temperatures are estimated for a discharge in a planar magnetron.

  19. Decoherence by spontaneous emission: A single-atom analog of superradiance

    NASA Astrophysics Data System (ADS)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2016-12-01

    We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the influence functional method. These terms are respectively related to the strength of the coupling between system and environment, and to the quality of the information about the system leaking into the environment. While the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when only partial information about the system is obtained from the disturbed environment. The nonlocal contribution contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a trap, may be applied to a variety of quantum systems.

  20. Pulsed cooperative backward emissions from non-degenerate atomic transitions in sodium

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Ballmann, Charles W.; Cai, Han; Yi, Zhenhuan; Rostovtsev, Yuri V.; Sokolov, Alexei V.; Hemmer, Phillip; Zheltikov, Aleksei M.; Ariunbold, Gombojav O.; Scully, Marlan O.

    2014-10-01

    We study backward cooperative emissions from a dense sodium atomic vapor. Ultrashort pulses produced from a conventional amplified femtosecond laser system with an optical parametric amplifier are used to excite sodium atoms resonantly on the two-photon 3S1/2-4S1/2 transition. Backward superfluorescent emissions (BSFEs), both on the 4S1/2-3P3/2 and 4S1/2-3P1/2 transitions, are observed. The picosecond temporal characteristics of the BSFE are observed using an ultrafast streak camera. The power laws for the dependencies of the average time delay and the intensity of the BSFEs on input power are analyzed in the sense of cooperative emission from nonidentical atomic species. As a result, an absolute (rather than relative) time delay and its fluctuations (free of any possible external noise) are determined experimentally. The possibility of a backward swept-gain superfluorescence as an artificial laser guide star in the sodium layer in the mesosphere is also discussed.

  1. ICP-MS Workshop

    SciTech Connect

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  2. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  3. Association between ICP pulse waveform morphology and ICP B waves.

    PubMed

    Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao

    2012-01-01

    The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.

  4. Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases: A Green's-function approach

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Michael

    1999-09-01

    Spontaneous emission and Lamb shift of atoms in absorbing dielectrics and dense atomic gases are discussed using a microscopic Green's-function approach. Uncorrelated and random atomic positions are assumed, and the associated unphysical interactions between different atoms at the same location are eliminated (local field correction). For the case of an atom in a purely dispersive medium, the spontaneous-emission rate is altered by the well-known Lorentz local-field factor. When the mean distance between atoms becomes less than the resonance wavelength, results different from previously suggested expressions are found. In particular, it is shown that nearest-neighbor interactions become important. The results suggest that, for large densities, absorbing disordered dielectrics cannot accurately be described by a macroscopic approach that neglects correlations between atomic positions.

  5. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  6. Study of atomic oxygen greenline dayglow emission in thermosphere during geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Bag, T.; Singh, Vir; Sunil Krishna, M. V.

    2017-01-01

    The influence of geomagnetic storms on the atomic oxygen greenline (557.7 nm) dayglow emission in thermosphere is studied during solar active and solar quiet conditions. This study is primarily based on the photochemical model with inputs obtained from experimental observations and empirical models. The updated rate coefficients, quantum yields and related cross-sections have been used from experimental results and theoretical studies. This study is presented for a low latitude station Tirunelveli (8.7°N, 77.8°E), India. The volume emission rate (VER) has been calculated using densities and temperatures from the empirical models. The modeled VER shows a positive correlation with the Dst index. The VER also shows a negative correlation with the number densities of O, O2, and N2. The VER, calculated at peak emission altitude, exhibits depletion during the main phase of the storm. The altitude of peak emission rate is unaffected by the geomagnetic storm activity. The study also reveals that the peak emission altitude depends on the F10.7 solar index. The peak emission altitude moves upward as the value of F10.7 solar index increases.

  7. Real-time emission spectrum from a hybrid atom-optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Mirza, Imran

    Hybrid quantum systems are promising candidates for opening new avenues for quantum technologies [G. Kurizki et. al, PNAS, 112 (13), 3866-3873 (2015)]. Hybrid atom-optomechanical (HAOM) systems set an intriguing example in this context. From the perspective of practical utilizations of these HAOM systems in future quantum devices, it is crucial to fully understand the excitation dynamics as well as the spectral features of these systems. In this poster, I'll present my calculations of single-photon time-dependent (TD) spectrum emitted by such a HAOM system in a strong atom-cavity as well as strong cavity-mechanics (strong-strong) coupling regime [``Real-time emission spectrum from a hybrid atom-optomechanical cavity'', Imran M. Mirza, J. Opt. Soc. Am. B, 32 (8), 1604-1614 (2015)]. In order to make the system more realistic the effects of dissipation through the mechanical oscillator, optical cavity and spontaneous emission from the two-level emitter are also incorporated. The TD spectrum reveals some novel features that are not possible to observe otherwise. For instance, time order in which different side bands appears which explains different photon-phonon interactions responsible for the production of distinct spectral resonances. .

  8. Influence of Helium Atoms Absorption on the Emission Properties of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Umaev, S. M.; Levchenko, A. A.; Kolesnikov, N. N.; Filatov, S. V.

    2017-04-01

    We investigated the emission properties of charge sources based on carbon nanotubes prepared by arc discharge deposition of nanotubes onto a flat copper substrate (Borisenko et al. in Instrum Exp Tech 57(6):755, 2014; Low Temp Phys 41(7):567, 2015). The charge sources were submerged into superfluid helium at temperature T=1.3 K. The collector fixed above the charge source at a distance of 0.3 mm was connected to an electrometer. The current of charges was measured by the electrometer when a high voltage was applied to the charge source. In the originally prepared source, the emission of charges (electrons) on the level of 10^{-10}A is observed at a negative voltage above U=80 V and increases with increasing voltage. If the source of charge was kept in liquid helium for 15 h, the current-voltage characteristic changed significantly. The current of charges on the same level of 10^{-10} A was registered at a voltage of U=150 V. Extraction of gases from the source placed in a vacuum chamber at room temperature for 48 h leads to the complete recovery of the emission properties. One can assume that the degradation of the emission properties of the sources is associated with the adsorption of helium atoms by carbon nanotubes at low temperatures. We did not observe any degradation of the emission properties of the charge sources in the case of positive charges injection into superfluid helium.

  9. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch...

  10. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch...

  11. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  12. Influence of spontaneous emission on a single-state atom interferometer

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Barrett, B.; Weel, M.; Chan, I.; Mok, C.; Cahn, S. B.; Kumarakrishnan, A.

    2008-01-01

    We have studied the effects of spontaneous emission (SE) on a single-state time domain atom interferometer (AI) that uses trapped Rb atoms. The AI uses two standing wave pulses separated by time T to produce an echo signal at time 2T due to interference between momentum states. We find that SE influences both the shape of the echo signal and its periodic time-dependent amplitude in a manner consistent with theoretical predictions. The results show that the time-dependent signal from the AI is related to the effective radiative decay rate of the excited state. We also present results that test theoretical predictions for several properties of the echo formation such as the variation in momentum transfer due to the change in the angle between the traveling wave components of the excitation pulses, strength of the atom-field interaction, and the effect of spatial profile of the excitation beams. These studies are important for realizing precision measurements of the atomic fine structure constant and gravity using this interferometer.

  13. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    NASA Astrophysics Data System (ADS)

    Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.

    2010-02-01

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  14. [Determination of trace niobium and tantalum in rock sample by atomic emission spectrometry].

    PubMed

    Li, Hui-zhi; Zhou, Chang-li; Luo, Chuan-nan

    2002-10-01

    This paper describes the determination of trace Nb and Ta in sample using carbon powder and hafnium oxide as buffer by atomic emission spectrometry (AES). Hafnium has been selected as internal standard, since it has scinilar evaporation curve as those of Nb and Ta. Samples can be analyzed without chemical pretreatment. The sample was directly loaded onto the ordinary electrode. The method is simple, rapid and accurate. The range of determination for Nb and Ta are 0%-0.25% and 0%-0.125% respectively, and the detection limits are found to be 0.003% and 0.001%, respectively. Satisfactory results are obtained.

  15. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1980-01-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  16. Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.

    2007-01-01

    Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.

  17. Field electron emission of layered Bi2Se3 nanosheets with atom-thick sharp edges

    NASA Astrophysics Data System (ADS)

    Huang, Huihui; Li, Yuan; Li, Qi; Li, Borui; Song, Zengcai; Huang, Wenxiao; Zhao, Chujun; Zhang, Han; Wen, Shuangchun; Carroll, David; Fang, Guojia

    2014-06-01

    Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications.Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications

  18. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  19. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  20. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  1. A table of polyatomic interferences in ICP-MS

    USGS Publications Warehouse

    May, Thomas W.; Wiedmeyer, Ray H.

    1998-01-01

    Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are caused by atomic or molecular ions that have the same mass-to-charge as analytes of interest. Current ICP-MS instrumental software corrects for all known atomic “isobaric” interferences, or those caused by overlapping isotopes of different elements, but does not correct for most polyatomic interferences. Such interferences are caused by polyatomic ions that are formed from precursors having numerous sources, such as the sample matrix, reagents used for preparation, plasma gases, and entrained atmospheric gases.

  2. Numerical modelling of emission of a two-level atom near a metal nanoparticle with account for tunnelling of an electron from an atom into a particle

    SciTech Connect

    Fedorovich, S V; Protsenko, I E

    2016-01-31

    We report the results of numerical modelling of emission of a two-level atom near a metal nanoparticle under resonant interaction of light with plasmon modes of the particle. Calculations have been performed for different polarisations of light by a dipole approximation method and a complex multipole method. Depending on the distance between a particle and an atom, the contribution of the nonradiative process of electron tunnelling from a two-level atom into a particle, which is calculated using the quasi-classical approximation, has been taken into account and assessed. We have studied spherical gold and silver particles of different diameters (10 – 100 nm). The rates of electron tunnelling and of spontaneous decay of the excited atomic state are found. The results can be used to develop nanoscale plasmonic emitters, lasers and photodetectors. (nanooptics)

  3. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  4. Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Finlayson-Pitts, B. J.

    2003-01-01

    The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.

  5. ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.

    PubMed

    Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard

    2012-12-15

    The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1).

  6. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method.

    PubMed

    Nicolás, Paula; Lassalle, Verónica L; Ferreira, María L

    2017-02-01

    The aim of this manuscript was to study the application of a new method of protein quantification in Candida antarctica lipase B commercial solutions. Error sources associated to the traditional Bradford technique were demonstrated. Eight biocatalysts based on C. antarctica lipase B (CALB) immobilized onto magnetite nanoparticles were used. Magnetite nanoparticles were coated with chitosan (CHIT) and modified with glutaraldehyde (GLUT) and aminopropyltriethoxysilane (APTS). Later, CALB was adsorbed on the modified support. The proposed novel protein quantification method included the determination of sulfur (from protein in CALB solution) by means of Atomic Emission by Inductive Coupling Plasma (AE-ICP). Four different protocols were applied combining AE-ICP and classical Bradford assays, besides Carbon, Hydrogen and Nitrogen (CHN) analysis. The calculated error in protein content using the "classic" Bradford method with bovine serum albumin as standard ranged from 400 to 1200% when protein in CALB solution was quantified. These errors were calculated considering as "true protein content values" the results of the amount of immobilized protein obtained with the improved method. The optimum quantification procedure involved the combination of Bradford method, ICP and CHN analysis.

  7. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  8. Near-threshold emission of electrons during grazing scattering of keV Ne atoms from an Al(111) surface

    SciTech Connect

    Matulevich, Y.; Lederer, S.; Winter, H.

    2005-01-15

    The number of electrons emitted during grazing scattering of Ne atoms with kilo-electron-volt energies from an Al(111) surface is recorded in coincidence with the energy loss of scattered projectiles. Irrespective of the total projectile energies used, we observe a pronounced increase of total electron emission yields when the energy for motion normal to the surface exceeds about 25 eV. Based on energy loss spectra and classical computer simulations of projectile trajectories we attribute electron emission under these scattering conditions to a promotion mechanism in binary collisions between Ne and Al target atoms resulting in single and double excitations of projectiles.

  9. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  10. Determination of trace elements in uranium by inductively coupled plasma-atomic emission spectrometry using Kalman filtering

    SciTech Connect

    Veen, E.H. van; de Loos-Vollebregt, T.C. de; Wassink, A.P.; Kalter, H.

    1992-08-01

    Trace impurities in uranium hexafluoride were analyzed by ICP-AES. The data were reduced using a Kalman filtering technique. Normally, multiple extraction steps are required for this analysis using conventional ICP-AES.

  11. [Application of atomic emission spectroscopy analysis in the atmospheric pressure plasma polishing process study].

    PubMed

    Wang, Bo; Zhang, Ju-Fan; Dong, Shen

    2008-07-01

    The atmospheric pressure plasma polishing (APPP) is a novel precision machining technology. It performs the atom scale material removal based on low temperature plasma chemical reactions. As the machining process is chemical in nature, it avoids the surface/subsurface defects usually formed in conventional mechanical machining processes. APPP firstly introduces a capacitance coupled radio frequency (RF) plasma torch to generate reactive plasma and excite chemical reactions further. The removal process is a complicated integrating action which tends to be affected by many factors, such as the gas ratio, the RF power and so on. Therefore, to improve the machining quality, all the aspects should be considered and studied, to establish the foundation for further model building and theoretical analysis. The atomic emission spectroscopy analysis was used to study the process characteristics. A commercial micro spectrometer was used to collect the spectrograms under different parameters, by comparing which the influence of the RF power and gas ratio was initially studied. The analysis results indicate that an increase in RF power results in a higher removal rate within a certain range. The gas ratio doesn't show obvious influence on the removal rate and surface roughness in initial experiments, but the element compositions detected by X-ray photoelectron spectroscopy technology on the machined surfaces under different ratios really indicate distinct difference. Then the theoretical analysis revealed the corresponding electron transition orbits of the excited reactive fluorine atoms, which is necessary for further mechanism research and apparatus improvement. Then the initial process optimization was made based on the analysis results, by which the Ra 0.6 nm surface roughness and 32 mm3 x min(-1) removal rate were achieved on silicon wafers.

  12. Lead isotope ratios in lichen samples evaluated by ICP-ToF-MS to assess possible atmospheric pollution sources in Havana, Cuba.

    PubMed

    Alvarez, Alfredo Montero; Estévez Alvarez, Juan R; do Nascimento, Clístenes Williams Araújo; González, Iván Pupo; Rizo, Oscar Díaz; Carzola, Lázaro Lima; Torres, Roberto Ayllón; Pascual, Jorge Gómez

    2017-01-01

    Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The (206)Pb/(207)Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 μg L(-1)) confirms the official statement that leaded gasoline is no longer used in Cuba.

  13. Four-level atom dynamics and emission statistics using a quantum jump approach

    NASA Astrophysics Data System (ADS)

    Sandhya, S. N.

    2007-01-01

    Four-level atom dynamics is studied in a ladder system in the nine parameter space consisting of driving field strengths, detunings and decay constants, {Ω1,Ω2,Ω3,Δ1,Δ2,Δ3,Γ2,Γ3,Γ4} . One can selectively excite or induce two-level behavior between particular levels of ones choice by appropriately tuning the driving field strengths at three-photon resonance. The dynamics may be classified into two main regions of interest (i) small Ω2 coupling the ∣2⟩-∣3⟩ transition and (ii) large Ω2 . In case (i) one sees two-level behavior consisting of adjacent levels and in a particular region in the parameter space, there is an intermittent shelving of the electrons in one of the two subsystems. In case (ii) the levels consist of the ground state and the upper most level. Emission statistics is studied using the delay function approach in both the cases. In case (i), the behavior of the second order correlation function g2(t) , is similar to that of two-level emission for low Ω1 coupling the ∣1⟩-∣2⟩ transition, and the correlation increases with Ω1 for smaller time delays. While, in case (ii) when, in addition, Ω3 coupling the ∣3⟩-∣4⟩ transitionis kept low, g2(t) shows superpoissonian distribution, which may be attributed to three-photon processes.

  14. Fluorescence emission of Ca-atom from photodissociated Ca2 in Ar doped helium droplets. II. Theoretical.

    PubMed

    Hernando, A; Masson, A; Briant, M; Mestdagh, J-M; Gaveau, M-A; Halberstadt, N

    2012-11-14

    The stability of the ground or excited state calcium atom in an argon-doped helium droplet has been investigated using an extension of the helium density functional method to treat clusters. This work was motivated by the experimental study presented in a companion paper, hereafter called Paper I [A. Masson, M. Briant, J. M. Mestdagh, M. A. Gaveau, A. Hernando, and N. Halberstadt, J. Chem. Phys. 137, 184310 (2012)], which investigated Ca(2) photodissociation in an argon-doped helium droplet and the nature of the fluorescent species. It is found that one single argon atom is sufficient to bring the calcium atom inside the droplet, for droplets of over 200 helium atoms. The absorption and emission spectra of CaAr(M) (M = 0-7) clusters have been simulated using the recently developed density sampling method to describe the influence of the helium environment. Absorption spectra exhibit broad, double bands that are significantly blueshifted with respect to the calcium atomic line. The emission spectra are less broad and redshifted with respect to the calcium resonance line. The shifts are found to be additive only for M ≤ 2, because only the first two argon atoms are located in equivalent positions around the calcium p orbital. This finding gives a justification for the fit presented in the companion paper, which uses the observed shifts in the emission spectra as a function of argon pressure to deduce the shifts as a function of the number of argon atoms present in the cluster. An analysis of this fit is presented here, based on the calculated shifts. It is concluded that the emitting species following Ca(2) photodissociation in an argon-doped droplet in Paper I could be Ca∗Ar(M) in a partly evaporated droplet where less than 200 helium atoms remain.

  15. Environmental Indicators of Metal Pollution and Emission: An Experiment for the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Bowden, John A.; Nocito, Brian A.; Lowers, Russell H.; Guillette, Louis J., Jr.; Williams, Kathryn R.; Young, Vaneica Y.

    2012-01-01

    This experiment enlightens students on the use of environmental indicators and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and demonstrates the ability of these monitoring tools to measure metal deposition in environmental samples (both as a result of lab-simulated and real events). In this two-part study, the initial…

  16. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  17. SIMULTANEOUS DETERMINATION OF ORGANOTIN, ORGANOLEAD, AND ORGANOMERCURY COMPOUNDS IN ENVIRONMENTAL SAMPLES USING CAPILLARY GAS CHROMATOGRAPHY WITH ATOMIC EMISSION DETECTION

    EPA Science Inventory

    As part of a continuing evaluation of new analytical and sample preparation techniques conducted by the US Environmental Protection Agency (EPA), the use of capillary gas chromatography with atomic emission detection (GC-AED) for the simultaneous determination of organotin, organ...

  18. CAPILLARY GAS CHROMATOGRAPHY-ATOMIC EMISSION DETECTION METHOD FOR THE DETERMINATION OF PENTYLATED ORGANOTIN COMPOUNDS: INTERLABORATORY STUDY

    EPA Science Inventory

    A capillary gas chromatography-atomic emission detection (GC-AED) method was developed for the U. S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, NV, for determination of selected organotin compounds. Here we report on an interlabora...

  19. Analysis and Speciation of Lanthanoides by ICP-MS

    NASA Astrophysics Data System (ADS)

    Telgmann, Lena; Lindner, Uwe; Lingott, Jana; Jakubowski, Norbert

    2016-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g-1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents.

  20. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    SciTech Connect

    Nilsson, A.; Wassdahl, N.; Weinelt, M.

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  1. Practicality of Using Oxygen Atom Emissions to Evaluate the Habitability of Extra-Solar Planets

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.

    2005-12-01

    It has previously been proposed [Akasofu, 1999] that observation of the O(1S - 1D) green line from the atmospheres of extra-solar planets might be a marker for habitability. Guidance on this question is available within our own solar system. The green line is a dominant feature in the visible terrestrial nightglow, and the ultimate origin of its mesospheric emission is the three-body recombination of oxygen atoms. Until recently, it was believed that the green line was not a feature of the nightglows of the CO2 planets, Venus and Mars. It is now known that Venus at times shows green line emission with an intensity equal to terrestrial values [Slanger et al., 2001]. Furthermore, the intensity is quite variable, as is true for the much stronger O2( a-X) 1.27 μ emission. Recent observations of the Mars nightglow [Bertaux et al., 2005] give ambiguous results in the region of the O(1S-3P) line at 297.2 nm, but the same line in the dayglow is very strong, as evidenced in earlier Mariner results [Barth et al., 1971], and from the recent Mars Express data [F. Leblanc, private communication]. The O(1D-3P) 630 nm red line is a feature associated with Io, where dissociation of SO2 is a presumed source [Scherb et al., 1998]. Thus, observation of the oxygen green/red lines in the atmospheres of extrasolar planets provides insufficient information to reach conclusions about a habitable environment. Such detection would only indicate that there are oxygen-containing molecules present. Determination of an O2 column depth, by Fraunhofer A-band absorption, would be much more conclusive. Akasofu, S.-I., EOS, Transactions of the American Geophysical Union, 80, 397, 1999. Barth, C.A., C.W. Hord, J.B. Pearce, K.K. Kelly, G.P. Anderson, and A.I. Stewart, Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper Atmosphere Data, Journal of Geophysical Research, 76, 2213-2227, 1971. Bertaux, J.-L., F. Leblanc, S. Perrier, E. Quemerais, O. Korablev, E. Dimarellis, A. Reberac, F. Forget, P

  2. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-01

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 μL, 1-10 μL and 10-100 μL) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 μL volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg (~ 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 μL volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for "taking part of the lab to the sample" applications, such as testing for Cu concentration-compliance with the lead-copper rule of the Environmental

  3. Intra- and intercycle interference of electron emissions in laser-assisted XUV atomic ionization

    NASA Astrophysics Data System (ADS)

    Gramajo, A. A.; Della Picca, R.; Garibotti, C. R.; Arbó, D. G.

    2016-11-01

    We study the ionization of atomic hydrogen in the direction of polarization due to a linearly polarized XUV pulse in the presence of a strong IR laser. We describe the photoelectron spectra as an interference problem in the time domain. Electron trajectories stemming from different optical laser cycles give rise to intercycle interference energy peaks known as sidebands. These sidebands are modulated by a coarse-grained structure coming from the intracycle interference of the two electron trajectories born during the same optical cycle. We make use of a simple semiclassical model that offers the possibility to establish a connection between emission times and the photoelectron kinetic energy. We analyze such interference pattern as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity. We compare the semiclassical predictions with the continuum-distorted-wave strong-field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  4. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively.

  5. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350 °C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  6. [Determination of high concentrations of rubidium chloride by ICP-OES].

    PubMed

    Zhong, Yuan; Sun, Bai; Li, Hai-jun; Wang, Tao; Li, Wu; Song, Peng-sheng

    2015-01-01

    The method of ICP-OES for the direct determination of high content of rubidium in rubidium chloride solutions was studied through mass dilution method and optimizing parameters of the instrument in the present paper. It can reduce the times of dilution and the error introduced by the dilution, and improve the accuracy of determination results of rubidium. Through analyzing the sensitivity of the three detection spectral lines for rubidium ion, linearly dependent coefficient and the relative errors of the determination results, the spectral line of Rb 780. 023 nm was chosen as the most suitable wavelength to measure the high content of rubidium in the rubidium chloride solutions. It was found that the instrument parameters of ICP-OES such as the atomizer flow, the pump speed and the high-frequency power are the major factors for the determination of rubidium ion in the rubidium chloride solutions. As we know instrument parameters of ICP-OES have an important influence on the atomization efficiency as well as the emissive power of the spectral lines of rubidium, they are considered as the significant factors for the determination of rubidium. The optimization parameters of the instrument were obtained by orthogonal experiments and further single factor experiment, which are 0. 60 L . min-1 of atomizer flow, 60 r . min-1 of pump speed, and 1 150 W of high-frequency power. The same experiments were repeated a week later with the optimization parameters of the instrument, and the relative errors of the determination results are less than 0. 5% when the concentration of rubidium chloride ranged from 0. 09% to 0. 18%. As the concentration of rubidium chloride is 0. 06%, the relative errors of the determination results are -1. 7%. The determination of lithium chloride and potassium chloride in the high concentration of the aqueous solutions was studied under the condition of similar instrument parameters. It was found by comparison that the determination results of lithium

  7. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite.

    PubMed

    Tyson, J F; Palmer, C D

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3s) for selenium was 10microgL(-1), and for sulfide was 70microgL(-1) (200-microL injection volume). The calibration was linear for selenium up to 2mgL(-1) and to 10mgL(-1) for sulfide. The throughput was 180h(-1). The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  8. Angular dependence of Doppler profiles of atomic emission produced in electron-molecule collisions: Estimation of anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Nakashima, Keiji; Ogawa, Teiichiro

    1985-11-01

    The angular dependence of Doppler profiles of atomic fluorescence produced in electron impact dissociation of molecules was simulated in consideration of the effect of the anisotropy of dissociation and the ``polarization'' in magnetic sublevel. The asymmetry parameter b and the polarization of the electric vector of emission Jp are key parameters of Doppler profiles for the excited atom of known translational energy distribution. The difference of two Doppler profiles taken at 90° and 45°, which is denoted as angular difference Doppler profile, is shown to be useful to estimate these two key parameters.

  9. Excitation of O(1D) atoms in aurorae and emission of the forbidden OI 6300-A line

    NASA Technical Reports Server (NTRS)

    Rees, M. H.; Roble, R. G.

    1986-01-01

    The electron aurora leads to six processes capable of exciting the O(1D2) metastable state of the atomic-oxygen ground-state configuration, the parent state of the 6300-A red line. Altitude profiles of the volume emission rate resulting from each process are computed for Maxwellian electron spectra with characteristic energies between 0.1 and 2.0 keV. Since each process peaks at a different altitude, the sum or total volume emission rate extends over a wide altitude range. Measurements of 6300-A emission obtained by rocket and satellite-borne instruments are summarized, and it is shown that the chemical reaction of N(2D) with O2 is the major source of O(1D) atoms in the electron aurora. New calculations of the 6300-A:4728-A column emission-rate ratio are presented for a range of characteristic energies in an assumed Maxwellian electron spectrum. An approximate equation for the red-line emission per unit energy input is given as a function of electron-spectrum characteristic energy.

  10. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  11. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine A.; Martyshenko, Kseniia V.; Manuilova, Rada O.; Feofilov, Artem G.

    2016-09-01

    The main goal of this study is to propose and then to justify a set of methods for retrieving the [O] and [O3] altitude distributions from the observation of emissions of the excited oxygen molecules and O(1D) atom at daytime in the mesosphere and lower thermosphere (MLT) region. In other words, we propose retrieving the [O] and [O3] using the proxies. One of the main requirements for the proxy is that the measured value should be directly related to a variable of our interest while, at the same time, the influence of the proxies on [O3] and [O(3P)] should be minimal. For a comprehensive analysis of different O3 and O(3P) proxies, we use a full model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in the MLT of the Earth. Based on this model, we have tested five excited components; namely, O2(b1Σg+, v = 0, 1, 2), O2(a1Δg , v = 0) and O(1D) as the [O3] and [O(3P)] proxies in the MLT region. Using an analytical approach to sensitivity studies and uncertainty analysis, we have therefore developed the following methods of [O(3P)] and [O3] retrieval, which utilise electronic-vibrational transitions from the oxygen molecule second singlet level (O2(b1 Σg+, v = 0, 1, 2). We conclude that O2(b1 Σg+, v = 2) and O2(b1 Σg+, v = 0) are preferable proxies for [O(3P)] retrieval in the altitude range of 90-140 km, while O2(b1 Σg+, v = 1) is the best proxy for [O3] retrieval in the altitude range of 50-98 km.

  12. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury.

  13. Application of ICP-SFMS, ICP-AES integrate method to the geochemical characterization of ANDRILL-MIS oceanic sediment samples

    NASA Astrophysics Data System (ADS)

    Rugi, F.; Castellano, E.; Marino, F.; Ghedini, C.; Severi, M.; Becagli, S.; Traversi, R.; Udisti, R.

    2009-12-01

    An integrated system for the determination of 39 major and trace (including Rare Earths Elements -REE) metals in soils and marine sediments was set up by using Inductively Coupled Plasma - Sector Field Mass Spectrometry (ICP-SFMS) and Inductively Coupled Plasma - Atomic Emission Spectrophotometry (ICP - AES) devices, in order to achieve an extensive geochemical characterization. Major elements, in particular silicon, are also quantified with PIXE technique. Method selectivity, accuracy and reproducibility was evaluated analyzing six certified materials: Basalt, Hawaiian Volcanic Observatory (BHVO-1); Japanese Andesite (JA-2); Montana Soil (NIST 2711); Antarctic Sediment (CRM-MURST-ISS-A1); Antarctic Sediment (GBW 073113) e Antarctic Sediment (NIST 2702); after mineralization with fluoridric, nitric and perchloric acids on hot plate. The choice of the isotope (ICP-SFMS) or wavelength (ICP-AES) was addressed obtaining the best compromise between high sensitivity and suitable selectivity for the metal determination. Particular care was paid in optimizing analytical quantification of each species, because of the huge difference in concentration of major and trace elements in geological samples. For ICP-SFMS, high resolution (10,000 m/Δm) was selected for all metals to avoid isobaric interferences. An accurate blank evaluation was carried out, especially for metals present at sub-ppb levels in the extract solutions (REE and other trace elements). The obtained operative blank values included sample manipulation and digestion, reagent content and analytical procedures. ICP-SFMS and ICP-AES methods were applied to the characterization of the geochemical composition of sample from the first 90 m of Mc Murdo Ice Shelf (MIS) marine core, in the framework of the ANDRILL (ANtarctic DRILLing) Project. This international project aims to study the role of the Antarctic Continent within the global climatic system, by the recovery and analysis of two deep sediment cores (named MIS

  14. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  15. THAM for control of ICP.

    PubMed

    Zeiler, F A; Teitelbaum, J; Gillman, L M; West, M

    2014-10-01

    Our goal was to perform a systematic review of the literature on the use of tromethamine (THAM) and its effects on intracranial pressure (ICP) in patients with neurological illness. All articles from MEDLINE, BIOSIS, EMBASE, Global Health, HealthStar, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to February 2014), reference lists of relevant articles, and gray literature were searched. Two reviewers independently identified all manuscripts pertaining to the administration of THAM in human patients that recorded effects on ICP. Secondary outcomes of effect on cerebral perfusion pressure, mean arterial pressure, patient outcome, and adverse effects were recorded. Two reviewers independently extracted data including population characteristics and treatment characteristics. The strength of evidence was adjudicated using both the Oxford and GRADE methodology. Our search strategy produced a total 2,268 citations. Twelve articles, 9 manuscripts, and 3 meeting proceedings were considered for the review with all utilizing THAM while documenting ICP in neurosurgical patients. All studies were prospective. Across all studies, there were a total of 488 patients studied, with 263 receiving THAM and 225 serving as controls in a variety of heterogeneous studies. All but one study documented a decrease in ICP with THAM administration, with both bolus and continuous infusions. One study documented a reduction in cerebral perfusion pressure. No significant renal dysfunction, hepatocellular injury, or hypoglycemia were reported. Three prospective randomized control trials displayed trends to improved outcome in severe traumatic brain injury (TBI) patients with THAM administration. There currently exists Oxford level 2b, GRADE B evidence to support that THAM reduces ICP in the TBI and malignant ischemic infarct population, with minimal side effects. The literature suggests THAM may be useful for ICP reduction in certain cases, though the

  16. Atomizing characteristics of swirl can combustor modules with swirl blast fuel injectors. [in terms of NOX emission rate

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1980-01-01

    Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studues with the same swirl can combustors. It was found that the fuel injector design that gave the best combustor performance in terms of a low NOx emission index also gave the best atomizing performance as characterized by a spray of relatively small mean drop diameter. It was also demonstrated that at constant inlet air stream momentum the nitrogen oxides emission index was found to vary inversely with the square of the mean drop diameter of the spray produced by the different swirl blast fuel injectors. Test conditions were inlet air static pressures of 100,000 to 200,000 N/sq m at an inlet air temperature of 293 K.

  17. Exploring star formation in high-z galaxies using atomic and molecular emission lines

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten

    2016-03-01

    The conditions under which stars are formed and the reasons for triggering and quenching of starburst events in high-z galaxies, are still not well understood. Studying the interstellar medium (ISM) and the morphology of high-z galaxies are therefore key points in order to understand galaxy evolution. The cosmic star formation rate density peaks between 1>1, and low to moderate [CII] optical depth tau(CII)<1. Combining millimetre/sub-millimetre and optical data cubes for the high-z radio galaxy (HzRG) MRC0943-242, has revealed a much more complicated morphology than seen in the individual data sets. The millimetre/sub-millimetre observations data have allowed us to spatially separate of the AGN and starburst dominated components, which ~65 kpc apart. The optical data reveal structures of emitting and absorbing gas at multiple wavelengths. A deep high resolution millimetre/sub-millimetre study of the HzRG MRC1138-262, shows emission from water (H2O) and an unusually large amount of neutral atomic carbon ([CI]) relative to highly excited CO compared to lensed DSFGs. The

  18. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  19. The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure.

    NASA Astrophysics Data System (ADS)

    Leonovich, Ludmila; Leonovich, Vitaly; Tashchilin, Anatoly

    The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure was revealed at mid-latitudes. The paper presents the study results of the dependence of the observed emissions intensity from the sudden variations in the solar wind and the geomagnetic field. These results show a relationship of the emissions disturbance amplitude with the solar wind speed, as well as with the geomagnetic field variations. We used the zenith photometer optical data, the geomagnetic field and the total electron content variations obtained for the Eastern Siberia region (52(°) N, 103(°) E). The investigation was supported by the RFFI grants № 12-05-00024-а, № 13-05-00733.

  20. Effect of composition of electrolyte cathode on emission intensity of metal atoms in the discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sirotkin, N. A.; Titov, V. A.

    2017-01-01

    The emission spectra and the plasma parameters of discharges were investigated. Water solutions of copper and nickel chlorides with additions of sodium chloride were used as electrolyte cathodes. The change of the relative intensities of the emission lines of the elements (Cu and Ni) with increasing NaCl concentrations in the solution is shown. The gas temperature and the reduced electric field strength in the plasma were founded. The electron energy distribution function and the excitation rate coefficients for emitting states of copper and nickel atoms by the numerical solution of the Boltzmann equation were obtained. It was shown that in plasma emission spectroscopy measuring it is necessaryto considerthe correlation between rates of excitation and composition of the sample solution in order to determine the concentration of metal ions in the water solutions.

  1. The calibration of XRF polyethylene reference materials with k0-NAA and ICP-AES

    NASA Astrophysics Data System (ADS)

    Swagten, Josefien; Bossus, Daniël; Vanwersch, Hanny

    2006-08-01

    Due to the lack of commercially available polyethylene reference materials for the calibration of X-ray fluorescence spectrometers (XRF), DSM Resolve, in cooperation with PANalytical, prepared and calibrated such a set of standards in 2005. The reference materials were prepared based on the addition of additives to virgin polyethylene. The mentioned additives are added to improve the performance of the polymers. The elements present in additives are tracers for the used additives. The reference materials contain the following elements: F, Na, Mg, Al, Si, P, S, Ca, Ti and Zn in the concentration range of 5 mg/kg for Ti, up to 600 mg/kg for Mg. The calibration of the reference materials, including a blank, was performed using inductively coupled plasma atomic emission spectrometry (ICP-AES) and Neutron Activation Analysis ( k0-NAA). ICP-AES was used to determine the elements Na, Mg, Al, P, Ca, Ti and Zn whereas k0-NAA was used for F, Na, Mg, Al, Ca, Ti and Zn. Over the complete concentration range, a good agreement of the results was found between the both techniques. This project has shown that within DSM Resolve, it is possible to develop and to calibrate homogenous reference materials for XRF.

  2. Identify the injury implements by SEM/EDX and ICP-AES.

    PubMed

    Bai, Rufeng; Wan, Lihua; Li, Hongwei; Zhang, Zhong; Ma, Zhihua

    2007-02-14

    The forensic investigator is frequently confronted with the discrimination and deduction of injury implements, which is one of the most important physical testimonies in courts. The usual method used in actual cases is from points of morphology. In the forensic discrimination of injury implements, such as metal implements, the analysis and comparison of elements are expected to provide excellent results, and simultaneous multi-elemental analysis is required to analyze various kinds of elements. This study was designed to establish discrimination and deduction of metal injury implements by scanning electron microscope/energy disperse X-ray microanalyzer (SEM/EDX) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Examined metal particles in five wounds made on the skin of domestic pigs, respectively, using Cu-Zn or Cr-Ni coated and carbon steel kitchen implements by EDX. For carbon steel kitchen implements, analyzed five samples from the back and blade separately in the contents and varieties of elements by ICP-AES. In the wounds by the coated implements, the special particles only containing Cu, Zn or Cr, Ni were found. In the wounds by carbon steel kitchen implements, the particles containing Fe, Cr, Si or Fe, Mn, Si were found. The differences of contents of elements between the back and blade was no significant except No. 5 for carbon steel kitchen implements, and the significant differences of elements exited in Cr, Mn, Si, Cu, Mo among the stainless kitchen knives, Mn, Si among the other kitchen implements and for the blade of No. 5 knife, relative standard deviations (R.S.D.s) were significantly different in Mn, Si, Mo, Ti, S, P, Ni. Using EDX to examine the particles in wounds can deduce the categories of metal injury implements, and we can still deduce the different implements in the same category by ICP-AES.

  3. Low-Altitude Emission of Energetic Neutral Atoms: A New Diagnostic of the Energetics of Ion Precipitation

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Nair, H.

    2010-12-01

    We describe a new theoretical understanding of the emission of energetic neutral atoms (ENAs) generated by the precipitation of energetic magnetospheric ions into the Earth’s monatomic oxygen (O) exosphere (200-800 km). This low altitude emission (LAE) is the brightest ENA source in images obtained from Astrid-1/PIPPI, IMAGE/MENA/HENA, and TWINS1/2. The upward ENA “albedo” from the precipitating protons in the energy range 1-100 keV can approach 50% of the incident proton intensity. Unlike FUV imaging, ENA imaging of the LAE allows us to extract the detailed (not integrated) energy spectrum of the precipitating protons. We have verified this claim by comparing ENA images from TWINS 1/2 with in situ ion spectra measured by DMSP spacecraft (~825 km altitude) flying simultaneously under the ENA LAE regions (Bazell et al., J. Geophys. Res., in press 2010, and also this Conference). Quantitative extraction of proton spectra from the ENA images requires a “thick-target” theory that treats properly the multiple atomic collisions (charge exchange of protons, stripping ENA H-atoms) and associated energy losses (including ionization and excitation). Analytic solutions to the coupled proton/H-atom transport equations have been obtained, and they provide quantitative insight into the strong dependence of the ENA LAE upon the pitch angle and the energy of the precipitating protons. Since global ENA images of LAE can be obtained with exposure times of a minute or so during large geomagnetic storms, the distribution in magnetic latitude and local time of their evolving spectra contain critical diagnostics of the physics of not only the precipitation process, but also of the acceleration of the energetic ions themselves. Simulated 24 keV ENA low altitude emission viewed from TWINS-2 generated by precipitating protons below a DMSP pass (Bazell et al., JGR, in press, 2010).

  4. Bias and uncertainty in the absorption emission measurement of atomic sodium density in the SSME exit plane

    NASA Technical Reports Server (NTRS)

    Bauman, Leslie E.

    1990-01-01

    The measurement of atomic sodium concentration in the TTB 019 firing of April 1990 is significant in that it represents the first measurement of density at the exit plane of the space shuttle main engine. The knowledge of the sodium density, combined with the certainty that the exit plane of the plume is optically thin at the sodium D-line wavelengths, provides essential information for evaluation of diagnostic techniques using sodium atoms, such as resonant Doppler velocimetry for temperature, pressure, and velocity through high resolution fluorescent lineshape analysis. The technique used for the sodium atom line transmission (SALT) measurements is that of resonant absorption emission using a hollow cathode lamp as the reference source. Through the use of two-dimensional kinetic (TDK) predictions of temperature and density for the flight engine case and radiative transfer calculations, this line-of-sight spectrally integrated transmission indicates a sodium atom concentration, i.e., mole fraction, of 0.91e-10. The subject of this paper is the assumptions and measurement uncertainties tied into the calculation. Because of the narrow shape of the source emission, the uncertainties in the absorption profile could introduce considerable bias in the measurement. The following were investigated: (1) the inclusion of hyperfine splitting of the D-lines in the calculation; (2) the use of the flight engine predictions of plume temperature and density versus those for the large throat engine; (3) the assumption of a Gaussian, i.e., Doppler, distribution for the source radiance with a temperature of 400 K; (4) the use of atomic collisional shift and width values for the work by Jongerius; and (5) a Doppler shift for a 7 degree outward velocity vector at the plume edge. Also included in the study was the bias introduced by an uncertainty in the measurement of the D1/D2 line ratio in the source.

  5. Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators

    SciTech Connect

    Svidzinsky, Anatoly A.; Chang, J.-T.; Scully, Marlan O.

    2010-05-15

    We consider collective emission of a single photon from a cloud of N two-level atoms (one excited, N-1 ground state). For a dense cloud the problem is reduced to finding eigenfunctions and eigenvalues of an integral equation. We discuss an exact analytical solution of this many-atom problem for a spherically symmetric atomic cloud. Some eigenstates decay much faster then the single atom decay rate, while the others undergo very slow decay. We show that virtual processes yield a small effect on the evolution of rapidly decaying states. However, they change the long time dynamics from exponential decay into a power-law behavior which can be observed experimentally. For trapped states virtual processes are much more important yielding additional decay channels which results in a slow decay of the otherwise trapped states. We also show that quantum mechanical treatment of spontaneous emission of weakly excited atomic ensemble is analogous to emission of N classical harmonic oscillators.

  6. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds as the total metal (e.g., total arsenic), using inductively coupled plasma-atomic emission spectrometry.

  7. Mode transitions and electronegativity in oxygen CCP and ICP

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Wegner, Thomas

    2016-09-01

    Mode transitions in 13.56 MHz oxygen radio frequency plasmas (CCP, ICP) and their impact on the electron heating mechanisms and electronegativity were studied by advanced plasma diagnostics. In particular, Langmuir probe measurements, Gaussian beam microwave interferometry (160 GHz) coupled with laser photodetachment of negative oxygen ions, as well as the (phase resolved) optical emission and VUV absorption spectroscopy, and ion mass spectrometry are taken into consideration. With increasing RF power a transition between high and low electronegativity was found both in CCP and ICP discharge configuration. Thereby, the changed electron heating mechanisms, e.g., the alpha-gamma mode transition in CCP and the E-H mode transition in ICP is combined with the change of electronegativity. In strongly asymmetric CCP at moderate pressure the emission of secondary negative ions at the powered electrode have to be considered, too. Thereby, pseudo secondary electrons may be produced due to collision detachment of negative ion by metastables. During the E-H mode transition in oxygen ICP, the increasing gas temperature and the metastables influences significantly the oxygen kinetics. Supported by the DFG Collaborative Research Centre Transregio 24 ``Fundamentals of Complex Plasmas''.

  8. [Determination of heavy metals for RoHS compliance by ICP-OES spectrometry coupled with microwave extraction system].

    PubMed

    Hua, Li; Wu, Yi-Ping; An, Bing; Lai, Xiao-Wei

    2008-11-01

    The harm of heavy metals contained in electronic and electrical equipment (EEE) on environment is of high concern by human. Aiming to handle the great challenge of RoHS compliance, the determinations of trace or ultratrace chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb) by inductively coupled plasma optical emission spectrometry (ICP-OES) was performed in the present paper, wherein, microwave extraction technology was used to prepare the sample solutions. In addition, the precision, recovery, repeatability and interference issues of this method were also discussed. The results exhibited that using the microwave extraction system to prepare samples is more quick, lossless, contamination-free in comparison with the conventional extraction methods such as dry ashing, wet-oven extraction etc. By analyzing the recoveries of these four heavy metals over different working time and wavelengths, the good recovery range between 85% and 115% showed that there was only tiny loss or contamination during the process of microwave extraction, sample introduction and ICP detection. Repeatability experiments proved that ICP plasma had a good stability during the working time and the matrix effect was small. Interference was a problem troublesome for atomic absorption spectrometry (AAS), however, the techniques of standard additions or inter-element correction (IEC) method can effectively eliminated the interferences of Ni, As, Fe etc. with the Cd determination. By employing the multi-wavelengths and two correction point methods, the issues of background curve sloping shift and spectra overlap were successfully overcome. Besides, for the determinations of trace heavy metal elements, the relative standard deviation (RSD) was less than 3% and the detection limits were less than 1 microg x L(-10 (3sigma, n = 5) for samples, standard solutions, and standard additions, which proved that ICP-OES has a good precision and high reliability. This provided a reliable technique support

  9. Middle- and low-latitude emissions from energetic neutral atom precipitation seen from ATLAS 1 under quiet magnetic conditions

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.; Rohrbaugh, R. P.; Ishimoto, M.; Torr, M. R.; Torr, D. G.

    1994-01-01

    During the ATLAS 1 mission spectral observations were made at middle and low latitudes of features expected from the precipitation of energetic neutral atoms. The Imaging Spectrometric Observatory was used at night in the UV and visible with maximum gain. The tangent ray heights of the look directions ranged from near 100 km to near 200 km, and the geomagnetic conditions were quiet during the observations, which were made March 28 to April 3, 1992. The N2(+) 1N 391.4-nm and O I 130.4 and 135.6-nm emissions were observed at all latitudes, with lower emission rates at lower magnetic dip latitudes, except that enhancements in the O I lines were seen within 30 deg of the dip equator to radiative recombination of ionospheric plasma. The latitude profile observed for the N2(+) 1N emission did not show an equatorial or midlatitude peak. This implies that the source of energetic neutrals is more consistent with prompt charge exchange loss of freshly injected trapped ions with relatively low mirror heights (i.e., ions on higher L shells with equatorial pitch angle distributions nearly isotropic to the loss cone) than loss of highly eroded populations of particles with high mirror heights (i.e., ions on lower L shells with pancake equatorial pitch angle distributions). The N2(+) 1N emission rates have been compared with models of atmospheric emission due to fluxes of O/O(+) and H/H(+) in the thermosphere, as produced by energetic neutral oxygen or hydrogen atom precipitation. Energy deposition rates are inferred.

  10. Characterization of helium/argon working gas systems in a radiofrequency glow discharge atomic emission source. Part I: Optical emission, sputtering and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Christopher, Steven J.; Hartenstein, Matthew L.; Marcus, R. Kenneth; Belkin, Mikhail; Caruso, Joseph A.

    1998-08-01

    Studies are performed to determine the influence of discharge gas composition (helium/argon working gas mixtures) on the analyte emission signal intensities, sputtering rates, and DC-bias characteristics of an analytical radiofrequency glow discharge atomic emission spectroscopy (RF-GD-AES) source. As the partial pressure of He is increased from 0 to 15 torr, increased emission intensity is observed for a range of bulk and trace elements in NIST 1250 SRM (low alloy steel), regardless of the base pressure of Ar in the source (5 and 9 torr). In contrast to increases in analyte emission intensity of up to 300%, counterindicative decreases in the sputtering rates on the order of about 30-50% are observed. The magnitude of these effects depends on both the partial pressure of helium introduced to the source and the total pressure of the He and Ar gases. Use of relative emission yield (REY) to normalize changes in emission intensity to sputtering rates indicates that excitation efficiencies increase under these conditions. Increases in average electron energy and temperature appear to control this response. Decreases in both analyte emission intensities and sputter rates occur with increasing He partial pressure when the total pressure in the cell remains fixed (11 torr in these studies). Emission yields for the fixed pressure, mixed gas plasmas decrease as the partial pressure of He (He/Ar ratio) in the RF-GD source increases. In this case, decreases in electron number densities appear to dictate the lower REYs. Measurement of DC-bias values at the sample surface provide understanding with respect to the observed changes in sputtering rates as well as suggest the origins of changes in plasma electron energetics. Use of a diamond stylus profilometer provides both the quantitative sputter rate information as well as qualitative insights into the use of mixed gas plasmas for enhanced depth profiling capabilities. The analyte emission characteristics of these mixed gas

  11. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation

    NASA Astrophysics Data System (ADS)

    Sivakumaran, V.; Ajai, Kumar; K. Singh, R.; Prahlad, V.; C. Joshi, H.

    2013-03-01

    High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In order to identify different atomic processes in evolving plasma, time resolved spectral emission studies at different inter-pulse delays have been performed for ionic and neutral lithium lines emitting from different levels. Along with the enhancement in emission intensity, a large line broadening and spectral shift, especially in the case of excited state transition Li I 610.3 nm have been observed in the presence of the second pulse. This broadening and shift gradually decrease with increasing time delay. Another interesting feature is the appearance of a multi-component structure in the ionic line at 548.4 nm and these components change conversely into a single structure at the later stages of the plasma. The multi-component structures are correlated with the presence of different velocity (temperature) distributions in non-LTE conditions. Atomic analyses by computing photon emissivity coefficients with an ADAS code have been used to identify the above processes.

  12. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  13. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products.

  14. Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: A fractional calculus approach

    SciTech Connect

    Wu, J.-N.; Huang, C.-H.; Cheng, S.-C.; Hsieh, W.-F.

    2010-02-15

    Spontaneous emission (SE) from a two-level atom in an anisotropic photonic crystal (PC) is investigated by the fractional calculus. Physical phenomena of the SE are studied analytically by solving the fractional kinetic equations of the SE. There is a dynamical discrepancy between the SE of anisotropic and isotropic PCs. We find that, contrary to the SE phenomenon of the isotropic PC, the SE near the band edge of an anisotropic PC shows no photon-atom bound state. It is consistent with the experimental results of Barth, Schuster, Gruber, and Cichos [Phys. Rev. Lett. 96, 243902 (2006)] that the anisotropic property of the system enhances the SE. We also study effects of dispersion curvatures on the changes of the photonic density of states and the appearance of the diffusion fields in the SE.

  15. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    PubMed

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events.

  16. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement.

  17. Dislocation Emission at the Silicon/Silicon Nitride Interface: A Million Atom Molecular Dynamics Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Omeltchenko, Andrey; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya; Ebbsjö, Ingvar; Madhukar, Anupam

    2000-01-01

    Mechanical behavior of the Si\\(111\\)/Si3N4\\(0001\\) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the \\(1¯ 1¯1\\) plane of the silicon substrate with a speed of 500 \\(+/-100\\) m/s. Time evolution of the dislocation emission and nature of defects is studied.

  18. Dislocation emission at the Silicon/Silicon nitride interface: A million atom molecular dynamics simulation on parallel computers

    PubMed

    Bachlechner; Omeltchenko; Nakano; Kalia; Vashishta; Ebbsjo; Madhukar

    2000-01-10

    Mechanical behavior of the Si(111)/Si(3)N4(0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1; 1;1) plane of the silicon substrate with a speed of 500 (+/-100) m/s. Time evolution of the dislocation emission and nature of defects is studied.

  19. New method for determining relative oscillator strengths of atoms through combined absorption and emission measurements - Application to titanium /Ti I/

    NASA Technical Reports Server (NTRS)

    Cardon, B. L.; Smith, P. L.; Whaling, W.

    1979-01-01

    The paper introduces a procedure that combines measurements of absorption and emission by atoms to obtain relative oscillator strengths that are independent of temperature determination in the sources and of assumptions regarding local thermodynamic equilibrium. The experimental observations are formed into sets of transitions and required to satisfy defined ratios. The procedure is illustrated with the published data of Whaling et al. and Smith and Kuehne for 16 transitions in Ti I. It is shown that the relative oscillator strengths resulting from this procedure have calculated uncertainties between 5 and 17% (about 95% confidence level). Evidence is presented to suggest that these uncertainties have been overestimated.

  20. Retrieval of thermospheric atomic oxygen, nitrogen and temperature from the 732 NM emission measured by the ISO on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Fennelly, Judy A.; Torr, Douglas G.; Torr, Marsha R.; Richards, Phillip G.; Yung, Sopo

    1993-01-01

    The Imaging Spectrometric Observatory (ISO) was a part of the ATLAS 1 Mission flown on the shuttle Atlantis from March 24 to April 2, 1992. During limb scanning operations, the ISO measured the O+(2P) ion emission at 732 nm. We have used a numerical inversion technique to retrieve thermospheric atomic oxygen, molecular nitrogen and temperature profiles. These preliminary results indicate a lower thermospheric temperature cooler than that predicted by MSIS for the solar conditions during the mission. Although the densities agree at low altitudes, the reduced scale height produces O and N2 densities 25 percent lower than the MSIS at 300 km.

  1. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  2. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  3. Comment on ''Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission''

    SciTech Connect

    Sancho, Pedro; Plaja, Luis

    2011-06-15

    T. Tanabe et al. [Phys. Rev. A 82, 040101(R) (2010)] have experimentally demonstrated that the emission properties of unstable atoms in entangled and product states are different. The authors define an apparent decay time as a fitting parameter which falls below the lifetime of the single atom for entangled pairs. We argue that their results about coincidence time spectra are correct, but those concerning lifetimes cannot be considered conclusive because they assume the emission of photons by the two atoms to be independent processes, a doubtful hypothesis for entangled states. We suggest an improved evaluation of the lifetimes based on a rigorous approach, which demands some modifications of the experimental procedure.

  4. Characterisation of Supra- and Infratentorial ICP Profiles.

    PubMed

    Moyse, Emmanuel; Ros, Maxime; Marhar, Fouad; Swider, Pascal; Schmidt, Eric Albert

    2016-01-01

    In pathophysiology and clinical practice, the intracranial pressure (ICP) profiles in the supratentorial and infratentorial compartments are unclear. We know that the pressure within the skull is unevenly distributed, with demonstrated ICP gradients. We recorded and characterised the supra- and infratentorial ICP patterns to understand what drives the transtentorial ICP gradient.A 70-year-old man was operated on for acute cerebellar infarction. One supratentorial probe and one cerebellar probe were implanted. Both signals were recorded concurrently and analysed off-line. We calculated mean ICP, ICP pulse amplitude, respiratory waves, slow waves and the RAP index of supra- and infratentorial ICP signals. Then, we measured transtentorial difference and performed correlation analysis for every index.Supratentorial ICP mean was 8.5 mmHg lower than infratentorial ICP, but the difference lessens for higher values. Both signals across the tentorium showed close correlation. Supra- and infratentorial pulse amplitude, respiratory waves and slow waves also showed a high degree of correlation. The compensatory reserve (RAP) showed good correlation. In this case report, we demonstrate that the mean value of ICP is higher in the posterior fossa, with a strong correlation across the tentorium. All other ICP-derived parameters display a symmetrical profile.

  5. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    SciTech Connect

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-07-15

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  6. A Coupled Chemistry-emission Model for Atomic Oxygen Green and Red-doublet Emissions in the Comet C/1996 B2 Hyakutake

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-03-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H2O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O(1 S) and O(1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H2O to the green (red) line emission is 30%-70% (60%-90%), while CO2 and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O(1 S) to O(1 D) would be around 0.03 (±0.01) if H2O is the main source of oxygen lines, whereas it is ~0.6 if the parent is CO2. Our calculations suggest that the yield of O(1 S) production in the photodissociation of H2O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  7. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    SciTech Connect

    Bhardwaj, Anil; Raghuram, Susarla E-mail: anil_bhardwaj@vssc.gov.in

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  8. Determination of trace elements in heroin by inductively coupled plasma atomic emission spectrometry using ultrasonic nebulization

    NASA Astrophysics Data System (ADS)

    Budič, Bojan; Klemenc, Sonja

    2000-06-01

    A method for the determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Sr and Zn in heroin samples by ICP-AES using ultrasonic nebulization is described. The samples were microwave digested with HNO 3. To improve the detection limits and minimise the matrix interferences the experimental parameters were optimised by variation of the operating power, carrier gas flow rate and observation height above the load coil. Optimum operating conditions for most of the analytes were at operating power 1550 W, carrier gas flow rate between 0.8 and 1.0 l min -1 and observation height between 10 and 12 mm above load coil. The limits of detection were below 0.5 μg g -1 (dry mass) for most of the elements investigated. The analytical recoveries of spiked samples were in the range between 94 and 103% and precision was on average better than 6%. The analysis of heroin samples shows that the method is simple, rapid and capable of providing accurate results for all the analytes investigated with the exception of nickel which was below the limit of detection in the analyzed samples.

  9. Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn(2+) emission.

    PubMed

    Lin, Jian; Zhang, Qian; Wang, Le; Liu, Xiaochun; Yan, Wenbo; Wu, Tao; Bu, Xianhui; Feng, Pingyun

    2014-03-26

    We report a simple and yet effective method to introduce Mn(2+) ions into semiconducting nanoclusters with atomically precise control. Our method utilizes one type of micrometer-sized crystals, composed of well-defined isolated supertetrahedral chalcogenide nanoclusters (∼2 nm, [Cd6In28S52(SH)4]) whose core metal site is unoccupied in as-synthesized pristine form. This unique model structure with vacant core site makes it possible to achieve ordered distribution of Mn(2+) dopants, and at the same time effectively preclude the formation of Mn(2+) clusters in the host matrix. A two-step synthesis strategy is applied to realize an atomically precise doping of Mn(2+) ion into the core site of the nanoclusters, and to achieve uniform distribution of Mn(2+) dopants in the crystal lattice. The PL, X-ray photoelectron (XPS), as well as the electron paramagnetic resonance (EPR) spectra reveal the successful incorporation of Mn(2+) ion into the core site of the nanocluster. Different from the pristine host material with weak green emission (∼490 nm), the Mn(2+)-doped material shows a strong red emission (630 nm at room temperature and 654 nm at 30 K), which is significantly red-shifted relative to the orange emission (∼585 nm) observed in traditional Mn(2+)-doped II-VI semiconductors. Various experiments including extensive synthetic variations and PL dynamics have been performed to probe the mechanistic aspects of synthesis process and resultant unusual structural and PL properties. The quaternary semiconductor material reported here extends the emission window of Mn(2+)-doped II-VI semiconductor from yellow-orange to red, opening up new opportunities in applications involving photonic devices and bioimaging.

  10. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS.

    PubMed

    Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su

    2013-12-15

    This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values.

  11. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Otruba, Vítězslav; Kanický, Viktor

    2006-05-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  12. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    SciTech Connect

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  13. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications

    NASA Astrophysics Data System (ADS)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    In this work an experimental and theoretical study of gamma-prompt emission has been carried out with the main aim being to understand to what extent this approach can be used during a treatment based on proton-boron fusion therapy. An experimental campaign, carried out with a high purity Germanium detector, has been performed to evaluate the gamma emission from two pure 11B and 10B targets. Furthermore, a set of analytical simulations, using the Talys nuclear reaction code has been performed and the calculated spectra compared with the experimental results. These comparisons allowed us to successfully validate Talys which was then used to estimate the gamma emission when a realistic Boron concentration was considered. Both simulations and experimental results suggest that the gamma emission is low at certain proton energies, thus in order to improve the imaging capabilities, while still maintaining the Boron therapeutic role, we propose the addition of natural Copper bound by a dipyrromethene, BodiPy, to boron atoms. Analytical simulations with Talys suggest that the characteristic spectrum of the copper prompt gamma-rays has several peaks in the energetic regions where the background is negligible.

  14. Quantum theory of two-photon correlated-spontaneous-emission lasers: Exact atom-field interaction Hamiltonian approach

    SciTech Connect

    Lu, N.; Zhu, S. )

    1989-11-15

    A quantum theory of two-photon correlated-spontaneous-emission lasers (CEL's) is developed, starting from the exact atom-field interaction Hamiltonian for cascade three-level atoms interacting with a single-mode radiation field. We consider the situation where the active atoms are prepared initially in a coherent superposition of three atomic levels and derive a master equation for the field-density operator by using a quantum theory for coherently pumped lasers. The master equation is transformed into a Fokker-Planck equation for the antinormal-ordering {ital Q} function. The drift coefficients of the Fokker-Planck equation enable us to study the steady-state operation of the two-photon CEL's analytically. We have studied both resonant two-photon CEL for which there is no threshold, and off-resonant two-photon CEL for which there exists a threshold. In both cases the initial atomic coherences provide phase locking, and squeezing in the phase quadrature of the field is found. The off-resonant two-photon CEL can build up from a vacuum when its linear gain is larger than the cavity loss (even without population inversion). Maximum squeezing is found in the no-population-inversion region with the laser intensities far below saturation in both cases, which are more than 90% for the resonant two-photon CEL and nearly 50% for the off-resonant one. Approximate steady-state {ital Q} functions are obtained for the resonant two-photon CEL and, in certain circumstances, for the off-resonant one.

  15. Anisotropic emission of neutral atoms: evidence of an anisotropic Rydberg sheath in nanoplasma

    NASA Astrophysics Data System (ADS)

    Rajeev, R.; Madhu Trivikram, T.; Rishad, K. P. M.; Krishnamurthy, M.

    2015-02-01

    Intense laser-produced plasma is a complex amalgam of ions, electrons and atoms both in ground and excited states. Little is known about the spatial composition of the excited states that are an integral part of most gaseous or cluster plasma. In cluster-plasma, Rydberg excitations change the charge composition of the ions through charge transfer reactions and shape the angular distributions. Here, we demonstrate a non-invasive technique that reveals the anisotropic Rydberg excited cluster sheath by measuring anisotropy in fast neutral atoms. The sheath is stronger in the direction of light polarization and the enhanced charge transfer by the excited clusters results in larger neutralization.

  16. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  17. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  18. Post sunset behavior of the 6300 A atomic oxygen airglow emission

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1976-01-01

    A theoretical model of the 6300 A OI airglow emission was developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of 6300 A OI emission line were calculated using electron density true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler broadened 6300 A emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere were varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 A emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer. Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. Theoretical calculations indicate that contamination of the 6300 A OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 A OI intensity. This combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann--Runge continuum and associated absorption cross sections. Results show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more

  19. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  20. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    NASA Astrophysics Data System (ADS)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  1. Statistical properties of spontaneous emission from atoms near a rough surface

    SciTech Connect

    Biehs, S.-A.; Greffet, J.-J.

    2011-11-15

    We study the lifetime of the excited state of an atom or molecule near a plane surface with a given random surface roughness. In particular, we discuss the impact of the scattering of surface modes within the rough surface. Our study is completed by considering the lateral correlation length of the decay rate and the variance discussing its relation to the C{sub 0} correlation.

  2. Solar-energy conversion and light emission in an atomic monolayer p-n diode.

    PubMed

    Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  3. Energetic particle imaging: The evolution of techniques in imaging high-energy neutral atom emissions

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Brandt, P. C.; Westlake, J. H.; Jaskulek, S. E.; Andrews, G. B.; Nelson, K. S.

    2016-09-01

    Energetic neutral atom imaging instruments have been flown on a variety of space missions to satisfy a variety of science requirements. In this paper we discuss the most recent developments that lead to improvements in energy range, angular resolution, and background rejection for the high-energy range, as represented in the past by the Cassini magnetosphere imaging instrument Ion and Neutral Camera, the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission High-Energy Neutral Atom instrument, and to some degree the IMAGE mission Medium-Energy Neutral Atom instrument. The new approaches discussed here rely on the use of ultrathin foils without UV filters and on very high speed coincidence logic to reduce accidentals from intense background sources. We present laboratory results demonstrating an electrostatic design that meets the coincidence timing requirements, position, and scattering performance consistent with angular resolution (full width at half maximum) of 2° for hydrogen above 10 keV and a hydrogen energy threshold ≤1 keV.

  4. Solar-energy conversion and light emission in an atomic monolayer p-n diode

    NASA Astrophysics Data System (ADS)

    Pospischil, Andreas; Furchi, Marco M.; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices--rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ~0.5% and ~0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  5. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ˜ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ˜2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  6. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    SciTech Connect

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  7. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1994--December 31, 1994

    SciTech Connect

    Montaser, A.

    1994-09-01

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  8. Three-phase plasma arc atomic-emission spectrometric analysis of environmental samples using an ultrasonic nebulizer.

    PubMed

    Ghatass, Zekry F; Roston, Gamal D; Mohamed, Moustafa M

    2003-06-01

    Combination of an ultrasonic nebulizer and plasma excitation sources for spectrochemical analysis offers desirable features of low detection limits, high sample throughput, wide dynamic range of operation, acceptable precision and accuracy, and simultaneous quantitative analytical capabilities. Moreover, the ultrasonic nebulizer does not require sample preconcentration. Recently we have developed a three-phase plasma arc (TPPA) for atomic emission spectrochemical analysis. In the present work, to increase the analytical utility of the three-phase plasma system, an ultrasonic nebulizer was used for sample introduction. The effects of the argon gas flow rate, current, excitation temperature have been studied. The analytical calibration curves are obtained for Ca, Cr, Fe, Mg and Mn, and detection limits have been calculated. The present technique is used to determine the concentration of the elements Ca, Cr, Fe, Mg and Mn in airborne samples.

  9. Atomic emission spectrometric determination of ephedrine, cinchonine, chlorpheniramine, atropine and diphenhydramine based on formation of ion associates with ammonium reineckate.

    PubMed

    Khalil, S

    1999-12-01

    Ion-associate complexes of ephedrine HCl (I), cinchonine HCl (II), chlorpheniramine maleate (III), atropine sulphate (IV) and diphenhydramine HCl (V) with ammonium reineckate were precipitated and their solubilities were studied as a function of pH, ionic strength and temperature. Saturated solutions of each ion-associate under the optimum precipitation conditions were prepared and the Cr ion content in the supernatant was determined. The solubility products were thus elucidated at different temperatures. A new accurate and precise method using direct current plasma-atomic emission spectrometry for the determination of the investigated drugs in pure solutions and in pharmaceutical preparations is described. The drugs can determined by the present method in the ranges 1.6-52,2.64-85.8,3.12-101.4,5.52-180.4 and 2.72-75.85 microg/ml solutions of I, II, III, IV and V, respectively.

  10. Atom and molecule emission caused by ion impact into a frozen oxygen target: Role of rovibrational excitation

    NASA Astrophysics Data System (ADS)

    Anders, Christian; Pedrys, Roman; Urbassek, Herbert M.

    2013-11-01

    Translational energy distributions of particles sputtered by 750 eV Ne+ ion impact into a cryogenic O2 target are studied using molecular-dynamics simulation. When comparing the energy distribution of emitted molecules to a Thompson distribution, good agreement can only be found for energies E with Uemission. Around 2% of the sputtered particles consist of radicals (atomic O). These originate from direct projectile-molecule collisions; they are emitted early in the collision cascade and feature a strong high-energy contribution.

  11. Formation and stimulated photodissociation of metastable molecules with emission of photon at the collision of two atoms in a laser radiation field

    NASA Astrophysics Data System (ADS)

    Gazazyan, E.; Gazazyan, A.

    2017-04-01

    The formation of metastable molecules (Feshbach resonances) at the collision of two atoms and subsequent stimulated transition to a lower unbound electronic molecular state, with emission of a photon of the laser radiation has been investigated. This can develop, in particular, for Rb 2 molecules due to resonance scattering of two Rb atoms. This process is a basis for the creation of excimer lasers. Expressions have been obtained for the cross sections of elastic and inelastic resonance scattering and the intensity of the stimulated emission of the photons.

  12. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry.

    PubMed

    Dancsak, Stacia E; Silva, Sidnei G; Nóbrega, Joaquim A; Jones, Bradley T; Donati, George L

    2014-01-02

    High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg(-1) for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg(-1) for Na and K, and between 0.22 and 0.43 mg kg(-1) for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are comparable to other traditional methods.

  13. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS.

    PubMed

    Barin, J S; Pereira, J S F; Mello, P A; Knorr, C L; Moraes, D P; Mesko, M F; Nóbrega, J A; Korn, M G A; Flores, E M M

    2012-05-30

    The advantages and shortcomings of focused microwave-induced combustion (FMIC) for digestion of plant samples were studied. The effects of sample mass, absorbing solution, oxygen gas flow-rate, and time of reflux step on recoveries of major, minor and trace metals were systematically evaluated. Afterwards, Al, Ba, Ca, Co, Cr, Cu, Mg, Mn, Ni, Sr, V, and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES) and by inductively coupled plasma mass spectrometry (ICP-MS). The main advantages of FMIC when compared to microwave-assisted wet digestion (MAWD) and focused-microwave-assisted wet digestion (FMAWD) are the possibility to digest larger masses of samples (up to 3g) using shorter heating times and diluted nitric acid solution for absorbing all analytes. Using the selected experimental conditions for FMIC, residual carbon content was lower than 0.7% for all samples and relative standard deviation (RSD) varied from 1.5 to 14.1%. Certified reference materials (NIST 1515 apple leaves and NIST 1547 peach leaves) were used for checking accuracy and determined values for all metals were in agreement with certified values at a 95% confidence level. No statistical difference (ANOVA, 95% of confidence level) was observed for results obtained by FMIC, FMAWD, and MAWD. Limits of detection were lower when using FMIC in the range of 0.02-0.15 μg g(-1) for ICP OES and 0.001-0.01 μg g(-1) for ICP-MS, which were about 3 and 6 times lower than the values obtained by FMAWD and MAWD, respectively. It is important to point out that FMIC was a suitable sample preparation method for major, minor and trace metals by both determination techniques (ICP OES and ICP-MS). Additionally, since it allows lower LODs (because up to 3g of sample can be digested) and diluted acid solutions are used (without any further dilution), the use of ICP-MS is not mandatory.

  14. Effect of the electronic structure of target atoms on the emission continuum of laser plasma

    SciTech Connect

    Kask, Nikolai E; Michurin, Sergei V; Fedorov, Gennadii M

    2004-06-30

    The low-temperature laser plasma at the surface of metal targets is experimentally investigated. Continuous spectra emitted from a laser plume are found to be similar for targets consisting of the elements of the same subgroup of the Mendeleev periodic table. The similarity manifests itself both in the dependence of the emission intensity on the external pressure and in the structure of absorption bands related to a fine-dispersed phase existing in the peripheral regions of the plume. (interaction of laser radiation with matter. laser plasma)

  15. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  16. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    NASA Astrophysics Data System (ADS)

    Oh, Joosuck; Lim, H. B.

    2008-11-01

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube (~ 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m - 3 was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L - 1 were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m - 3 , depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 °C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L - 1 , respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  17. Automated system for identification of atomic elements and calculation of lines profiles in emission spectra

    NASA Astrophysics Data System (ADS)

    Ramírez, Wilder; Restrepo, Elisabeth; Devia, Alfonso

    2001-04-01

    A database was designed starting from the Kurucz cd-rom N0 23 of the Smithsonian Astrophysical Observatory. In this database the different atomic elements are ordered by wavelength with their ionization levels. Also, there are other data like statistic weight, Einstein's coefficient, information about energy levels, constant of damping, among others. The spectra of the discharge are processed using a digital filtrate technique, with the purpose of reducing the noise present in the data to locate the points where the maximum amplitudes are presented. Starting from these results, consultations dynamic SQL are made, these obtain the elements present in these regions from the database. Finally, by means of the use of statistical methods it is determined which are the elements that have the highest probability of conform with the plasma. .

  18. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    NASA Astrophysics Data System (ADS)

    Martínez, Filiberto; Miranda, Javier

    2013-07-01

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Física for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields (ωLi) and Coster-Kronig transition probabilities (fij) for elements with 55 ≤ Z ≤ 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  19. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body-like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  20. ICP27-dependent resistance of herpes simplex virus type 1 to leptomycin B is associated with enhanced nuclear localization of ICP4 and ICP0

    SciTech Connect

    Lengyel, Joy; Strain, Anna K.; Perkins, Keith D.; Rice, Stephen A. . E-mail: ricex019@umn.edu

    2006-09-01

    It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged when it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.

  1. Teacher Reaction to ICP Quality Assurance Procedures.

    ERIC Educational Resources Information Center

    Leonard, Ann

    An integral part of the Quality Assurance Manual developed by Southwest Regional Laboratory (SWRL) to accompany the Kindergarten Program is the end-of-program assessment of the Instructional Concepts Program (ICP). Following completion of ICP Quality Assurance assessment, four teachers were interviewed in order to gather information pertinent to…

  2. Individualized Career Plan (ICP): Implementation Manual.

    ERIC Educational Resources Information Center

    Batsche, Catherine; And Others

    This implementation manual was designed to assist local education agency personnel implement the individualized career plan (ICP) concept in high schools. Questions commonly asked about the ICP are answered. Guidelines are then provided for implementing the four stages of the process: planning, developing, implementing, and evaluating/refining.…

  3. Determination of volatile halogenated organic compounds in soils by purge-and-trap capillary gas chromatography with atomic emission detection.

    PubMed

    Campillo, Natalia; Viñas, Pilar; López-García, Ignacio; Aguinaga, Nerea; Hernández-Córdoba, Manuel

    2004-10-20

    Nine volatile halogenated organic compounds (VHOCs), including four trihalomethanes (THMs), were determined in soils by capillary gas chromatography with microwave induced-plasma atomic emission spectrometry (GC-AED), using a purge-and-trap system (PT) for sample preconcentration. Analytes were previously extracted from the soil sample in methanol and the extract was preconcentrated before being chromatographed. Element-specific detection and quantification were carried out monitoring two wavelength emission lines, corresponding to chlorine (479nm) and bromine (478nm). Each chromatographic run took 21min, including the purge step. The method showed a precision of 1.1-7.2% (R.S.D.) depending on the compound. Detection limits ranged from 0.05 to 0.55ngml(-1), for chloroform and dichloromethane, respectively, corresponding to 3.3 and 36.0ngg(-1) in the soil samples. The chromatographic profiles obtained showed no interference from co-extracted compounds. Low levels of dichloromethane and chloroform ranging from 0.04 to 1.13mugg(-1) were found in samples obtained from small gardens irrigated with tap water. The method is reliable and can be used for routine monitoring in soil samples.

  4. Chemical vapor generation for sample introduction into inductively coupled plasma atomic emission spectroscopy: vaporization of antimony(III) with bromide.

    PubMed

    Lopez-Molinero, A; Mendoza, O; Callizo, A; Chamorro, P; Castillo, J R

    2002-10-01

    A new method for antimony determination in soils is proposed. It is based on the chemical vapor generation of Sb(III) with bromide, after a reaction in sulfuric acid media and transport of the gaseous phase into an inductively coupled plasma for atomic emission spectrometry. The experimental variables influencing the method were delimited by experimental design and the most important were finally optimized by the modified Simplex method. In optimized conditions the method involves the reaction of 579 microl concentrated sulfuric acid with 120 microl 5% w/v KBr and 250 microl antimony solution. Measurement of antimony emission intensity at 217.581 nm provides a method with an absolute detection limit of 3.5 ng and a precision (RSD) of 5.8% for the injection of five replicates of 175 ng Sb(III) (250 microl of 0.7 microg ml(-1) solution). The interference of common anions and cations on the antimony signal was evaluated. A 21% Sb(III) volatilization efficiency was calculated from the mean of six experiments at optimum conditions. The accuracy of the methodology was checked by the analysis of one standard reference soil after acid decomposition heating in a microwave oven.

  5. Pesticide analysis in herbal infusions by solid-phase microextraction and gas chromatography with atomic emission detection.

    PubMed

    Campillo, Natalia; Peñalver, Rosa; Hernández-Córdoba, Manuel

    2007-02-28

    A direct immersion solid-phase microextraction (SPME) procedure was used in combination with capillary gas chromatography with atomic emission detection (GC-AED) for the determination of 10 pesticides (organochlorines, organophosphorus compounds and pyrethrins) in herbal and tea infusions. Ionic strength, sample dilution and time and temperature of the absorption and desorption stages were some of the parameters investigated in order to select the optimum conditions for SPME with a 100mum PDMS fiber-coating. Element-specific detection and quantification was carried out by monitoring the chlorine (479nm) and bromine (478nm) emission lines, which provided nearly specific chromatograms. Calibration was carried out by using a spiked sample infusion. The detection limits varied between 11.9ngml(-1) for deltamethrin and 0.03ngml(-1) for p,p'-DDE and p,p'-DDD. The recoveries ranged from 73.5% for deltamethrin to 108.3% for p,p'-DDT in a spiked white tea infusion. Two of the eight samples analyzed contained low levels of some the pesticides considered.

  6. Multielemental analysis of purpleback flying squad using high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS).

    PubMed

    Ichihashi, H; Kohno, H; Kannan, K; Tsumura, A; Yamasaki, S I

    2001-08-01

    Forty-four elements were analyzed in 21 tissues of purpleback flying squid, Sthenoteuthis oualaniensis, by high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS) and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Greater concentrations of V, Fe, Co, Ni, Cu, Ag, Cd, Pb, and Bi were found in liver, pancreas, and ink sac than in other tissues. Ink sac concentrated remarkable levels of Ca and Sr in addition to the above-mentioned elements. Several alkalis, alkaline earth, and rare earth elements preferentially accumulated in muscle. Among the hard tissues, accumulation of V and U in beak, Ni, Zn, and Cd in gladius and Cr in skin was prominent. K, Rb, Cs, Pb, Bi and some transition elements (V, Co, Cu, Zn, Ag, Cd) were significantly (p < 0.05) higher in the livers of adult than in juvenile squids. Sodium, alkaline earth, and rare earth elements were higher in the livers of juveniles than in adult squids.

  7. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    SciTech Connect

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3) oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.

  8. Determination of tungsten in niobium-tantalum, vanadium and molybdenum bearing geological samples using derivative spectrophotometry and ICP-AES.

    PubMed

    Padmasubashini, V; Ganguly, M K; Satyanarayana, K; Malhotra, R K

    1999-10-01

    Two different procedures, one using derivative spectrophotometry and another using inductively coupled plasma atomic emission spectrometry (ICP-AES) have been developed for the determination of tungsten in niobate-tantalates, tin slag samples, ores, concentrates and vanadium and molybdenum bearing geological materials. In the first method involving derivative spectrophotometry, 0.05-0.5 g of the sample is fused with sodium hydroxide, the tungsten is extracted by leaching the melt with distilled water and estimated as thiocyanate using a second derivative spectrophotometric method in the presence of interferents, i.e. Nb, Mo and V, without separating them. Mixtures of tungsten with V, Nb and Mo are used for standardizing the various parameters like zero-crossing wavelength, wavelength range, etc. Tolerance limits for V, Nb and Mo have also been evaluated. In the second method involving ICP-AES, 0.05-0.5 g of sample is fused with KHSO(4) to a clear melt and dissolved in ammonium oxalate solution. Ammonium hydroxide precipitation is then carried out to separate Nb and Ta as hydroxides and the filtrate is boiled with nitric acid to destroy the oxalates before aspiration into the plasma for measurement of tungsten values by ICP-AES using the 207.911 nm emission line. Both methods have been applied to niobate-tantalate and tin slag samples and the results obtained are reported in this paper. The values obtained by both methods are in good agreement with each other. The proposed methods have also been applied to the determination of tungsten in two Canadian Certified Reference Standards (CT-1 and MP-2) and the values obtained are in good agreement with the certified values and the R.S.D.% in case of the ICP-AES method varied from 1-2% at >1000 mug g(-1) level to 9.4% at the 20 mug g(-1) level whereas the R.S.D.% in case of the derivative method varied from 1 to 7.8%.

  9. Determination of trace impurities in high-purity zirconium dioxide by inductively coupled plasma atomic emission spectrometry using microwave-assisted digestion and wavelet transform-based correction procedure.

    PubMed

    Ma, Xiaoguo; Li, Yibing

    2006-10-02

    This paper describes a rapid, accurate and precise method for the determination of trace Fe, Hf, Mn, Na, Si and Ti in high-purity zirconium dioxide (ZrO2) powders by inductively coupled plasma atomic emission spectrometry (ICP-AES). The samples were dissolved by a microwave-assisted digestion system. Four different digestion programs with various reagents were tested. It was found that using a mixture of sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4), the total sample dissolution time was 30 min, much shorter than that required for conventional digestion in an opening system. The determination of almost all of the target analytes suffered from spectral interferences, since Zr shows a line-rich atomic emission spectrometry. The wavelet transform (WT), a recently developed mathematical technique was applied to the correction of spectral interference, and more accurate and precise results were obtained, compared with traditional off-peak background correction procedure. Experimental work revealed that a high Zr concentration would result in a significant decrease in peak height of the analyte lines, which was corrected by standard addition method. The performance of the developed method was evaluated by using synthetic samples. The recoveries were in the range of 87-112% and relative standard deviation was within 1.1-3.4%. The detection limits (3sigma) for Fe, Hf, Mn, Na, Si and Ti were found to be 1.2, 13.3, 1.0, 4.5, 5.8 and 2.0 microg g(-1), respectively. The results showed that with the microwave-assisted digestion and the WT correction, the detection limits have improved by a factor of about 5 for Fe, 4 for Mn and Ti, 3 for Si, and 2 for Hf and Na, respectively, in comparison with conventional open-system digestion and off-peak correction. The proposed technique was applied to the analysis of trace elements above-mentioned in three types of ZrO2 powders.

  10. Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino ICP sensor.

    PubMed

    Eide, Per Kristian

    2006-07-01

    Simultaneous continuous intracranial pressure (ICP) signals from two different sensors were compared. Continuous ICP monitoring from two ICP sensors (i.e. Codman ICP MicroSensor; Johnson & Johnson, Raynham, MA and Camino OLM ICP; Camino Laboratories, San Diego, CA) placed within the brain parenchyma was performed in three patients within the intensive care unit (ICU) as part of routine management of severe subarachnoid hemorrhage. For each 6s time window mean ICP was computed, showing large differences in mean ICP values between the signals. Differences above 5 mmHg were observed in 13% of the 128,425 time windows derived from 214 h ICP recordings in these three patients. In one patient, mean ICP differed more than 10 mmHg in 23% of the time windows. Comparisons of 675,503 individual single pressure wave pairs of these 128,425 time windows revealed marginal differences in single wave amplitude (dP, i.e. pulse pressure) and latency (dT, i.e. rise time) values, suggesting that differences in mean ICP were caused by differences in baseline pressure. For the individual time windows were computed the mean wave amplitude and mean wave latency values according to a new algorithm. There were as well marginal differences between signals of mean wave amplitude and latency values. Thus, changes in baseline pressure affect mean ICP but not single pressure wave characteristics such as amplitude (dP) and (dT) latency values.

  11. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  12. Atomic Emission, Absorption and Fluorescence in the Laser-induced Plasma

    SciTech Connect

    Winefordner, J. D.

    2009-01-22

    The main result of our efforts is the development and successful application of the theoretical model of laser induced plasma (LIP) that allows a back-calculation of the composition of the plasma (and the condensed phase) based on the observable plasma spectrum. The model has an immediate experimental input in the form of LIP spectra and a few other experimentally determined parameters. The model is also sufficiently simple and, therefore, practical. It is conveniently interfaced in a graphical user-friendly form for using by students and any laboratory personnel with only minimal training. In our view, the model opens up the possibility for absolute analysis, i.e. the analysis which requires no standards and tedious calibration. The other parts of this proposal (including plasma diagnostics) were somewhat subordinate to this main goal. Plasma diagnostics provided the model with the necessary experimental input and led to better understanding of plasma processes. Another fruitful direction we pursued was the use of the correlation analysis for material identification and plasma diagnostics. Through a number of computer simulations we achieved a clear understanding of how, where and why this approach works being applied to emission spectra from a laser plasma. This understanding will certainly improve the quality of forensic and industrial analyses where fast and reliable material identification and sorting are required.

  13. Measuring atomic emission from beacons for long-distance chemical signaling.

    PubMed

    LaFratta, Christopher N; Pelse, Ian; Falla, Jose Luis; Liu, Yi; Palacios, Manuel A; Manesse, Mael; Whitesides, George M; Walt, David R

    2013-10-01

    In an effort to exploit chemistry for information science, we have constructed a system to send a message powered by a combustion reaction. Our system uses the thermal excitation of alkali metals to transmit an encoded signal over long distances. A message is transmitted by burning a methanol-soaked cotton string embedded with combinations of high, low, or zero levels of potassium, rubidium, and/or cesium ions. By measuring the intensities at the characteristic emission wavelengths of each metal in the near-infrared, 19 unique signals can be distinguished. We have built a custom telescope to detect these signals from 1 km away for nearly 10 min. The signal is isotropic, is self-powered, and has a low background. A potential application of this platform is for search and rescue signaling where another layer of information can be transmitted, in addition to the location of the beacon. This work, which seeks to encode and transmit information using chemistry instead of electronics, is part of the new field of "infochemistry".

  14. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals.

    PubMed

    Lewen, Nancy

    2011-06-25

    The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work.

  15. Evaluation of an improved atomic data basis for carbon in UEDGE emission modeling for L-mode plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Muñoz Burgos, J. M.; Leonard, A. W.; Loch, S. D.; Ballance, C. P.

    2013-07-01

    New scaled carbon atomic electron-impact excitation data is utilized to evaluate comparisons between experimental measurements and fluid emission modeling of detached plasmas at DIII-D. The C I and C II modeled emission lines for 909.8 and 514.7 nm were overestimated by a factor of 10-20 than observed experimentally for the inner leg, while the outer leg was within a factor of 2. Due to higher modeled emissions, a previous study using the UEDGE code predicted that a higher amount of carbon was required to achieve a detached outboard divertor plasma in L-mode at DIII-D. The line emission predicted by using the new scaled carbon data yields closer results when compared against experiment. We also compare modeling and measurements of Dα emission from neutral deuterium against predictions from newly calculated R-Matrix with pseudostates data available at the ADAS database.

  16. Emission Characteristics of Ca and Mg Atoms in Gas Plasma Induced by the Bombardment of Transversely Excited Atmospheric CO2 Laser at 1 atm

    NASA Astrophysics Data System (ADS)

    Khumaeni, Ali; Sukra Lie, Zener; Inn Lee, Yong; Kurihara, Kazuyoshi; Hendrik Kurniawan, Koo; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2012-08-01

    To study the mechanism of atomic excitation in gas plasma, a transversely excited atmospheric pressure (TEA) CO2 laser (750 mJ, 200 ns) was focused on a metal subtarget through a hole (2 mm in diameter) produced in a glass slide sample (1.5 mm in thickness); the glass slide sample was placed in close contact with a nickel metal plate, which functions as the metal subtarget. It was demonstrated that a strong gas plasma can be induced in various gases including He, N2, and CO2 and that plasma can be employed as the excitation source for spectrochemical analysis. It has been proved that, in He gas plasma, strong Ca ionic emissions (Ca II 393.3 nm and Ca II 373.7 nm) with a long lifetime can be observed regardless of excitation energy. On the other hand, in N2 and CO2 gases, the emissions are very weak and have a short lifetime. We assumed that, in He gas plasma, He metastable atoms play significant role in excitation. In the case of the Ca atom, the double ionization of Ca (Ca2+) is directly induced when a Ca atom collides with He metastable atoms through the Penning effect. The ion produced then recombines with an electron to produce an ionic excitation state, from which ionic emission is induced. In neutral Ca and Mg emissions, unique emission characteristics were observed in the He gas plasma case, namely, the triplet state is the main product and the singlet state is a minor product. This result can be explained by our proposed model.

  17. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  18. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    PubMed

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery.

  19. A photon counting dynamic digital lock-in amplifier for background suppression in glow discharge atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Gökmen, Ali; Ulgen, Ahmet; Yalçin, Şerife

    1996-01-01

    A photon counting dynamic digital lock-in amplifier, (PC-DDLIA), has been developed for the suppression of Ar lines in glow discharge lamp atomic emission spectrometry, (GDL-AES). The experimental set-up consists of a Grimm-type GDL, a prism-type scanning monochromator, photon counting electronics, an Apple Ile computer with an interface card and a computer controllable high voltage power supply. The photon counting electronics are designed to convert the photon pulses to logic pulses. A discriminator is used to reject pulses below a threshold level. The high voltage power supply is modulated with a square waveform generated from DAC and photon pulses are counted synchronously by the timer/counter chip, versatile interface adaptor (VIA-6522) on the interface card of computer. The data are analyzed in two steps. In the "learn mode", the GDL is modulated with a square waveform between 370 and 670 V and two spectra consisting of only Ar lines are obtained in a spectral window between 287.1 and 290.0 nm. A new modulation waveform is computed from these spectra which yields two overlapped spectra when the PC-DDLIA is scanned over the same spectral window. In the "analysis mode" of data acquisition, a target material with the analyte element(s) in it is used and the spectrometer is scanned with a dynamically varying rectangular waveform over the same spectral window. The net spectrum consists of pure atomic lines free from any Ar lines. The detection limit for the determination of Si (288.2 nm) in the presence of interfering Ar lines (288.1 and 288.4 nm) is found to be 0.083%, whereas suppression of Ar lines over the same spectral window lowers the detection limit to 0.013%.

  20. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  1. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    PubMed

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  2. Development of transient data acquisition system for hyphenated techniques coupled with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoru; Zhuang, Zhixia; Yang, Chenglong; Yang, Pengyuan; Yan, Xiaomei; Lin, Jianming

    1996-12-01

    A transient data acquisition system for flow injection analysis (FIA), high performance liquid chromatography (HPLC), and electrothermal vaporization (ETV) combined with ICP-AES multi-element instrumentation was developed and successfully applied to the analysis of different types of samples, including human serum, human hair and tea, for simultaneous multi-element determinations. The accuracy of the method was verified with hair reference material. Good agreement between the experimental results and certified values, and also satisfactory recoveries from standard additions, were achleved.

  3. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus).

    PubMed

    Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna

    2015-04-01

    The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences.

  4. The molecular oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere.

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine A.; Manuilova, Rada; Martyshenko, Kseniia

    Currently there is no reliable method for remote sensing of altitude profile of the [O( (3) P)] in the daytime mesosphere and lower thermosphere, but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO _{2} molecules and also one of basic quencher of electronically excited components in MLT region. On the other hand, airglow emission in 1.27 mum IR Atm(0 - 0) band from O _{2}(a (1) Delta _{g}, v = 0) has been used as a proxy for [O _{3}] in MLT for over a decade. However, this method is not suitable for detecting of relatively rapid [O _{3}] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The reason of above mentioned is the large value of photochemical lifetime of the O _{2}(a (1) Delta _{g}, v = 0) molecule which is within tau _{O2(a)} =3 (.) 10 (2) - 1 (.) 10 (3) s in the mesosphere and reaches 3 (.) 10 (3) s in the lower thermosphere. The aim of this study is revealing of proxies for retrievals of [O( (3) P)] and [O _{3}]. In the framework of developed model of electronic vibrational kinetics of excited products of O _{3} and O _{2} photolysis in MLT of the Earth (model YM-2011) [1] we solved direct problem for the system of 10 kinetic equations for populations of electronically-vibrationally excited levels of oxygen molecule O _{2}(a (1) Delta _{g}, v=0 - 5), O _{2}(b (1) Sigma (+) _{g}, v=0, 1, 2) and excited oxygen atom O( (1) D). In whole, more than 60 aeronomical reactions of photoexcitation and deexcitation, of energy transfer between these excited levels and of quenching of the levels in collisions with O( (3) P), O _{2}, N _{2}, O _{3} and CO _{2} are considered. Sensitivity analysis of obtained solutions showed that emissions in 629 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=2) and 762 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=0) molecules can be effective proxies for atomic oxygen in the altitude range 85

  5. Multi-element method for determination of trace elements in sunscreens by ICP-AES.

    PubMed

    Zachariadis, G A; Sahanidou, E

    2009-10-15

    An inductively coupled plasma atomic emission spectrometric (ICP-AES) method was developed for multi-element analysis of sunscreen creams and lotions. The objective was the simultaneous determination of Ti (TiO(2) being is the only authorized inorganic UV filter in the European Union) and several minor, trace or toxic elements (Al, Zn, Mg, Fe, Mn, Cu, Cr, Pb and B) in the final products. Two alternative pretreatment procedures were examined: (i) total acid digestion in closed pressurized vessels prior to sample introduction into the plasma and (ii) direct introduction of sample in the form of emulsified slurry. The latter was proved inefficient for several types of creamy samples due to their high viscosity and insolubility. Several acid mixtures were examined for wet digestion because of the complex and fatty matrix of creams and lotions. Plasma parameters like nebulizer argon gas flow rate and radiofrequency incident power were optimized in order to improve the atomization. The recovery of the proposed acid digestion method was evaluated using spiked samples. The calculated recoveries were 95.0% for Ti, 98.2% for Zn and 101.3% for Fe, and the detection limits were 0.2 microg g(-1) for Ti, 0.2 microg g(-1) for Zn and 0.5 microg g(-1) for Fe, respectively. Possible interference from the presence of Ti on the sensitivity of each analyte was examined. Finally the method was applied successfully to several commercial sun protection products and the results were compared with those obtained by atomic absorption spectrometry as reference method.

  6. ICP Reactor Modeling: CF4 Discharge

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    1999-01-01

    Inductively coupled plasma (ICP) reactors are widely used now for etching and deposition applications due to their simpler design compared to other high density sources. Plasma reactor modeling has been playing an important role since it can, in principle, reduce the number of trial and error iterations in the design process and provide valuable understanding of mechanisms. Fluorocarbon precursors have been the choice for oxide etching. We have data available on CF4 from our laboratory. These are current voltage characteristics, La.ngmuir probe data, UV-absorption, and mass spectrometry measurements in a GEC-ICP reactor. We have developed a comprehensive model for ICP reactors which couples plasma generation and transport and neutral species dynamics with the gas flow equations. The model has been verified by comparison with experimental results for a nitrogen discharge in an ICP reactor. In the present work, the model has been applied to CF4 discharge and compared to available experimental data.

  7. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  8. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.

    PubMed

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-11-15

    A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard.

  9. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge.

    PubMed

    Ross, Richard B; Aeschliman, David B; Ahmad, Riaz; Brennan, John K; Brostrom, Myles L; Frankel, Kevin A; Moore, Jonathan D; Moore, Joshua D; Mountain, Raymond D; Poirier, Derrick M; Thommes, Matthias; Shen, Vincent K; Schultz, Nathan E; Siderius, Daniel W; Smith, Kenneth D

    2016-02-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison.

  10. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge*+

    PubMed Central

    Ross, Richard B.; Aeschliman, David B.; Ahmad, Riaz; Brennan, John K.; Brostrom, Myles L.; Frankel, Kevin A.; Moore, Jonathan D.; Moore, Joshua D.; Mountain, Raymond D.; Poirier, Derrick M.; Thommes, Matthias; Shen, Vincent K.; Schultz, Nathan E.; Siderius, Daniel W.; Smith, Kenneth D.

    2016-01-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison. PMID:27840543

  11. [Characterization of dinosaur fossils and their surrounding rocks by atomic emission spectrometry and X-ray powder diffractometry].

    PubMed

    Yang, Qun; Wang, Yi-lin; Li, Chao-zhen; Yuan, Bo

    2005-02-01

    More dinosaur fossils have been found in the Laochangqing valley, Lufeng county than anywhere else in the world, and the dinosaur fossils found here cover the longest time span (including the early and middle Jurassic ages). This excavation offers an ideal experimental base for prehistoric biology studies. This paper presents an elementary analysis of the components and structure of the dinosaur fossils in three different geologic-layers and their surrounding rocks in the above mentioned area. Atomic emission spectrum shows that the fossils are rich in the contents of calcium (>5%) and phosphor, but low in the content of silicon (3%-8%), while the surrounding rocks are high in the content of silicon (>10%). Furthermore, XRD results show that the major compound of the fossils is CaCO3 (66%), followed by SiO2 (17%); while that of the surrounding rocks is SiO2 (>80%), followed by CaCO3 (<12%). The most important difference between the fossils and the surrounding rocks is, according to the experiment, that phosphate has been identified in the former but not in the latter. This is a characteristic that can be used to distinguish the dinosaur fossils from other rocks. This paper provides valuable data for further zoological studies on the living conditions and evolution of the dinosaurs in the Laochangqing valley, Lufeng county.

  12. In situ determination of uranium in soil by laser ablation-inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Zamzow, D.S.; Baldwin, D.P.; Weeks, S.J.; Bajic, S.J.; D'Silva, A.P. )

    1994-02-01

    The concentration of uranium in soil has been determined for 80 sites in an area suspected to have uranium contamination by in situ laser ablation - inductively coupled plasma atomic emission spectrometry (LA-ICPAES), utilizing a field-deployable mobile analytical laboratory. For 15 of the 80 sites analyzed, soil samples are collected so that the field LA-ICPAES results could be compared to laboratory-determined values. Uranium concentrations determined in the field by LA-ICPAES for these 15 sites range from <20 parts per million (ppm) by weight to 285 ppm. The uncertainty in the values determined, however, is large relative to the uranium concentrations encountered at this site. The 95% confidence interval (CI) values are approximately 85 ppm. The uranium concentrations determined by laboratory LA-ICPAES analysis range from <20 to 102 ppm (95% CI of approximately 50 ppm); microwave dissolution and subsequent standard addition determination of uranium by solution nebulization ICPAES using an ultrasonic nebulizer yields 19-124 ppm uranium (95% CI of approximately 10 ppm). For 11 of the 15 samples, the field- and laboratory-determined uranium concentrations agree, within the uncertainty of the determined values. 19 refs., 5 figs., 3 tabs.

  13. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    PubMed

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  14. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels.

  15. Comparison of four analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs.

    PubMed

    Boutakhrit, K; Crisci, M; Bolle, F; Van Loco, J

    2011-02-01

    Different techniques for the determination of total tin in beverages and canned foods by atomic spectrometry were compared. The performance characteristics of inductively coupled plasma-mass spectrometry (ICP-MS), hydride generation-inductively coupled plasma-atomic emission spectrometry (HG-ICP-AES), electrothermal atomisation-atomic absorption spectrometry (ETA-AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were determined in terms of linearity, precision, recovery, limit of detection, decision limit (CCα) and detection capability (CCβ) (Decision 2002/657/EC). Calibration ranges were covered from ng l⁻¹ to mg l⁻¹ level. Limits of detection that ranged from 0.01, 0.05, 2.0 to 200 µg l⁻¹ were reached for ICP-MS; HG-ICP-AES; ETA-AAS and ICP-AES, respectively. Precision, calculated according to ISO 5725-2 for repeatability and within-laboratory reproducibility and expressed as relative standard deviation (RSD), ranged from 1.6% to 4.9%; and recovery, based on Decision 2002/657/EC, was found to be between 95% and 110%. Procedures for the mineralisation or extraction of total tin were compared. Wet digestion, sequentially, with nitric acid and hydrogen peroxide provided the best results. The influence of possible interferences present in canned food and beverage was studied, but no interference in the determination of tin was observed. Since maximum levels for tin established by European Union legislation vary from 50 mg kg⁻¹ in canned baby foods and infant foods up to 200 mg kg⁻¹ in canned food, ICP-AES was chosen as the preferred technique for routine analysis thanks to its good precision, reliability and ease of use. The accuracy of this routine method was confirmed by participation in six proficiency test schemes with z-scores ranging from -1.9 to 0.6. Several canned foodstuffs and beverage samples from a local market were analysed with this technique.

  16. Development of rapid slurry methods for flame and direct current plasma emission and graphite furnace atomic absorption analysis of solid animal tissue

    SciTech Connect

    Fietkau, R.

    1986-01-01

    Studies are presented describing developments in the rapid, direct atomic spectrochemical analysis of meat samples by the technique of slurry atomization. The number of elements that can be determined in meat slurry samples has been increased and the concentration range that can be detected extended to included analysis at the part per billion as well as the percent level. Slurry atomization involves the rapid preparation procedure whereby the sample is simple homogenized with deionized distilled water prior to analysis. In this manner, rapid, quantitative analysis of hot dogs (processed meat) for dietary salt (Na, K) was achieved by premixed air-natural gas flame emission spectrometry. Quantitative analysis of mechanically separated meat for residual bone fragments (as Ca) was attained using a simple photometer when the premixed air-acetylene flame was used. The phosphate interference of the Ca emission signal was overcome by placing an insert in the spray chamber which decreased the droplet size of the aerosol reaching the flame. Slight matrix modification in the form of 2% nitric acid was necessary to solubilize the Ca from the bone fragments. Determining elements present at very low concentrations i.e. part per billion levels, in homogenized beef liver was evaluated using graphite furnace atomic absorption and shown to be viable for determinations of Pb, Cd, Cr, and Ni. Qualitative multielement analysis of several types of meat slurries by direct current plasma (DCP) emission spectrometry using both photographic and electronic modes of detection was reported for the first time.

  17. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The

  18. Development of an international standard for the determination of metals and metalloids in workplace air using ICP-AES: evaluation of sample dissolution procedures through an interlaboratory trial.

    PubMed

    Butler, O T; Howe, A M

    1999-02-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is rapidly overtaking atomic absorption spectrometry (AAS) as the method of choice for the determination of toxic metals in workplace air. However, the few ICP-AES methods that have been published are not well characterised in terms of the effectiveness of the sample dissolution procedures described and their validation status. The International Standards Organization (ISO) is currently engaged in developing ISO 15202, which will describe a generic method for the determination of metals and metalloids in airborne particulate matter by ICP-AES. One part of the proposed standard deals with dissolution procedures. The ISO work has been supported by a project carried out in the authors' laboratory to identify, develop and validate sample dissolution procedures for inclusion in the proposed standard. This paper describes an interlaboratory comparison carried out to assess the performance of selected procedures using samples of airborne particulate matter collected on filters with a multiport sampler. Five dissolution procedures were tested. These included an ultrasonic agitation procedure, two hot-plate procedures (based upon NIOSH 7300 and OSHA ID 125G) and two microwave-assisted procedures (based upon EPA 3052). It was shown that the dissolution procedures selected for use in the trial and used internally at HSL generally gave equivalent performance. As expected, a wider spread of results was obtained by participants in the trial. More specifically, there exists some reservation regarding the ability of the ultrasonic and hot-plate procedures to attack fully on a consistent basis some resistant materials, e.g., chromium containing particulate matter. Above all, the trial demonstrated the usefulness of microwave-assisted dissolution procedures in a modern laboratory.

  19. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.

  20. Straightforward way to enhance robustness in ultrasonic nebulization-axial view inductively coupled plasma optical emission spectrometry via an additional N2 gas stream

    NASA Astrophysics Data System (ADS)

    Scheffler, Guilherme Luiz; Pozebon, Dirce

    2015-11-01

    In the present study a low flow of N2 is mixed with the aerosol produced by ultrasonic nebulization (USN) prior analysis using inductively coupled plasma optical emission spectrometry (ICP OES). The foreign gas is added for improving plasma characteristics in axially-viewed ICP. By computing the Mg ionic to atomic ratio (plasma robustness) it was concluded that N2 dissociates closer to the load coil when USN is used as sample introduction system. The maximum emission intensity of Mg(II) for pneumatic nebulization (PN) was observed at 11 mm from the load coil while it was 8 mm for USN, indicating earlier aerosol desolvation, atomization and excitation processes in the ICP. Emission profiles of Ar(I) 415.861 nm, Ba(II) 486.601 nm and Ba(II) 233.527 nm indicated that metastable Ar species are overpopulated in the ICP under the N2 flow. Copper and manganese ionic lines with energy close to 16 eV (Ar ionization) were monitored to evaluate spatially dependent charge-transfer reaction along the ICP axis in the presence and absence of the N2 flow. The Cu(II) signal profiles indicated abundance of Ar+ species at low distances from the load coil when N2 was added. On the other hand, differences were not observed at longer distances from the load coil for both plasmas (mixed-gas and pure Ar-ICP). The calculated limits of detection (LODs) for both plasmas had the same order of magnitude. Analysis of certified reference samples demonstrated that the accuracy was preserved by adding the low flow of N2. It was concluded that adding a low flow of N2 to the aerosol produced by USN is a simple way to increase plasma robustness, which is usually lower than that achieved using conventional PN.

  1. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Luan, Shen

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  2. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios.

    PubMed

    Yang, Tzu-Ting; Lin, Shaw-Tao; Lin, Tser-Sheng; Chung, Hua-Yi

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17-78.72 mg/g, 26,139.80-35,932.98 and 5735.22-13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26-83.70% and 16.30-29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82-797.76 ng/g) was approximately 6.92-25.08 times higher than that of the gaseous phase (26.27-36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO3) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency.

  3. Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2015-01-01

    A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.

  4. [The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry to the analysis of advanced ceramic materials].

    PubMed

    Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan

    2009-10-01

    Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.

  5. Ignition Delay in a Pulsed Inductively Coupled Plasma (ICP) in Tandem with an Auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Donnelly, Vincent M.; Liu, Lei; Sridhar, Shyam; Economou, Demetre J.

    2015-09-01

    Plasma ignition delays were observed in a ``main'' ICP, in tandem with an ``auxiliary'' ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~ 99.5%. The ignition delay could be manipulated by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion (n+) densities. These measurements revealed that the plasma was re-ignited shortly after the decaying n+ in the main ICP reached the density (n+,aux) measured when only the auxiliary ICP was powered. At that time, the depressed electron density increased sharply resulting in plasma re-ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for n+ to reach n+,aux during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  6. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    PubMed

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.

  7. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    SciTech Connect

    Hasselstroem, J.; Karis, O.; Weinelt, M.

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  8. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  9. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  10. Methods of atomic oxygen and ozone retrieval from observations of the O2 dayglow emissions in the MLT region

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine; Martyshenko, Kseniia; Manuilova, Rada

    2015-04-01

    The problem of creating the new methods of remote sensing of altitude profile of the [O(3P)] and [O3] in the daytime is actual for the mesosphere and lower thermosphere range. Currently there is no reliable method for remote sensing of altitude profile of the [O(3P)], but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO2 molecules and also one of basic quencher of excited components in MLT region. The airglow emission in 1.27 µm IR Atm(0 - 0) band from [O2(a1Δg, v=0)] has been used as a proxy for [O3] in MLT for over a decade. However, lifetime of O2(a1Δg, v=0) is more than 1 hour, therefore this method is not suitable for detecting of relatively rapid [O3] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The aim of this study is revealing of proxies for retrievals of [O(3P)] and [O3]. In the framework of developed model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in MLT of the Earth (model YM-2011) [1] we consider the photolysis of O2 in the Schumann-Runge continuum and Lyaman-A H atom and of O3 in Hartley band and for excited products of photolysis ( O2(a1Δg, v=0 - 5), O2(b1Σ+g, v=0, 1, 2) and excited oxygen atom O(1D)) we took into account more than 60 aeronomical reactions of photoexcitation and deexcitation by energy transfer between the excited levels and of quenching of the levels in collisions with O(3P) O2, N2, O(3P), O3, CO2. We tested 5 excited components, namely, O2(b1Σ+g, v=0, 1, 2), O2(a1Δg, v=0 - 5) and O(1D) as the O(3P) and O3 proxies. The total system of kinetic equations for 10 components has been solved and altitude profiles of concentrations of O(1D), O2(b1Σ+g, v=0, 1, 2), and O2(a1Δg, v=0 - 5) have been calculated. To compare characteristics of assumed proxies we used sensitivity analysis of the proxy concentrations altitude profiles to variations of [O3] and

  11. Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumi Barimah, E.; Hömmerich, U.; Brown, E.; Yang, C. S.-C.; Trivedi, S. B.; Jin, F.; Wijewarnasuriya, P. S.; Samuels, A. C.; Snyder, A. P.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique to detect the elemental composition of solids, liquids, and gases in real time. For example, recent advances in UV-VIS LIBS have shown great promise for applications in chemical, biological, and explosive sensing. The extension of conventional UVVIS LIBS to the near-IR (NIR), mid-IR (MIR) and long wave infrared (LWIR) regions (~1-12 μm) offers the potential to provide additional information due to IR atomic and molecular signatures. In this work, a Q-switched Nd: YAG laser operating at 1064 nm was employed as the excitation source and focused onto several chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on background air, KCl , and NaCl were also included for comparison. All potassium and sodium containing samples revealed narrow-band, atomic-like emissions assigned to transitions of neutral alkali-metal atoms in accordance with the NIST atomic spectra database. In addition, first evidence of broad-band molecular LIBS signatures from chlorate and nitrate compounds were observed at ~10 μm and ~7.3 μm, respectively. The observed molecular emissions showed strong correlation with FTIR absorption spectra of the investigated materials.

  12. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  13. [Determination of trace lead in traditional Chinese herbal medicine Astragalus by microwave digestion-CTAB enhancing-continual flow ingection hydride generation-ICP-AES].

    PubMed

    Liu, Dong-Lian; Ke, Shao-Ying; Ye, Rong; Ding, Ming-Yu

    2007-11-01

    A new method using microwave digestion technique was developed for the determination of lead in Astragalus by CTAB enhancing-continual flow hydride generation-inductively coupled plasma atomic emission spectrometry (HG-ICP-AES). The experimental conditions of microwave digestion and hydride generation were optimized. This method shows a linear range of 0.23-800 microg x L(-1) and the correlation coefficient is 0.999 9. It is satisfactory to apply the microwave digestion procedure to the determination of Pb under the optimized conditions. The detection limit of the method is 0.23 microg x L(-1) and the RSD is 1.02%. The recovery obtained is 98.8%-100.1%. The results show that this method is rapid and simple with low environmental contamination and complete digestion of samples.

  14. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  15. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration.

    PubMed

    Yang, Jiaolong; Li, Hongdong; Campbell, Dylan; Jia, Yunde

    2016-11-01

    The Iterative Closest Point (ICP) algorithm is one of the most widely used methods for point-set registration. However, being based on local iterative optimization, ICP is known to be susceptible to local minima. Its performance critically relies on the quality of the initialization and only local optimality is guaranteed. This paper presents the first globally optimal algorithm, named Go-ICP, for Euclidean (rigid) registration of two 3D point-sets under the L2 error metric defined in ICP. The Go-ICP method is based on a branch-and-bound scheme that searches the entire 3D motion space SE(3). By exploiting the special structure of SE(3) geometry, we derive novel upper and lower bounds for the registration error function. Local ICP is integrated into the BnB scheme, which speeds up the new method while guaranteeing global optimality. We also discuss extensions, addressing the issue of outlier robustness. The evaluation demonstrates that the proposed method is able to produce reliable registration results regardless of the initialization. Go-ICP can be applied in scenarios where an optimal solution is desirable or where a good initialization is not always available.

  16. QED Theory of Radiation Emission and Absorption Lines for Atoms and Ions in a Strong Laser Field

    SciTech Connect

    Glushkov, A. V.

    2008-10-22

    The results of numerical calculating the multi-photon resonance shift and width for transition 6S-6F in the atom of Cs (wavelength 1059nm) in a laser pulse of the Gaussian and soliton-like shapes are presented. QED theory of radiation atomic lines is used.

  17. The study on air pollution with nickel and vanadium in Croatia by using moss biomonitoring and ICP-AES.

    PubMed

    Vučković, Ivana; Špirić, Zdravko; Stafilov, Trajče; Kušan, Vladimir; Bačeva, Katerina

    2013-10-01

    Moss samples were collected from 121 sampling sites all over Croatia during the summer and autumn of 2010. They were totally digested by using microwave digestion system and analysed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). Descriptive statistics and maps of distribution were made. The data obtained in this study were compared with those from the study in 2006 and additionally with the data obtained in the similar studies in neighbouring countries and Norway as pristine area. The median value of nickel is 3.16 mg kg(-1) and the content varies from 1.04 to 14.66 mg kg(-1). The content of vanadium ranges between 0.23 and 37.26 mg kg(-1) with the median value of 2.55 mg kg(-1). High contents of these elements are found in the vicinity of Rijeka, Zagreb and Sisak as a result of their emission from oil refinery, thermal power plant and industrial processes.

  18. Geographical traceability of wild Boletus edulis based on data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM).

    PubMed

    Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong

    2017-04-15

    In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms.

  19. Geographical traceability of wild Boletus edulis based on data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM)

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong

    2017-04-01

    In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms.

  20. TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis.

    PubMed

    Contado, Catia; Pagnoni, Antonella

    2008-10-01

    A new method for determining the size of titanium dioxide particles is proposed and assayed in a commercial sunscreen product. Today many sun protection cosmetics incorporate physical UV filters as active ingredients, and there are no official methods for determining these compounds in sunscreen cosmetics. Here flow field-flow fractionation (FlFFF) has been tested, first to sort two different types of TiO2 nano- and microstandard materials (AeroxideTiO2 Degussa P-25 and TiO2 rutile 0.1-0.2-microm size) and then to fractionate TiO2 particles, extracted from a commercial sunscreen lotion. All the TiO2 FlFFF separations were detected by UV but during elution fractions were collected and their Ti content measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES); the Ti concentration profiles obtained by ICP-AES were well correlated with the UV signals. The TiO2 particle mass-size distribution were calculated from the UV profiles. This methodology is relatively simple and rapid, and the sample treatment is as a whole easy and low cost.

  1. HERSCHEL KEY PROGRAM, ''DUST, ICE, AND GAS IN TIME'' (DIGIT): THE ORIGIN OF MOLECULAR AND ATOMIC EMISSION IN LOW-MASS PROTOSTARS IN TAURUS

    SciTech Connect

    Lee, Jeong-Eun; Lee, Seokho; Lee, Jinhee; Evans II, Neal J.; Green, Joel D.

    2014-10-01

    Six low-mass embedded sources (L1489, L1551-IRS5, TMR1, TMC1-A, L1527, and TMC1) in Taurus have been observed with Herschel-PACS to cover the full spectrum from 50 to 210 μm as part of the Herschel key program, ''Dust, Ice, and Gas In Time''. The relatively low intensity of the interstellar radiation field surrounding Taurus minimizes contamination of the [C II] emission associated with the sources by diffuse emission from the cloud surface, allowing study of the [C II] emission from the source. In several sources, the [C II] emission is distributed along the outflow, as is the [O I] emission. The atomic line luminosities correlate well with each other, as do the molecular lines, but the atomic and molecular lines correlate poorly. The relative contribution of CO to the total gas cooling is constant at ∼30%, while the cooling fraction by H{sub 2}O varies from source to source, suggesting different shock properties resulting in different photodissociation levels of H{sub 2}O. The gas with a power-law temperature distribution with a moderately high density can reproduce the observed CO fluxes, indicative of CO close to LTE. However, H{sub 2}O is mostly subthermally excited. L1551-IRS5 is the most luminous source (Ł{sub bol} = 24.5 L {sub ☉}) and the [O I] 63.1 μm line accounts for more than 70% of its FIR line luminosity, suggesting complete photodissociation of H{sub 2}O by a J shock. In L1551-IRS5, the central velocity shifts of the [O I] line, which exceed the wavelength calibration uncertainty (∼70 km s{sup –1}) of PACS, are consistent with the known redshifted and blueshifted outflow direction.

  2. Low Altitude Emission (LAE) of Energetic Neutral Atoms (ENA) Observed by TWINS and its Relation to the CINEMA CubeSat Mission

    NASA Astrophysics Data System (ADS)

    Bazell, D.; Sotirelis, T.; Nair, H.; Roelof, E. C.; Brandt, P. C.

    2009-12-01

    The brightest source of energetic neutral atoms (ENAs) at energies >1keV is low altitude emission (LAE) from ~200-400km near auroral latitudes where precipitating energetic ions undergo multiple atomic collisions with the monatomic (O) exosphere. This emission is many times brighter than that from the high-altitude ring current region where the energetic ions interact only weakly with the much less dense monatomic (H) hydrogen geocorona. The recently selected NSF CubeSat mission CINEMA [Lin et al., this special session] has, as part of its science payload (STEIN), an ENA imager covering energies 4-100keV. From a high-inclination ~800km orbit, STEIN will view the LAE four times during every 90 minutes. The NASA TWINS stereo ENA imagers (2-40keV) will also view the LAE from their Molniya orbits (apogee radius~7Re). We have been analyzing the TWINS ENA images of LAE and comparing them with in situ ion measurements (1-40keV) from DMSP spacecraft when their tracks take them under the ion precipitation regions imaged by TWINS. We have developed an ENA emissivity function that relates the directionally-dependent emergent ENA spectrum to that of the precipitating ions. The TWINS/DMSP direct comparisons show good agreement. We offer suggestions on joint observing strategies for CINEMA, TWINS and DMSP after the CINEMA launch in the second half of 2011.

  3. Hyphenated techniques in speciation analysis of polyoxometalates: identification of individual [PMo12-xVxO40](-3-x) (x = 1-3) in the reaction mixtures by high performance liquid chromatography and atomic emission spectrometry with inductively coupled plasma.

    PubMed

    Shuvaeva, O V; Zhdanov, A A; Romanova, T E; Abramov, P A; Sokolov, M N

    2017-03-14

    Unambiguous identification of polyoxometalate (POM) species generated in self-assembly reactions in solution is rather problematic due to close similarity of their properties such as solubility and spectral characteristics. The situation is made more complex by protonation equilibria (which can change their analytical signals) and the lack of individual compounds to serve as standards for individual members of these mixtures. In the present work a new approach to the study of such POMs has been suggested, taking molybdovanadates [PMo12-xVxO40](-3-x) as a model. The key feature of this approach consists of generation of so-called "conditional model systems" that include most of the expected components of a mixture formed by self-assembly, tracked down by reliable detection techniques, e.g., (51)V NMR-spectroscopy in this particular case. Then the proposed composition of the mixture is verified and corrected by means of high-performance liquid chromatography coupled with inductively coupled plasma atomic emission spectrometry (HPLC-ICP-AES).

  4. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  5. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples.

  6. Determination of nickel in biological materials after microwave dissolution using inductively coupled plasma atomic emission spectrometry with prior extraction into butan-1-ol.

    PubMed

    Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    1992-07-01

    A sensitive procedure has been developed for the determination of ultratrace amounts of nickel in biological materials by inductively coupled plasma atomic emission spectrometry after extraction of the nickel ion into butan-1-ol by using 1,5-bis(di-2-pyridylmethylene)thiocarbonohydrazide as the extracting reagent. Fast, efficient and complete sample digestion is achieved by an HNO3-HCl poly(tetrafluoroethylene) bomb dissolution technique using microwave heating. Results obtained for eleven certified reference materials agreed with the certified values.

  7. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  8. Morphological characterization of cardiac induced intracranial pressure (ICP) waves in patients with overdrainage of cerebrospinal fluid and negative ICP.

    PubMed

    Eide, Per Kristian; Sroka, Marek; Wozniak, Aleksandra; Sæhle, Terje

    2012-10-01

    Symptomatic overdrainage of cerebrospinal fluid (CSF) can be seen in shunted hydrocephalus patients and in non-shunted patients with spontaneous intracranial hypotension (SIH). In these patients, intracranial pressure (ICP) monitoring often reveals negative static ICP, while it is less understood how the pulsatile ICP (cardiac induced ICP waves) is affected. This latter aspect is addressed in the present study. A set of 40 ICP recordings from paediatric and adult hydrocephalus patients were randomly selected. Each cardiac induced ICP wave was automatically identified and manually verified by the beginning and ending diastolic minimum pressures and the systolic maximum pressure. The ICP wave parameters (static pressure, amplitude, rise time, rise time coefficient, downward coefficient, wave duration, and area-under-curve) were then automatically computed. The material of 40 ICP recordings provided a total of 3,192,166 cardiac induced ICP waves (1,292,522 in paediatric patients and 1,899,644 in adult patients). No apparent changes in ICP wave parameters were seen when mean ICP became negative, except that the parameters amplitude, rise time coefficient, downward coefficient and area under curve somewhat increased when mean ICP was below -15 mmHg.

  9. Isotopic ratio measurements with ICP-MS

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1986-06-03

    An inductively-coupled-plasma source mass spectrometer (ICP-MS) has been used to measure the isotopic composition of U, Pb, Os, and B standards. Particular emphasis has been placed on uranium because of its nuclear and environmental interest and because of the availability of a well-characterized set of standards with a wide range of isotopic compositions. The precision and accuracy obtainable in isotope ratio measurements by ICP-MS depend on many factors including background, interferences, dead time, mass fractionation (bias), abundance sensitivity, and counting statistics. Which, if any, of these factors controls accuracy and precision depends on the type of sample being analyzed and the characteristics of the mass spectrometer. These issues are discussed in detail.

  10. Challenges in the quality assurance of elemental and isotopic analyses in the nuclear domain benefitting from high resolution ICP-OES and sector field ICP-MS.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Van Winckel, Stefaan

    Accurate analytical data reinforces fundamentally the meaningfulness of nuclear fuel performance assessments and nuclear waste characterization. Regularly lacking matrix-matched certified reference materials, quality assurance of elemental and isotopic analysis of nuclear materials remains a challenging endeavour. In this context, this review highlights various dedicated experimental approaches envisaged at the European Commission-Joint Research Centre-Institute for Transuranium Elements to overcome this limitation, mainly focussing on the use of high resolution-inductively coupled plasma-optical emission spectrometry (HR-ICP-OES) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). However, also α- and γ-spectrometry are included here to help characterise extensively the investigated actinide solutions for their actual concentration, potential impurities and isotopic purity.

  11. Coherently controlled emissions |4P3/2,1/2> ↔ |4S1/2> from a femtosecond Λ-type excitation scheme in potassium atom

    NASA Astrophysics Data System (ADS)

    Pentaris, D.; Damianos, D.; Papademetriou, G.; Lyras, A.; Steponkevičius, K.; Vaičaitis, V.; Efthimiopoulos, T.

    2016-07-01

    The combined excitation of high density potassium (K) vapour by 100 fs pump-coupling pulses is experimentally studied. The intense pump pulse excites the two-photon ? transition and internally generated emissions are initiated along the atomic paths: ? (path-1) and, ? (path-2). The temporally delayed coupling pulse coherently drives the ? transitions, in a Λ-type excitation scheme. The competing axial and conical emission components of the well-resolved ? transitions (D2 and D1 lines of K) are substantially enhanced and controlled, for appropriate detunings and pump-coupling temporal delays. The coherence relaxation time (CRT) of the two-photon excited ? state is determined by exploiting the temporal delay in the pulse sequence. The effect of the pulse delay and the fs pulse bandwidth on the system dynamics is discussed as well as the role of dephasing collisions between K and buffer gas atoms. The proposed scheme can be employed in radiative multi-level systems, for the direct estimation of coherence relaxation rates of various states.

  12. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.

    PubMed

    Idris, Nasrullah; Terai, Sumito; Lie, Tjung Jie; Kurniawan, Hendrik; Kobayashi, Takao; Maruyama, Tadashi; Kagawa, Kiichiro

    2005-01-01

    Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.

  13. [Determination of nano-silver spatiotemporal distribution in cut gerbera flowers by ICP-AES].

    PubMed

    Lü, Pei-Tao; Huang, Xin-Min; Lu, Yi-Min; Liu, Ji-Ping; Zhang, Zhao-Qi; He, Sheng-Gen

    2011-08-01

    The spatiotemporal distribution of nano-silver in cut gerbera (Gerbera hybrida cv. Crossfire) flowers were determined by inductively coupled plasma-atomic emission spectrometry technique (ICP-AES). The relative standard deviations of this method were between 0.14% and 2.89%, and the recovery ratio obtained by standard addition method ranged from 93.33% to 106.67%. The method was proved to be simple, rapid, reliable and highly sensitive, which can meet the demands of actual sample analysis. The experimental results also showed that Ag could be found in the basal stem end, upper stem end and petal of the cut gerbera flowers treated in nano-silver solution of 5 mg x L(-1) for 24 h and thereafter placed in distilled water. However, the Ag content in basal stem ends was much higher than those in upper stem ends and petals. The results indicated that nano-silver particles could enter into the flower stems through the cuts of stem ends and then moved to different parts of the cut gerbera flowers, but most of them located in the basal stem ends during the vase period. The fact that Ag was centred in basal stem end implied that the positive preservation effects of nano-silver on cut gerbera flowers is related to its strong and sustainable antiseptic action in the stem ends of cut flowers. The above results provide a reliable method for the determination of nano-silver and theoretical basis for its futher research and application in the preservation of cut flowers.

  14. Traceable phosphorus measurements by ICP-OES and HPLC for the quantitation of DNA.

    PubMed

    Holden, Marcia J; Rabb, Savelas A; Tewari, Yadu B; Winchester, Michael R

    2007-02-15

    Measurement of the phosphorus content of nucleotides and deoxyribonucleic acid (DNA) offers an approach to the quantitation of nucleic acids that is traceable to the SI. Such measurements can be an alternative to the commonly used spectroscopic tools that are not traceable. Phosphorus measurements of thymidine 5'-monophosphate (TMP) and acid-digested plasmid and genomic DNA preparations were made using high-performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES) and high-performance liquid chromatography (HPLC) and compared for bias and uncertainty. A prerequisite for quality measurement is the purity of the materials. Quantitation with the two platforms was comparable for the TMP. However, the HPLC values had larger uncertainties and were all statistically different from the gravimetric values at the 95% confidence level. When using ICP-OES, the digestion of the nucleotide monophosphate can be eliminated, thus simplifying the procedure. The differences between the results obtained by using the two platforms, when measuring genomic or plasmid DNA, were dependent on the mass fraction of the digest. ICP-OES measurement of phosphorus provides a highly accurate quantitation for both nucleotide monophosphates and DNA with expanded uncertainties of less than 0.1%. Currently, ICP-OES requires a significant sample size restricting its usefulness for the quantitation of DNA but represents a valuable tool for certification of reference materials. HPLC requires smaller amounts of material to perform the analysis but is less useful for certification of reference materials because of lower accuracy and 10-fold higher expanded uncertainties.

  15. Stable and high-quality Al-doped ZnO films with ICP-assisted facing targets sputtering at low temperature

    NASA Astrophysics Data System (ADS)

    Choi, Yoon S.; Kim, Hye R.; Han, Jeon G.

    2014-04-01

    FTS (facing targets sputtering) has been studied intensively for high-quality TCO films in low-temperature processes. In this study, we designed ICP-assisted FTS process for high-quality Al-doped ZnO film synthesis in a low temperature process. A one-turn ICP coil was installed a few cm above the upper target edge through which hydrogen was introduced and fully dissociated to the atomic radicals. The increase of ICP power caused heating and rarefaction of Ar gas and generated abundant hydrogen atoms and hydrogenated molecules. In FESEM analysis, the films synthesized with high ICP power showed high crystallinity. XPS was used to analyze the film structure. In O1s spectra, the low binding energy component located at ˜530.3 ± 0.4 eV corresponding to O2- ions on the wurtzite structure of the hexagonal Zn2+ ion array increased with the ICP power, indicating good crystal quality. With increasing ICP power fixing while fixing the RF power at the cathode, the resistivity was observed to decrease to 5 × 10-4 Ω-cm. For thermal reliability tests, films were stored in an air-based chamber at 200 °C. The films synthesized without ICP showed rapid degradation in the electrical properties, while the films synthesized with high ICP power showed good stabilities with little change in the electrical properties after 30 h of storage in an oven. By adding hydrogen, the carrier concentration of the films increased, while the mobility did not change much. From these results, it is expected that hydrogen was incorporated into the film as a stable n-dopant by using an auxiliary ICP plasma source.

  16. A new electron spectroscopy system for measuring electron emission from fast ion interactions with atomic, molecular, and condensed phase targets

    NASA Astrophysics Data System (ADS)

    Hawkins, Wilson L.

    A new electron spectroscopy system has been developed for measuring electron emission from gas and solid targets induced by fast ion impact. This system uses an ultrahigh-vacuum compatible cylindrical deflector analyzer, designed and fabricated in the Department of Physics at East Carolina University, to measure electron yields as a function of electron energy and emission angle for fast ions interacting with materials. The new spectroscopy system was tested in a previously existing high-vacuum target chamber that has been installed on a new beam line in the ECU Accelerator Laboratory. In addition to the new analyzer, a new data acquisition and experimental control system, based on LabVIEW computer control software, was developed and tested using an existing cylindrical mirror analyzer. Data from this system was compared to previous results to confirm the functionality of the design. Subsequently, the new analyzer was installed in the high-vacuum target chamber and tested by measuring Auger electron emission from 2 MeV protons incident on an argon gas target and comparing to well-known emission spectra. Ultimately, the new electron spectroscopy system will be used for measuring electron yields from condensed phase targets in ultrahigh-vacuum conditions in future experiments.

  17. Application of ICP-OES for Evaluating Energy Extraction and Production Wastewater Discharge Impacts on Surface Waters in Western Pennsylvania

    EPA Science Inventory

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) w...

  18. Atomic layer deposition of TiO2 and Al2O3 on nanographite films: structure and field emission properties

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Ismagilov, Rinat R.; Smolnikova, Elena A.; Obraztsova, Ekaterina A.; Tuyakova, Feruza; Obraztsov, Alexander N.

    2016-03-01

    Atomic layer deposition (ALD) of metal oxides (MO) was used to modify the properties of nanographite (NG) films produced by direct current plasma-enhanced chemical vapor deposition technique. NG films consist of a few layers of graphene flakes (nanowalls) and nanoscrolls homogeneously distributed over a silicon substrate with a predominantly vertical orientation of graphene sheets to the substrate surface. TiO2 and Al2O3 layers, with thicknesses in the range of 50 to 250 nm, were deposited on NG films by ALD. The obtained NG-MO composite materials were characterized by scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy. It was found that ALD forms a uniform coating on graphene flakes, while on the surface of needle-like nanoscrolls it forms spherical nanoparticles. Field emission properties of the films were measured in a flat vacuum diode configuration. Analysis based on obtained current-voltage characteristics and electrostatic calculations show that emission from NG-TiO2 films is determined by the nanoscrolls protruding from the TiO2 coverage. The TiO2 layers with thicknesses of <200 nm almost do not affect the overall field emission characteristics of the films. At the same time, these layers are able to stabilize the NG films' surface and can lead to an improvement of the NG cold cathode performance in vacuum electronics.

  19. Some aspects of pulsed laser deposited nanocrystalline LaB(6) film: atomic force microscopy, constant force current imaging and field emission investigations.

    PubMed

    Late, Dattatray J; Date, Kalyani S; More, Mahendra A; Misra, Pankaj; Singh, B N; Kukreja, Lalit M; Dharmadhikari, C V; Joag, Dilip S

    2008-07-02

    Nanocrystalline lanthanum hexaboride (LaB(6)) films have been deposited on molybdenum foil by the pulsed laser deposition (PLD) technique. The as-deposited films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The XRD pattern shows the cubic crystallinity of the LaB(6) film. The AFM studies reveal that the conical shaped LaB(6) nanostructures have height 60 nm, base 800 nm, and a typical radius of curvature ∼20 nm. A comparison of force and in situ current imaging AFM studies reveals that current contrast does not originate from the surface topography of the LaB(6) film. Field emission studies have been performed in the planar diode configuration. A current density of 4.4 × 10(-2) A cm(-2) is drawn from the actual emitting area. The Fowler-Nordheim plot is found to be linear, in accordance with the quantum mechanical tunneling phenomenon. The field enhancement factor is estimated to be 3585, indicating that the field emission is from LaB(6) nanocrystallites present on the emitter surface, as confirmed by the AFM. The emission current-time plots show current stability to the extent of 5% fluctuation about the average current over a period of 3 h.

  20. Title: The validation of Cryogenic Laser Ablation ICP-MS (CLA-ICP-MS) methods by comparison to laser ablation (LA)-ICP-MS and solution based ICP-MS methods, for the analysis of metals in biological tissues

    NASA Astrophysics Data System (ADS)

    Hannigan, R.; Darrah, T. H.; Horton, M.

    2009-12-01

    ICP-MS and laser ablation ICP-MS (LA-ICP-MS) are well established techniques for the analysis of metals in geological and environmental samples. LA-ICP-MS is commonly used in geological applications to determine the spatial distribution of metal concentrations at small sampling intervals (as low as 10 microns). However, measurement of metals in water-rich, soft biological tissues typically requires samples to be digested into solutions, obfuscating spatial variations in metal concentrations. The cryogenic cell solidifies (by freezing) soft tissue, allowing these tissues to be analyzed by laser ablation for spatial variations in metal concentration. The cell is temperature programmable and capable of maintaining a sample at any temperature between -35C and 25C throughout prolonged analysis. We validate the cryogenic laser ablation ICP-MS (CLA-ICP-MS) method using NIST Glass SRM 612. We also compare metal concentration data analyzed by cryogenic laser ablation ICP-MS (CLA-ICP-MS), LA-ICP-MS, and solution based ICP-MS, for human and rodent brain samples. The cryogenic laser ablation cell will expand analytical capabilities for measuring spatial distribution and concentration of metals incorporated into biological tissues.

  1. Effect of gutta-percha solvents on mineral contents of human root dentin using ICP-AES technique.

    PubMed

    Erdemir, Ali; Eldeniz, Ayçe Unverdi; Belli, Sema

    2004-01-01

    The purpose of this in vitro study was to evaluate the mineral contents of root-canal dentin before and after treatment with two commonly used gutta-percha solvents: chloroform and halothane. Twenty extracted human premolars, whose crowns and apical thirds had been removed, were used. Pulp tissues were removed and the teeth were randomly divided into two groups including 10 teeth each. Root canals were enlarged with Gates Glidden burs (#1, 2, and 3). Dentin chips were obtained and saved in plates to serve as a control. Root-canal-dentin walls were then treated with chloroform or halothane for 15 min. Dentin chips were again obtained using Gates Glidden burs (#4, 5, and 6). The levels of five elements, calcium, phosphorus, magnesium, potassium, and sulfur, in each specimen were analyzed using ICP-AES (inductively coupled plasma atomic emission spectrometry) technique. Changes in the levels of the chemical elements were recorded. Differences between the groups were statistically analyzed using Mann-Whitney U test. There was a significant decrease in Ca level and significant increase in Mg level after treatment with halothane (p < 0.05). There was a significant increase in Mg level after treatment with chloroform. The changes in other elements levels after treatment with gutta-percha solvents were minimal and statistically not significant (p > 0.05). As a result it was concluded that gutta-percha solvents have effect on mineral contents of root dentin.

  2. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study

    NASA Astrophysics Data System (ADS)

    Parsons, Patrick J.; Slavin, Walter

    1999-05-01

    Results of an interlaboratory study are reported for the determination of lead in urine. Two levels of a lyophilized material containing biologically-bound lead were prepared using pooled urine obtained from lead-poisoned children undergoing the CaNa 2EDTA mobilization test. The materials were circulated to a group of reference laboratories that participate in the `New York State Proficiency Testing Program for Blood Lead'. Results of the initial round-robin gave all-method consensus target values of 145±22 μg/l (S.D.) for lot 17 and 449±43 μg/l (S.D.) for lot 20. The interlaboratory exercise was repeated some 5 years later and consensus target values were re-calculated using the grand mean (excluding outliers) of results reported by laboratories using electrothermal atomization atomic absorption spectrometry (ETAAS). The re-calculated target values were 139±10 μg/l (S.D.) and 433±12 μg/l (S.D.). The urine reference materials were also analyzed for lead by several laboratories using other instrumental techniques including isotope dilution (ID), inductively coupled plasma (ICP) mass spectrometry (MS), flame atomic absorption with extraction, ICP-atomic emission spectrometry, ID-gas chromatography MS and flow injection-hydride generation AAS, thus providing a rich source of analytical data with which to characterize them. The materials were also used in a long-term validation study of an ETAAS method developed originally for blood lead determinations that has since been used unmodified for the determination of lead in urine also. Recently, urine lead method performance has been tracked in a proficiency testing program specifically for this analysis. In addition, a number of commercial control materials have been analyzed and evaluated.

  3. Characterization of helium/argon working gas systems in a radiofrequency glow discharge atomic emission source. Part II: Langmuir probe and emission intensity studies for Al, Cu and Macor samples

    NASA Astrophysics Data System (ADS)

    Belkin, Mikhail; Caruso, Joseph A.; Christopher, Steven J.; Marcus, R. Kenneth

    1998-08-01

    The application of a tuned Langmuir probe is extended to the measurement of the charged particle characteristics (electron and ion number density, average electron energy and electron temperature) in an analytical radiofrequency glow discharge (RF-GD) in helium. The effects of discharge operating conditions, such as RF power and pressure, on the charged particle characteristics for conducting (aluminum) and nonconducting (Macor) samples are studied. The differences in plasma characteristics between argon and helium working gases are discussed. Langmuir probe measurements are also performed in an argon/helium mixture. Variations of the emission intensities of sputtered analytes (copper and aluminum) are investigated when helium is introduced into an argon RF glow discharge plasma. It is recognized that, although the number of sample atoms in the plasma gradually decreases due to reduced sputtering, the emission intensities of various Al(I) and Cu(I) lines increase with helium addition. Measured electron and ion number densities also decrease with helium addition, whereas the average electron energy and electron temperature increase, accounting for the enhancement of emission intensities.

  4. Modeling and Diagnostics for an ICP in a Collision Dominated Region

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki

    1997-10-01

    Inductively coupled plasmas (ICP) are one of the candidates in the next reactor generation of plasma processings for ULSI microelectronic devices as very reliable, high density sources that produce uniform treatment over large areas. The basic mechanisms of excitation in ICP have been studied by theoretical and experimental procedures. It has been established that in ICP the induced azimuthal electric field E_θ gives to electrons the energy to sustain the discharge at lower pressure. The temporal profile of the field may be associated with the temporal profile of the current in the coil while the radial profile is determined mostly by the skin depth of the plasma. Recently, however, it has been predicted in a collision dominated region that there are additional mechanisms operating in ICP which may provide energy to electrons. One such mechanism is the drift due to the static, radial component of the field Er and the time varying magnetic filed which will result in an azimuthal motion of electrons. This mechanism will result in a different space- and time-dependence of the plasma emission and would be expected to occur with a phase difference of approximately π/4 as compared to the excitation due to the basic mechanism of electron acceleration by the azimuthal field. The influence of the capacitive coupling may add an amount of power to electrons and can also be distinguished by the space- and time profile of the emission. Thus in order to obtain a detailed description of plasma excitation kinetics a comparison between the models and the experimental emission CT for the time resolved net excitation rates is discussed as well as the influence of the interaction between the external electromagnetic wave and the plasma density, and of the direct and stepwise ionizations in Ar and O2 at p>=15 mTorr.

  5. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  6. Microfabricated hollow microneedle array using ICP etcher

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  7. Methyl sulfonyl polychlorinated biphenyls and 2,2-bis(4-chlorophenyl)-1,1-dichlorethene in gray seal tissues determined by gas chromatography with electron capture detection and atomic emission detection

    SciTech Connect

    Janak, K.; Becker, G.; Colmisjoe, A.; Oestman, C.; Athanasiadou, M.; Valters, K.; Bergman, A.

    1998-06-01

    The presence of 24 methyl sulfonyl polychlorinated biphenyl (PCB) congeners (MeSO{sub 2}-CBs) and 3-methyl sulfonyl 2,2-bis(4-chlorophenyl)-1,1-dichlorethene (DDE) (MeSO{sub 2}-DDE), metabolites of PCB and DDE, in blubber, lung, and liver of gray seals has been determined by using atomic emission detection (AED) and electron capture detection (ECD). Selective accumulation of aryl methyl sulfones in blubber, liver, and lung tissue was also investigated. For the liver samples, a substantial and highly specific retention of PCB methyl sulfones was observed. The atomic emission technique significantly improved the determination of measured solutes compared with ECD. Atomic emission detection was also valuable for the monitoring of the prefractionation and to decrease the requirements of sample clean-up. Comparing both detection techniques showed a good correlation between the results of the AED sulfur-selective line and ECD.

  8. Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2016-08-01

    Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.

  9. [Simultaneous Determination of Sn and S in Methyltin Mercaptide by Microwave-Assisted Acid Digestion and ICP-OES].

    PubMed

    Chen, Qian; Wu, Xi; Hou, Xian-deng; Xu, Kai-lai

    2015-09-01

    Methyltin mercaptide is widely used as one of the best heat stabilizer in the polyvinylchloride (PVC) thermal processing due to its excellent stability, good transparency, high compatibility and weather resistance. The content of sulfur and tin significantly affects its quality and performance, so it is of great significance to develop an analytical method for the simultaneous determination of sulfur and tin. Inductively coupled plasma atomic emission spectrometry (ICP-OES) has been a powerful analytical tool for a myriad of complex samples owing to its advantages of the low detection limits, rapid and precise determinations over wide dynamic ranges, freedom from chemical inter-element interferences, the high sample throughput and above all, simultaneous multi-elements analysis. Microwave technique as a well-developed method for sample preparation can dramatically reduce the digestion time and the loss of volatile elements compared with the traditional open digestion. Hereby, a microwave-assisted acid digestion (MW-AAD) procedure followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was developed for the simultaneous determination of Sn and S in methyltin mercaptide. This method has the advantages of simplicity, rapidness, good accuracy, green and less use of samples. Parameters affecting the MW-AAD such as the digestion solution and digestion time were optimized by using a chemical analyzed reference sample (DX-181) to attain tin and sulfur quantitative recoveries. HNO3-HCl-HClO4 (v/v/v=9:3:1) and 10 min were the optimum digestion solution and digestion time, respectively. Under optimum conditions, the standard addition method and the standard calibration curve method were both been used to detect Sn and S in DX-181. There was no significant difference between two methods and the relative deviations to the chemical analysis values were both less than 2%. Additionally, the accuracy of the MW-AAD method was examined by analyzing

  10. Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector

    NASA Astrophysics Data System (ADS)

    Quan, Xie; Chen, Shuo; Platzer, Bernhard; Chen, Jingwen; Gfrerer, Marion

    2002-01-01

    Water and sediment samples were screened simultaneously for the presence of polychlorinated organic compounds using gas chromatography (GC) coupled with an micro electron capture detector (μ-ECD) and a newly developed helium plasma based on a micro-atomic emission detector (μ-AED). The GC column effluent was split 15:85 between two detectors. In this way, two chromatograms, one obtained by μ-ECD and another by μ-AED, were recorded simultaneously. α-, β-hexachlorocyclohexane and p, p'-DDE were detected. RSDs of the monitoring results from the two detection methods were <20% for the three compounds. A detection limit of 8.5 pg and at least 3 orders of magnitude of linear range for μ-AED was observed.

  11. Application of inductively coupled plasma atomic emission spectroscopy analysis with a polychromator/monochromator combination the byproducts of coal-fired power stations

    NASA Astrophysics Data System (ADS)

    Weers, C. A.

    The by-products of coal-fired power plants may be hazardous for the environment. Good analysis methods are therefore required in order to establish either a possible usage of the by-products or their possible storage. Preliminary experiments performed with inductively coupled plasma atomic emission spectroscopy have proven very successful. Moreover, the method is cost-effective. A short description is given of the optimized system for routine analysis. The system consists of a 2- and a 15-channel polychromator in combination with a monochromator. The opportunities is provides are also described. Use of the monochromator to analyze coal and run-off water from the flue-gases desulphurization, and of the polychromators to analyze coal fly-ash is described separately.

  12. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  13. Aqueous Organometal Speciation by GC-ICP-MS and HPLC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Hannigan, R.

    2005-12-01

    Organometals, specifically organomercury, organotin and organolead, may only account for a small fraction of the total metal load in aquatic systems. Despite their lower relative abundance, organometal species may have a larger impact on the environment. Although biogeochemical studies of mercury, tin, and to a lesser degree lead, have been done, little is known about the transport and transformation of these organometals in the water column and, more specifically, at the sediment-water interface. Our knowledge is limited, in part, by the lack of instrumental techniques that provide simultaneous highly precise data about the metal species and binding ligand. We have developed a series of hyphenated techniques that allow for precise quantification of the elemental and organic forms of these metals. Most importantly these methods remove sample pre-treatment from the methods though headspace trap desorption, split injection and sequential chromatography with split detection providing detailed information about the metals and organics in stream water samples. Our data show that using headspace trap GC-ICP-MS it is possible to by-pass chromatographic separation of the species and detect elemental, dimethyl and methyl mercury in a single sample from a single injection. Additional research shows that GC-ICP-MS and HPLC-ICP-MS speciation of organotins provide differential speciation data with GC-ICP-MS detecting, at very low concentrations, butylins and HPLC-ICP-MS detecting, at very low concentrations, ethyltins. Integration of these techniques into a single system will eventually lead to a system which provides simultaneous detection of metals and organic binding ligands in a single sample.

  14. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  15. Infrared (1-12 Micrometers) Atomic and Molecular Emission Signatures from Energetic Materials using Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2013-01-01

    chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on...molecular LIBS signatures from chlorate and nitrate compounds were observed at ~10 um and ~7.3 um, respectively. The observed molecular emissions showed... chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on

  16. Pressure dissolution and real sample matrix calibration for multielement analysis of raw agricultural crops by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Kuennen, R.W.; Woinik, K.A.; Fricke, F.L.; Caruso, J.A.

    1982-11-01

    A method utilizing a pressure dissolution technique to minimize sample pretreatment is described for multielement analysis of raw agricultural crops by inductively coupled argon plasma atomic emission spectrometry. The procedure employs a 30-min pressure dissolution of sample composite with 6 M HCI at 80/sup 8/C in 60-mL linear polyethylene bottles. A sample introduction system is also described which permits direct atomization of complex organic matrices. Combined with a real sample matrix callbration technique, this introduction system allows rapid and accurate multielement analysis of complex HCl sample matrix solutions. The procedure compares favorably to more time-consuming conventional wet ashing methods for the determination of major, minor, and trace elements occurring in lettuce, potatoes, peanuts, soybeans, spinach, sweet corn, and wheat. Recoveries for spiked samples, precision studies, and analyses of NBS reference materials demonstrate the reliability and accuracy of the procedure. Advantages and limitations of this technique relative to conventional wet ashing methods are discussed. 2 figures, 7 tables.

  17. Thermospheric atomic oxygen concentrations from WINDII O+(2P→2D) 732 nm emission: Comparisons with the NRLMSISE-00 and C-IAM models and with GUVI observations

    NASA Astrophysics Data System (ADS)

    Shepherd, Gordon G.; Cho, Young-Min; Fomichev, Victor I.; Martynenko, Oleg V.

    2016-09-01

    Thermospheric atomic oxygen concentrations have been retrieved from observations by the Wind Imaging Interferometer (WINDII) O+(2P→2D) 732 and 733 nm emissions and are compared with results obtained by the Global Ultraviolet Imager (GUVI). Although the observations compared were taken ten years apart, the periods were selected on the basis of solar activity, using the Canadian Ionosphere and Atmosphere Model (C-IAM) to bridge the time gap. Results from all of these were compared with those from the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter (NRLMSISE-00) model. Comparisons were made on the basis of F10.7 solar flux, day of year, local time, season, latitude and longitude. The WINDII local time variations showed enhanced values for the Northern spring season. Latitude and longitude plots showed smooth variations for NRLMSISE-00 and large variations for both WINDII and GUVI observations; in particular a depression in atomic oxygen concentration around 40 °S latitude and 100 °E longitude that is tentatively identified with a longitudinal wave 1 that does not propagate in local time but has an annual variation. The averaged values showed the WINDII values to be 0.75 that of NRLMSISE-00 compared with 0.80 for GUVI. Thus the WINDII values agreed with those of GUVI to within 6%, although taken 10 years apart.

  18. Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines

    NASA Astrophysics Data System (ADS)

    Yubero, C.; Rodero, A.; Dimitrijevic, M. S.; Gamero, A.; García, M. C.

    2017-03-01

    In this work a new spectroscopic method, allowing gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure, is presented. The method is based on the measurements of selected pairs of argon atomic lines (Ar I 603.2 nm/Ar I 549.6 nm, Ar I 603.2 nm/Ar I 522.1 nm, Ar I 549.6 nm/Ar I 522.1 nm). For gas temperature determination using the proposed method, there is no need of knowing the electron density, neither making assumptions on the degree of thermodynamic equilibrium existing in the plasma. The values of the temperatures obtained using this method, have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using both, the well-known Boltzmann-plot technique and the best fitting to simulated ro-vibrational bands. A very good agreement has been found.

  19. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

    PubMed

    Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred

    2015-11-01

    We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

  20. Global distribution of the Energetic Neutral Atom (ENA) / precipitating ion particulate albedo from Low Altitude Emission (LAE) source regions over the last solar maximum

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.; Mukherjee, J.; Pollock, C. J.

    2012-12-01

    Charge exchange between ring current ions spiraling into the upper atmosphere and terrestrial neutral constituents produces a non-isotropic distribution of escaping Energetic Neutral Atoms (ENA). These ENA's are no longer tied to the magnetic field, and can therefore be observed remotely from orbiting platforms. Particularly of interest is Low Altitude Emissions (LAE) of ENA's. These ENA emissions occur near the oxygen exobase and constitute the brightest ENA signatures during geomagnetic storms. In this study we build on previous work described in Pollock et al. [2009] in which IMAGE/MENA data was used to compute the Invariant Latitude (IL) and Magnetic Local Time (MLT) distributions of ENA's observed in the 29 October 2003 storm. The algorithms developed in Pollock et al. [2009] are used to compute the IL and MLT of LAE source regions for 76 identified storms at different phases of solar cycle 23. The ENA flux from the source regions are divided by in-situ ion precipitation obtained by DMSP-SSJ4 and NOAA-TED to give a global mapping of the particulate albedo during storm times.

  1. Energetic Neutral Atom (ENA) Low Altitude Emission (LAE) Pitch Angle Distribution obtained from IMAGE/MENA over the span of the mission

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Pollock, C. J.; Jahn, J.; Mukherjee, J.

    2011-12-01

    Charge exchange between ring current ions spiraling into the upper atmosphere and terrestrial neutral constituents produces a non-isotropic distribution of escaping Energetic Neutral Atoms (ENA). These ENA's are no longer tied to the magnetic field, and can therefore be observed remotely from orbiting platforms. Particularly of interest is Low Altitude Emissions (LAE) of ENA's. These ENA emissions occur near the oxygen exobase and constitute the brightest ENA signatures during geomagnetic storms. In this study we build on previous work described in Pollock et al. [2009] in which IMAGE/MENA data was used to compute the pitch angle distribution of ENA's observed in the 29 October 2003 storm. The algorithms used in Pollock et al. [2009] are used to compute the pitch angle distribution for 80 identified storms at different phases of the solar cycle. The pitch angles are a function of invariant latitude, magnetic local time, and universal time. This allows them to be used to characterize the velocity-space distribution of ENA's emanating from the source point as well as the configuration-space distribution of ENA fluxes from a point in the upper atmosphere.

  2. A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry.

    PubMed

    Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J

    2011-11-01

    Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.

  3. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: a review.

    PubMed

    Barin, Juliano S; Mello, Paola A; Mesko, Marcia F; Duarte, Fabio A; Flores, Erico M M

    2016-07-01

    Interest in the determination of elemental impurities in pharmaceuticals has increased in recent years because of changes in regulatory requirements and the need for changing or updating the current limit tests recommended in pharmacopeias. Inductively coupled plasma (ICP) optical emission spectrometry and ICP mass spectrometry are suitable alternatives to perform multielemental analysis for this purpose. The main advantages and limitations of these techniques are described, covering the applications reported in the literature in the last 10 years mainly for active pharmaceutical ingredients, raw materials, and pharmaceutical dosage forms. Strategies used for sample preparation, including dissolution in aqueous or organic solvents, extraction, wet digestion and combustion methods are described, as well as direct solid analysis and ICP-based systems applied for speciation analysis. Interferences observed during the analysis of pharmaceutical products using ICP-based methods are discussed. Methods currently recommended by pharmacopeias for elemental impurities are also covered, showing that the use of ICP-based methods could be considered as a trend in the determination of these impurities in pharmaceuticals. However, the development of a general method that is accurate for all elemental impurities and the establishment of an official method are still challenges. In this regard, the main drawbacks and suitable alternatives are discussed.

  4. Single-step microwave digestion with HNO(3) alone for determination of trace elements in coal by ICP spectrometry.

    PubMed

    Wang, Jie; Nakazato, Tetsuya; Sakanishi, Kinya; Yamada, Osamu; Tao, Hiroaki; Saito, Ikuo

    2006-02-28

    A microwave digestion method with HNO(3) alone was conducted at a temperature as high as 250 degrees C for determination of 19 trace elements (Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Cd, Cs, Ba, Hg, and Pb) in coal jointly by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and flow injection ICP-MS (FI-ICP-MS). The validity of determination was assessed by using three standard coals, SRM 1632c, BCR 180, and SARM 19. It was found that the high-temperature digestion led to an extensive decomposition of the organic matrix and clay in coal, and no dissolved and solid carbon remained in the final solution after evaporation. Good recoveries were observed for all trace elements in three coals, with the exception of V, Rb, and Cs in high-ash SARM 19. Additionally, FI-ICP-MS combined with the present digestion without evaporation pretreatment was proved to be a rapid and efficient approach for determination of ultra-trace elements such as Se, Cd, and Hg in coal.

  5. A non-statistical atomic model for beam emission and motional Stark effect diagnostics in fusion plasmas.

    PubMed

    Ralchenko, Yu; Marchuk, O; Biel, W; Schlummer, T; Schultz, D R; Stambulchik, E

    2012-10-01

    In this work we analyze magnetic sublevel populations in a neutral beam penetrating a fusion plasma. The collisional-radiative model NOMAD was extended to include magnetic parabolic sublevels with principal quantum numbers n ≤ 10. The collisional parameters were calculated with the advanced atomic-orbital close coupling method and the Glauber approximation. The ionization by the induced electric field was also included in the model. The results of our calculations show significant deviations of the sublevel populations and, accordingly, line intensities of the σ and π components, from the statistical approximation. It is shown, for instance, that for a number of experimental conditions the total intensity of σ components is not equal to the total intensity of π components, which has a strong effect on determination of magnetic field and pitch angle in fusion devices. The results are presented for a wide range of plasma and beam parameters. The most significant deviations are observed for strong magnetic fields and high beam energies typical for the ITER plasma, where component intensity ratios may deviate by more than 20% from the statistical values.

  6. Carbon dioxide reduction in low-pressure ICP

    NASA Astrophysics Data System (ADS)

    Dudin, Stanislav; Dakhov, Alexander

    2016-09-01

    This work experimentally investigates the efficiency of carbon dioxide dissociation in inductively coupled plasma (ICP) at low gas pressure. The plasma source operates at 13.56 MHz in the RF power range of 100-500 W. Pure CO2 is fed into the plasma while the output gas composition is measured by a mass spectrometer. The pressure range inside the source was changed in the range of 1-200 mTorr. Excitation processes in the plasma are studied by means of optical emission spectroscopy, and the plasma density along with the electron temperature are monitored using a Langmuir probe. Experimental results have shown that the conversion efficiency of CO2 to CO and O2 increases with the RF and reaches the values more than 50%. A theoretical treatment of the dissociation pathway is also given allowing estimation of the mean dissociation length of the carbon dioxide molecule in plasma. The plasma parameters necessary for efficient CO2 reduction are discussed.

  7. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples.

  8. Identification of an Intracranial Pressure (ICP) Response Function from Continuously Acquired Electroencephalographic and ICP Signals in Burst-Suppressed Patients.

    PubMed

    Connolly, Mark; Liou, Raymond; Vespa, Paul; Hu, Xiao

    2016-01-01

    Continuous intracranial pressure (ICP) and electroencephalographic (EEG) monitoring are used in the management of patients with brain injury. It is possible that these two signals could be related through neurovascular coupling. To explore this mechanism, we modeled the ICP response to brain activity by treating spontaneous burst activity in burst-suppressed patients as an impulse, and identified the ICP response function (ICPRF) as the subsequent change in ICP.Segments of ICP were filtered, classified as elevating or stable, and suitable ICPRFs were identified. After calibration, each ICPRF was convolved with the EEG to produce the estimated ICP. The mean error (ME) versus distance from the selected ICPRF was calculated and the elevating and stable ICP segments compared.Eighty-four ICPRFs were identified from 15 data segments. The ME of the elevating segments increased at an average rate of 57 mmHg/min, whereas the average ME of the stable segments increased at a rate of 0.05 mmHg/min.These findings demonstrate that deriving an ICPRF from a burst-suppressed patient is a suitable approach for stable segments. To completely model the ICP response to EEG activity, a more robust model should be developed.

  9. Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma.

    PubMed

    Jahromi, Elham Zeini; White, Wade; Wu, Qiao; Yamdagni, Raghav; Gailer, Jürgen

    2010-07-01

    The development of an analytical method to quantify the major Cu, Fe and Zn-containing metalloproteins in mammalian plasma has been recently reported. This method is based on the separation of plasma proteins by size exclusion chromatography (SEC) followed by the on-line detection of the metalloproteins by an inductively coupled plasma atomic emission spectrometer (ICP-AES). To assess whether the mobile phase buffer can affect the SEC-ICP-AES-derived metalloproteome pattern, thawed rabbit plasma was analyzed using phosphate buffered saline (PBS)-buffer (0.15 M, pH 7.4), Tris-buffer (0.1 and 0.05 M, pH 7.4), Hepes-buffer (0.1 M, pH 7.4) or Mops-buffer (0.1 M, pH 7.4). In contrast to the Cu-specific chromatograms, the Fe and Zn-specific chromatograms that were obtained with Tris, Hepes and Mops-buffer were considerably different from those attained with PBS-buffer. The Tris, Hepes and Mops-buffer mediated redistribution of ~25% plasma Zn(2+) from <100 kDa to >100-600 kDa plasma proteins and to a smaller extent to a <10 kDa (Tris)(2)Zn(2+)-complex can be rationalized in terms of the abstraction of Zn(2+) from the weak binding site on albumin. In contrast, only Hepes and Mops-buffer redistributed ~20% of plasma Fe(3+) from the <100 kDa to the >600 kDa elution range. Based on these results and considering that the utilization of PBS-buffer has previously resulted in the detection of a number of Cu, Fe and Zn-containing metalloentities in rabbit plasma that was most consistent with literature data, this mobile phase buffer is recommended for metallomic studies regarding mammalian blood plasma.

  10. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  11. A Comparative Analysis of Caries Inhibitory Effect of Remineralizing Agents on Human Enamel Treated With Er:YAG Laser: An In-vitro Atomic Emission Spectrometry Analysis

    PubMed Central

    Nair, Aswin Saseendran; Kumar, R Krishna; Ahameed, Syed Shaheed; Punnathara, Sairaj; Peter, Joby

    2016-01-01

    Introduction The tug of war to maintain tooth integrity is dependent on a ratio between demineralization and remineralization. Hence, demineralization should be retarded and remineralization should be enhanced to maintain a natural equilibrium in the oral cavity. Aim To compare in-vitro acid resistance of human enamel when using Casein Phosphopeptides Amorphous Calcium Phosphate (CPP-ACP) [GC Tooth mousse] cream, Casein Phosphopeptide Amorphous Calcium Fluoride Phosphate (CPP-ACFP) [GC Tooth mousse plus] cream, Er:YAG laser alone, combination of CPP-ACP with Er:YAG laser, CPP-ACFP with Er:YAG laser. Materials and Methods An in-vitro study was done on 100 specimens which were prepared from 50 human premolars to investigate the caries inhibitory effect of remineralizing agents and laser on enamel using an atomic emission spectrometry analysis. The enamel specimens were randomly allocated into 6 groups: Untreated (control); CPP-ACP (GC Tooth mousse); CPP-ACFP (GC Tooth mousse plus); Er:YAG laser treatment alone; CPP-ACP with Er:YAG laser; CPP-ACFP with Er: YAG laser. Then specimens were immersed individually in 5ml of acetate buffer solution (0.1mol/L, pH 4.5) and incubated at 37°C for 24 hours, to determine the acid resistance by analyzing the calcium release using atomic emission spectrometry. An ANOVA model was constructed (p-value 0.05), followed by post-hoc Tukey’s test for multiple pair wise comparisons of mean values. Results There was a significant difference among the various groups with respect to amount of calcium released (p<0.001). The lowest mean score of calcium release was observed for CPP-ACFP with Er:YAG laser followed by CPP-ACFP but the differences between these groups were statistically not significant (p>0.05). Similarly the differences between CPP-ACP with Er:YAG laser and CPP-ACP also were not significant (p>0.05). The highest mean score of calcium release was for Er:YAG laser and no significant statistical difference was noticed in

  12. Investigations on the on-line determination of metals in air flows by capacitively coupled microwave plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Seelig, M.; Broekaert, J. A. C.

    2001-09-01

    Plasma optical emission spectrometry with a capacitively coupled microwave plasma (CMP) operated with air has been investigated with respect to its possibilities for real-time environmental monitoring of combustion processes. The unique feature is the possibility to operate the CMP with air as working gas, as is usually the case in exhaust gases of combustion processes. The CMP also is shown to be stable in the presence of large amounts of water and CO 2, which makes this source ideally suitable for this purpose. The detection limits obtained for the environmentally relevant elements Cd, Co, Cr, Fe, Mg, Ni and Pb show the possibility to monitor directly heavy metals in air in an on-line mode and down to the 2-160-μg m -3 level. These detection limits are generally lower than the threshold limit values of the 'Federal Law for Immission Protection' in Germany in the gaseous effluents of industrial plants. In order to investigate the influence of the water loading (32-222 g m -3) on the detection limits a comparison of results obtained with three different nebulizers (Légère nebulizer, hydraulic high-pressure nebulizer and ultrasonic nebulizer) was made, with which aerosols with different water loading are entered into the plasma. For the hydraulic high-pressure nebulizer and the ultrasonic nebulizer no desolvation unit was found to be necessary. It was shown that especially for elements with lines having high excitation energy (Cd) or for which ion lines are used (Mg II) the increase in water loading deteriorates the detection limits. The rotational temperatures ( Trot) and excitation temperatures ( Texe) in the case of different amounts of water are of the order of 3700-4900 K and 4700-7100 K, respectively. The temperatures show that changes in the geometry and temperature distribution in the case of Trot but also the values of Texe themselves are responsible for this increase in detection limits. Furthermore, different amounts of CO 2 mixed to the working gas (3

  13. A novel method for simultaneous determination of selected elements in dolomite and magnesia by Inductively Coupled Plasma Atomic Emission Spectroscopy with slurry sample introduction

    NASA Astrophysics Data System (ADS)

    Bok-Badura, Joanna; Jakóbik-Kolon, Agata; Turek, Marian; Szczerba, Jacek; Lemanowicz, Marcin; Karoń, Krzysztof

    2015-11-01

    The slurry nebulization ICP-AES method for simultaneous determination of selected elements in dolomite and magnesia was proposed. Based on the investigation results the optimal conditions for this analysis were as follows: particle size < 40 μm, the nitric acid concentration 10%, the RF power 1.0 kW, aqueous solutions (no dispersing agents) and mixing on magnetic stirrer, during the sample introduction into plasma, as homogenization method. The certified reference materials Dolomite CRM 782-1 and High Purity Magnesia BCS-CRM 389/1 were analyzed. Student's t-test proved that there were no statistically significant differences between determined values and the certified ones. This proves that the slurry sample introduction into plasma in ICP-AES technique can be applied for simultaneous determination of elements in dolomite and magnesia.

  14. LA-ICP-MS of magnetite: Methods and reference materials

    USGS Publications Warehouse

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  15. Simple and sensitive determination of o-phenylphenol in citrus fruits using gas chromatography with atomic emission or mass spectrometric detection.

    PubMed

    Kolbe, Nina; Andersson, Jan T

    2006-08-09

    In this work, a simple and sensitive method for the analysis of the pesticide o-phenylphenol (OPP) on citrus fruits was developed. OPP is extracted with dichloromethane by ultrasonication and derivatized with ferrocenecarboxylic acid chloride. Using ferrocene as a label, residues of OPP are determined by gas chromatography with atomic emission detection in the iron selective mode or with mass spectrometric detection. Sample cleanup is simple and rapid and merely involves a removal of excess reagent on an alumina minicolumn. The method detection limit is 2 ng of OPP/g of fruit, and recoveries from lemon samples fortified at levels of 35 and 140 ng/g are 101 and 106%, respectively. The citrus fruits analyzed (oranges, grapefruits, lemons) contained between 60 ng/g and 0.37 microg/g OPP (RSD = 8-13%), and the results were in good agreement with results obtained when OPP was analyzed using an established HPLC-FLD method. Several alcohols could also be identified in the fruit peel.

  16. Effect of surfactant addition on ultrasonic leaching of trace elements from plant samples in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Borkowska-Burnecka, Jolanta; Jankowiak, Urszula; Zyrnicki, Wieslaw; Anna Wilk, Kazimiera

    2004-04-01

    The applicability of surfactants in sample preparation of plant materials followed by analysis by inductively coupled plasma atomic emission spectrometry has been examined. Reference materials (INCT-MPH-2-Mixed Polish Herbs, INCT-TL-1 black tea leaves and CTA-VTL-2 -Virginia tobacco leaves) and commercially available tea leaves were analyzed. Effects of addition surfactants (Triton X-100, didodecyldimethylammonium bromide and cetyltrimethylammonium bromide) on efficiency of ultrasonic leaching of elements from the plant samples and on plasma parameters were investigated. Low concentrations of the surfactants in solutions did not affect, in practice, analytical line intensities and the nebulization process. Quantitative recovery of some elements could be obtained by ultrasonic diluted acid leaching with the aid of surfactants. However, the element recovery depended on type of surfactant, as well as element and sample material. Plasma parameters, i.e. the excitation temperatures of Ar I, Fe II and Ca II as well as the electron number density and the Mg II/Mg I intensity ratio did not vary significantly due to the surfactants in solutions.

  17. Determination of Hg(2+) by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry.

    PubMed

    Li, Qing; Zhang, Zhen; Wang, Zheng

    2014-10-03

    A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310).

  18. [Analysis of pesticides including chlorine in welsh onions and mushrooms using gas chromatograph with an atomic emission detector (GC-AED)].

    PubMed

    Tateishi, Yukinari; Takano, Ichiro; Kobayashi, Maki; Tamura, Yasuhiro; Tomizawa, Sanae; Sakai, Naoko; Kamijo, Kyoko; Nagayama, Toshihiro; Kamata, Kunihiro

    2004-12-01

    An analytical method for the determination of 32 kinds of pesticide residues in onions, Welsh onions and mushrooms using gas chromatograph with an atomic emission detector (GC-AED) was developed. The pesticides were extracted with acetone-n-hexane (2:3) mixture. The crude extract was partitioned between 5% sodium chloride and ethyl acetate-n-hexane (1:4) mixture. The extract was passed through a Florisil mini-column for cleanup with 10 mL of acetone-n-hexane (1:9) mixture. Although the sensitivity of GC-AED was inferior to that of GC-ECD, GC-AED has a superior element-selectivity. Therefore pesticide residues in foods could be analyzed more exactly by using GC-AED. Thirty-two pesticides including chlorine in onion, Welsh onion and shiitake mushroom were detected without interference. Recoveries of these pesticides from samples determined by GC-AED were 64-114%, except for a few pesticides.

  19. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  20. Determination of white phosphorus residues in ducks: An atomic emission detection/compound-independent calibration-based method of generating residue data for risk assessment and environmental monitoring

    SciTech Connect

    Johnston, J.J.; Goldade, D.A.; Kohler, D.J.; Cummings, J.L.

    2000-05-01

    Analysis of phosphorus concentrations in the gizzards of ducks harvested from munitions sites is necessary to ascertain if acute phosphorus toxicity was the cause of death and to estimate potential secondary hazards to predators and scavengers, such as eagles that readily consume the dead ducks. Gas chromatography-atomic emission detection analysis permitted compound-independent quantification of white phosphorus standards following analysis of the stable phosphorus-containing compound triethyl phosphate. The white phosphorus standards were then used to quantify white phosphorus residues in duck gizzard extracts by gas chromatography-flame photometric detection analysis. For gizzards containing less than 0.01 {micro}g of phosphorus, quantification was based on a three-point calibration curve. For gizzards containing 0.01 {micro}g or more of white phosphorus, single-point calibration was used. Mean recoveries for phosphorus-fortified gizzards ranged from 73 to 91%. The method limit of detection was 0.013 {micro}g of phosphorus. This method was successfully applied to the quantification of white phosphorus in ducks collected from Eagle River Flats, AK. Potential applications to risk assessment and environmental monitoring are also discussed.

  1. An electrostatic ion pump with nanostructured Si field emission electron source and Ti particle collectors for supporting an ultra-high vacuum in miniaturized atom interferometry systems

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Velásquez-García, Luis F.

    2016-12-01

    We report a field emission-based, magnetic-less ion pump architecture for helping maintain a high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. A nanostructured silicon field emitter array, with each nano-sharp tip surrounded by a self-aligned proximal gate electrode, is used to generate a surplus of electrons that cause impact ionization of gas molecules. A two-stage cylindrical electron collector, made of titanium, is used to increase the travel distance of the electrons, augmenting the ionization probability; gas ionization is subsequently followed by gettering of the ions by a negatively charged, annular-shaped titanium electrode. A proof-of-concept pump prototype was characterized using a 25 cm3 stainless steel vacuum chamber backed up by an external turbomolecular pump, a diaphragm pump, and a standard ion pump. Pumping action was observed with the electrostatic pump operating alone after an initial rapid rise of the chamber pressure due to electron/ion scrubbing. In addition, running the electrostatic pump in combination with the standard ion pump results in a lower vacuum level compared to the vacuum level produced by the standard ion pump acting alone. A proposed reduced-order model accurately predicts the functional dependence of the pressure versus time data and provides a good estimate of the characteristic pumping time constant inferred from the experiments.

  2. Simple and robust method for lithium traces determination in drinking water by atomic emission using low-power capacitively coupled plasma microtorch and microspectrometer.

    PubMed

    Zsigmond, Andreea R; Frentiu, Tiberiu; Ponta, Michaela; Frentiu, Maria; Petreus, Dorin

    2013-12-15

    A method for Li determination in drinking water using atomic emission spectrometry in a new low-power Ar capacitively coupled plasma microtorch (15 W, 0.6 L min(-1)) with a detection limit of 0.013 μg L(-1) was developed. The method is based on external calibration in the presence of a buffering solution containing 5 mg L(-1) Na, K, Ca, Mg added both to calibration standards and water samples. The statistical validation on 31 bottled drinking water samples (0.4-2140 μg L(-1) Li) using the Bland and Altman test and regression analysis has shown results similar to those obtained by the standard additions method. The buffering solution approach is simpler than the standard additions and has demonstrated good intra- and interday precision, accuracy and robustness. It was successfully applied over a wide concentration range of Li and multimineral matrix with a pooled precision of 2.5-3.5% and 99±9% accuracy.

  3. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate.

    PubMed

    Palmieri, H E; Leonel, L V

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh4) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 microg/g and 0.1 microg/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities ("garimpos") in Mariana, Minas Gerais, Brazil.

  4. Uncertainty estimation in the determination of metals in superficial water by ICP-OES

    NASA Astrophysics Data System (ADS)

    Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.

    2016-07-01

    From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.

  5. Comparison of sp-ICP-MS and MDG-ICP-MS for the determination of particle number concentration.

    PubMed

    Gschwind, Sabrina; Aja Montes, Maria de Lourdes; Günther, Detlef

    2015-05-01

    In 2011, the European Commission introduced new regulations on how nanomaterials are defined. Since then, researchers have emphasized that more complete characterization of nanoparticles (NPs) includes not just mass and size determinations, but also the determination of the particle number concentrations. In this study, two different sample introduction approaches for the analysis of NP suspensions with inductively coupled plasma mass spectrometry (ICP-MS) were investigated: pneumatic nebulization (sp-ICP-MS) and microdroplet generation (MDG-ICP-MS). These approaches were compared for the determination of particle number concentrations (PNCs) of gold and silver NP suspensions diluted in either ultra-pure water or citrate solution. For accurate sp-ICP-MS analysis, it is crucial to know the transport efficiency of nebulized sample into the plasma. Here, transport efficiencies, measured by the waste collection method, were 11-14 % for Ag suspensions and 9-11 % for Au. In contrast, the droplet transport efficiency of MDG-ICP-MS was 100 %. Analysis by sp-ICP-MS yielded a lower particle number concentration than expected (only 20-40 % of the expected value), whereas MDG-ICP-MS had NP recoveries up to 80 %. This study indicates that NP reference materials are of major importance for particle number determination and detailed results on particle number concentrations for different suspensions with respect to storage time are discussed.

  6. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  7. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate.

    PubMed

    Asai, Shiho; Limbeck, Andreas

    2015-04-01

    Rare earth elements (REE) concentrated on cation-exchange resin particles were measured with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain chondrite-normalized REE plots. The sensitivity of REE increased in ascending order of the atomic number, according to the sensitivity trend in pneumatic nebulization ICP-MS (PN-ICP-MS). The signal intensities of REE were nearly proportional to the concentrations of REE in the immersion solution used for particle-preparation. Minimum measurable concentration calculated from the net signals of REE was approximately 1 ng/g corresponding to 0.1 ng in the particle-preparation solution. In LA analysis, formation of oxide and hydroxide of the light REE and Ba which causes spectral interferences in the heavy REE measurement was effectively attenuated due to the solvent-free measurement capability, compared to conventional PN-ICP-MS. To evaluate the applicability of the proposed method, the REE-adsorbed particles prepared by immersing them in a U-bearing solution (commercially available U standard solution) were measured with LA-ICP-MS. Aside from the LA analysis, each concentration of REE in the same U standard solution was determined with conventional PN-ICP-MS after separating REE by cation-exchange chromatography. The concentrations of REE were ranging from 0.04 (Pr) to 1.08 (Dy) μg/g-U. The chondrite-normalized plot obtained through LA-ICP-MS analysis of the U standard sample exhibited close agreement with that obtained through the PN-ICP-MS of the REE-separated solution within the uncertainties.

  8. Online Standard Additions Technique for La-ICP-MS Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Roy, J.; Asogan, D.; Moody, S.; Clarke, D.

    2014-12-01

    Historically, quantification with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been limited to the ability to matrix match both standards and samples. This can prove problematic when a particular matrix matched standard is not readily available. Liquid standard addition has been shown1-4 as an alternative technique for quantification that does not require matrix matching; however, further fundamental study is needed especially considering the different mass flow rates delivered to the plasma from traditional pneumatic nebulizers and laser ablation itself. In this work, the authors combine a specialized low-flow desolvating nebulizer system with LA-ICP-MS. This nebulizer system efficiently removes water vapour, thereby significantly reducing oxide based mass spectral interferences. For the instrument setup, the output from the laser is combined with the dried aerosol from the nebulizer system prior to entering the ICP-MS source. By using two sources of dry aerosol, mixing efficiency is improved whilst minimising plasma power lost to solvent (water vapour) processing. The method was applied to both USGS Green River Shale and an Arkansas Womble Shale. The results showed a number of elements that were correctly quantified using the technique as compared to reference values. References Gunther, D., Cousin, H., Magyar, B., Leopold, I., J. Anal. Atom. Spectrom., 1997, 12, 165 - 170. Leach, J.J., Allen, L. A., Aeschliman, D.B., Houk, R.S., Anal. Chem., 1999, 71, 440 - 445. O'Conner, C.J.P., Sharp, B.L, Evans, P.J., Anal. Atom. Spectrom., 2006, 21, 556. Yang, C.K., Chi, P.H., Lin, Y.C., Sun, Y.C., Yang, M.H., Talanta, 2010, 80, 1222 - 1227.

  9. [Determination of trace elements in different parts of grapefruit by ICP-AES].

    PubMed

    Wan, Yi-qun; Xiao, Li-feng; Liu, Ying-xia; Huang, Zi-juan

    2008-09-01

    In the present paper, a method of simultaneous determination of trace elements in grapefruit was developed by using inductively coupled plasma-atomic emission spectrometry together with HNO3-HClO4 digestion. The contents of fifteen elements, including B, Ba, Ca, Cu, Zn, Mg, Sr, Mn, Fe, Na, Be, Pb, Bi, Cd and As, were determined in four parts, namely flesh, scarfskin, endodermis and seed collected from Guangdong, Guangxi and Ganzhou, respectively. The relative standard deviations for all these elements in this method were between 0.22% and 5.54%, and the recovery rates were between 87.0% and 115.0%. The measuring method was proved to be simple, rapid, reliable, and highly sensitive. In addition, the determination of these fifteen elements can be carried out at the same time, which can meet the requests of actual sample analysis. The experimental results showed that some beneficial elements to human such as Ca, Mg, Fe, Zn, Mn, Cu and Na in grapefruit were abundant, while some comparatively harmful elements (Be, Pb, Bi, Cd and As) were not detected. Regional differences and partial differences obviously existed in the concentrations of one or more trace elements in grapefruit. As a whole, the concentrations of most elements in flesh were much lower than in other parts of grapefruit. The concentrations of B, Ba, Ca, Sr and Mn were comparatively higher in the seed capsule than in other parts. Cu, Zn and Mg had the highest concentrations in seed compared to other parts. There was little difference between scarfskin and endodermis. And as for the regional differences, the contents of Mn, Zn and Na in Gannan pomelo in all its parts were higher than those in other regions, and the contents of Ba in Guangdong pomelo in all its parts were higher than those in others, while Guangxi pomelo had the highest Fe content. These differences might resulted from the natural environmental conditions such as temperature, humidity, soil types with different pH, the mineral composition or

  10. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sindern, Sven

    2017-02-01

    The group of the rare earth elements (REEs) serves as valuable indicator of numerous geological processes such as magma formation or fluid-rock interaction. The decay systems of the radioactive REE isotopes 138La, 147Sm and 176Lu are used for geochronometric dating of a range of events, starting from first steps of planetary formation to younger steps of geodynamic development. Thus, the abundance of all REEs occurring in a large range of concentrations as well as precise isotope ratios must be analysed in different geomaterials. The inductively coupled plasma (ICP) ion source and various types of mass spectrometers (MS) represent the basis to fulfil the analytical requirements of geoscientific studies. Today, ICP-quadrupole MS and ICP-sector field MS (SFMS) with a single detector or multiple ion collection (MC-ICP-MS) are standard instruments for REE analyses in the geosciences. Due to the need for in situ analysis, laser ablation (LA)-ICP-MS has become an important trace element microprobe technique, which is widely applied for determination of REE concentrations and isotope compositions in geoscientific laboratories. The quality of concentration analysis or isotope ratio determination of REEs by ICP-MS and LA-ICP-MS is affected by many parameters. Most significant are interferences caused by polyatomic oxide and hydroxide ion species formed in the plasma as well as fractionation effects leading to non-stoichiometric behaviour during element determination or to biased isotope ratio measurements. Laser-induced fractionation and isobaric interferences have to be considered as additional effects for LA-ICP-MS. As analyte elements and matrix are unseparated, mineral standards matching the matrix of samples are a prerequisite for accurate and precise REE concentration and isotope ratio determination. Application of fs lasers instead of the more common ns lasers in LA-ICP-MS systems turns out to be a significant step to reduce laser-induced fractionation and to

  11. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  12. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    SciTech Connect

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  13. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1993-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels.

  14. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S. . Santa Barbara Operations); Mroz, E.; Olivares, J.A. )

    1993-01-01

    A method has been developed to analyze mercuric iodide (HgI[sub 2]) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI[sub 2], as well as preliminary correlations between HgI[sub 2] detector performance and elemental contamination levels.

  15. Effects of endodontic irrigation solutions on mineral content of root canal dentin using ICP-AES technique.

    PubMed

    Ari, Hale; Erdemir, Ali

    2005-03-01

    The aim of this in vitro study was to evaluate mineral content of root canal dentin after treatment with several endodontic irrigation solutions. Sixty mandibular anterior teeth extracted for periodontal reasons used. The crowns of the teeth were removed at the cemento-enamel junction. Pulp tissues were removed and the teeth were randomly divided into six groups including 10 teeth each. Root canals were enlarged with gates-glidden burs (# 1, 2, and 3). The groups were treated as follows: group 1, 0.2% chlorhexidine gluconate for 15 min; group 2, 3% H2O2 for 15 min; group 3, 17% EDTA for 15 min; group 4, 5.25% NaOCl for 15 min; group 5, 2.5% NaOCl for 15 min; and group 6, distilled water (control). Dentin chips were obtained using gates-glidden burs (# 4, 5, and 6). The levels of five elements calcium, phosphorus, magnesium, potassium, and sulfur in each specimens were analyzed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) technique. Changes in the levels of the chemical elements were recorded. The results were then statistically analyzed by one-way ANOVA and Tukey tests. There was a significant decrease in the calcium and phosphorus levels after treatment with all irrigation solutions except for 5.25% NaOCl when compared with the control group (p < 0.05). The K, Mg, and S level changes were not statistically significant (p > 0.05). It has been concluded that endodontic irrigation solutions have an effect on mineral contents of root dentin.

  16. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  17. [Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu

    2012-06-01

    Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%.

  18. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    SciTech Connect

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.; Eiden, Gregory C.; Harilal, Sivanandan S.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conducted by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.

  19. Ultrasound bath-assisted enzymatic hydrolysis procedures as sample pretreatment for the multielement determination in mussels by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Peña-Farfal, Carlos; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar; Pinochet-Cancino, Hugo; de Gregori-Henríquez, Ida

    2004-07-01

    Ultrasound energy has been applied to speed up enzymatic hydrolysis processes of mussel tissue in order to determine trace and ultratrace elements (As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn). The element releases, by action of three proteases (pepsin, pancreatin, trypsin), lipase, and alpha-amylase, have been evaluated by inductively coupled plasma atomic emission spectrometry. Different variables such as pH, sonication temperature, ionic strength, hydrolysis time, ultrasound frequency, extracting volume, and enzyme mass were simultaneously studied by applying an experimental design approach (Plackett-Burman design and central composite design). Results showed that the hydrolysis time was statistically nonsignificant (confidence interval of 95%) for most of the elements and enzymes, meaning that the hydrolysis procedure can be finished within a 30-60-min range. These hydrolysis times are far shorter than those obtained when using thermostatic cameras, between 12 and 24 h. Statistically significant factors were the ultrasound frequency (the highest metals releasing at high-ultrasound frequency), pH, sonication temperature, and ionic strength. All metals can be extracted using the same operating conditions (pH of 1.0 and sodium chloride at 1.0% for pepsin; pH of 7.5, temperature at 37 degrees C, and 0.4 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for amylase; pH of 8.0 and 0.5 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for pancreatin; pH of 5.0 and 0.5 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for lipase; pH of 8.0 and 0.2 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for trypsin). Analytical performances, such as limits of detection and quantification, repeatability of the overall procedure, and accuracy, by analyzing DORM-1, DORM-2, and TORT-1 certified reference materials, were finally assessed for each enzyme.

  20. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals. Annual performance report, February 1, 1989--January 31, 1992

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  1. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed.

  2. Development of a model for characterizing pneumatically generated primary aerosols for inductively coupled plasma emission spectrometry

    SciTech Connect

    Msimanga, N.D.G.

    1992-01-01

    The study of aerosols plays a key role in the development of analytical atomic spectroscopy. While work has been carried out with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to improve transport efficiency, analyte signal, limits of detection, and to reduce matrix interferences, little study has focused on sample introduction processes. This study has focused on the characterization and optimization of pneumatic nebulizers used for liquid sample introduction to the ICP. Pneumatic nebulization is the most common means of sample introduction in atomic spectrometry. The pneumatic nebulizers most commonly used today for ICP spectrometry are the cross-flow type or all-glass concentric nebulizers. Aerosols undergo certain processes after the primary formation process before reaching the atomizer, the secondary and tertiary stages. In this work all three stages were looked at, focusing on the primary aerosols. The primary aerosol is the first stage in the formation of the aerosols and takes place at the tip of the nebulizer, as the liquid stream is shattered by the gas flow. The drop size diameters of primary aerosols were measured using a Fraunhofer Laser Diffraction instrument. The Sauter mean diameter (D3.2), which describes the volume of the aerosol with a given surface area, was determined for nebulizers at spray chambers operated under a variety of conditions. The characterization and optimization of sample introduction involved a study of aerosol technology, a study of different instruments for measuring the mean drop size, a description of the instrument, and the influence of some parameters on the D3.2. An empirical model summarizing the characteristics of the primary aerosols is proposed. Modeling is carried out using nonlinear software. The data for modelling were acquired using water, n-butanol, and methanol as the liquid solvents. The model was tested on data obtained from nebulizers with different cross-sectional areas.

  3. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations

    NASA Astrophysics Data System (ADS)

    Yamada, Noriyuki

    2015-08-01

    Kinetic energy discrimination (KED) is one of the means to control cell-formed interferences in collision/reaction cell ICP-MS, and also a technique to reduce polyatomic ion interferences derived from the plasma or vacuum interface in collision cell ICP-MS. The operation of KED is accurately described to explain how spectral interferences from polyatomic ions are reduced by this technique. The cell is operated under non-thermal conditions to implement KED, where the hard sphere collision model is aptly employed to portray the transmission of ions colliding with the cell gas that they don't chemically react with. It is theoretically explained that the analyte atomic ions surmount the energy barrier placed downstream of the cell and the interfering polyatomic ions do not due to their lower kinetic energy than the atomic ions, resulting in polyatomic interference reduction. The intrinsic limitations of this technique are shown to lie in the statistical nature of collision processes, which causes the broadening of ion kinetic energy distribution that hinders efficient KED. The reaction cell operation with KED, where plasma-derived interferences are reduced by the reactive cell gas while cell-formed interferences are suppressed by the energy barrier, is also described in a quantitative manner. This review paper provides an in-depth understanding of KED in cell-based ICP-MS for analysts to make better use of it.

  4. PIXE as a complement to trace metal analysis of sediments by ICP-OES

    NASA Astrophysics Data System (ADS)

    Lunderberg, J. M.; Bartlett, R. J.; Behm, A. M.; Contreras, C.; DeYoung, P. A.; Hoogeveen, N. L.; Huisman, A. J.; Peaslee, G. F.; Postma, J. K.

    2008-11-01

    The adverse effects of metal contamination in sediments require methods that can quickly and accurately assess the extent of environmental pollution. Particle induced X-ray emission spectrometry (PIXE) is demonstrated to be a viable alternative to an established method, which consists of acid digestion and Inductively coupled plasma-optical emission spectrometry (ICP-OES) to measure trace metals in sediment. The analysis of trace metal composition by both techniques on a NIST Standard Reference Material mud gives results that are consistent with the certified values for fourteen measured metals, seven of which are common to both methods. A comparison study conducted on a sediment core from a freshwater lake with a known chromium contamination in Muskegon County, MI also shows a good correlation between the methods for transition metals of environmental interest over a wide range of metal concentrations. Total sample preparation and analysis time for the PIXE measurements is roughly one third that of acid digestion and ICP-OES. Also, the acid digestion step does not elute all the metal, while the nondestructive PIXE approach is a total metals analysis method. However the PIXE method generally has higher limits of detection for many environmental metal contaminants. By combining the two techniques, the acid digestion elution factor can be quantified by running PIXE on an original sample and on the residue resulting from acid digestion.

  5. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    PubMed

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  6. Mineralogical basis for the interpretation of multi-element (ICP-AES), oxalic acid, and aqua regia partial digestions of stream sediments for reconnaissance exploration geochemistry

    USGS Publications Warehouse

    Church, S.E.; Mosier, E.L.; Motooka, J.M.

    1987-01-01

    We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures. ?? 1987.

  7. Effect of HF addition on the microwave-assisted acid-digestion for the determination of metals in coal by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Xu, Yan-Hua; Iwashita, Akira; Nakajima, Tsunenori; Yamashita, Hiroyuki; Takanashi, Hirokazu; Ohki, Akira

    2005-03-31

    The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO(3)+H(2)O(2) was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of 'HF-memory effect' was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.

  8. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation.

  9. [Characterization of arsenic emissions from a coal-fired power plant].

    PubMed

    Guo, Xin; Zheng, Chu-guang; Cheng, Dan

    2006-04-01

    An emissions study for arsenic was conducted at a 300 MW coal-fired plant equipped with an electrostatic precipitator. The input and output streams such as coal, slag, ESP ash, and flue gas containing the post-ESP particulates were collected. Gaseous arsenic was sampled using EPA method 29 and the arsenic concentrations in the samples were measured using inductively coupled plasma atomic emission spectrometry (HG-ICP-AES). The mass balance recovery of arsenic estimated in this study was 87.2%. Arsenic concentration in stack gas was 2.5 microg/m3. Approximately 0.53% of the coal-derived arsenic was incorporated into slag, 84.6% of the arsenic was found on the fly ash collected by electrostatic precipitators, and 2.16% was found in the vapor phase. The relationship between arsenic concentration and ash particle size was also assessed, and arsenic is significantly concentrated in the small sized particles.

  10. Multi-resolution Convolution Methodology for ICP Waveform Morphology Analysis.

    PubMed

    Shaw, Martin; Piper, Ian; Hawthorne, Christopher

    2016-01-01

    Intracranial pressure (ICP) monitoring is a key clinical tool in the assessment and treatment of patients in neurointensive care. ICP morphology analysis can be useful in the classification of waveform features.A methodology for the decomposition of an ICP signal into clinically relevant dimensions has been devised that allows the identification of important ICP waveform types. It has three main components. First, multi-resolution convolution analysis is used for the main signal decomposition. Then, an impulse function is created, with multiple parameters, that can represent any form in the signal under analysis. Finally, a simple, localised optimisation technique is used to find morphologies of interest in the decomposed data.A pilot application of this methodology using a simple signal has been performed. This has shown that the technique works with performance receiver operator characteristic area under the curve values for each of the waveform types: plateau wave, B wave and high and low compliance states of 0.936, 0.694, 0.676 and 0.698, respectively.This is a novel technique that showed some promise during the pilot analysis. However, it requires further optimisation to become a usable clinical tool for the automated analysis of ICP signals.

  11. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22.

    PubMed Central

    Wu, N; Watkins, S C; Schaffer, P A; DeLuca, N A

    1996-01-01

    Very early in infection, herpes simplex virus (HSV) expresses four immediate-early (IE) regulatory proteins, ICP4, ICP0, ICP22, and ICP27. The systematic inactivation of sets of the IE proteins in cis, and the subsequent phenotypic analysis of the resulting mutants, should provide insights into how these proteins function in the HSV life cycle and also into the specific macromolecular events that are altered or perturbed in cells infected with virus strains blocked very early in infection. This approach may also provide a rational basis to assess the efficacy and safety of HSV mutants for use in gene transfer experiments. In this study, we generated and examined the phenotype of an HSV mutant simultaneously mutated in the ICP4, ICP27, and ICP22 genes of HSV. Unlike mutants deficient in ICP4 (d120), ICP4 and ICP27 (d92), and ICP4 and ICP22 (d96), mutants defective in ICP4, ICP27, and ICP22 (d95) were visually much less toxic to Vero and human embryonic lung cells. Cells infected with d95 at a multiplicity of infection of 10 PFU per cell retained a relatively normal morphology and expressed genes from the viral and cellular genomes for at least 3 days postinfection. The other mutant backgrounds were too toxic to allow examination of gene expression past 1 day postinfection. However, when cell survival was measured by the capacity of the infected cells to form colonies, d95 inhibited colony formation similarly to d92. This apparent paradox was reconciled by the observation that host cell DNA synthesis was inhibited in cells infected with d120, d92, d96, and d95. In addition, all of the mutants exhibited pronounced and distinctive alterations in nuclear morphology, as determined by electron microscopy. The appearance of d95-infected cells deviated from that of uninfected cells in that large circular structures formed in the nucleus. d95-infected cells abundantly expressed ICP0, which accumulated in fine punctate structures in the nucleus at early times postinfection

  12. Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP OES analysis.

    PubMed

    Arantes de Carvalho, Gabriel G; Kondaveeti, Stalin; Petri, Denise F S; Fioroto, Alexandre M; Albuquerque, Luiza G R; Oliveira, Pedro V

    2016-12-01

    Analytical methods for the determination of rare earth elements (REE) in natural waters by plasma spectrochemical techniques often require sample preparation procedures for analytes preconcentration as well as for removing matrix constituents, that may interfere on the analytical measurements. In the present work, calcium alginate (CA) beads were used for the first time aiming at Ce, La and Nd preconcentration from groundwater samples for further determination by inductively coupled plasma optical emission spectrometry (ICP OES). Test samples were analyzed in batch mode by transferring a 40mL test portion (pH=5±0.2) into a 50mL polyethylene flask containing 125mg CA beads. After 15min contact, the analytes were quantitatively extracted from the loaded CA beads with 2.0mL of 1.0molL(-1) HCl solution for further determination by ICP OES, using Ce (II) 456.236, La (II) 379.478 and Nd (II) 430.358nm emission lines. The proposed approach is a reliable alternative for REE single-stage preconcentration from aqueous samples, as it provided accurate results based on the addition and recovery analysis of groundwater. The results obtained by the proposed method were also compared with those from reference method based on inductively coupled plasma mass spectrometry (ICP-MS) and no significant differences were observed after applying the Student's t-test at 95% confidence level.

  13. ICPES analyses using full image spectra and astronomical data fitting algorithms to provide diagnostic and result information

    SciTech Connect

    Spencer, W.A.; Goode, S.R.

    1997-10-01

    ICP emission analyses are prone to errors due to changes in power level, nebulization rate, plasma temperature, and sample matrix. As a result, accurate analyses of complex samples often require frequent bracketing with matrix matched standards. Information needed to track and correct the matrix errors is contained in the emission spectrum. But most commercial software packages use only the analyte line emission to determine concentrations. Changes in plasma temperature and the nebulization rate are reflected by changes in the hydrogen line widths, the oxygen emission, and neutral ion line ratios. Argon and off-line emissions provide a measure to correct the power level and the background scattering occurring in the polychromator. The authors` studies indicated that changes in the intensity of the Ar 404.4 nm line readily flag most matrix and plasma condition modifications. Carbon lines can be used to monitor the impact of organics on the analyses and calcium and argon lines can be used to correct for spectral drift and alignment. Spectra of contaminated groundwater and simulated defense waste glasses were obtained using a Thermo Jarrell Ash ICP that has an echelle CID detector system covering the 190-850 nm range. The echelle images were translated to the FITS data format, which astronomers recommend for data storage. Data reduction packages such as those in the ESO-MIDAS/ECHELLE and DAOPHOT programs were tried with limited success. The radial point spread function was evaluated as a possible improved peak intensity measurement instead of the common pixel averaging approach used in the commercial ICP software. Several algorithms were evaluated to align and automatically scale the background and reference spectra. A new data reduction approach that utilizes standard reference images, successive subtractions, and residual analyses has been evaluated to correct for matrix effects.

  14. The ketamine effect on ICP in traumatic brain injury.

    PubMed

    Zeiler, F A; Teitelbaum, J; West, M; Gillman, L M

    2014-08-01

    Our goal was to perform a systematic review of the literature on the use of ketamine in traumatic brain injury (TBI) and its effects on intracranial pressure (ICP). All articles from MEDLINE, BIOSIS, EMBASE, Global Health, HealthStar, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to November 2013), reference lists of relevant articles, and gray literature were searched. Two reviewers independently identified all manuscripts pertaining to the administration of ketamine in human TBI patients that recorded effects on ICP. Secondary outcomes of effect on cerebral perfusion pressure, mean arterial pressure, patient outcome, and adverse effects were recorded. Two reviewers independently extracted data including population characteristics and treatment characteristics. The strength of evidence was adjudicated using both the Oxford and GRADE methodology. Our search strategy produced a total 371 citations. Seven articles, six manuscripts and one meeting proceeding, were considered for the review with all utilizing ketamine, while documenting ICP in severe TBI patients. All studies were prospective studies. Five and two studies pertained to adults and pediatrics, respectively. Across all studies, of the 101 adult and 55 pediatric patients described, ICP did not increase in any of the studies during ketamine administration. Three studies reported a significant decrease in ICP with ketamine bolus. Cerebral perfusion pressure and mean blood pressure increased in two studies, leading to a decrease in vasopressors in one. No significant adverse events related to ketamine were recorded in any of the studies. Outcome data were poorly documented. There currently exists Oxford level 2b, GRADE C evidence to support that ketamine does not increase ICP in severe TBI patients that are sedated and ventilated, and in fact may lower it in selected cases.

  15. Effect of valence state on ICP-OES value assignment of SRM 3103a arsenic spectrometric solution.

    PubMed

    Yu, Lee L; Butler, Therese A; Turk, Gregory C

    2006-03-01

    The certification of Standard Reference Material (SRM is a registered trademark of NIST) 3103a As Spectrometric Solution is based on the gravimetric preparation value that is verified by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements. A disagreement between the gravimetric and the spectrometric values for a batch of As calibration solutions led to the discovery that the solutions contained a mixture of trivalent and pentavalent As species and that the pentavalent species was approximately 8% more sensitive than the trivalent species with ICP-OES determination. The kinetics of the reaction between As metal and nitric acid were studied, and the results were applied to develop a procedure that would consistently produce single-species pentavalent As standards, which eliminates As speciation as a source of measurement bias in the SRM certification process.

  16. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  17. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  18. Using ICP-OES and SEM-EDX in biosorption studies

    PubMed Central

    Chojnacka, Katarzyna; Marycz, Krzysztof

    2010-01-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution. Figure The advantages and disadvantages of ICP-OES and SEM-EDX techniques Electronic supplementary material The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users. PMID:21423317

  19. Using ICP-OES and SEM-EDX in biosorption studies.

    PubMed

    Michalak, Izabela; Chojnacka, Katarzyna; Marycz, Krzysztof

    2011-02-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.

  20. Isotopic analyses by ICP-MS in clinical samples.

    PubMed

    Rodushkin, Ilia; Engström, Emma; Baxter, Douglas C

    2013-03-01

    This critical review focuses on inductively coupled plasma mass spectrometry (ICP-MS) based applications for isotope abundance ratio measurements in various clinical samples relevant to monitoring occupational or environmental exposure, human provenancing and reconstruction of migration pathways as well as metabolic research. It starts with a brief overview of recent advances in ICP-MS instrumentation, followed by selected examples that cover the fields of accurate analyte quantification using isotope dilution, tracer studies in nutrition and toxicology, and areas relying upon natural or man-made variations in isotope abundance ratios (Pb, Sr, actinides and stable heavy elements). Finally, some suggestions on future developments in the field are provided.

  1. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Badiei, Hamid R.; McEnaney, Jennifer; Karanassios, Vassili

    2012-12-01

    A field-deployable electrochemical approach to preconcentration, matrix clean up and selective electrodeposition of Cr(III) and Cr(III) + Cr(VI) in seawater is described. Using portable, battery-operated electrochemical instrumentation, Cr species in seawater were electrodeposited in the field on portable coiled-filament assemblies made from Re. Assemblies with dried residues of Cr(III) or Cr(III) + Cr(VI) on them were transported to the lab for concentration determination by electrothermal, near-torch vaporization (NTV) sample introduction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Electrodeposition offers selective species deposition, preconcentration and matrix clean up from seawater samples. For selective deposition, free Cr(VI) was electrodeposited at - 0.3 V and Cr(III) + Cr(VI) at - 1.6 V (both vs Ag/AgCl). Interestingly, at 0 V (vs Ag/AgCl) and in the absence of an electrodeposition potential only Cr(VI) was spontaneously and selectively adsorbed on the coil and reasons for this are given. Due to preconcentration afforded by electrodeposition, the detection limits obtained after a 60 s electrodeposition at the voltages stated above using buffered (pH = 4.7) artificial seawater spiked with either Cr(III) or Cr(VI) were 20 pg/mL for Cr(III) and 10 pg/mL for Cr(VI). For comparison, the detection limit for Cr obtained by pipetting directly on the coil 5 μL of diluted standard solution was 500 pg/mL, thus it was concluded that electrodeposition offered 40 to 60 fold improvements. Matrix clean up is required due to the high salt content of seawater and this was addressed by simply rinsing the coil with 18.2 MΩ water without any loss of Cr species. Reasons for this are provided. The method was validated in the lab using buffered artificial seawater and it was used in the field for the first time by sampling seawater, buffering it and immediately electrodepositing Cr species on portable assemblies on-site. Electrodeposition in the

  2. Speciation analysis of triethyl-lead and tributyl-tin compounds in human urine by liquid-liquid extraction and gas chromatography microwave-induced plasma atomic emission detection.

    PubMed

    Zachariadis, George A; Rosenberg, Erwin

    2012-05-01

    This work describes the development of a fast method for speciation analysis of triethyl-lead and tributyl-tin species in urine samples after in situ derivatization by tetraethyl- or tetrapropyl-borate reagents. The alkylation reaction is done in the aqueous and urine medium and the less-polar derivatives are extracted in hexane by liquid-liquid extraction. The species were extracted and the extract was efficiently collected from the aqueous phase after centrifugation. Finally, the organometallic species are separated by gas chromatography and determined from the emission signals of elemental lead and tin. Atomic lead and tin are formed from the organolead and organotin compounds during atomization of the column eluate in a microwave-induced helium plasma source. The simultaneous measurement of lead (Pb) at 405.780 nm and tin (Sn) at 303.419 nm was achieved by an atomic emission detector. Finally, the analytes were determined with satisfactory precision (<5%) and detection limits of 0.05 μg Pb/L and 0.48 μg Sn/L, respectively, when 10 mL of urine is extracted with 1 mL of hexane and 1 μL of extract is injected.

  3. Assessment of brain compliance using ICP waveform analysis in water intoxication rat model.

    PubMed

    Oshio, Kotaro; Onodera, Hidetaka; Uchida, Masashi; Tanaka, Yuichiro; Hashimoto, Takuo

    2013-01-01

    Intracranial pressure (ICP) monitoring has been used widely for patients with intracranial hypertension. However, the data of mean ICP do not reflect various brain conditions correctly. Therefore, we performed ICP -waveform analysis to assess brain compliance. Data for ICP -waveform analysis were obtained by stereotactic intraventricle puncture. ICP waveform is expressed as a three-phase wave. Analyzed differential waveforms in a water intoxication model and continuous infusion models were evaluated respectively. In the water intoxication models, the second wave (P2) known to reflect compliance is elevated. ICP waveform analysis will be valuable for the assessment of the pathological condition of the brain.

  4. The effect of Zn2+ ion on the UV-VIS-NIR and upconversion emission spectroscopy of Er3+ in Yb:Er:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Jiao, Shanshan; Xu, Chao; Qian, Zhao; Li, Dayong; Lin, Jiaqi; Xu, Yuheng

    2014-03-01

    A series of Yb:Er:LiNbO3 crystals tridoped with x mol% Zn2+ ions (x = 1, 3, 5 and 8 mol%) was grown by Czochralski technique. The inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to measure the concentration of Er3+ in the crystal. The UV-VIS-NIR absorption spectra of Zn:Yb:Er:LiNbO3 crystals were measured, and Judd-Ofelt (J-O) theory was applied to predict the J-O intensity parameters (Ωt) and spectroscopic quality factor (X). With 980 nm excitation, duration lengthening of 1.54 μm emission and intensity enhancement of green upconversion emission were observed for Zn:Yb:Er:LiNbO3 crystal.

  5. Thin films of chromium oxide compounds formed by the spray-ICP technique

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kagawa, M.; Syono, Y.; Hirai, T.

    1990-01-01

    This films of Cr 2O 3, MCr 2O 4 (M = Co, Ni, Zn) and LaCrO 3 were synthesized on single crystal sapphire and fused quartz substrates, by introducing ultrasonically atomized solutions of corresponding metal nitrates into an inductively coupled plasma above 5000 K (the spray-ICP technique). All the films were transparent, with preferred orientations (110) for Cr 2O 3, (311) for MCr 2O 4 and (112) for LaCrO 3, when deposited on the sapphire substrates with a surface giving background X-ray reflection peaks. The (311) orientation of MCr 2O 4, however, changed to (111) with increasing substrate temperature. Non-oriented films were formed on the fused quartz substrates.

  6. [Determination of trace elements in radix ophiopogonis by HG-ICP-AES].

    PubMed

    Lou, Qi-Zheng; Xu, Run-Sheng

    2007-06-01

    In this paper, a method of microwave digestion technique for the contents determination of trace elements Ni, Zn, Mn, Cu, Mg, Fe, Ca and Pb in radix ophiopogonis by hydride generation inductively coupled plasma atomic emition spectrometry (HG-ICP-AES) was reported. Its recovery ratio obtained by standard addition method ranged between 97.8% and 102.5%, and its RSD was lower than 4.0%. The results of the determination show that radix ophiopogonis is rich in the inorganic elements such as Fe, and the content of Zn in radix ophiopogonis of Zhejiang is much higher in radix ophiopogonis of Sichun. The result will provide scientific data for the study on the elements in radix ophiopogonis and on their relativity of medicine efficacy.

  7. Herpes simplex virus ICP27 increases translation of a subset of viral late mRNAs.

    PubMed

    Fontaine-Rodriguez, Errin C; Knipe, David M

    2008-04-01

    The herpes simplex virus (HSV) ICP27 immediate-early protein plays an essential role in the expression of viral late genes. ICP27 is a multifunctional protein and has been reported to regulate multiple steps of mRNA synthesis and processing, including transcription, splicing, and nuclear export. Recently, ICP27 was reported to interact with translation factors and to stimulate translation of the viral late mRNA encoding VP16. We examined the effects of ICP27 on accumulation, nuclear export, and translation of HSV 1 (HSV-1) late mRNAs encoding VP16, ICP5, and gD. We confirm here that ICP27 stimulates translation of VP16 mRNA as well as an additional HSV-1 late ICP5 mRNA. The data presented here demonstrate that translation levels of both VP16 and ICP5 mRNA is reduced during infections with the ICP27-null virus mutant d27-1, and with ICP27 C-terminal deletion mutant viruses n406 and n504, compared to wild-type virus. In contrast, the translation of gD mRNA is not affected by the presence of ICP27 during infection. These data demonstrate that ICP27 functions to increase the translation levels of a subset of HSV-1 late genes, and this function requires the C terminus of ICP27.

  8. Touching Base with Parents--Neglected ICP Stakeholders

    ERIC Educational Resources Information Center

    Linney, Grant

    2011-01-01

    In this article, the author introduces another key and, to-date, largely neglected stakeholder in high-school integrated curriculum programs (ICPs). If one wishes to have a deeper understanding of the unique, powerful, and lasting impacts of these programs, the author suggests to include the perspective and input of participants' parents. The…

  9. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    SciTech Connect

    Sullivan, Patrick Allen

    2005-12-17

    %-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.

  10. The Kinetics of Nitrogen Atom Recombination

    ERIC Educational Resources Information Center

    Brown, G. Ronald; Winkler, C. A.

    1977-01-01

    Describes a study of the kinetics of the recombination of nitrogen atoms in which concentration-time relations are determined directly by utilizing visual observations of emissions to make gas phase titrations of N atoms with NO. (MLH)

  11. Observation of CH A->X, Cn B->X, and NH A->X Emissions in Gas-phase Collisions of Fast O ((sup 3)P) Atoms with Hydrazines

    NASA Technical Reports Server (NTRS)

    Orient, O.; Chutjian, A.; Murad, E.

    1994-01-01

    Optical emissions in single-collision reactions of fast (20 eV laboratory translational energy) O((sup 3)P) atoms with hydrazine, methylhydrazine, and 1,1-dimethylhydrazine have been measured in a crossed-beams geometry. The emissions were observed in the wavelength range 325-440 nm, and were identified as the CH (A 2(sub A))-->X(sup 2)pi(sub r), (for methylhydrazine), CN (B sup 2) Sigma(sup +) --> X(sup 2) Sigma(sup +) (for methylhydrazine)and NH(A(sup 3)pi --> X(sup3 Sigma) transitions (for all three hydraz vibration-rotation bands were fit to a synthetic spectrum of CH, CN and NH with given vibrational and rotational temperatures.

  12. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5 × 10-5 mol L-1 ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL-1 with enhancement factor of 82.7 and 51.3 for Cu2+ and Hg2+, respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL-1 for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL-1 of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  13. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  14. High-order harmonic emission in bowtie-shaped nanostructure with few-cycle spatially inhomogeneous laser fields when the atom is placed at different spatial positions

    NASA Astrophysics Data System (ADS)

    Luo, Xiang-Yi; Wang, Tian; Wang, Qun; Liu, Xue-Shen

    2016-11-01

    In this study, we investigate the harmonic spectra in the vicinity of the center of the nanostructure gap when helium atom is placed at different spatial positions. We find that the high-order harmonic spectra is very sensitive to the atomic spatial positions in a inhomogeneous laser field. When the initial atomic spatial position is changed from  -9.0 a.u. to 9.0 a.u., the cutoff of the high-order harmonic generation (HHG) can be extended, and the supercontinuum harmonic spectrum of the second plateau is extended to the high-order and the low-order simultaneously. The HHG process is demonstrated by using the time-frequency analysis, the semi-classical three-step model and the ionization probability.

  15. A multi-element ICP-MS survey method as an alternative to the heavy metals limit test for pharmaceutical materials.

    PubMed

    Wang, T; Wu, J; Hartman, R; Jia, X; Egan, R S

    2000-10-01

    A multi-element inductively coupled plasma-mass spectrometry (ICP-MS) survey method has been demonstrated as an alternative to the antiquated 'heavy metals limit test' prescribed by United States Pharmacopoeia (USP), European Pharmacopoeia (EP), and British Pharmacopoeia (BP), for drug substances, intermediates, and raw materials. The survey method is simple, fast, sensitive, semi-quantitative to quantitative, and includes all the elements which can be analyzed by atomic spectroscopy.

  16. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus

    PubMed Central

    Phairoh, Panapat; Suthibatpong, Thana; Rattanarojpong, Triwit; Jongruja, Nujarin; Senapin, Saengchan; Choowongkomon, Kiattawee; Khunrae, Pongsak

    2016-01-01

    ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity. PMID:27348862

  17. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology.

    PubMed

    Hu, Xiao; Xu, Peng; Asgari, Shadnaz; Vespa, Paul; Bergsneider, Marvin

    2010-05-01

    Interventions of intracranial pressure (ICP) elevation in neurocritical care is currently delivered only after healthcare professionals notice sustained and significant mean ICP elevation. This paper uses the morphological clustering and analysis of ICP (MOCAIP) algorithm to derive 24 metrics characterizing morphology of ICP pulses and test the hypothesis that preintracranial hypertension (Pre-IH) segments of ICP can be differentiated, using these morphological metrics, from control segments that were not associated with any ICP elevation or at least 1 h prior to ICP elevation. Furthermore, we investigate whether a global optimization algorithm could effectively find the optimal subset of these morphological metrics to achieve better classification performance as compared to using full set of MOCAIP metrics. The results showed that Pre-IH segments, using the optimal subset of metrics found by the differential evolution algorithm, can be differentiated from control segments at a specificity of 99% and sensitivity of 37% for these Pre-IH segments 5 min prior to the ICP elevation. While the sensitivity decreased to 21% for Pre-IH segments, 20 min prior to ICP elevation, the high specificity of 99% was retained. The performance using the full set of MOCAIP metrics was shown inferior to results achieved using the optimal subset of metrics. This paper demonstrated that advanced ICP pulse analysis combined with machine learning could potentially leads to the forecasting of ICP elevation so that a proactive ICP management could be realized based on these accurate forecasts.

  18. LIBS and LA-ICP-MS; Old techniques, new approaches

    NASA Astrophysics Data System (ADS)

    Mueller, P. A.; Foster, D. A.; Gonzalez, J.; Colucci, M.; Russo, R.

    2012-12-01

    Over the past decade laser ablation in-situ solid sampling for chemical analysis with an ICP-MS analyzer (LA-ICP-MS, single and multi-collector) has become a generally accepted technique across a wide range of disciplines (geochemistry, forensic science, life sciences, etc). More recently, Laser Induced Breakdown Spectrometry (LIBS) has developed into a complementary technique that offers full spectral analysis of the laser plasma without the need for a mass spectrometer. Both techniques provide in-situ solid sample elemental and isotopic analysis at high spatial resolution (<5 microns) with minimal sample preparation. LA-ICP-MS affords the analyst low detection limits (ppb) and the ability to optimize across a specific mass range for high precision element or isotope ratios. LIBS, while providing slightly higher detection limits (ppm), allows for simultaneous and near complete spectral coverage of the laser plasma. Both techniques are capable of producing semi-quantitative and quantitative data. Integration of a LA and LIBS system could be a powerful tool to allow full spectral element and isotope/element ratio data on the same laser plume (plasma and particulates). Although LIBS and LA typically operate under different conditions of pulse length, spot size, and energy, the ability to capture elemental abundance information from the light that is otherwise wasted during LA makes an important complement to the limited number of ions measured in multi-collector ICP-MS analyses. Such an approach would not require the compromises in sampled volume associated with either split-streams (two ICP-MS systems required; diluted aerosol streams) or with peak switching in the MS (magnetic or electrostatic) because extraction of light-based information does not impact the number of ions measured for isotope ratios. We present LIBS experiments with UV-nanosecond lasers at 17mJ energies delivered to spot sizes of <100 μm and light directed to an ICCD detection system on NIST

  19. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    SciTech Connect

    Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M.A.; Ludwig, Christian

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.

  20. Spectroscopy of the extreme ultraviolet dayglow at 6.5A resolution - Atomic and ionic emissions between 530 and 1240A

    NASA Technical Reports Server (NTRS)

    Gentieu, E. P.; Feldman, P. D.; Meier, R. R.

    1979-01-01

    EUV spectra (530-1500A) of the day airglow in up, down and horizontal aspect orientations have been obtained with 6.5A resolution and a limiting sensitivity of 5R from a rocket experiment. Below 834A the spectrum is rich in previously unobserved OII transitions connecting with 4S(0), 2D(0), and 2P(0) states. Recent broad-band photometric observations of geocoronal HeI 584A emission in terms of the newly observed OII emissions are shown. The OI 989A and OI 1304A emissions exhibit similar dependence on altitude and viewing geometry with the OI 989A brightness 1/15 that of OI 1340. Emission at 1026A is identified as geocoronal HI Lyman beta rather than OI multiplet emission and observed intensities agree well with model estimates. An unexpectedly high NI 1200/NI 1134A brightness ratio is evidence of a significant contribution from photodissociative excitation of N2 to the NI 1200A source function.

  1. The Stair-Step Atom.

    ERIC Educational Resources Information Center

    Jordan, Thomas M.; And Others

    1992-01-01

    Presents a model of a generic atom that is used to represent the movement of electrons from lower to higher levels and vice-versa due to excitation and de-excitation of the atom. As the process of de-excitation takes place, photons represented by colored ping-pong balls are emitted, indicating the emission of light. (MDH)

  2. A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique.

    PubMed

    Engel, U; Bilgiç, A M; Haase, O; Voges, E; Broekaert, J A

    2000-01-01

    A new low-power, small-scale 2.45 GHz microwave plasma source at atmospheric pressure for atomic emission spectrometry based on microstrip technology is described. The MicroStrip Plasma (MSP) source was produced in microstrip technology on a fused-silica wafer and designed as an element-selective detector for miniaturized analytical applications. The electrodeless microwave-induced plasma (MIP) operates at microwave input power of 10-40 W and gas flows of 50-1000 mL.min-1 of Ar. Rotational (OH) and excitation (Fe) temperatures were found to be 650 and 8000 K, respectively. Spatially resolved measurements of the Hg I 253.7-nm atomic emission line with an electronic slitless spectrograph (ESS) showed that a cylindrically symmetric plasma with a diameter of about 1 mm is obtained. With the MSP, Hg could be determined by applying the flow injection cold vapor (FI-CV) technique with a detection limit of 50 pg.ml-1. In terms of the relative standard deviation, a time stability of < 1.4% for 45 replicates within 80 min can be realized at a concentration level of 10 ng.ml-1 of Hg. Hg could be determined in the leachate of a certified standard reference soil (STSD-4) obtained by treatment with aqua regia at the 930 +/- 76 ng.g-1 level. Results obtained by calibration with aqueous solutions of Hg and with standard addition were found to be in good agreement with those of cold-vapor atomic absorption spectrometry.

  3. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1994-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper discusses the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels. The purified HgI{sub 2} is grown into a single crystal by physical vapor transport. The crystal are cut into slices and they are fabricated into room temperature radiation detectors and photocells. Crystals that produce good resolution gamma detector do not necessarily make good resolution photocells or x-ray detectors. Many factors other than elemental impurities may contribute to these differences in performance.

  4. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    NASA Astrophysics Data System (ADS)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S → 1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  5. Freon (CHF3)-assisted atomization for the determination of titanium using ultrasonic slurry sampling-graphite furnace atomic absorption spectrometry (USS-GFAAS): a simple and advantageous method for solid samples.

    PubMed

    Asfaw, Alemayehu; Wibetoe, Grethe

    2004-06-01

    A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

  6. A comparison of double-focusing sector field ICP-MS, ICP-OES and octopole collision cell ICP-MS for the high-accuracy determination of calcium in human serum.

    PubMed

    Simpson, Lorna A; Hearn, Ruth; Merson, Sheila; Catterick, Tim

    2005-02-28

    Human serum is routinely measured for total calcium content in clinical studies. A definitive high-accuracy and low-uncertainty method is required for reference measurements to underpin medical diagnoses. This study presents a novel octopole collision cell ICP-MS, high-accuracy, methodology and comparison of that technique with double-focusing sector field ICP-MS and an ICP-OES method. Double-matched isotope dilution mass spectrometry (IDMS) was employed for ICP-MS techniques and an exact matching bracketing technique using scandium as an internal standard was used for ICP-OES analysis. Medium resolution mode was utilised for double-focusing sector field ICP-MS analysis to resolve the dominant interferences on the (44)Ca/(42)Ca isotope pair. Hydrogen reaction gas was employed to chemically resolve a number of polyatomic interferences predominantly through charge transfer reactions in the octopole collision cell. Comparison data presented for NIST CRM 909b human serum analysis from all three techniques demonstrates highest accuracy (99.6%) and lowest uncertainty (1.1%) for octopole collision cell ICP-MS. Data from ICP-OES using a non-IDMS technique produces comparably accurate data and low-uncertainties. The much higher total expanded uncertainties for double-focusing sector field ICP-MS compared with octopole collision cell data are explained by lower precision on the measurement of the (44)Ca/(42)Ca isotope ratio. Data for octopole collision cell ICP-MS submitted for an international blind trial comparison (CCQM K-14) demonstrated excellent agreement with the mean of all participants with a low expanded uncertainty.

  7. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  8. [Mineral elements analysis of Momordica charantiap seeds by ICP-AES and fatty acid profile identification of seed oil by GC-MS].

    PubMed

    Liu, Xiao-ru; Deng, Ze-yuan; Fan, Ya-wei; Li, Jing; Liu, Zhi-han

    2010-08-01

    In the present study, a special kind of Momordica charantia seeds produced in Hai Nan was selected and analyzed. Firstly, inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) was used to determine the mineral elements. It was clear that the contents of K, Mg and P are the highest in the seeds; Cr and Zn takes up to 5.65% and 45.45% high, especially, which are rare in plant foods. These minerals, especially Cr and Zn might have a complex effect on those proteins or polysaccharides and form a stronger anticipation of hyperlipidemia, hyperglycemia and cholesterol. Secondly, seed oil was extracted by supercritical CO2 extraction with a yield ratio of 36.89, and the fatty acids were treated by methylation in alkaline process and purified by thin-layer chromatography, then analyzed by gas chromatography-mass spectrometer (GC-MS) identification. The saturated fatty acids (SFA) take up 36.712, and mainly are stearic acid; monounsaturated fatty acid (MUFA) is only 3.33% which is dominantly linoleic acid (LA); Polyunsaturated fatty acid (PUFA) accounted for 59.96%, and the alpha-eleostearic acid takes up 54.26% as the main fatty acids in all. The plentiful alpha-eleostearic acid leads to strong effects of inhibiting tumor cell proliferation, lowering blood fat, anti-cancer, anti-inflammatory and preventing cardiovascular diseases, and so on. Knowing clearly the mineral elements distribution and identifying the composition of fatty acid, especially the main fatty acids in the oil, are both of great guiding importance to further exploit the clinical and edible value in Momordica charantiap seeds.

  9. Influence of femtosecond laser ablation system parameters on the characteristics of induced particles: implications for LA-ICP-MS analysis of natural monazite

    NASA Astrophysics Data System (ADS)

    D'Abzac, F.; Seydoux-Guillaume, A.; Chmeleff, J.; Datas, L.; Poitrasson, F.

    2010-12-01

    The characteristics of Infra Red femtosecond laser-induced aerosols are studied for monazite (Moacyr) ablation, in order to evaluate optimal conditions for Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analysis. Various parameters are tested within wide ranges in order to cover near all of the usual LA-ICP-MS settings: pulse energy (E0), pulse width (τ), ablation time (t), transport length (l), nature of the carrier gas. In order to study the influence of laser wavelength on LA-ICP-MS analysis, a third harmonic generator was used to convert the fundamental λ=800nm into a λ=266nm laser emission. Acquisition protocol is the same as in d’Abzac et al. (2010)1. Data are compared with a UV-nanosecond (λ=193nm) laser ablation system using a similar ICP-MS model. Transmission Electron Microscopy (TEM) reveals that particles morphologies and chemical compositions are not affected by any parameter. Melt droplets are observed only using argon. Electronic Low Pressure Impaction (ELPI) data show that the quantity of aerosol produced is affected by all parameters. Little changes on size distribution are noted with changing settings. Detectable variations are induced during crater deepening (poor evacuation of large particles), the transport length (deposition of smallest particles) and the use of helium (shift to smaller sizes). UV-ns-LA-ICP-MS results show signal intensities similar to IR-fs-LA-ICP-MS, but a deviation of 206Pb/238U ratio with t increased by a factor of ~33. Based on recent ID-TIMS values of 206Pb/238U ratio in Moacyr2, accuracy is increased by ~22% from UV-ns to IR-fs system and repeatability is improved by 2%. Optimal LA-ICP-MS settings are given relatively to the present analytical results and the previous studies dealing with the same system1, 3. Pulse width must remain under 500fs to avoid plasma shielding and thermal diffusion, ablation time should be limited to prevent high crater depths and poor aerosols wash out, transport length must be

  10. [Mean ICP, ICP amplitude, mean AP and mean CPP dynamic in changing the position of the head of the bed in patients with severe TBI].

    PubMed

    2012-01-01

    The study included 34 patient with severe TBI (GCS--5.6 +/- 1.2, age--35 +/- 8.2 years). ICP, AP and CPP monitored by Philips MP 4060 with ICM Plus software (UK). Autoregulation of blood flow was evaluated with Prx index. The backrest position was moving in the range 0-30-60-30-0 degrees. Minimal mean ICP was noted in 300 position. ICP in positions 0 degrees and 60 degrees did'nt differ significantly ICP in position 60 degrees was higher then ICP in position 30 degrees. ICP amplitude was raising during changing the position from 0 degrees to 60 degrees and was decreasing during reversing changing. Arterial pressure (AP) was decreasing during movement the head of the bed from 0 degrees to 60 degrees, the maximum of AP was noted in flat position. CPP was increasing during lowering the head of the bed. ICP amplitude and CPP had inverse correlation. ICP amplitude is a simple method of assessment of CPP adequacy during changing the position of the head of the bed in patients with intact autoregulation of cerebral blood flow.

  11. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  12. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Effect of the electronic structure of target atoms on the emission continuum of laser plasma

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.

    2004-06-01

    The low-temperature laser plasma at the surface of metal targets is experimentally investigated. Continuous spectra emitted from a laser plume are found to be similar for targets consisting of the elements of the same subgroup of the Mendeleev periodic table. The similarity manifests itself both in the dependence of the emission intensity on the external pressure and in the structure of absorption bands related to a fine-dispersed phase existing in the peripheral regions of the plume.

  14. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (Hn-PAHs) and their Relation to the 3.4 and 6.9 µm PAH Emission Features

    PubMed Central

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm−1 (2.5–20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11–15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that ‘normal’ PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules. PMID:26435553

  15. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (Hn-PAHs) and their Relation to the 3.4 and 6.9 µm PAH Emission Features.

    PubMed

    Sandford, Scott A; Bernstein, Max P; Materese, Christopher K

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm(-1) (2.5-20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that 'normal' PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  16. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  17. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH EXCESS PERIPHERAL H ATOMS (H {sub n} -PAHs) AND THEIR RELATION TO THE 3.4 AND 6.9 {mu}m PAH EMISSION FEATURES

    SciTech Connect

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (H {sub n} -PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm{sup -1} (2.5-20 {mu}m) infrared spectra of 23 H {sub n} -PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 {mu}m weaken and are replaced with stronger aliphatic bands near 3.4 {mu}m, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 {mu}m region shift and weaken concurrent with growth of a strong aliphatic -CH{sub 2}- deformation mode near 6.9 {mu}m. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 {mu}m features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 {mu}m features. We show that 'normal' PAH emission objects contain relatively few H {sub n} -PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  18. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  19. Forecasting ICP Elevation Based on Prescient Changes of Intracranial Pressure Waveform Morphology

    PubMed Central

    Hu, Xiao; Xu, Peng; Asgari, Shadnaz; Vespa, Paul; Bergsneider, Marvin

    2010-01-01

    Interventions of intracranial pressure (ICP) elevation in neurocritical care is currently delivered only after healthcare professionals notice sustained and significant mean ICP elevation. The present work used the Morphological Clustering and Analysis of Intracranial Pressure (MOCAIP) algorithm to derive 24 metrics characterizing morphology of ICP pulses and tested the hypothesis that pre-intracranial hypertension (pre-IH) segments of ICP can be differentiated, using these morphological metrics, from control segments that were not associated with any ICP elevation. Furthermore, we investigated whether a global optimization algorithm could effectively find the optimal sub-set of these morphological metrics to achieve better classification performance as compared to using full set of MOCAIP metrics. The results showed that Pre-IH segments, using the optimal sub-set of metrics found by the differential evolution (DE) algorithm, can be differentiated from control segments at a specificity of 97% and sensitivity of 78% for those Pre-IH segments 5 minutes prior to the ICP elevation. While the sensitivity decreased to 68% for Pre-IH segments 20 minutes prior to ICP elevation, the high specificity remained. The performance using the full set of MOCAIP metrics was shown inferior to results achieved using the optimal sub-set of metrics. The present work demonstrated that advanced ICP pulse analysis combined with machine learning could potentially lead to the forecasting of ICP elevation so that a proactive ICP management could be realized based on these accurate forecasts. PMID:20659820

  20. Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in Western Pennsylvania.

    PubMed

    Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S

    2015-10-01

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated.

  1. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  2. Speciation, liquid-liquid extraction, sequential separation, preconcentration, transport and ICP-AES determination of Cr(III), Mo(VI) and W(VI) with calix-crown hydroxamic acid in high purity grade materials and environmental samples.

    PubMed

    Agrawal, Y K; Sharma, K R

    2005-07-15

    A new functionalized calix[6]crown hydroxamic acid is reported for the speciation, liquid-liquid extraction, sequential separation and trace determination of Cr(III), Mo(VI) and W(VI). Chromium(III), molybdenum(VI) and tungsten(VI) are extracted at pH 4.5, 1.5M HCl and 6.0M HCl, respectively with calixcrown hydroxamic acid (37,38,39,40,41,42-hexahydroxy7,25,31-calix[6]crown hydroxamic acid) in chloroform in presence of large number of cations and anions. The extraction mechanism is investigated. The various extraction parameters, appropriate pH/M HCl, choice of solvent, effect of the reagent concentration, temperature and distribution constant have been studied. The speciation, preconcentration and kinetic of transport has been investigated. The maximum transport is observed 35, 45 and 30min for chromium(III), molybdenum(VI) and tungsten(IV), respectively. For trace determination the extracts were directly inserted into the plasma for inductively coupled plasma atomic emission spectrometry, ICP-AES, measurements of chromium, molybdenum and tungsten which increase the sensitivity by 30-fold, with detection limits of 3ngml(-1). The method is applied for the determination of chromium, molybdenum and tungsten in high purity grade ores, biological and environmental samples. The chromium was recovered from the effluent of electroplating industries.

  3. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved aluminum and boron in water by inductively coupled plasma-atomic emission spectrometry

    USGS Publications Warehouse

    Struzeski, T.M.; DeGiacomo, W.J.; Zayhowski, E.J.

    1996-01-01

    Inductively coupled plasma-atomic emission spectrometry is a sensitive, rapid, and accurate method for determining the dissolved concentration of aluminum and boron in water samples. The method detection limits are 5 micrograms per liter for aluminum and 4 micrograms per liter for boron. For aluminum, low-level (about 30 micrograms per liter) short-term precision (single-operator, seven days) is about 5 percent relative standard deviation and the low-level long-term precision (single-operator, nine months) is about 8 percent relative standard deviation. For boron, the low-level short-term precision is about 4 percent relative standard deviation, and the low-level long-term precision is about 5 percent relative standard deviation. Spike recoveries for aluminum ranged from 86 to 100 percent, and recoveries for boron ranged from 92 to 109 percent.

  4. 1,1-dimethylhydrazine as a high purity nitrogen source for MOVPE-water reduction and quantification using nuclear magnetic resonance, gas chromatography-atomic emission detection spectroscopy and cryogenic-mass spectroscopy analytical techniques

    SciTech Connect

    Odedra, R.; Smith, L.M.; Rushworth, S.A.

    2000-01-01

    Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples and with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.

  5. [Determination of trace elements in beans by ICP-AES].

    PubMed

    Wang, Ying; Xin, Shi-gang

    2004-02-01

    In this paper,the contents of trace elements in beans such as Ca, Mg, Mn, Sr, Fe, Co, Ni, Se and Ba were determined by ICP-AES uing nitrifying method of high pressure nitrifying pot, and compared with the results of wet method. The two methods showed no obvious differences. The method proves to be simple, rapid, highly sensitive, accurate and can be used to determine many elements at the same time. In addition, there was little environment pollution. Its recovery is 96.8%-102%, and relative standard deviation is 3.35%.

  6. Analysis of some Romanian fruit juices by ICP-MS

    NASA Astrophysics Data System (ADS)

    Dehelean, A.; Magdas, D. A.

    2013-11-01

    The present study was carried out to evaluate the heavy metal content of 21 Romanian single strength fruit (plum, apple, sour cherry) juices. The samples were collected from five Romanian areas namely: Alba, Maramures, Cluj, Salaj and Moldova. The results indicated macro (Na, Mg, Ca, P) and micro (Fe, Zn, Ni, Cr, Cd, Pb, etc) elements in the selected samples. The determination was performed by ICP-MS. Our results for fruit juice were compared with allowable limits for drinking water in the United Kingdom (NS30).

  7. Sector field mass spectrometers in ICP-MS

    NASA Astrophysics Data System (ADS)

    Jakubowski, Norbert; Moens, Luc; Vanhaecke, Frank

    1998-11-01

    A new generation of sector field mass spectrometers, with improved analytical figures of merit at even lower prices, is commercially available, giving a strong impetus to the development of inductively coupled plasma mass spectrometry (ICP-MS) sector field instrument applications in the analytical community. It is the aim of this paper to give an overview of these instruments, to introduce some basic concepts, to discuss their peculiarities and performance, and to present some selected examples of analytical applications to demonstrate the `state of the art'.

  8. Photo-electron emission and atomic force microscopies of the hydrogen etched 6H-SiC(0 0 0 1) surface and the initial growth of GaN and AlN

    NASA Astrophysics Data System (ADS)

    Hartman, J. D.; Naniwae, K.; Petrich, C.; Nemanich, R. J.; Davis, R. F.

    2005-04-01

    Photo-emission electron microscopy (PEEM) and atomic force microscopy (AFM) have been used to characterize the surfaces of hydrogen etched 6H-SiC(0 0 0 1) wafers and the microstructure of the initial stages of growth of GaN and AlN on these surfaces via molecular beam epitaxy. The PEEM images were obtained using a free electron laser as the photon source. A stepped structure was evident in these images of the surfaces etched at 1600-1700 °C for 15 min. Comparison with the AFM images revealed that emission was occurring from the intersection of the steps and the terraces. Images of the initial stages of deposition of the GaN thin films at 700 and 800 °C revealed three-dimensional island growth. The degree of coalescence of these films was dependent upon the step structure: regions containing steps having unit cell height exhibited complete or nearly complete coalescence; regions containing steps with half unit cell height showed voids in the films parallel to the steps. PEEM of the initial stages of growth of AlN revealed immediate nucleation and rapid coalescence during deposition at 900 °C, except in areas on the substrate surface containing steps having half unit cell height. Incomplete coalescence and pits were also observed in the latter areas.

  9. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS.

    PubMed

    Diwakar, Prasoon K; Harilal, Sivanandan S; LaHaye, Nicole L; Hassanein, Ahmed; Kulkarni, Pramod

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes.

  10. Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.

    PubMed

    Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien

    2004-08-01

    Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have

  11. Fabric analysis and ICP: Under-used geoanalytical techniques of value for plant biostratigraphy, provenance and palaeoecology

    SciTech Connect

    Bateman, R.M. )

    1991-01-01

    Inductively-coupled plasma-arc spectrometry (ICP) is a rapid, automated method of quantifying the bulk geochemistry of artificially vitrified rocks. Measurable elements (cations of atomic No > 10) are partitioned into three categories (major, minor, trace) of decreasing abundance and increasing potential error. Even a basic analysis of the ten major elements plus loss-on-ignition is sufficient to finger-print a sample, yielding a data-set that can be fed directly into a multivariate analysis to compare and classify rocks. Thus, ex situ plant-bearing blocks can be correlated with their source horizons. ICP data also aid indirect correlation of plant-bearing horizons per se. Extensive ICP sampling reveals spatial trends that can be interpreted palaeoenvironmentally (e.g. indicating the direction of a nearby volcano, or distinguishing between biogenic and non-biogenic limestones enclosing permineralized plants). In contrast variables recorded during fabric analysis are physical rather than chemical, particulate rather than bulk, and few rather than many. Two orientations, relative to magnetic north and to the bedding plane, are taken from clast populations; these are summarized as three values (mean dip, resultant vector, vector magnitude) that can be tested against randomness. Although data are traditionally obtained from large (> 2 cm) abiotic clasts, transported fossil plant fragments are equally suitable. Adpressions are oriented by exposing bedding planes, permineralizations by reconstructing beds in the laboratory and then repeatedly transversely cutting blocks to trace the fossils. Singly, fabrics reflect the hydraulic conditions prevailing in the depositional environment immediately prior to burial; in aggregate, they indicate the direction of the source community relative to the depositional sink.

  12. Recent applications on isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine; Sela, Hagit; Dobrowolska, Justina; Zoriy, Miroslav; Becker, J. Susanne

    2008-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have proved themselves to be powerful and sensitive inorganic mass spectrometric techniques for analysing stable and radioactive isotopes in different application fields because of their high sensitivity, low detection limits, good accuracy and precision. New applications of ICP-MS focus on tracer experiments and the development of isotope dilution techniques together with nanoflow injections for the analysis of small volumes of biological samples. Today, LA-ICP-MS is the method of choice for direct determination of metals, e.g., on protein bands in gels after the gel electrophoresis of protein mixtures. Tracer experiments using highly enriched 65Cu were utilized in order to study the formation of metal-binding bovine serum proteins. A challenging task for LA-ICP-MS is its application as an imaging mass spectrometric technique for the production of isotope images (e.gE, from thin sections of brain tissues stained with neodymium). In this paper, we demonstrate the application of imaging mass spectrometry on single particles (zircon and uranium oxide). Single Precambrian zircon crystals from the Baltic Shield were investigated with respect to isotope ratios using LA-ICP-MS for age dating. The U-Pb age was determined from the isochrone with (1.48 ± 0.14) × 109 a. Using isotope ratio measurements on 10 nuclear uranium oxide single particles the 235U/238U isotope ratio was determined to be 0.032 ± 0.004. This paper describes recent developments and applications of isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles.

  13. Fingerprinting of ground water by ICP-MS. Final report

    SciTech Connect

    Stetzenbach, K.; Johannesson, K.

    1996-04-30

    Geochemical investigations of groundwater sources and mixing have relied heavily on the major solutes (Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, Cl{sup -}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, {plus_minus}F{sup -}, Br{sup -} , PO{sub 4}{sup 3-}), stable isotopes of hydrogen and oxygen ({delta}D and {delta}{sup 18}O), and, occasionally, radionuclides such as tritium ({sup 3}H) and carbon-14 ({sup 14}C). Problems with geochemical interpretations of such analyses arise from the low number of major solutes (typically between 7 and 8 are reported) which results in insufficient information for definitive interpretations. Moreover, isotopic analyses can be very costly. We present an alternative approach using numerous trace elements that occur naturally in all ground waters and that can now be measured rapidly and routinely using the inductively coupled plasma-mass spectrometer (ICP-MS) at the Harry Reid Center for Environmental Studies (HRC) at a fraction of the cost of isotopic analysis. The tremendous number of solutes that can be measured by ICP-MS necessitates the examination of each data set by multivariate statistical techniques that help to reduce the data and illuminate correlations between trace elements and, therefore, ground waters of similar and/or different origins.

  14. Fast ion chromatography-ICP-QQQ for arsenic speciation

    PubMed Central

    Jackson, Brian

    2015-01-01

    Two methods for the fast separation of arsenic species are presented. The general approach is to modify existing methodology utilizing carbonate eluents for a small particle size, short column length Hamilton PRPX100 column which is interfaced with the Agilent 8800 ICP-QQQ using oxygen as reaction gas and detection of AsO at m/z 91. Using H2O2 in the extractant to oxidize As(III) to As(V) it is possible to separate arsenobetaine from DMA, MMA and As(V) in 1.5 minutes. Such a method may be useful where a measure of total inorganic As is sufficient, for example for regulatory compliance in food or beverage testing. It is possible to separate six As species. i.e the four above and arsenocholine and As(III) in 4.5 minutes using a gradient separation. Such a method could be useful analysis of urinary arsenic species. Coupling with high sensitivity of ICP-QQQ yields equivalent or better detection limits than conventional methods with run times up to 5 times faster, which is a significant benefit for sample throughput and method development. PMID:26366032

  15. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  16. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves.

    PubMed

    Weerakkody, Ruwan Alwis; Czosnyka, Marek; Zweifel, Christian; Castellani, Gianluca; Smielewski, Peter; Brady, Ken; Pickard, John D; Czosnyka, Zofia

    2012-01-01

    We aimed to study synchronisation between ICP and near infrared spectroscopy (NIRS) variables induced by vasogenic waves of ICP during an infusion study in hydrocephalic patients and after TBI. Nineteen patients presenting with hydrocephalus underwent a diagnostic intraventricular constant-flow infusion test. The original concept of the methodology, presented in the current paper, was derived from this material. Then the method was applied in 40 TBI patients, with results reported in an observational manner. During monitoring, NIRS deoxygenated and oxygenated haemoglobin (Hb, HbO(2)) were recorded simultaneously with ICP. Moving correlation coefficient (6 min) between Hb and HbO(2) was tested as a marker of the slow vasogenic waves of ICP.During infusion studies ICP increased from 10.7 (5.1) mmHg to a plateau of 18.9 (7.6) mmHg, which was associated with an increase in the power of slow ICP waves (p = 0.000017). Fluctuations of Hb and HbO(2) at baseline negatively correlated with each other, but switched to high positive values during periods of increased ICP slow-wave activity during infusion (p < 0.001). Similar behaviour was observed in TBI patients: baseline negative Hb/HbO(2) correlation changed to positive values during peaks of ICP of vasogenic nature.Correlating changes in Hb and HbO(2) may be of use as a method of non-invasive detection of vasogenic ICP waves.

  17. Rydberg-to-M -shell x-ray emission of hollow Xeq+ (q =27 - 30 ) atoms or ions above metallic surfaces

    NASA Astrophysics Data System (ADS)

    Song, Z. Y.; Yang, Z. H.; Zhang, H. Q.; Shao, J. X.; Cui, Y.; Zhang, Y. P.; Zhang, X. A.; Zhao, Y. T.; Chen, X. M.; Xiao, G. Q.

    2015-04-01

    X rays originating from transitions from high Rydberg states to the M shell (here called Rydberg-to-M -shell x rays) have been measured in the interaction of Xeq+ (q =27 - 30 ) ions with aluminum, molybdenum, and beryllium surfaces in the energy range of 350-600 keV, by using a Si(Li) detector. The transition energy calculation by Cowan's program with relativistic correlation indicates that such x rays are mainly from the transition of the higher quantum states, with the principal quantum number from 6 up to 30, directly to M shell of xenon. The yield of the x ray per vacancy in M shell decreases slightly with increasing the projectile energies and is inversely proportional to the work functions of metallic surfaces used. However, it increases rapidly with the increase of the projectile charge states. All of these experimental facts combined with the transition rate calculations indicate that the measured Rydberg-to-M -shell x rays come from the "above the surface" hollow Xe atoms or ions deexcitation, when the inner shells such as N and O have not been filled.

  18. Purge-and-trap isothermal multicapillary gas chromatographic sample introduction accessory for speciation of mercury by microwave-induced plasma atomic emission spectrometry.

    PubMed

    Rodriguez Pereiro, I; Wasik, A; Lobiński, R

    1998-10-01

    A compact device based on purge-and-trap multicapillary gas chromatography was developed for sensitive species-selective analysis of methylmercury and Hg2+ by atomic spectrometry. The operating mode includes in situ conversion of the analyte species to MeEtHg and HgEt2 and cryotrapping of the derivatives formed in a 0.53-mm-i.d. capillary, followed by their flash (< 30 s) isothermal low-temperature separation on a minimulticapillary (22 cm) column. The very low detection limits obtained (0.01 pg mL-1 of Hg for methylmercury) are due to the narrow injection band and reduced peak broadening in a bundle of 0.038-mm capillaries at high flow rates (> 60 mL min-1) compatible with an MIP AES detector (no dilution with a makeup gas is required). Developments regarding each of the steps of the analytical procedure and effects of operational variables (sample volume, purge flow, trap temperature, separation conditions) are discussed. The device allows speciation of MeHg+ and Hg2+ down to 5 pg g-1 in urine and, after a rapid microwave-assisted hydrolysis, down to 0.1 ng g-1 in solid biological samples with a throughput of 6 samples/h. The analytical protocols developed were validated by the analysis of DORM-1 (dogfish muscle), TORT-1 (lobster hepatopancreas), and Seronorm urine certified reference materials.

  19. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  20. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    SciTech Connect

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening and collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.

  1. Atomic data from the Iron project. XIII. Electron excitation rates and emissivity ratios for forbidden transitions in NI II and Fe II.

    NASA Astrophysics Data System (ADS)

    Bautista, M. A.; Pradhan, A. K.

    1996-02-01

    Electron impact excitation rates and emissivity line ratios are reported for Optical and IR transitions in Ni II and Fe II arising from low-lying even parity levels. A total of 7 LS terms were included for Ni II, which result in 17 fine structure levels and 136 transitions. Coupling effects and resonance structures considered in the present calculations result in significant differences with the earlier distorted wave calculations by Nussbaumer & Storey (1982), although a reasonable agreement is found for the line diagnostics of some strong transitions in Ni II. Whereas an extensive set of collisional data has been presented earlier by Zhang & Pradhan for Fe II in the Iron Project series, in this paper we report collision strengths for some transitions missing from their dataset using an improved eigenfunction expansion for Fe II which includes the lowest 18 LS terms giving 52 fine structure levels and 1326 transitions. The present dataset provides a useful check on several forbidden transitions in Fe II and essentially confirms the diagnostics derived from the earlier work. The present calculations were carried out on the massively parallel processor Cray T3D with a parallelized version of the Iron Project R-matrix codes; to our knowledge these are the first such calculations.

  2. Intrahepatic cholestasis of pregnancy (ICP): case report and review of the literature.

    PubMed

    Keitel, V; Dröge, C; Stepanow, S; Fehm, T; Mayatepek, E; Köhrer, K; Häussinger, D

    2016-12-01

    Intrahepatic cholestasis of pregnancy (ICP) represents the most common pregnancy-related liver disease in women. Women frequently present in the third trimester with pruritus and elevated serum bile acid and/or alanine transaminase levels. Clinical symptoms quickly resolve after delivery; however, recurrence in subsequent pregnancies has to be expected. Intrahepatic cholestasis of pregnancy is associated with increased perinatal complications, such as premature delivery, meconium staining of the amniotic fluid, respiratory distress, low Apgar scores, and even stillbirth. The risk for the fetus is significantly increased with maternal serum bile acid levels above 40 µmol/L, which characterize severe ICP. An important factor for ICP development is a rise of gestational hormones leading to cholestasis in genetically predisposed women. Variants in the bile salt export pump (BSEP) and the multidrug resistance protein 3 (MDR3) are most often identified in ICP. Here, we give an overview of the current literature on ICP and present the case of a woman with recurrent severe ICP. A common BSEP polymorphism as well as a rare MDR3 mutation may underlie the development of ICP in our patient. She had a premature delivery with meconium staining of the amniotic fluid. The neonate showed signs of respiratory distress with a low Apgar score. This case emphasizes that women with severe ICP have an increased risk for perinatal complications. Furthermore, severe ICP was associated with a MDR3 mutation, which has already been described in adult patients with liver cirrhosis. Thus, ICP may unmask an underlying MDR3 defect, which may predispose to development of hepatobiliary diseases such as gallstone disease, liver fibrosis/cirrhosis, as well as hepatobiliary malignancies. Therefore, genetic testing should be considered in women with severe as well as early onset ICP. Furthermore, regular follow-up should be discussed for women with genetic variants.

  3. Effect of substrate bias on deposition behaviour of charged silicon nanoparticles in ICP-CVD process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Wan; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin; Seo, Byong-Hoon; Hwang, Nong-Moon

    2017-01-01

    The effect of a substrate bias on the deposition behaviour of crystalline silicon films during inductively coupled plasma chemical vapour deposition (ICP-CVD) was analysed by consideration of non-classical crystallization, in which the building block is a nanoparticle rather than an individual atom or molecule. The coexistence of positively and negatively charged nanoparticles in the plasma and their role in Si film deposition are confirmed by applying bias voltages to the substrate, which is sufficiently small as not to affect the plasma potential. The sizes of positively and negatively charged nanoparticles captured on a carbon membrane and imaged using TEM are, respectively, 2.7-5.5 nm and 6-13 nm. The film deposited by positively charged nanoparticles has a typical columnar structure. In contrast, the film deposited by negatively charged nanoparticles has a structure like a powdery compact with the deposition rate about three times higher than that for positively charged nanoparticles. All the films exhibit crystallinity even though the substrate is at room temperature, which is attributed to the deposition of crystalline nanoparticles formed in the plasma. The film deposited by negatively charged nanoparticles has the highest crystalline fraction of 0.84.

  4. Fingerprinting of ground water by ICP-MS. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Stetzenbach, K.

    1994-12-31

    This report contains the results of the chemical analysis of water from springs in Death Valley National Park, California. The springs were selected to represent a variety of aquifers at various flow rates. Nevares, Texas, and Travertine springs are believed to represent carbonate aquifers, whereas the other springs are believed to come from volcanic or valley fill aquifers. Each spring was sampled two to five times between June, 1992 and March, 1994. Samples were collected and analyzed by the Harry Reid Center for Environmental Studies (HRC) Environmental/Analytical Laboratory, at the University of Nevada, Las Vegas. The coordinates and dates of sampling are included. The chemical analyses performed on these spring waters included major cations and anions and trace elements. The analyses for the major anions were performed by atomic absorption (AA) spectrophotometry, the anions by ion chromatography (IC) and the trace elements by inductively coupled plasma-mass spectrometry (ICP-MS). The standard operating procedures (SOP) used for each method are included. It is believed that this is the first effort at such a comprehensive trace element analysis of ground waters. HRC has had to develop, test, and refine sampling and analysis procedures throughout the course of this study. A great deal of effort has gone into ensuring that even with the variations in methods and procedures, the data quality from any one sampling is comparable to the others.

  5. Spectroscopic Investigations of Glow Discharges and the Emissions of Nonmetallic Elements in the Argon Inductively Coupled Plasma.

    NASA Astrophysics Data System (ADS)

    Phillips, Hugh Alan

    1988-12-01

    Spectroscopic investigations have been carried out on hollow cathode discharges adapted from laser technology for use as a spectroscopic light source and the argon inductively coupled plasma (ICP) as an excitation source for nonmetal emission. High and low voltage aluminum and copper hollow cathode discharges were studied as a source of ionic and resonant atomic metal emission. The high voltage versions achieve strongly positive current-voltage behavior through utilization of the obstructed discharge phenomenon. The current-pressure-intensity-voltage relationships for low and high voltage copper hollow cathode discharges were studied with the inert gases He, Ne, Ar, Kr, and Xe. The intensity for copper resonant atomic emission with the fill gases Ar, Kr, and Xe improved relative to neon in the high voltage lamp when compared to the low voltage lamp. Absorption measurements through the cathode bore show the ground state atom density to increase with the atomic weight of the fill gas at any given level of intensity, at the fill gas pressure yielding highest resonant atomic copper emission. The estimated ion/atom intensity ratio is increased with fill gases which have metastable or ionization energies greater than the excitation energy of the ion transition. A copper hollow cathode lamp incorporating a short positive column discharge in front of the cathode opening was investigated for its lineshape as measured spectroscopically and by its atomic absorption sensitivity. Incorporation of this positive column allowed higher intensities to be obtained at the same line quality as a commercial hollow cathode lamp. An enlarged cathode volume also improves the lineshape at a given intensity. Inductively coupled plasma spectra for the elements C, O, N, Cl, P, S, and Br were obtained in the vacuum ultraviolet utilizing a vacuum polychromator and SWR film. The detection limit for injected O_2 and N _2 detected electronically by the VUV emissions is 1.3 and 0.9 micrograms

  6. High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

    NASA Technical Reports Server (NTRS)

    Tang, Ming; McDonough, William F.; Arevalo, Ricardo, Jr.

    2014-01-01

    Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (greater than 100 millimeters) and line scanning mode. In addition: (1) ion yields decrease when using spot sizes above 100 millimeters; (2) (Eu/Eu*)(sub raw) (i.e. Europium anomaly) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(sub raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference

  7. Tyrosine phosphorylation of the herpes simplex virus type 1 regulatory protein ICP22 and a cellular protein which shares antigenic determinants with ICP22.

    PubMed Central

    Blaho, J A; Zong, C S; Mortimer, K A

    1997-01-01

    At least eight herpes simplex virus type 1 (HSV-1) and five HSV-2 proteins were tyrosine phosphorylated in infected cells. The first viral tyrosine phosphoprotein identified was the HSV-1 regulatory protein ICP22. Also, two novel phosphotyrosine proteins were bound by anti-ICP22 antibodies. H(R22) is a cellular protein, while the F(R10) protein is observed only in HSV-1-infected cells. PMID:9371655

  8. Trace element determination in vitamin E using ICP-MS.

    PubMed

    Ponce De León, Claudia A; Montes Bayón, Maria; Caruso, Joseph A

    2002-09-01

    Vitamin E supplements are either isolated from plants sources or prepared synthetically. Isolation from plants includes eight different tocopherol structures. Vitamin E synthesis includes seven different stereoisomers, which involves the use of several catalysts that may lead to trace element contamination in the vitamin. The use of ICP-MS is an ideal technique for detecting these trace elements. However, the oily nature of the samples requires the development of a sample preparation methodology. This study was done upon the request of synthetic vitamin E manufacturers to test the trace metal purity of their samples. In this work, the comparison of an acid microwave digestion and emulsion preparation is discussed. Cromium, nickel, tin and lead were found in the synthetic vitamin E analyzed and 200, 60, 9 and 45 ppb were the concentrations found respectively for these elements. Digesting the samples gives slightly lower detection limits compared to the emulsion preparation.

  9. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  10. The Impact of Intravenous Lidocaine on ICP in Neurological Illness: A Systematic Review

    PubMed Central

    Zeiler, F. A.; Sader, N.; Kazina, C. J.

    2015-01-01

    Background. The goal of our study was to perform a systematic review of the literature to determine the effect that intravenous (IV) lidocaine had on ICP in patients with neurological illness. Methods. All articles are from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to March 2015). The strength of evidence was adjudicated using both the Oxford and GRADE methodology. Results. Ten original articles were considered for the final review. There were 189 patients studied. Seven studies focused on prophylactic pretreatment with IV lidocaine to determine if there would be an attenuation of ICP spikes during stimulation, with 4 displaying an attenuation of ICP. Three studies focused on a therapeutic administration of IV lidocaine in order to determine ICP reduction effects. All therapeutic studies displayed a reduction in ICP. Conclusions. We cannot make a strong definitive recommendation on the effectiveness of IV lidocaine on the attenuation of ICP spikes during stimulation. There currently exists both Oxford 2b and GRADE B literature to support and refute the attenuation of ICP spikes with IV lidocaine during stimulation. There currently exists Oxford 2b, GRADE B evidence to support ICP reduction with lidocaine when used as a therapeutic agent. PMID:26448873

  11. A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex

    PubMed Central

    Herbring, Valentina; Bäucker, Anja; Trowitzsch, Simon; Tampé, Robert

    2016-01-01

    As a centerpiece of antigen processing, the ATP-binding cassette transporter associated with antigen processing (TAP) became a main target for viral immune evasion. The herpesviral ICP47 inhibits TAP function, thereby suppressing an adaptive immune response. Here, we report on a thermostable ICP47-TAP complex, generated by fusion of different ICP47 fragments. These fusion complexes allowed us to determine the direction and positioning in the central cavity of TAP. ICP47-TAP fusion complexes are arrested in a stable conformation, as demonstrated by MHC I surface expression, melting temperature, and the mutual exclusion of herpesviral