Science.gov

Sample records for icp atomic emission

  1. HPLC-ICP atomic emission spectrometry in environmental analysis

    SciTech Connect

    Frame, E.M.S.

    1996-10-01

    Trace concentrations of many compounds are difficult to determine directly by traditional chromatographic techniques. Organosilicon compounds, for example, have no chromophoric groups. Size exclusion (SEC) and high performance liquid chromatography (HPLC) can separate high and low molecular weight organosilicon compounds, but routinely employ detectors with insufficient sensitivity for trace concentrations in environmental samples. Elemental analysis methods such as inductively coupled plasma optical emission spectrometry (ICP) provide excellent element sensitivity but no speciation information. Interfacing of a chromatographic method with ICP has been shown to provide quantitative determination of trace compounds while retaining the chemical speciation information. This work will describe the power of the HPLC-ICP combination for trace compounds in environmental samples to identify and determine ppm levels of organometallics.

  2. Laser Ablation Solid Sampling processes investigated usinginductively coupled plasma - atomic emission spectroscopy (ICP-AES)

    SciTech Connect

    Mao, X.L.; Ciocan, A.C.; Borisov, O.V.; Russo, R.E.

    1997-07-01

    The symbiotic relationship between laser ablation mechanismsand analytical performance using inductively coupled plasma-atomicemission spectroscopy are addressed in this work. For both cases, it isimportant to ensure that the ICP conditions (temperature and electronnumber density) are not effected by the ablated mass. By ensuring thatthe ICP conditions are constant, changes in spectral emission intensitywill be directly related to changes in laser ablation behavior. Mg ionicline to atomic line ratios and excitation temperature were measured tomonitor the ICP conditions during laser-ablation sample introduction. Thequantity of ablated mass depends on the laser pulse duration andwavelength. The quantity of mass removed per unit energy is larger whenablating with shorter laser wavelengths and pulses. Preferential ablationof constituents from a multicomponent sample was found to depend on thelaser beam properties (wavelength and pulse duration). Fornanosecond-pulsed lasers, thermal vaporization dominates the ablationprocess. For picosecond-pulsed lasers, a non-thermal mechanism appears todominate the ablation process. This work will describe the mass ablationbehavior during nanosecond and picosecond laser sampling into the ICP.The behavior of the ICP under mass loading conditions is firstestablished, followed by studies of the ablation behavior at variouspower densities. A thermal vaporization model is used to explainnanosecond ablation, and a possible non-thermal mechanism is proposed toexplain preferential ablation of Zn and Cu from brass samples duringpicosecond ablation.

  3. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    PubMed

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  4. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    SciTech Connect

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

  5. A continuous sampling air-ICP for metals emission monitoring

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; Eckels, D.E.; Miller, G.P.

    1999-09-19

    An air-inductively coupled plasma (air-ICP) system has been developed for continuous sampling and monitoring of metals as a continuous emission monitor (CEM). The plasma is contained in a metal enclosure to allow reduced-pressure operation. The enclosure and plasma are operated at a pressure slightly less than atmospheric using a Roots blower, so that sample gas is continuously drawn into the plasma. A Teflon sampling chamber, equipped with a sampling pump, is connected to the stack that is to be monitored to isokinetically sample gas from the exhaust line and introduce the sample into the air-ICP. Optical emission from metals in the sampled gas stream is detected and monitored using an acousto-optic tunable filter (AOTF)--echelle spectrometer system. A description of the continuous sampling air-ICP system is given, along with some preliminary laboratory data for continuous monitoring of metals.

  6. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  7. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  8. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  9. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  10. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. PMID:27374562

  11. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  12. Application of plasma gas modulation technique for improvement of the measurement of Mn emission intensity in ICP-AES.

    PubMed

    Kubota, K; Wagatsuma, K

    2001-01-01

    A phase-sensitive detection technique associated with a digital lock-in amplifier was applied for an improvement of the detection in ICP-AES. The lock-in amplifier works as an extremely narrow band pass filter. It can pick up the modulated signal, which has the same frequency as the reference signal, from any noise and thus it can improve the signal-to-noise ratio. Modulation of the ICP can be performed by mixing small amounts of air to argon as the outer gas cyclically, because the emission intensities of ionic lines are enhanced by using the mixed gas. An electromagnetic valve, which is placed in the outer-gas flow path, causes periodic variation in the air gas in the outer-gas flow, and thus switching the valve on/off can modulate the ICP. By choosing the appropriate conditions, the addition of air gas enhances the emission intensity of ionic lines more than that of the background, thus leading to improved signal-to-background ratios. At the same time the lock-in amplifier further enhances the ionic emissions because it picks up only the modulated part of the signal. By applying the plasma gas flow modulation technique the detection and the determination limits of the Mn II 257.610 nm line are improved in comparison with the conventional method. A change in plasma shape corresponding to the modulation frequency is observed when the ICP is modulated. PMID:11225355

  13. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  14. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  15. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  16. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry.

    PubMed

    López-Artíguez, M; Cameán, A; Repetto, M

    1993-01-01

    This paper describes a method for the determination of heavy metals (Co, Ni, Cu, Cd, Pb) in urine by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method proposed requires purification of the samples with activated charcoal under acidic conditions before preconcentration by complexation with ammonium pyrrolidinedithiocarbamate (APDC). The formed complexes are extracted with methyl isobutyl ketone (MIBK) and the resulting residue is finally digested under acid oxidant conditions. Because of its low detection limit (below 10 micrograms/L), this procedure can be applied conveniently for toxicological diagnostic purposes. PMID:8429621

  17. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  18. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1990--December 31, 1992

    SciTech Connect

    Montaser, A.

    1992-09-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  19. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  20. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  1. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  2. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  3. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  4. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, nutrition, and biomedicine. Emphasis is being placed on: (1) generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; (2) computer modelings of ICP discharges to predict the behavior of new and existing plasmas; (3) diagnostic studies of high temperature plasmas and sample introduction systems to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; (4) development and characterization of new, low cost sample introduction systems that consume microliter or microgram quantities of samples; and (5) investigation of new membrane separators for stripping solvent from sample aerosol to reduce various interferences and to enhance sensitivity and selectivity in plasma spectrometry.

  5. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  6. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  7. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues. PMID:25383735

  8. Comparison method for uranium determination in ore sample by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Sert, Şenol

    2013-07-01

    A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis. PMID:23816124

  9. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  10. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  11. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  12. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  13. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    ERIC Educational Resources Information Center

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  14. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  15. 1999 ICP Distinguished Scientist Award. The history of positron emission tomography.

    PubMed

    Nutt, Ronald

    2002-01-01

    The history of Positron Emission Tomography (PET) is rich in technological achievements and advancements. The advancements that have benchmarked PET progress are the result of key components that include human intellect and passion for PET technology, relentless persuasion of key political forces to eliminate the barriers precluding PET usage, tireless efforts to raise awareness about PET and a crucial network of support throughout the PET community. This article sets forth a timeline of significant events that have contributed to the development of PET as it is known today. It introduces the earliest physicist and physician, for instance, who were responsible for the first medical applications for positron emitting radioisotopes using a simple brain probe that utilized coincidence to localize brain tumors. Additionally, it identifies landmark technological achievements that have helped pave the way to modern PET. This study includes historical accounts surrounding the use of the first human PET tomograph, discovery of the Bismuth Germanate (BGO) scintillator, development of the Fluorodeoxyglucose (FDG) PET method, the design of the first PET medical cyclotron with automated chemistry and operated by a PC and a technologist, Food and Drug Administration's approval of FDG, HCFA reimbursement, and the capacity of Lutetium Oxyorthosilicate (LSO) to produce a revolutionary advance in PET scanners. The main thrust of this article is to recognize via a timeline of PET accomplishments the noteworthy work of scientists, physicians and others who have been key players in various aspects of the continuous activity to move PET technology forward from invention to research, and to become a major clinical imaging modality.

  16. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  17. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination.

    PubMed

    Cai, Yi; Zhang, Ya-Jie; Wu, De-Fu; Yu, Yong-Liang; Wang, Jian-Hua

    2016-04-19

    The low atomization and excitation capability of nonthermal microplasma, e.g., dielectric barrier discharge (DBD), has greatly hampered its potential applications for the determination of metals in solution. In the present work, an inspiring development is reported for direct atomization and excitation of cadmium in aqueous solution by DBD and facilitates highly sensitive determination. A DBD microplasma is generated on the nozzle of a pneumatic micronebulizer to focus the DBD energy on a confined space and atomize/excite metals in the spray. Meanwhile, an appropriate sample matrix and nebulization in helium further improves the atomization and excitation capability of DBD. With cadmium as a model, its emission is recorded by a CCD spectrometer at 228.8 nm. By using an 80 μL sample solution nebulized at 3 μL s(-1), a linear range of 5-1000 μg L(-1) along with a detection limit of 1.5 μg L(-1) is achieved, which is comparable to those obtained by commercial bulky inductively coupled plasma (ICP)-based instrumentations. PMID:27030025

  18. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Perring, Loïc; Basic-Dvorzak, Marija

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99+/-5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. PMID:12324843

  19. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  20. Development of a partial least-squares calibration model for simultaneous determination of elements by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Chaloosi, Marzieh; Asadollahi, Seyed Azadeh; Khanchi, Ali Reza; FirozZare, Mahmoud; Mahani, Mohamad Khayatzadeh

    2009-01-01

    A partial least-squares (PLS) calibration model was developed for simultaneous multicomponent elemental analysis with inductively coupled plasma-atomic emission spectrometry (ICP-AES) in the presence of spectral interference. The best calibration model was obtained using a PLS2 algorithm. Validation was performed with an artificial test set. Multivariate calibration models were constructed using 2 series of synthetic mixtures (Zn, Cu, Fe, and U, V). Accuracy of the method was evaluated with unknown synthetic and real samples. PMID:19382589

  1. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.

    PubMed

    Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W

    2006-01-23

    Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.

  2. Atomic emission in the ultraviolet nightglow

    NASA Astrophysics Data System (ADS)

    Sharp, W. E.; Siskind, D. E.

    1989-12-01

    An observation of the ultraviolet nightglow between 2670 A and 3040 A was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter UV spectrometer operating at 3.5 A resolution viewed the earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2852 A is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2972 A line from O(1S) was less than that predicted from the accepted O(1S) branching ratio and acceptable ratios of Herzberg I to 5577 A emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  3. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  4. Atomic emission in the ultraviolet nightglow

    SciTech Connect

    Sharp, W.E.; Siskind, D.E. )

    1989-12-01

    An observation of the ultraviolet nightglow between 2,670 {angstrom} and 3,040 {angstrom} was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter uv spectrometer operating at 3.5 {angstrom} resolution viewed the Earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2,852 {angstrom} is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2,972 {angstrom} line from O({sup 1}S) was less than that predicted from the accepted O({sup 1}S) branching ratio and acceptable ratios of Herzberg I to 5,577 {angstrom} emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  5. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  6. Determination of hafnium at the 10(-4)% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry.

    PubMed

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Hafnium at the very low level of 1-8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29-253%). The ion exchange method exploiting Diphonix(®) resin proved sufficient efficiency in Zr-Hf separation when the initial concentration ratio of the elements ([Zr]0/[Hf]0) ranged from 1200 to ca. 143,000.

  7. EQUIB: Atomic level populations and line emissivities calculator

    NASA Astrophysics Data System (ADS)

    Howarth, I. D.; Adams, S.; Clegg, R. E. S.; Ruffle, D. P.; Liu, X.-W.; Pritchet, C. J.; Ercolano, B.

    2016-03-01

    The Fortran program EQUIB solves the statistical equilibrium equation for each ion and yields atomic level populations and line emissivities for given physical conditions, namely electron temperature and electron density, appropriate to the zones in an ionized nebula where the ions are expected to exist.

  8. The c-axis orientation ZnO by ICP enhanced HiPIMS at ambient temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; chen, Jianyuan; Cherng, Jyhshiarn; Wang, Zhengduo; Liu, Zhongwei; Chen, Qiang

    2016-11-01

    In this paper, a facile method to prepare a high c-axis orientation ZnO film is reported. We combine a high power impulse magnetron sputtering (HiPIMS) with an inductively coupled plasma (ICP) in purpose of improving the reaction activity of Zn species sputtered from HiPIMS with dissociated oxygen, and gaining a high quality ZnO. The diagnostic of optical emission spectroscope (OES), which reveals the Zn+ and atomic oxygen concentrations in plasma, is evident the increasing ionization of Zn and the dissociation of O2 by ICP. After characterizing films grown with and without ICP, likely crystal through x-ray diffraction (XRD), component by energy dispersive spectroscopy (EDS), and morphology by atomic force microscope (AFM), we conclude that ICP assistance is crucial for the ZnO preferentially growth in (002) facet. With ICP assistance ZnO is grown in a big crystal size with a good quality.

  9. Atomic absorption spectrometry with a flame emission source

    NASA Astrophysics Data System (ADS)

    Calloway, Clifton P.; Jones, Bradley T.

    1994-12-01

    An atomic absorption spectrometer with flame atomization and a flame emission light source is described. The light source is prepared by aspirating a solution containing a high concentration of analyte into the emission flame. Two different source flames (air/acetylene and nitrous oxide/acetylene) have been evaluated, with the N 2O flame providing better signal to noise ratios ( S/N) in most cases. Source S/N values as high as 5900 (Cr) have been observed. Experimental parameters have been optimized for nine test elements to give limits of detection obtained with this system that are in some cases as good as those obtained with the traditional hollow cathode lamp source; for example, Cu (4 ng/ml), Mn (3 ng/ml) and Ni (5 ng/ml). Linear dynamic ranges typically span 2-3 orders of magnitude. This system offers an inexpensive emission source with the ability to quickly change the setup to accommodate different analytes.

  10. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Barnes, Ramon M.

    An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Si/ml and 10 ng Al/ml from aqueous and synthetic standards was 80-85% and 96-103%, respectively.

  11. Inelastic collisional deactivation in plasma-related non-spectroscopic matrix interferences in inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Assad S.; Barnes, Ramon M.

    1999-07-01

    Inelastic collisional deactivation of the analyte excited state is demonstrated as a dominant cause for non-spectroscopic matrix interference in inductively coupled plasma atomic emission spectrometry (ICP-AES) for commonly used plasma operating conditions in routine analysis. A mathematical simulation of the inelastic collisional model was examined. Comparison between the theoretical model and experimental results using atomic and ionic lines of the analytes Zn, Ba, Mg, Mn and Sr validates the inelastic collisional deactivation model as a dominant cause for non-spectroscopic matrix effect. Matrices evaluated were NH 4Cl, NH 4SCN, (NH 4) 2SO 4, and H 2SO 4 to represent difficult-to-ionize matrices (DIE) and NaCl and CaCl 2 to represent easy-to-ionize element matrices (EIE).

  12. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry.

    PubMed

    Silva, Sidnei G; Donati, George L; Santos, Luana N; Jones, Bradley T; Nóbrega, Joaquim A

    2013-05-30

    Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L(-1) Co, WCAES limit of detection for Cr (λ=425.4 nm) is calculated as 0.070 mg L(-1); a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr(+) by charge transfer reactions. In a second step, Cr(+)/e(-) recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25-10 mg L(-1) and repeatability of 3.8% (RSD, n=10) for a 2.0 mg L(-1) Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and 112%.

  13. Far ultraviolet atomic and molecular nitrogen emissions in the dayglow

    NASA Technical Reports Server (NTRS)

    Takacs, P. Z.; Feldman, P. D.

    1977-01-01

    A scanning spectrophotometer was used to observe the far ultraviolet day airglow between 1130 and 1520 A at 4.4-A spectral resolution. Fourteen bands of the N2 Lyman-Birge-Hopfield (LBH) system are clearly resolved and suggest a total LBH system zenith column emission rate of 3810 plus or minus 520 R extrapolated to the subsolar point. A photoelectron flux model (based on recent photoelectron flux measurements and the observed LBH altitude profile) is used to derive the direct and dissociative excitation contributions to the atomic nitrogen emissions. The calculated atomic nitrogen density agrees with other measurements, although it is an order of magnitude greater than previous photochemical model results.

  14. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-01-01

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. PMID:24906107

  15. Infrared [Fe II] Emission Lines from Radiative Atomic Shocks

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Raymond, John C.; Kim, Hyun-Jeong

    2016-06-01

    [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by te{raymond1979} with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., fethreefive/fetwofive, fefive/fetwofive, and fefive/feoneseven, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

  16. ATOMIC AND MOLECULAR PHYSICS: Spontaneous Emission of a Polarized Atom in a Medium Between Two Parallel Mirrors

    NASA Astrophysics Data System (ADS)

    Wang, De-Hua; Huang, Kai-Yun; Xu, Qiang

    2010-01-01

    Using the photon closed orbit theory, the spontaneous emission rate of a polarized atom in a medium between two parallel mirrors is derived and calculated. It is found that the spontaneous emission rate of a polarized atom between the mirrors is related to the atomic position and the polarization direction. The results show that in the vicinity of the mirror, the variation of the spontaneous emission rate depends crucially on the atomic polarization direction. With the increase of the polarization angle, the oscillation in the spontaneous emission rate becomes decreased. For the polarization direction parallel to the mirror plane, the oscillation is the greatest; while for the perpendicular polarization direction, the oscillation is nearly vanished. The agreement between our result and the quantum electrodynamics result suggests the correctness of our calculation. This study further verifies that the atomic spontaneous emission process can be effectively controlled by changing the polarization orientation of the atom.

  17. Metallomics approach to trace element analysis in ustilago maydis using cellular fractionation, atomic absorption spectrometry, and size exclusion chromatography with ICP-MS detection.

    PubMed

    Muñoz, Alma Hortensia Serafin; Kubachka, Kevin; Wrobel, Kazimierz; Corona, Felix Gutierrez; Yathavakilla, Santha K V; Caruso, Joseph A; Wrobel, Katarzyna

    2005-06-29

    Huitlacoche is the ethnic name of the young fruiting bodies of Ustilago maydis, a common parasite of maize. In Mexico and other Latin American countries, this fungus has been traditionally appreciated as a local delicacy. In this work a metallomics approach was used with the determination of eight elements in huitlacoche by electrothermal atomic absorption spectrometry as one facet of this approach. The results obtained indicated relatively lower concentrations of commonly analyzed metals, as referred to the data reported for other mushroom types. This effect was ascribed to different accessibilities of elements, depending on fungus substrate (lower from plant than from soil). Subcellular fractionation was accomplished by centrifugation of cell homogenates suspended in Tris-HCl buffer. Recoveries of the fractionation procedure were in the range of 71-103%. For six elements (Cr, Cu, Fe, Mn, Ni, and Pb), the mean relative contributions in cytosol, cell walls, and mixed membrane fraction were 50.7, 48.2, and 1.1% respectively. To attain the molecular weight distribution of compounds containing target elements as an additional aspect of the metallomics approach, the fungus extract (1% sodium dodecyl sulfate in Tris-HCl, 30 mmol L(-)(1), pH 7.0) was analyzed by size exclusion chromatography with UV and ICP-MS detection. With spectrophotometric detection (280 nm), the elution of high molecular weight compounds was observed in the form of one peak (MW > 10 kDa), and several lower peaks appeared at higher retention times (MW < 10 kDa). On ICP-MS chromatograms, a coelution of (59)Co, (63)Cu, (57)Fe, (202)Hg, (60)Ni, and (80)Se with the first peak on the UV chromatogram was clearly observed, indicating that a fraction of each element incorporated with high molecular weight compounds (12.7, 19.8, 33.7, 100, 19.4, and 45.8%, respectively, based on the peak area measurements). From a comparison of (80)Se and (33)S chromatograms (for sulfur analysis, the extract was obtained in

  18. Spontaneous emission of an atom in the presence of nanobodies

    SciTech Connect

    Klimov, Vasilii V; Ducloy, M; Letokhov, V S

    2001-07-31

    The effect of nanobodies, i.e., the bodies whose size is small compared to the emission wavelength, on spontaneous emission of an atom located near them is considered. The results of calculations performed within the framework of quantum and classical electrodynamics are presented both in analytic and graphical forms and can be readily used for planning experiments and analysis of experimental data. It is shown that nanobodies can be used to control efficiently the rate of spontaneous transitions. Thus, an excited atom located near a nanocylinder or a nanospheroid pole, whose transition dipole moment is directed normally to the nanobody surface, can decay with the rate that is tens and hundreds times higher than the decay rate in a free space. In the case of some (negative) dielectric constants, the decay rate can increase by a factor of 10{sup 5}-10{sup 6} and more. On the other hand, the decay of an excited atom whose transition dipole moment is directed tangentially to the nanobody surface substantially slows down. The probability of nonradiative decay of the excited state is shown to increase substantially in the presence of na-nobodies possessing losses. (review)

  19. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  20. Plutonium concentration and (240)Pu/(239)Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS.

    PubMed

    Bu, Kaixuan; Cizdziel, James V; Dasher, Douglas

    2013-10-01

    Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p < 0.001); lichen and moss averaged 0.184 ± 0.007, similar to the integrated global fallout ratio, whereas kelp and mussel (soft tissue) averaged 0.226 ± 0.003. These observations provide supporting evidence that a large input of isotopically heavier Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and

  1. Plutonium concentration and (240)Pu/(239)Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS.

    PubMed

    Bu, Kaixuan; Cizdziel, James V; Dasher, Douglas

    2013-10-01

    Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p < 0.001); lichen and moss averaged 0.184 ± 0.007, similar to the integrated global fallout ratio, whereas kelp and mussel (soft tissue) averaged 0.226 ± 0.003. These observations provide supporting evidence that a large input of isotopically heavier Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and

  2. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  3. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

    PubMed

    Mitchell, D G; Brandt, P C; Roelof, E C; Dandouras, J; Krimigis, S M; Mauk, B H

    2005-05-13

    The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.

  4. High-temperature liquid chromatography inductively coupled plasma atomic emission spectrometry hyphenation for the combined organic and inorganic analysis of foodstuffs.

    PubMed

    Terol, Amanda; Paredes, Eduardo; Maestre, Salvador E; Prats, Soledad; Todolí, José L

    2010-10-01

    The coupling of a High-Temperature Liquid Chromatography system (HTLC) with an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) is reported for the first time. This hyphenation combines the separation efficiency of HTLC with the detection power of a simultaneous ICP-AES system and allows the combined determination of organic compound and metals. The effluents of the column were introduced into the spectrometer and the chromatograms for organic compounds were obtained by plotting the carbon emission signal at a characteristic wavelength versus time. As regards metals, they were determined by injecting a small sample volume between the exit of the column and the spectrometer and taking the emission intensity for each one of the elements simultaneously. Provided that in HTLC the effluents emerged at high temperatures, an aerosol was easily generated at the exit of the column. Therefore, the use of a pneumatic nebulizer as a component of a liquid sample introduction system in the ICP-AES could be avoided, thus reducing the peak dispersion and limits of detection by a factor of two. The fact that a hot liquid stream was nebulized made it necessary to use a thermostated spray chamber so as to avoid the plasma cooling as a cause of the excessive mass of solvent delivered to it. Due to the similarity in sample introduction, an Evaporative Light Scattering Detector (ELSD) was taken as a reference. Comparatively speaking, limits of detection were of the same order for both HTLC-ICP-AES and HTLC-ELSD, although the latter provided better results for some compounds (from 10 to 20 mg L(-1) and 5-10 mg L(-1), respectively). In contrast, the dynamic range for the new hyphenation was about two orders of magnitude wider. More importantly, HTLC-ICP-AES provided information about the content of both organic (glucose, sucrose, maltose and lactose at concentrations from roughly 10 to 400 mg L(-1)) as well as inorganic (magnesium, calcium, sodium, zinc, potassium and

  5. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  6. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    PubMed

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-01

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  7. Directed spontaneous emission from an extended ensemble of N atoms: timing is everything.

    PubMed

    Scully, Marlan O; Fry, Edward S; Ooi, C H Raymond; Wódkiewicz, Krzysztof

    2006-01-13

    A collection of static atoms is fixed in a crystal at a low temperature and prepared by a pulse of incident radiation of wave vector . The atoms are well described by an entangled Dicke-like state, in which each atom carries a characteristic phase factor exp(ik0.r(j)), where is the atomic position in the crystal. It is shown that a single photon absorbed by the N atoms will be followed by spontaneous emission in the same direction. Furthermore, phase matched emission is found when one photon is absorbed by N atoms followed by two-photon down-conversion.

  8. High speed analysis of agricultural samples using inductively coupled plasma-atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Isaac, R. A.; Johnson, W. C.

    The determination of potassium, phosphorus, calcium, magnesium, zinc and manganese in soil extracts are reported at an analysis rate of 200 samples h -1. A 4 cm 3volume of soil is extracted with a 20 ml solution of 0.025 N H 2SO 4-0.05 N HCl (Mehlich I). The filtered solution is then placed on a Technicon Sampler IV, which is interfaced to an 1CP emission spectrometer. This extract is analyzed for all the nutrients above. In addition to soil extracts, the ICP is used for mineral analyses of feed samples at a sample rate of 120 samples h -1. Several "American Association of Feed Control Officials" check feed samples have been analyzed and the results will be discussed comparing the ICP results with other laboratories participating in the program. The preparation of feed samples involves ashing a 1 g sample at 500°C for 4 h. The ashed sample was then taken up in hot HCl and diluted to 250 ml. Analyses are also performed by ICP on water, heavy metals in sewage sludge, and on other materials. The ICP technique has increased the efficiency of our laboratory to the extent that one technician can do the same work that formerly required four technicians.

  9. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report: January 1, 1993--December 31, 1993

    SciTech Connect

    Montaser, A.

    1993-12-31

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors` investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report.

  10. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-01-01

    A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.

  11. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    SciTech Connect

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials.

  12. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples.

  13. Kinetics and continuum emission of negative atomic ions in partially ionized plasmas

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1991-01-01

    Kinetics and continuum emission of negative ions are studied in stationary atomic hydrogen, nitrogen, and oxygen plasmas. The intensity of the negative-ion emission was found to be neglibible when compared to those of bound-bound and free-bound emission at low and medium particle densities. However, the negative-ion continuum emission can contribute significantly in certain parts of the emission spectrum at high particle densities.

  14. Spectral interferences in the determination of trace elements in environmental materials by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Daskalova, N.; Boevski, I. V.

    1999-07-01

    This paper deals with spectral interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES) encountered with environmental materials. These samples normally contain high concentrations of aluminium, calcium, magnesium, iron, titanium, potassium and sodium. The investigations cover: (a) spectral data for Al, Ca, Mg, Fe, Ti, K and Na as interferents for 200 pm wide windows centred (±100 pm) around the prominent lines of As, B, Ba, Be, Cd, Cr, Cu, Hg, Mn, P, Pb, Sb, Se, Sn, Tl, U and Zn; (b) a data base of Q-values for line interference [ QI j(λ a)] and Q-values for wing background interference [ QW j(Δλ a)] for two values of the excitation temperature 6200 K and 7200 K. The lines free or negligibly influenced by line interference were selected for analyte determination. Q-values were used for calculation of correction factors under a spectral line without the measurement of a reference blank at the wavelength of the prominent analysis lines. The accuracy of ICP-AES with the Q-concept as a basic methodology is checked by the analysis of a certified reference material IAEA/Sediment SD-N-1/2/. The precision of the method is characterised by an RSD of 0.6-1.7%. Extraction of trace elements soluble in aqua regia was used as a decomposition method. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), a section of Spectrochimica Acta, Part B (SAB). The hardcopy text is accompanied by an electronic archive, stored on the SAE homepage at http://www.elsevier.nl/locate/sabe. The archive contains the tabular material of this article in electronic form.

  15. Dilute-and-shoot procedure for the determination of mineral constituents in vinegar samples by axially viewed inductively coupled plasma optical emission spectrometry (ICP OES).

    PubMed

    Da Silva, J C J; Cadore, S; Nobrega, J A; Baccan, N

    2007-02-01

    Samples of commercial wine vinegar were introduced in an axially viewed inductively coupled plasma optical emission spectrometry instrument (AX-ICP OES) equipped with different sample introduction systems: a cross-flow nebulizer combined with a double-path spray chamber (CF-DP) and cone spray associated with a cyclone spray chamber (CS-CC). Samples of white and red wine vinegar were diluted with water before analysis. Higher magnesium Mg II/Mg I ratios (11 and 10 for CS-CC and CF-DP, respectively) were obtained using a nebulization gas flow rate of 0.6 l min-1 and an applied power of 1.3 kW. The background equivalent concentrations (BEC) and signal-to-background ratio (SBR) of analytes were improved using scandium (Sc) as the internal standard. The limits of detection (LOD) and limits of quantification (LOQ) for mineral constituents were similar for both introduction systems. Best recoveries values were obtained using a plasma under robust conditions, CS-CC system and Sc as the internal standard. The concentration determined in 13 commercial samples of wine vinegars varied between 0.2 and 3.0, between 0.02 and 0.4, between 8.5 and 100.0, between 0.01 and 0.05, between 27.0 and 540.0, between 4.0 and 79.0, between 0.4 and 10.0, and between 0.01 and 2.0 for aluminium (Al), barium (Ba), calcium (Ca), copper (Cu), potassium (K), magnesium (Mg), manganese (Mn), and zinc (Zn), respectively. PMID:17364913

  16. Integrated Design for Marketing and Manufacturing team: An examination of LA-ICP-AES in a mobile configuration. Final report

    SciTech Connect

    Not Available

    1994-05-01

    The Department of Energy (DOE) has identified the need for field-deployable elemental analysis devices that are safer, faster, and less expensive than the fixed laboratory procedures now used to screen hazardous waste sites. As a response to this need, the Technology Integration Program (TIP) created a mobile, field-deployable laser ablation-inductively coupled plasma-atomic emission spectrometry (LA-ICP-AES) sampling and analysis prototype. Although the elemental. screening prototype has been successfully field-tested, continued marketing and technical development efforts are required to transfer LA-ICP-AES technology to the commercial sector. TIP established and supported a student research and design group called the Integrated Design for Marketing and Manufacturing (IDMM) team to advance the technology transfer of mobile, field-deployable LA-ICP-AES. The IDMM team developed a conceptual design (which is detailed in this report) for a mobile, field-deployable LA-ICP-AES sampling and analysis system, and reports the following findings: Mobile, field-deployable LA-ICP-AES is commercially viable. Eventual regulatory acceptance of field-deployable LA-ICP-AES, while not a simple process, is likely. Further refinement of certain processes and components of LA-ICP-AES will enhance the device`s sensitivity and accuracy.

  17. Single-photon modulation by the collective emission of an atomic chain

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zubairy, M. Suhail

    2014-11-01

    We study the collective spontaneous emission of a linear atomic chain excited by a single photon. The interaction between the atoms and the common vacuum field can significantly change the eigenenergy and the spontaneous emission rate of the system. Due to the dipole-dipole interactions, the system prepared in a single-photon timed Dicke state is the superposition of superradiant and subradiant eigenstates that can have a nonexponential decay dynamics. We can tune the frequency and linewidth of the superradiant and subradiant emission from a timed Dicke state by changing the direction of the atomic dipole moment or the atomic separation. In addition, the emission direction of the superradiant and subradiant photons also depends on the polarization of the atoms.

  18. The stability of calibration standards for ICP/AES analysis: Six-month study

    SciTech Connect

    Huff, E.A.; Huff, D.R.

    1992-05-01

    The stability of instrument calibration standards for Inductively Coupled Plasma/Atomic Emission Spectrometric (ICP/AES) analysis was studied over a six-month period. Data were obtained as functions of analyte concentration, acid type, and acidity. The impact of acid concentration on signal-to-background ratios (S/B) was also assessed. The results show that analytes maintain their integrity over extended periods with appropriate inorganic acid preservatives. Thus, frequent standard preparations become unnecessary to obtain valid analytical data.

  19. Spatial and temporal variations in infrared emissions of the upper atmosphere. 1. Atomic oxygen (λ 63 μm) emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Khomich, V. Yu.

    2016-09-01

    Rocket and balloon measurement data on atomic-oxygen (λ 63 µm) emission in the upper atmosphere are presented. The data from the longest (1989-2003) period of measurements of the atomic-oxygen (λ 63 µm) emission intensity obtained by spectral instruments on sounding balloons at an altitude of 38 km at midlatitudes have been systematized and analyzed. Regularities in diurnal and seasonal variations in the intensity of this emission, as well as in its relation with solar activity, have been revealed.

  20. Applications of high resolution ICP-AES in the nuclear industry

    SciTech Connect

    Johnson, S.G.; Giglio, J.J.; Goodall, P.S.; Cummings, D.G.

    1998-07-01

    Application of high resolution ICP-AES to selected problems of importance in the nuclear industry is a growing field. The advantages in sample preparation time, waste minimization and equipment cost are considerable. Two examples of these advantages are presented in this paper, burnup analysis of spent fuel and analysis of major uranium isotopes. The determination of burnup, an indicator of fuel cycle efficiency, has been accomplished by the determination of {sup 139}La by high resolution inductively coupled plasma atomic emission spectroscopy (HR-ICP-AES). Solutions of digested samples of reactor fuel rods were introduced into a shielded glovebox housing an inductively coupled plasma (ICP) and the resulting atomic emission transmitted to a high resolution spectrometer by a 31 meter fiber optic bundle. Total and isotopic U determination by thermal ionization mass spectrometry (TIMS) is presented to allow for the calculation of burnup for the samples. This method of burnup determination reduces the time, material, sample handling and waste generated associated with typical burnup determinations which require separation of lanthanum from the other fission products with high specific activities. Work concerning an alternative burnup indicator, {sup 236}U, is also presented for comparison. The determination of {sup 235}U:{sup 238}U isotope ratios in U-Zr fuel alloys is also presented to demonstrate the versatility of HR-ICP-AES.

  1. Two-channel emission model for collective quantum jumps in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Cayayan, Lyndon; Clemens, James

    2016-05-01

    We consider a system of driven, damped Rydberg atoms with dipole-dipole energy shifts which can give rise to a Rydberg blockade when the atoms are driven on resonance and collective quantum jumps when the atoms are driven off resonance. For the damping we consider a two-channel emission model with competition between fully independent and fully collective spontaneous emission. For independent emission a quasiclassical model predicts a bistable steady state and quantum fluctuations drive collective jumps between the two bistable branches. We show that the collective emission is enhanced, relative to the independent emission, which shifts the total effective spontaneous emission rate and impacts the presence or absence of bistability predicted by the quasiclassical model.

  2. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  3. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  4. Temperature measurement of wood flame based on the double line method of atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Hao, Xiaojian; Liu, Zhenhua; Sang, Tao

    2016-01-01

    Aimed at the testing requirement of the transient high temperature in explosion field and the bore of barrel weapon, the temperature measurement system of double line of atomic emission spectrum was designed, the method of flame spectrum testing system were used for experimental analysis. The experimental study of wood burning spectra was done with flame spectrum testing system. The measured spectra contained atomic emission spectra of the elements K, Na, and the excitation ease of two kinds atomic emission spectra was analyzed. The temperature was calculated with two spectral lines of K I 766.5nm and 769.9nm. The results show that, compared with Na, the excitation temperature of K atomic emission spectra is lower. By double line method, the temperature of wood burning is 1040K, and error is 3.7%.

  5. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  6. Multielement plant tissue analysis using ICP spectrometry.

    PubMed

    Hansen, T H; de Bang, T C; Laursen, K H; Pedas, P; Husted, S; Schjoerring, J K

    2013-01-01

    Plant tissue analysis is a valuable tool for evaluating the nutritional status and quality of crops and is widely used for scientific and commercial purposes. The majority of plant analyzes are now performed by techniques based on ICP spectrometry such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) or ICP-mass spectrometry (ICP-MS). These techniques enable fast and accurate measurements of multielement profiles when combined with appropriate methods for sample preparation and digestion. This chapter presents state-of-the-art methods for digestion of plant tissues and subsequent analysis of their multielement composition by ICP spectrometry. Details on upcoming techniques, expected to gain importance within the field of multielement plant tissue analysis over the coming years, are also provided. Finally, attention is given to laser ablation ICP-MS (LA-ICP-MS) for multielement bioimaging of plant tissues. The presentation of the methods covers instructions on all steps from sampling and sample preparation to data interpretation. PMID:23073880

  7. Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Hazer, Orhan; Yilmaz, Hayriye

    2014-01-01

    This work reports the preparation of a novel Cu(II)-ion imprinted polymer using 2-thiozylmethacrylamide (TMA) for on-line preconcentration of Cu(II) prior to its determination by inductively coupled optical emission spectroscopy (ICP-OES). Cu(II)-TMA monomer (complex) was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was washed with 5% (v/v) HNO3 to remove Cu(II) ions and then with water until a neutral pH. The ion imprinted polymer was characterized by FT-IR and scanning electron microscopy. The experimental conditions were optimized for on-line preconcentration of Cu(II) using a minicolumn of ion imprinted polymer (IIP). Quantitative retention was achieved between pH 5.0 and 6.0, whereas the recoveries for the non-imprinted polymer (NIP) were about 61%. The IIP showed about 30 times higher selectivity to Cu(II) in comparison to NIP. The IIP also exhibited excellent selectivity for Cu(II) against the competing transition and heavy metal ions, including Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn. Computational calculations revealed that the selectivity of IIP was mediated by the stability of Cu(II)-TMA complex which was far more stable than those of Co(II), Ni(II) and Zn(II) that have similar charge and ionic radii to Cu(II). A volume of 10 mL sample solution was loaded onto the column at 4.0 mL min−1 by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 2% (v/v) HNO3. The relative standard deviation (RSD) and limit of detection (LOD, 3s) of the method were 3.2% and 0.4 μg L−1, respectively. The method was successfully applied to determination of Cu(II) in fish otoliths (CRM 22), bone ash (SRM 1400) and coastal seawater and estuarine water samples. PMID:24511158

  8. NEW METHOD FOR REMOVAL OF SPECTRAL INTERFERENCES FOR BERYLLIUM ASSAY USING INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROMETRY

    SciTech Connect

    Maxwell, S; Matthew Nelson, M; Linda Youmans, L; Maureen Bernard, M

    2008-01-14

    Beryllium has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S Department of Energy (DOE) facilities is required to identify potential health risks and to protect DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium (Be) measurement by inductively-coupled plasma atomic emission spectrometry (ICP-AES). The ion exchange separation removes uranium (U), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin{reg_sign} and TEVA Resin{reg_sign} reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. A vacuum box system is employed to reduce analytical time and reduce labor costs.

  9. Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Sreenivasa Rao, K.; Balaji, T.; Prasada Rao, T.; Babu, Y.; Naidu, G. R. K.

    2002-08-01

    A method was standardized for the dissolution of hair samples and analysis was carried out by inductively coupled plasma atomic emission spectrometry (ICP-AES). Hair samples were brought into solution by using a mixture of nitric acid and hydrogen peroxide. Various parameters that influence the sample preparation, namely temperature, digestion time and ratio of acid mixture were studied and standardized. The optimized method has been employed to digest standard reference materials and hair samples of residents of India, collected from different age groups and sex, and analyzed for Fe, Co, Ni, Mn, Zn, Cu, Cd and Pb. The values agree for most of the metals with the data reported for human hair samples of residents of India. The NIES CRM Human Hair No. 5 and IAEA Reference Hair HH-1 certified reference materials were used in order to verify the accuracy of the method and the results were in excellent agreement with the certified values.

  10. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  11. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    PubMed

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  12. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  13. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  14. Quantification of the Rubidium in Beverage Products Micro Samples by Platinum-wire Loop in Flame Atomization Atomic Emission Spectrometry.

    PubMed

    Kékedy-Nagy, Ladislau; Zsigmond, Andreea R; Cordoş, Emil A

    2010-12-01

    The rubidium content in 3 µL of some beverage products (beer, wine, vegetable and fruit juices) atomized from a Ptwire in the methaneair flame has been determined by atomic emission spectrometry. The flame atomization conditions of rubidium were optimized, they are: λ = 780.0 nm, the height of 8 mm over the burner head, gas flow rates of 300 L h-1 air and 34 L h-1 methane. The effect of Na, K, Cs, Sr and acetone on the emission of rubidium was studied too. The limit of quantification (6σ) obtained is of 4.3±1.8 pg in the presence of 50 mg L-1 K and 5% v/v acetone (P = 0.05). The rubidium content of the samples has been determined with continuous nebulization and by atomization from the Ptwire, using the standard calibration curve and the standard addition method. The results of the two procedures agree within the determination errors. PMID:24061895

  15. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  16. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  17. Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device

    SciTech Connect

    Fujii, K.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2013-01-15

    We observe the Balmer-{alpha}, -{beta}, and -{gamma} lines of hydrogen atoms and Q branches of the Fulcher-{alpha} band of hydrogen molecules simultaneously with their polarization resolved for large helical device. From the fit including the line splits and the polarization dependences by the Zeeman effect, the emission locations, intensities, and the temperatures of the atoms and molecules are determined. The emission locations of the hydrogen atoms are determined outside but close to the last closed flux surface (LCFS). The results are consistent with a previous work (Phys. Plasmas 12, 042501 (2005)). On the other hand, the emission locations of the molecules are determined to be in the divertor legs, which is farer from those of the atoms. The kinetic energy of the atoms is 1 {approx} 20 eV, while the rotational temperature of molecules is {approx}0.04 eV. Additionally, substantial wings, which originate from high velocity atoms and are not reproduced by the conventional spectral analysis, are observed in the Balmer line profiles. We develop a one-dimensional model to simulate the transport of the atoms and molecules. The model reproduces the differences of the emission locations of the atoms and molecules when their initial temperatures are assumed to be 3 eV and 0.04 eV, respectively. From the model, the wings of the Balmer-{alpha} line is attributed to the high velocity atoms exist deep inside the LCFS, which are generated by the charge exchange collisions with hot protons there.

  18. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    NASA Astrophysics Data System (ADS)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  19. The analysis of chlorine with other elements of interest in waste oil/fuels by ICP-AES

    SciTech Connect

    Tsourides, D.

    1998-12-31

    It has been said that there are more chemical analysis performed on oil/fuels than any other material. The sensitivity, linearity, multi-element capability, and relative freedom from matrix effects of ICP-AES makes it particularly suitable for elemental analysis of these samples. However, until recently the routine analysis of Chlorine had not been possible by ICP-AES. The addition of the Halogen elements, particularly Chlorine, to ICP-AES analysis is of importance to several industries that burn waste oil as fuel. The recycling and disposal of waste oil is closely regulated by metal and halogen content in all developed countries. In some countries, waste oil containing more than 1,000 ppm of Chlorine is considered hazardous waste. However, used oil may be burned as a fuel if it meets certain allowable limits. The paper describes the procedures for chlorine analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy.

  20. [Experimental study on flame temperature measurement by double line of atomic emission spectroscopy].

    PubMed

    Chen, Xiao-Bin; Cai, Xiao-Shu; Fan, Xue-Liang; Shen, Jia-Qi

    2009-12-01

    The flame temperature was measured by the double line of atomic emission spectroscopy according to the spectra of K (766.5 and 769.9 nm) whose relative intensity was obtained by fiber spectrometer. The principles, methods and experiment system were described. The temperature measured by the double line of atomic emission spectroscopy was compared to the results measured by thermal couple under the condition of thermal equilibrium of blackbody furnace. The comparison indicated a good coherence between these two measurement methods. The method was demonstrated on coal powder and timber, and the temperature measured corresponded to reality. PMID:20210126

  1. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    PubMed

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  2. Real-time atomic absorption mercury continuous emission monitor

    NASA Astrophysics Data System (ADS)

    Zamzow, Daniel S.; Bajic, Stanley J.; Eckels, David E.; Baldwin, David P.; Winterrowd, Chris; Keeney, Robert

    2003-08-01

    A continuous emission monitor (CEM) for mercury (Hg) in combustor flue gas streams has been designed and tested for the detection of Hg by optical absorption. A sampling system that allows continuous introduction of stack gas is incorporated into the CEM, for the sequential analysis of elemental and total Hg. A heated pyrolysis tube is used in the system to convert oxidized Hg compounds to elemental Hg for analysis of total Hg; the pyrolysis tube is bypassed to determine the elemental Hg concentration in the gas stream. A key component of the CEM is a laboratory-designed and -assembled echelle spectrometer that provides simultaneous detection of all of the emission lines from a Hg pen lamp, which is used as the light source for the optical absorption measurement. This feature allows for on-line spectroscopic correction for interferent gases such as sulfur dioxide and nitrogen dioxide, typically present in combustion stack gas streams, that also absorb at the Hg detection wavelength (253.65 nm). This article provides a detailed description of the CEM system, the characteristics and performance of the CEM, and the results of field tests performed at the Environmental Protection Agency-Rotary Kiln at Research Triangle Park, NC.

  3. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  4. Variations in the atomic oxygen 630 nm emission intensity related to orography

    NASA Astrophysics Data System (ADS)

    Nasyrov, G. A.

    2009-08-01

    The spatial variations in the emission intensity, related to internal gravity waves (IGWs) generated in the troposphere when the air flows around the Kopet Dagh mountain range, and the regularities of these variations have been detected for the first time based on the photometric measurements of the spatial distribution of the atomic oxygen 630 nm emission intensity, performed in 1967 at Vannovskii station of the Physicotechnical Institute, Academy of Sciences of the Turkmen SSR.

  5. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  6. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  7. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  8. Microplasma-based atomic emission detectors for gas chromatography.

    PubMed

    Miclea, M; Okruss, M; Kunze, K; Ahlman, N; Franzke, J

    2007-08-01

    This paper is an update on the development of microplasmas as detectors for gas chromatography. Direct current (dc), alternating current (ac), and radio frequency (rf) microplasmas developed in recent years will be described with their significant analytical results, which mostly concern the detection of halogens and sulfur. New results will be added which employ a microhollow cathode discharge (MHCD) as excitation source. Emphasis will be given to this microplasma which has already been implemented as an element-selective detector for emission spectrometry and as ionization source for mass spectrometry. The possibility to use it as a multielement-selective detector for gas chromatography will be presented. A discussion of the published detection limits of all these microplasmas is given.

  9. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry.

    PubMed

    García Salgado, S; Quijano Nieto, M A; Bonilla Simón, M M

    2006-09-29

    A microwave-based procedure for arsenic species extraction in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) is described. Extraction time and temperature were tested in order to evaluate the extraction efficiency of the process. Arsenic compounds were extracted in 8 ml of deionised water at 90 degrees C for 5 min. The process was repeated three times. Soluble arsenic compounds extracted accounted for about 78-98% of total arsenic. The results were compared with those obtained in a previous work, where the extraction process was carried out by ultrasonic focussed probe for 30 s. Speciation studies were carried out by high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry (HPLC-HG-ICP-AES). The chromatographic method allowed us to separate As(III), As(V), monomethylarsonic acid and dimethylarsinic acid in less than 13 min. The chromatographic analysis of the samples allowed us to identify and quantify As(V) in Hizikia sample and Sargasso material, while the four arsenic species studied were found in Chlorella sample. In the case of Laminaria sample, none of these species was identified by HPLC-HG-ICP-AES. However, in the chromatographic analysis of this alga by HPLC-ICP-AES, an unknown arsenic species was detected.

  10. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry.

    PubMed

    García Salgado, S; Quijano Nieto, M A; Bonilla Simón, M M

    2006-09-29

    A microwave-based procedure for arsenic species extraction in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) is described. Extraction time and temperature were tested in order to evaluate the extraction efficiency of the process. Arsenic compounds were extracted in 8 ml of deionised water at 90 degrees C for 5 min. The process was repeated three times. Soluble arsenic compounds extracted accounted for about 78-98% of total arsenic. The results were compared with those obtained in a previous work, where the extraction process was carried out by ultrasonic focussed probe for 30 s. Speciation studies were carried out by high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry (HPLC-HG-ICP-AES). The chromatographic method allowed us to separate As(III), As(V), monomethylarsonic acid and dimethylarsinic acid in less than 13 min. The chromatographic analysis of the samples allowed us to identify and quantify As(V) in Hizikia sample and Sargasso material, while the four arsenic species studied were found in Chlorella sample. In the case of Laminaria sample, none of these species was identified by HPLC-HG-ICP-AES. However, in the chromatographic analysis of this alga by HPLC-ICP-AES, an unknown arsenic species was detected. PMID:16876177

  11. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  12. Atomic emission line wavelength calculations below 2000 angstroms for Lithium II through Cobalt XXVI

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1971-01-01

    Atomic-emission-line wavelengths are presented which were calculated from wavelengths of previously identified transition sequences using second-degree polynomials fitted to known wave numbers by the least squares method. Wavelengths less than 2000 angstroms are included for ions from Li II to Co XXVI. The computer program written in FORTRAN 4 is also included.

  13. Determination of microelements in uncontaminated natural water from the Baikal region by atomic emission spectrometry

    SciTech Connect

    Kuznetsova, A.I.; Chumakova, N.L.

    1995-10-01

    In this study, concentration by evaporation was used to determine 17 microelements (B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ag, Sn, Ba, and Pb) in water from Lake Baikal and its tributaries by atomic-emission spectrometry with the arc excitation of spectra.

  14. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  15. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  16. Emission of energetic neutral atoms from water ice under Ganymede surface-like conditions

    NASA Astrophysics Data System (ADS)

    Wieser, Martin; Futaana, Yoshifumi; Barabash, Stas; Wurz, Peter

    2016-05-01

    The co-rotating plasma around Jupiter precipitates on the surfaces of the jovian moons, where it is not hindered by a local magnetic field. Precipitating ions lead to the emission of energetic neutral atoms, which are produced via backscattering and sputtering processes, from the surface. The European Space Agency's JUICE mission to Jupiter carries as part of the Particle Environment Package experiment an imaging energetic neutral atom spectrometer called the jovian Neutrals Analyzer (JNA). When it is in orbit around Ganymede, JNA will measure the energetic neutral atom flux emitted from the surface of Ganymede in the energy range from 10 eV to 3300 eV. The surface of Ganymede consists of a large fraction of water ice. To characterize the expected energetic neutral atom fluxes from water ice due to precipitating jovian plasma, we impacted protons and singly charged oxygen ions with energies up to 33 keV on a salty water ice target kept at Ganymede surface conditions. Emitted energetic atoms were measured energy- and mass-resolved using the JNA prototype instrument. The data show high yields for energetic neutral atoms per incident ion in the JNA energy range. For incident protons, energetic neutral atom yields between 0.28 at 1 keV and ∼40 at 33 keV were observed. For incident singly charged oxygen ions, the observed energetic neutral atom yield ranged from 0.8 for at 3 keV to ∼170 at 23 keV.

  17. Group-III Nitride Etch Selectivity in BCl(3)/Cl(2) ICP Plasmas

    SciTech Connect

    Abernathy, C.R.; Han, J.; Hong, J.; Lester, L.F.; Pearton, S.J.; Shul, R.J.; Willison, C.G.; Zhang, L.

    1998-12-09

    Patterning the group-IH nitrides has been challenging due to their strong bond energies and relatively inert chemical nature as compared to other compound semiconductors. Plasma etch processes have been used almost exclusively to pattern these films. The use of high-density plasma etch systems, including inductively coupled plasmas (ICP), has resulted in relatively high etch rates (often greater than 1.0 pmhnin) with anisotropic profiles and smooth etch morphologies. However, the etch mechanism is often dominated by high ion bombardment energies which can minimize etch selectivity. The use of an ICP-generated BCl~/C12 pkyma has yielded a highly versatile GaN etch process with rates ranging from 100 to 8000 A/rnin making this plasma chemistry a prime candidate for optimization of etch selectivity. In this study, we will report ICP etch rates and selectivities for GaN, AIN, and InN as a function of BCl~/Clz flow ratios, cathode rf-power, and ICP-source power. GaN:InN and GaN:AIN etch selectivities were typically less than 7:1 and showed the strongest dependence on flow ratio. This trend maybe attributed to faster GaN etch rates observed at higher concentrations of atomic Cl which was monitored using optical emission spectroscopy (OES). ~E~~~~f:~ INTRODUCTION DEC j 4898 Etch selectivi

  18. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    PubMed

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-03-30

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.

  19. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    PubMed

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-04-01

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data. PMID:27043594

  20. ICP-MS Workshop

    SciTech Connect

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  1. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  2. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective.

  3. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis.

    PubMed

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  4. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    SciTech Connect

    Jen, H.H.

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  5. On-line collection/concentration and determination of transition and rare-earth metals in water samples using Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Katarina, Rosi Ketrin; Oshima, Mitsuko; Motomizu, Shoji

    2009-05-15

    On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N'-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.

  6. Sampling and analysis of particulate matter by glow discharge atomic emission and mass spectrometries.

    PubMed

    Marcus, R K; Dempster, M A; Gibeau, T E; Reynolds, E M

    1999-08-01

    The direct introduction of particulate matter into glow discharge atomic emission and mass spectrometry sources through a particle beam/momentum separator apparatus is described. Vacuum action through a narrow (0.0625 in. i.d.) stainless steel tube allows the introduction of discrete samples of NIST SRM 1648 urban particulate matter (UPM) and caffeine in powder form. Introduction of "ambient" airborne particulate matter is also possible. Particles passing through the aerodynamic momentum separator impinge on the heated (∼200-250 °C) inner surface of the glow discharge plasma volume and are flash-vaporized. The resultant atoms/molecules are subjected to excitation/ionization collisions within the low-pressure (0.5-5 Torr of He or Ar) plasma, producing characteristic photon emission and/or signature ionic species. In this way, atomic emission and mass spectrometry identification of particle constituents is possible. Basic design aspects of the apparatus are presented, and demonstrations of atomic emission detection of the constituents in the NIST SRM illustrate the general characteristics of the approach. Transient atomic emission signals are captured for the introduction of preweighed, discrete samples, with the integrated areas used to construct analytical response curves. Limits of detection using this relatively simple atomic emission system are on the order of tens of nanograms for sample masses of ∼50 μg. Mass spectrometric monitoring of introduced caffeine particles and a mixture of polycyclic aromatic hydrocarbons (PAHs) illustrates the ability of the glow discharge plasma to produce high-quality, library (electron impact) searchable mass spectra of molecular species while also yielding isotopic identification of elemental components of the UPM. Limits of detection for Fe in the NIST SRM are on the order of 175 ng of material, equivalent to ∼7 ng of analyte Fe. It is believed that the small size, low power consumption, ease of operation, and multimode

  7. [Artificial neural network applied for spectral overlap interference correction in ICP-AES].

    PubMed

    Zhang, Z; Liu, S; Zeng, X

    1997-10-01

    A back-propagation artificial neural network (BP-ANN) has been applied to correcting spectral overlap interference in inductively coupled plasma atomic emission spectrometry (ICP-AES). Some network parameters including the range of input values and training sequence for training patterns presented to the network were discussed using simulated Ce 413.380nm and Pr 413.380nm line profiles. Results show that the noise in simulated mixture spectra will slow down the network convergence and has more influence on network prediction. PMID:15810366

  8. Model for atomic oxygen visible line emissions in Comet C/1995 O1 Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil

    2013-03-01

    We have recently developed a coupled chemistry-emission model for the green (5577 Å) and red-doublet (6300, 6364 Å) emissions of atomic oxygen on Comet C/1996 B2 Hyakutake. In the present work we applied our model to Comet C/1995 O1 Hale-Bopp, which had an order of magnitude higher H2O production rate than Comet Hyakutake, to evaluate the photochemistry associated with the production and loss of O(1S) and O(1D) atoms and emission processes of green and red-doublet lines. We present the wavelength-dependent photo-attenuation rates for different photodissociation processes forming O(1S) and O(1D). The calculated radiative efficiency profiles of O(1S) and O(1D) atoms show that in Comet Hale-Bopp the green and red-doublet emissions are emitted mostly above radial distances of 103 and 104 km, respectively. The model calculated [OI] 6300 Å emission surface brightness and average intensity over the Fabry-Pérot spectrometer field of view are consistent with the observation of Morgenthaler et al. (Morgenthaler, J.P. et al. [2001]. Astrophys. J. 563, 451-461), while the intensity ratio of green to red-doublet emission is in agreement with the observation of Zhang et al. (Zhang, H.W., Zhao, G., Hu, J.Y. [2001]. Astron. Astophys. 367 (3), 1049-1055). In Comet Hale-Bopp, for cometocentric distances less than 105 km, the intensity of [OI] 6300 Å line is mainly governed by photodissociation of H2O. Beyond 105 km, O(1D) production is dominated by photodissociation of the water photochemical daughter product OH. Whereas the [OI] 5577 Å emission line is controlled by photodissociation of both H2O and CO2. The calculated mean excess energy in various photodissociation processes show that the photodissociation of CO2 can produce O(1S) atoms with higher excess velocity compared to the photodissociation of H2O. Thus, our model calculations suggest that involvement of multiple sources in the formation of O(1S) could be a reason for the larger width of green line than that of red

  9. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  10. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    SciTech Connect

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  11. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  12. Indirect determination of cations by ion chromatography and anions by atomic emission spectroscopy

    SciTech Connect

    Ervin, A.M.; Panayappan, R.; Cooper, J.C.

    1988-11-01

    A method for the indirect determination of cations by Ion Chromatography (IC) and anions by Atomic Emission Spectroscopy (DCP) is described. The method allows for quantification of suspected impurities in aqueous systems where multiple analyses are desired. The described method is based on the selection of a precipitating agent for the desired analyte. In this study, silver(I) and barium(II) were analyzed indirectly by IC, and chloride and sulfate, by DCP.

  13. Europa - Ultraviolet emissions and the possibility of atomic oxygen and hydrogen clouds

    NASA Technical Reports Server (NTRS)

    Wu, F.-M.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    Emission signals from Europa with wavelength below 800 A were detected by the Pioneer 10 ultraviolet photometer. In the present paper, improved procedures for data reduction are used to determine the spatial region as well as the intensity of the suggested emission sources. The observations indicate a cloud with a radius of about 1.5 Jupiter radii and an apparent brightness of approximately 10 rayleighs for a wavelength of 500 A. It is argued that neutral oxygen atoms, along with neutral hydrogen, are produced through dissociation of water ice on the surface of Europa by particle impact. Electron impact ionization excitation of oxygen atoms in the resulting cloud then gives rise to the observed emission. The present source brightness and cloud radius results are used to estimate an oxygen column density of the order of 10 trillion per sq cm, while the density of atomic hydrogen is at most 100 billion per sq cm and 1 trillion per sq cm for molecular hydrogen.

  14. Cooperative spontaneous emission from indistinguishable atoms in arbitrary motional quantum states

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-09-01

    We investigate superradiance and subradiance of indistinguishable atoms with quantized motional states, starting with an initial total state that factorizes over the internal and external degrees of freedom of the atoms. Due to the permutational symmetry of the motional state, the cooperative spontaneous emission, governed by a recently derived master equation [F. Damanet et al., Phys. Rev. A 93, 022124 (2016), 10.1103/PhysRevA.93.022124], depends only on two decay rates γ and γ0 and a single parameter Δdd describing the dipole-dipole shifts. We solve the dynamics exactly for N =2 atoms, numerically for up to 30 atoms, and obtain the large-N limit by a mean-field approach. We find that there is a critical difference γ0-γ that depends on N beyond which superradiance is lost. We show that exact nontrivial dark states (i.e., states other than the ground state with vanishing spontaneous emission) only exist for γ =γ0 and that those states (dark when γ =γ0 ) are subradiant when γ <γ0 .

  15. Characterization of binary silver based alloys by nanosecond-infrared-laser-ablation-inductively coupled plasma-optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Márquez, Ciro; Sobral, Hugo

    2013-11-01

    A nanosecond infrared laser ablation (LA) system was examined to determine the composition of several silver-copper alloys through an inductively coupled plasma-optical emission spectrometer (ICP-OES). Samples with different concentrations were prepared and analyzed by atomic absorption, and ICP-OES after sample digestion, and compared with an energy-dispersive x-ray spectrometer-scanning electron microscopy (EDX-SEM). Elemental fractionation during the ablation process and within the ICP was investigated for different laser frequencies and fluences. Samples were used for optimizing and calibrating the coupling between LA to the ICP-OES system. Results obtained from the samples analysis were in agreement with those obtained by atomic absorption spectroscopy, ICP-OES and EDX-SEM, showing that fractionation was not significant for laser fluences higher than 55 J cm-2.

  16. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  17. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  18. Spectroscopic Characteristic and Analytical Capability of Ar-N₂ Inductively Coupled Plasma in Axially Viewing Optical Emission Spectrometry.

    PubMed

    Ohata, Masaki

    2016-01-01

    The spectroscopic characteristics and analytical capability of argon-nitrogen (Ar-N2) inductively coupled plasma (ICP) in axially viewing optical emission spectrometry (OES) were examined and figures of merit were determined in the present study. The spectroscopic characteristics such as the emission intensity profile and the excitation temperature observed from the analytical zone of Ar-N2 ICP in axially viewing ICPOES, in order to elucidate the enhancement of the emission intensity of elements obtained in our previous study, were evaluated and compared to those of the standard ICP. The background and emission intensities of elements as well as their excitation behavior for both atom and ion lines were also examined. As results, a narrower emission intensity profile and an increased excitation temperature as well as enhancements for both background and emission intensities of elements, which could be due to the ICP shrunken as well as the enhancement of the interaction between the central channel of the ICP and samples introduced, were observed for Ar-N2 ICP in axially viewing OES. In addition, the elements with relatively higher excitation and ionization energies such as As, Bi, Cd, Ni, P, and Zn revealed larger enhancements of the emission intensities as well as improved limits of detection (LODs), which were also attributed to the enhanced interaction between Ar-N2 ICP and the samples. Since the Ar-N2 ICP could be obtained easily only by the addition of a small amount of N2 gas to the Ar plasma gas of the standard ICP and no optimization on the alignment between Ar-N2 ICP and the spectrometer in commercially available ICPOES instruments was needed, it could be utilized as simple and optional excitation and ionization sources in axially viewing ICPOES. PMID:26860569

  19. Atomic H and N emissions from High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Kurunczi, P.; Becker, K.

    2000-06-01

    Hollow cathode discharge plasmas in geometries where the aperture in the hollow cathode has a diameter of 0.1 mm or less (microhollow cathode discharges, MHCDs) are efficient sources of ultraviolet (UV) and vacuum ultraviolet (VUV) excimer radiation when operated at high pressures (up to atmospheric pressure). We observed intense, monochromatic H Lyman-alpha and Lyman-beta line emissions at 121.6 nm and 102.5 nm, respectively, from MHCD plasmas in high-pressure Ne with small admixtures (up to 3 Torr) of H2. The underlying processes for the emissions were identified as very efficient near-resonant energy transfer processes between Ne excimers formed in the high pressure discharge plasma and H2 leading to the dissociation of H2 and the formation of H(n=2) and H(n=3) atoms. We have now extended these studies to Ne/N2 mixtures and observed intense, monochromatic atomic N emissions at 113.4 nm and 120.0 nm. Possible mechanisms for the emission of these N lines may involve energy transfer processes between Ne excimers and metastable N2(A) molecules. Further details will be presented at the Conference.

  20. Two-dimensional on-line detection of brominated and iodinated volatile organic compounds by ECD and ICP-MS after GC separation.

    PubMed

    Schwarz, A; Heumann, K G

    2002-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.

  1. Evaluation of several pneumatic micronebulizers with different designs for use in ICP-AES and ICP-MS. Future directions for further improvement.

    PubMed

    Maestre, S E; Todolí, J L; Mermet, J M

    2004-07-01

    This paper reports characterization of the behavior of five pneumatic micronebulizers based on slightly different designs in inductively coupled plasma atomic-emission spectrometry and mass spectrometry (ICP-AES and ICP-MS). Two nebulizers were used as reference nebulizers, a high-efficiency nebulizer (HEN) and a micromist (MM). They were compared with a commercially available PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) nebulizer and with two new prototypes called the polymeric pneumatic concentric nebulizer (PMN) and the high-solids micronebulizer (HSM). The dimensions of the nebulizers, the gas back-pressure, and the free liquid uptake rates were measured. The study also included tertiary aerosol drop-size distributions, analyte transport rate, and analytical figures of merit, i.e. sensitivities and limits of detection, both in ICP-AES and ICP-MS. Recoveries for two food solid reference materials were also determined. Overall, the results indicated that the PFA and the HEN nebulizers provided the best results. These two nebulizers delivered a higher mass of analyte to the plasma and showed better sensitivies giving lower limits of detection than the PMN, HSM and MM. The results revealed that the liquid prefilming effect occurring before aerosol production in the PFA nebulizer promoted more efficient interaction of liquid and gas, thus affording good results even though gas back-pressure values could be maintained below 3 bar. In contrast, the HEN had to be operated at about 7 bar under the same conditions. Nebulizer design did not have a relevant effect on the recovery, which confirmed that the spray chamber plays an important role in terms of non-spectroscopic interferences.

  2. Evaluation of flow injection-solution cathode glow discharge-atomic emission spectrometry for the determination of major elements in brines.

    PubMed

    Yang, Chun; Wang, Lin; Zhu, Zhenli; Jin, Lanlan; Zheng, Hongtao; Belshaw, Nicholas Stanley; Hu, Shenghong

    2016-08-01

    A new method for the determination of major metal elements in high salinity brines was developed by solution cathode glow discharge (SCGD) with flow injection analysis (FIA). The matrix interferences of major cations and anions in brines have been evaluated. It was found that high concentration of Na(+) and K(+) could interfere each other, K(+) at a concentration of 400mgL(-1) enhanced the signal intensity of Na(+) more than 20%. The effect of the anions was observed and it was noted that the signal intensity of both Ca(2+) and Mg(2+) were suppressed significantly when the SO4(2-) reached 100mgL(-1). It was demonstrated that some low molecular weight organic substances such as formic acid, glycerol and ascorbic acid could eliminate interference of SO4(2-) even with volume percentages of 0.5%. Under the optimized condition, the proposed FIA-SCGD can determine K, Na, Ca and Mg with the limits of detection of 0.49 (K), 0.14 (Na), 11 (Ca) and 5.5 (Mg) ngmL(-1). The proposed method has been successfully applied to the analysis of 5 salt lake samples and compared with those obtained with inductively coupled plasma atomic emission spectrometry (ICP-AES). The advantages of small size, low energy consumption, good stability and repeatability indicated that the SCGD is promising for the determination of major ions in brine samples. PMID:27216688

  3. Axial viewing of an ICP with a graphite torch injector

    SciTech Connect

    Houk, R.L.; Winge, R.K.; Praphairaksit, N.

    1996-09-01

    A hollow graphite torch injector constricts the analyte emission zone and prevents the production of off-axis emission from the upstream reaches of the axial channel. These properties should both improve signal, reduce background and alleviate matrix effects during axial viewing of the ICP through a metal sampling orifice thrust into the plasma. Recent results along these lines will be presented.

  4. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  5. Ozone-stimulated emission due to atomic oxygen population inversions in an argon microwave plasma torch

    SciTech Connect

    Lukina, N. A.; Sergeichev, K. F.

    2008-06-15

    It is shown that, in a microwave torch discharge in an argon jet injected into an oxygen atmosphere at normal pressure, quasi-resonant energy transfer from metastable argon atoms to molecules of oxygen and ozone generated in the torch shell and, then, to oxygen atoms produced via the dissociation of molecular oxygen and ozone leads to the inverse population of metastable levels of atomic oxygen. As a result, the excited atomic oxygen with population inversions becomes a gain medium for lasing at wavelengths of 844.6 and 777.3 nm (the 3{sup 3}P-3{sup 3}S and 3{sup 5}P-3{sup 5}S transitions). It is shown that an increase in the ozone density is accompanied by an increase in both the lasing efficiency at these wavelength and the emission intensity of the plasma-forming argon at a wavelength of 811.15 nm (the {sup 2}P{sup 0}4s-{sup 2}P{sup 0}4p transition). When the torch operates unstably, the production of singlet oxygen suppresses ozone generation; as a result, the lasing effect at these wavelengths disappears.

  6. CHIANTI-AN ATOMIC DATABASE FOR EMISSION LINES. XII. VERSION 7 OF THE DATABASE

    SciTech Connect

    Landi, E.; Del Zanna, G.; Mason, H. E.; Young, P. R.; Dere, K. P.

    2012-01-10

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, and ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7 has been released, which includes several new ions, significant updates to existing ions, as well as Chianti-Py, the implementation of CHIANTI software in the Python programming language. All data and programs are freely available at http://www.chiantidatabase.org, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

  7. A table of polyatomic interferences in ICP-MS

    USGS Publications Warehouse

    May, Thomas W.; Wiedmeyer, Ray H.

    1998-01-01

    Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are caused by atomic or molecular ions that have the same mass-to-charge as analytes of interest. Current ICP-MS instrumental software corrects for all known atomic “isobaric” interferences, or those caused by overlapping isotopes of different elements, but does not correct for most polyatomic interferences. Such interferences are caused by polyatomic ions that are formed from precursors having numerous sources, such as the sample matrix, reagents used for preparation, plasma gases, and entrained atmospheric gases.

  8. Determination of microamounts of hafnium in zirconium using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry during their separation by ion exchange on Diphonix chelating resin.

    PubMed

    Smolik, Marek; Jakóbik-Kolon, Agata

    2009-04-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICPMS) methods were applied to check the possibility of determination of hafnium in zirconium at a level lower than 100 ppm. A zirconium matrix of hafnium content lower than 10 ppm was obtained using a worked-out separation method exploiting ion exchange on Diphonix resin. Both methods give results in good agreement with each other as well as with those for certified reference material BCR-098 (Zircaloy-4). They were utilized in determination of Hf in the samples collected during separation of microamounts of hafnium from zirconium by the mentioned ion exchange. These results proved the earlier described method of separation on Diphonix resin to be effective even when the initial concentration of hafnium in zirconium decreases from 2.4% to 0.0082%.

  9. Transition of correlated-electron emission in nonsequential double ionization of Ar atoms.

    PubMed

    Zhang, Zilong; Zhang, Jingtao; Bai, Lihua; Wang, Xu

    2015-03-23

    Emission of the two electrons released from nonsequential double ionization of argon atoms is anticorrelated at lower laser intensities but is correlated at higher laser intensities. Such a transition is caused by the momentum change of recollision-induced-ionization (RII) electrons. At lower laser intensities, the Coulomb repulsion between the two RII electrons dominates the motion of electrons and pushes them leaving the laser field back-to-back. At higher laser intensities, the drift momentum obtained from the laser field dominates the motion of electrons and drives them leaving the laser field side-by-side.

  10. Photochemistry of atomic oxygen green and red-doublet emissions in comets at larger heliocentric distances

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil

    2014-06-01

    Context. In comets, the atomic oxygen green (5577 Å) to red-doublet (6300, 6364 Å) emission intensity ratio (G/R ratio) of 0.1 has been used to confirm H2O as the parent species producing forbidden oxygen emission lines. The larger (>0.1) value of G/R ratio observed in a few comets is ascribed to the presence of higher CO2 and CO relative abundances in the cometary coma. Aims: We aim to study the effect of CO2 and CO relative abundances on the observed G/R ratio in comets observed at large (>2 au) heliocentric distances by accounting for important production and loss processes of O(1S) and O(1D) atoms in the cometary coma. Methods: Recently we have developed a coupled chemistry-emission model to study photochemistry of O(1S) and O(1D) atoms and the production of green and red-doublet emissions in comets Hyakutake and Hale-Bopp. In the present work we applied the model to six comets where green and red-doublet emissions are observed when they are beyond 2 au from the Sun. Results: The collisional quenching of O(1S) and O(1D) can alter the G/R ratio more significantly than that due to change in the relative abundances of CO2 and CO. In a water-dominated cometary coma and with significant (>10%) CO2 relative abundance, photodissociation of H2O mainly governs the red-doublet emission, whereas CO2 controls the green line emission. If a comet has equal composition of CO2 and H2O, then ~50% of red-doublet emission intensity is controlled by the photodissociation of CO2. The role of CO photodissociation is insignificant in producing both green and red-doublet emission lines and consequently in determining the G/R ratio. Involvement of multiple production sources in the O(1S) formation may be the reason for the observed higher green line width than that of red lines. The G/R ratio values and green and red-doublet line widths calculated by the model are consistent with the observation. Conclusions: Our model calculations suggest that in low gas production rate comets the G

  11. Sample introduction in ICP spectrometry by hydraulic high-pressure nebulization

    NASA Astrophysics Data System (ADS)

    Luo, S. K.; Berndt, H.

    1994-05-01

    Hydraulic high-pressure nebulization (HHPN) is a new aerosol generation technique in atomic spectrometry. Owing to the high aerosol yield of about 50%, the application of HHPN in ICP spectrometry requires a desolvation unit. The constructed unit consists of a heated tube and a two-stage condenser (liquid cooler, Peltier module cooler). The liquid cooled Peltier module offers variability of condensation temperature between +15 and -40°C. This temperature range is also sufficient for solvent-plasma load control of highly volatile organic solvents. The desolvation unit offers condensation efficiency of 97% for aqueous samples (-5°C) and 94% for methanol (-25°C). The analyte mass transport efficiency amounts to about 24%. In inductively coupled plasma atomic emission spectrometry (ICP-AES), significant improvements in sensitivity and detection limits of about one order of magnitude were obtained for most of the elements under investigation. Using an HPLC pump (100-400 bar), the additional facilities of an on-line high-performance flow system is offered (high-performance flow atomic spectrometry).

  12. Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.

    2007-01-01

    Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.

  13. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Variation of the emission characteristics of an atom located near an ideally conducting conical surface

    NASA Astrophysics Data System (ADS)

    Klimov, Vasilii V.; Perventsev, Ya A.

    1999-10-01

    The line width and the emission frequency of an atom located near the vertex of an ideally conducting cone or inside a conical cavity in an ideal conductor are analysed. It is shown that the influence of the vertex diminishes with decrease in the vertex angle. On the other hand, the line width and the emission frequency of an atom located in a conical cavity may both increase and decrease greatly, depending on the position of the atom and on the vertex angle of the cavity. The results obtained may prove useful in the development of both monatomic microlasers and spectrally selective near-field nanoscopes.

  14. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  15. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling. PMID:21274747

  16. Hybrid Modeling of Hydrogen Energetic Neutral Atoms from Mars: Emission from Subsolar Magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Kallio, Esa; Barabash, Stas; Futaana, Yoshifumi

    2015-04-01

    We simulated the hydrogen energetic neutral atom (ENA) emission from the subsolar magnetosheath of Mars using a hybrid scheme in order to reproduce multiple features of the statistical features obtained from statistical observations of the Neutral Particle Detectors on the Mars Express spacecraft. We track the charge exchange reaction between the ions produced by the hybrid plasma model under a Martian neutral exosphere model. The simulation exhibits a directional emission of hydrogen ENAs from dayside magnetosheath. Particularly, the stronger ENA emission in the opposite direction of the solar wind convection electric field is reproduced, being consistent with the observations, by a corresponding asymmetry in the proton flux at the lower magnetosheath. This proton flux asymmetry is caused by the mass loading of ionospheric heavy ions in the direction of the convection electric field. We also investigate the influences of the upstream solar wind dynamic pressure. We demonstrate that higher dynamic pressure causes stronger and more anisotropic ENA emission, besides the influence of the proton flux. This dependence suggests that the induced magnetic boundary is lower during higher dynamic pressure, where the sheath protons can access to a denser exosphere and thus the charge exchange rate is higher.

  17. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  18. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). PMID:26838401

  19. Element analysis and characteristic identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. using microwave digestion-inductively coupled plasma atomic emission spectrometry combined with Fourier transform infrared spectrometry

    PubMed Central

    Lou, Yajing; Cai, Hao; Liu, Xiao; Tu, Sicong; Pei, Ke; Zhao, Yingying; Cao, Gang; Li, Songlin; Qin, Kunming; Cai, Baochang

    2014-01-01

    Background: Sulfur-fumigation may induce chemical transformation of traditional Chinese medicines leading to harmful effects following patient ingestion. For quality control, it is urgently needed to develop a reliable and efficient method for sulfur-fumigation identification. Materials and Methods: The spectrochemical identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. was carried out to evaluate inorganic elements and organic components. The concentrations of 12 elements, including Zn, Mn, Cu, Fe, Li, Mg, Sr, Pb, As, Cd, Hg, and S of samples were determined by microwave digestion - inductively coupled plasma atomic emission spectrometry (ICP-AES). Meanwhile, Fourier transform infrared spectrometry (FTIR) was used for the study of chemical group characteristic reactions after sulfur-fumigation. Results: The concentrations of Fe, Mg, Hg, and S elements showed significant differences between non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. The characteristic stretching vibrations of some groups in FTIR spectra, such as -OH, -S = O and -S-O, provided the identification basis for the discrimination of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. Conclusion: The application of microwave digestion - ICP-AES was successfully used in combination with FTIR to authenticate and evaluate the quality of medicinal Fritillaria thunbergii Miq. Further applications of this technique should be explored. PMID:24914306

  20. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  1. Characterization of the atomic emission in inconel 718 alloy metal vapor arcs

    SciTech Connect

    Williamson, R.L.; Peebles, H.C.; Bertram, L.A.; Hareland, W.A.; Zanner, F.J.

    1986-01-01

    Visible and uv emission spectroscopy was used to identify and study various atomic species in the plasma of a vacuum arc furnace during a remelt of Inconel 718. The studies were carried out at a base pressure of 10 mtorr, and with the furnace backfilled with CO to a total pressure of 100 mtorr. Various emitting species were identified, and the internal energy distributions of a number of these species were mapped out using Boltzmann plots. Internal temperatures of 6000 to 7000/sup 0/K were measured for the neutral atomic species in the low pressure arc, while a value of 11,600/sup 0/K was obtained for the ion temperature. In addition, the density of the highly volatile element Mn in the interelectrode region was found to be greatly enhanced compared to its relative abundance in the bulk alloy, indicating the importance of vaporization in determining the atomic composition of the arc plasma. Increasing the furnace pressure resulted in an increase in the temperature of the neutral species of 1500 to 4000/sup 0/K, and an apparent suppression of the Mn vaporization rate.

  2. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  3. Consistency of atomic data for the interpretation of beam emission spectra

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Brix, M.; Giroud, C.; Jaspers, R. J. E.; Marchuk, O.; O'Mullane, M. G.; Ralchenko, Yu; Surrey, E.; von Hellermann, M. G.; Zastrow, K. D.; Contributors, JET-EFDA

    2010-12-01

    Several collisional-radiative (CR) models (Anderson et al 2000 Plasma Phys. Control. Fusion 42 781-806, Hutchinson 2002 Plasma Phys. Control. Fusion 44 71-82, Marchuk et al 2008 Rev. Sci. Instrum. 79 10F532) have been developed to calculate the attenuation and the population of excited states of hydrogen or deuterium beams injected into tokamak plasmas. The datasets generated by these CR models are needed for the modelling of beam ion deposition and (excited) beam densities in current experiments, and the reliability of these data will be crucial to obtain helium ash densities on ITER combining charge exchange and beam emission spectroscopy. Good agreement between the different CR models for the neutral beam (NB) is found, if corrections to the fundamental cross sections are taken into account. First the Hα and Hβ beam emission spectra from JET are compared with the expected intensities. Second, the line ratios within the Stark multiplet are compared with the predictions of a sublevel resolved model. The measured intensity of the full multiplet is ≈30% lower than expected on the basis of beam attenuation codes and the updated beam emission rates, but apart from the atomic data this could also be due to the characterization of the NB path and line of sight integration and the absolute calibration of the optics. The modelled n = 3 to n = 4 population agrees very well with the ratio of the measured Hα to Hβ beam emission intensities. Good agreement is found as well between the NB power fractions measured with beam emission in plasma and on the JET Neutral Beam Test Bed. The Stark line ratios and σ/π intensity ratio deviate from a statistical distribution, in agreement with the CR model in parabolic states from Marchuk et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 011002).

  4. Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Finlayson-Pitts, B. J.

    2003-01-01

    The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.

  5. The emission of oxygen green line and density of O atom determined by using ISUAL and SABER measurements

    NASA Astrophysics Data System (ADS)

    Gao, H.; Nee, J.-B.; Xu, J.

    2012-04-01

    Emissions of the 557.7 nm green line airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite in May and November 2008 are studied here to derive the density distributions of the atomic oxygen by using atmospheric parameters from MSISE-00 model and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) measurements. The May observations were made in 10 days from a fixed orbit of longitude (100° E) with the results showing emission rate and O atom density both peaked at heights of about 90 km over 10° to 20° latitudes in the Northern Hemisphere (NH). In the Southern Hemisphere (SH), the emission rate and density of O atom are both low compared with those in NH. In November, the observations were made as the satellite traveled over all 14 orbits around the earth, covering all longitudes and latitudes of 25° S-45° N. Strong peaks of emission rates and O atoms are found at heights of about 95 km in the mid-latitudes in both hemispheres. In the equator, the airglow layer has a weaker emission rate but with higher altitude compared with those of mid-latitudes. In the lower and upper mesosphere at heights below 85 km and above 105 km, there are more O atoms in the equatorial regions than in the mid-latitudes. And there is a good correlation between the O atom and the temperature structure. A comparison with O atom distribution derived from OH airglow observed by TIMED/SABER at about the same time shows similar results.

  6. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  7. Plants as biomarkers for monitoring heavy metal contaminants on landfill sites using sequential extraction and inductively coupled plasma atomic emission spectrophotometry (ICP-AES).

    PubMed

    Murphy, A P; Coudert, M; Barker, J

    2000-12-01

    There have been a number of studies investigating metal uptake in plants on contaminated landfill sites, but little on their role as biomarkers to identify metal mobility for continuous monitoring purposes. Vegetation can be used as a biomonitor of site pollution, by identifying the mobilisation of heavy metals and by providing an understanding of their bioavailability. Plants selected were the common nettle (Uritica Dioica), bramble (Rubus Fruticosa) and sycamore (Acer Pseudoplatanus). A study of the soil fractionation was made to investigate the soil properties that are likely to influence metal mobility and a correlation exercise was undertaken to investigate if variations in concentration of metals in vegetation can reflect variations in concentration of the metals in soil. The soil was digested using aqua regia in a microwave closed vessel. The vegetation was digested using both microwave and a hydrogen peroxide-nitric acid mixture, refluxed on a heating block and a comparison made. The certified reference materials (CRMs) used were Standard Reference Material (SRM) 1547, peach leaves for vegetation (NIST) and for soil CRM 143R, sewage sludge-amended soil (BCR). The relative standard deviations (RSDs) were 2-6% for the analyses. Our findings show evidence of phytoextraction by some plants, (especially bramble and nettle), with certain plants, (sycamore) exhibiting signs of phytostabilisation. The evidence suggests that there is a degree of selectivity in metal uptake and partitioning within the plant compartments. It was also possible to correlate mobility phases of certain metals (Pb, Cu and Zn) using the soil and plant record. Zn and Cu exhibited the greatest potential to migrate from the roots to the leaves, with Pb found principally in the roots of ground vegetation. Our results suggest that analysis of bramble leaves, nettle leaves and roots can be used to monitor the mobility of Pb in the soil with nettle, bramble and sycamore leaves to monitor Cu and Zn. PMID:11296751

  8. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  9. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  10. The application of atomic emission spectroscopy to chromatographic analyses for element-selective detection

    SciTech Connect

    Seeley, J.A.

    1992-01-01

    The goal of this work was to investigate the properties of existing atomic emission systems which are useful for element-selective detection of chromatographic effluent. A microwave induced plasma (MIP) system has been optimized for the selective detection of boron in the effluent of a gas chromatograph. A method was developed for the analysis of total boron present in several lubrication oil additives and in several formulated lubrication oils. Values obtained by this method compare favorably with those obtained by other atomic emission spectroscopic (AES) methods. A direct current plasma (DCP) system has been optimized for the selective detection of boron in flowing organic liquid streams. A method was developed for the analysis of total boron present in several lubrication oil additives by flow injection analysis (FIA). A method was also developed for the qualitative separation [open quotes]speciation[close quotes] of these additives by size exclusion chromatography-DCP. Values obtained through this method compare favorably with values obtained through other AES methods. The MIP system was optimized for the selective detection of titanium in the effluent of the gas chromatograph. This system was used to analyze a group of reaction mixtures containing novel titanium chelates and organo-metallic compounds, as well as several organo-titanium-boron compounds. The MIP system was optimized for the selective detection of several of the group VA and group VIA elements in the effluent of the gas chromatograph. This system was used to characterize a series of coal standards (the Argonne Premium Coal Standards) by pyrolysis-GC-AES. Volatile compounds containing nitrogen, oxygen and sulfur were detected. The Py-GC-AES method was used to characterize several other coal, sedimentary and kerogen samples. Volatile phosphorous, arsenic, and selenium compounds were detected, as were compounds of nitrogen, oxygen and sulfur.

  11. Four-level atom dynamics and emission statistics using a quantum jump approach

    NASA Astrophysics Data System (ADS)

    Sandhya, S. N.

    2007-01-01

    Four-level atom dynamics is studied in a ladder system in the nine parameter space consisting of driving field strengths, detunings and decay constants, {Ω1,Ω2,Ω3,Δ1,Δ2,Δ3,Γ2,Γ3,Γ4} . One can selectively excite or induce two-level behavior between particular levels of ones choice by appropriately tuning the driving field strengths at three-photon resonance. The dynamics may be classified into two main regions of interest (i) small Ω2 coupling the ∣2⟩-∣3⟩ transition and (ii) large Ω2 . In case (i) one sees two-level behavior consisting of adjacent levels and in a particular region in the parameter space, there is an intermittent shelving of the electrons in one of the two subsystems. In case (ii) the levels consist of the ground state and the upper most level. Emission statistics is studied using the delay function approach in both the cases. In case (i), the behavior of the second order correlation function g2(t) , is similar to that of two-level emission for low Ω1 coupling the ∣1⟩-∣2⟩ transition, and the correlation increases with Ω1 for smaller time delays. While, in case (ii) when, in addition, Ω3 coupling the ∣3⟩-∣4⟩ transitionis kept low, g2(t) shows superpoissonian distribution, which may be attributed to three-photon processes.

  12. Environmental Indicators of Metal Pollution and Emission: An Experiment for the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Bowden, John A.; Nocito, Brian A.; Lowers, Russell H.; Guillette, Louis J., Jr.; Williams, Kathryn R.; Young, Vaneica Y.

    2012-01-01

    This experiment enlightens students on the use of environmental indicators and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and demonstrates the ability of these monitoring tools to measure metal deposition in environmental samples (both as a result of lab-simulated and real events). In this two-part study, the initial…

  13. Fluorescence emission of Ca-atom from photodissociated Ca2 in Ar doped helium droplets. II. Theoretical.

    PubMed

    Hernando, A; Masson, A; Briant, M; Mestdagh, J-M; Gaveau, M-A; Halberstadt, N

    2012-11-14

    The stability of the ground or excited state calcium atom in an argon-doped helium droplet has been investigated using an extension of the helium density functional method to treat clusters. This work was motivated by the experimental study presented in a companion paper, hereafter called Paper I [A. Masson, M. Briant, J. M. Mestdagh, M. A. Gaveau, A. Hernando, and N. Halberstadt, J. Chem. Phys. 137, 184310 (2012)], which investigated Ca(2) photodissociation in an argon-doped helium droplet and the nature of the fluorescent species. It is found that one single argon atom is sufficient to bring the calcium atom inside the droplet, for droplets of over 200 helium atoms. The absorption and emission spectra of CaAr(M) (M = 0-7) clusters have been simulated using the recently developed density sampling method to describe the influence of the helium environment. Absorption spectra exhibit broad, double bands that are significantly blueshifted with respect to the calcium atomic line. The emission spectra are less broad and redshifted with respect to the calcium resonance line. The shifts are found to be additive only for M ≤ 2, because only the first two argon atoms are located in equivalent positions around the calcium p orbital. This finding gives a justification for the fit presented in the companion paper, which uses the observed shifts in the emission spectra as a function of argon pressure to deduce the shifts as a function of the number of argon atoms present in the cluster. An analysis of this fit is presented here, based on the calculated shifts. It is concluded that the emitting species following Ca(2) photodissociation in an argon-doped droplet in Paper I could be Ca∗Ar(M) in a partly evaporated droplet where less than 200 helium atoms remain.

  14. MPTS-silica coated capillary microextraction on line hyphenated with inductively coupled plasma atomic emission spectrometry for the determination of Cu, Hg and Pb in biological samples.

    PubMed

    Zheng, Fei; Hu, Bin

    2007-09-15

    A novel sol-gel 3-mercaptopropyltrimethoxysilane (MPTS) modified silica coating was developed for capillary microextraction (CME) of trace Cu, Hg and Pb prior to their on line determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES). This organic-inorganic hybrid coating was in situ created on the inner walls of fused silica capillary using a sol solution containing TMOS (tetramethoxysilane) as a precursor, MPTS as a co-precursor, ethanol as the solvent and hydrochloric acid as a catalyst. The structure of the capillary coating was characterized by FT-IR spectroscopy, Raman spectroscopy, SEM and TEM. The factors affecting on the capillary microextraction of analytes such as pH, sample flow rate and volume, elution solution and interfering ions had been investigated, and the optimized experimental parameters were obtained. Under the optimized conditions, the absorption capacity of MPTS-silica coated capillary was found to be 1.17, 1.96 and 1.19mugm(-1) for Cu, Hg and Pb, and the limits of detection were as low as 0.17 0.22 and 0.52ngmL(-1), respectively. With a sampling frequency of 12h(-1), the relative standard deviations (R.S.D.s) were 4.2, 2.6 and 3.8% (C=4ngmL(-1), n=7, sample volume=1mL) for Cu, Hg and Pb, respectively. The proposed method had been successfully applied to the determination of Cu, Hg and Pb in human urine, human serum and preserved egg. To validate the proposed method, certified reference materials of BCR151 milk powder, GBW07601 (GSH-1) human hair, GSBZ 50016-90 and GSB 07-1183-2000 water samples were analyzed and the determined values were in a good agreement with the certified values.

  15. Separation and preconcentration of ultra trace amounts of beryllium in water samples using mixed micelle-mediated extraction and determination by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Beiraghi, Assadollah; Babaee, Saeed

    2008-01-28

    In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4mL of a 60:40 methanol-water mixture containing 0.03 mL HNO(3). Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 x 10(-4) molL(-1) 1,8-dihydroxyanthrone, 1.2 x 10(-4) molL(-1) CPC, 0.15% (v/v) Triton X-114, 50 degrees C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ngmL(-1) with detection limit of 0.001 ngmL(-1) and the precision (R.S.D.%) for five replicate determinations at 18 ngmL(-1) of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples.

  16. CAPILLARY GAS CHROMATOGRAPHY-ATOMIC EMISSION DETECTION METHOD FOR THE DETERMINATION OF PENTYLATED ORGANOTIN COMPOUNDS: INTERLABORATORY STUDY

    EPA Science Inventory

    A capillary gas chromatography-atomic emission detection (GC-AED) method was developed for the U. S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, NV, for determination of selected organotin compounds. Here we report on an interlabora...

  17. SIMULTANEOUS DETERMINATION OF ORGANOTIN, ORGANOLEAD, AND ORGANOMERCURY COMPOUNDS IN ENVIRONMENTAL SAMPLES USING CAPILLARY GAS CHROMATOGRAPHY WITH ATOMIC EMISSION DETECTION

    EPA Science Inventory

    As part of a continuing evaluation of new analytical and sample preparation techniques conducted by the US Environmental Protection Agency (EPA), the use of capillary gas chromatography with atomic emission detection (GC-AED) for the simultaneous determination of organotin, organ...

  18. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  19. Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity

    NASA Astrophysics Data System (ADS)

    Xue, Yan-Li; Zhu, Shi-Deng; Li, Jia-Fang; Ding, Wei; Feng, Bao-Hua; Li, Zhi-Yuan

    2015-03-01

    Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom (with two upper states close in energy level) strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these “polarized” three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in “polarized” atoms would allow one to deeply explore new frontiers of light-matter interaction. Project supported by the National Basic Research Foundation of China (Grant No. 2011CB922002).

  20. [A genetic algorithm approach to qualitative analysis in inductively coupled plasma-atomic emission spectroscopy].

    PubMed

    Peng, Bin; Liu, Ke-ling; Li, Zhi-min; Wang, Yue-song; Huang, Tu-jiang

    2002-06-01

    Genetic algorithm (GA) is used in automatic qualitative analysis by a sequential inductively coupled plasma spectrometer (ICP-AES) and a computer program is developed in this paper. No any standard samples are needed, and spectroscopic interferences can be eliminated. All elements and their concentration ranges of an unknown sample can be reported. The replication rate Pr, crossover rate Pc, and mutation rate of the genetic algorithm were adjusted to be 0.6, 0.4 and 0 respectively. The analytical results of GA are in good agreement with the reference values. It indicates that, combined with the intensity information, the GA can be applied to spectroscopic qualitative analysis and expected to become an effective method in qualitative analysis in ICP-AES after further work. PMID:12938334

  1. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    SciTech Connect

    Nilsson, A.; Wassdahl, N.; Weinelt, M.

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  2. Elemental determination of microsamples by liquid film dielectric barrier discharge atomic emission spectrometry.

    PubMed

    He, Qian; Zhu, Zhenli; Hu, Shenghong; Zheng, Hongtao; Jin, Lanlan

    2012-05-01

    In this study, a new liquid-film dielectric barrier discharge (LFDBD) atomic emission source was developed for microsample elemental determination. It consists of a copper electrode, a tungsten wire electrode, and a piece of glass slide between them, which serves as the dielectric barrier as well as the sample plate. The sample solution with 1 mol L(-1) nitric acid, when deposited onto the surface of the glass slide, forms a thin liquid film. The plasma is generated between the tip of the tungsten wire electrode and the liquid film surface when alternating-current (ac) high voltage (peak voltage ~3.7 kV, frequency ~30 kHz) is applied on the electrodes. Qualitative and quantitative determinations of metal ions in the sample solution were achieved by atomic emission measurements in the plasma and were demonstrated in this study with elements Na, K, Cu, Zn, and Cd. Detection limits were in the range from 0.6 ng (7 μg L(-1)) for Na to 6 ng (79 μg L(-1)) for Zn. Repeatability, expressed as relative standard deviation from seven repetitive analyses of samples with analyte concentrations at 1 mg L(-1), varied from 2.1% to 4.4%. Compared with other liquid discharge systems that operate at atmospheric pressure, the current system offers several advantages: First, it eliminates the use of a sample flow system (e.g., syringe or peristaltic pump); instead, a small aliquot of sample is directly pipetted onto the glass slide for analysis. Second, it is a microanalysis system and requires sample volume ≤80 μL, a benefit when a limited amount of sample is available. Third, because the sample is applied in aliquot, there is no washout time, and the analysis can be easily extended to sample array for high-throughput analysis. The proposed LFDBD is promising for in-field elemental determination because of its simplicity, cost effectiveness, low power supply, and no inert gas requirement. PMID:22486234

  3. Practicality of Using Oxygen Atom Emissions to Evaluate the Habitability of Extra-Solar Planets

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.

    2005-12-01

    It has previously been proposed [Akasofu, 1999] that observation of the O(1S - 1D) green line from the atmospheres of extra-solar planets might be a marker for habitability. Guidance on this question is available within our own solar system. The green line is a dominant feature in the visible terrestrial nightglow, and the ultimate origin of its mesospheric emission is the three-body recombination of oxygen atoms. Until recently, it was believed that the green line was not a feature of the nightglows of the CO2 planets, Venus and Mars. It is now known that Venus at times shows green line emission with an intensity equal to terrestrial values [Slanger et al., 2001]. Furthermore, the intensity is quite variable, as is true for the much stronger O2( a-X) 1.27 μ emission. Recent observations of the Mars nightglow [Bertaux et al., 2005] give ambiguous results in the region of the O(1S-3P) line at 297.2 nm, but the same line in the dayglow is very strong, as evidenced in earlier Mariner results [Barth et al., 1971], and from the recent Mars Express data [F. Leblanc, private communication]. The O(1D-3P) 630 nm red line is a feature associated with Io, where dissociation of SO2 is a presumed source [Scherb et al., 1998]. Thus, observation of the oxygen green/red lines in the atmospheres of extrasolar planets provides insufficient information to reach conclusions about a habitable environment. Such detection would only indicate that there are oxygen-containing molecules present. Determination of an O2 column depth, by Fraunhofer A-band absorption, would be much more conclusive. Akasofu, S.-I., EOS, Transactions of the American Geophysical Union, 80, 397, 1999. Barth, C.A., C.W. Hord, J.B. Pearce, K.K. Kelly, G.P. Anderson, and A.I. Stewart, Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper Atmosphere Data, Journal of Geophysical Research, 76, 2213-2227, 1971. Bertaux, J.-L., F. Leblanc, S. Perrier, E. Quemerais, O. Korablev, E. Dimarellis, A. Reberac, F. Forget, P

  4. Spectroscopic imagine of atmospheric-pressure helium ICP discharges

    SciTech Connect

    Montaser, A.; Boyes, A.L.M.; Cai, M.; Hsiech, C.; Zhang, H.

    1994-12-31

    Spatially-resolved information from atmospheric-pressure helium inductively coupled plasmas (He ICP) was acquired with a simple, inexpensive optical imaging spectrometer. The system uses a 35-cm focal length Czerny-Turner monochromator/spectrograph and a solid state charge-injection device (CID) or a charge coupled device (CCD), Quantitative image maps of the plasmas were produced with good resolution. For example, when the CID was used, the entire plasma image could be monitored with a spatial resolution of 0.13 and 0.10 mm in the horizontal and vertical directions. The spectral resolution was 4 mn. Lateral distributions of emission intensities were converted, using an Abel inversion routine, to radial distributions. Some unique features of the He ICP, compared to the commonly used Ar ICP, were identified at or around analytical conditions for elemental analysis of gaseous and aqueous samples.

  5. Application of ICP-SFMS, ICP-AES integrate method to the geochemical characterization of ANDRILL-MIS oceanic sediment samples

    NASA Astrophysics Data System (ADS)

    Rugi, F.; Castellano, E.; Marino, F.; Ghedini, C.; Severi, M.; Becagli, S.; Traversi, R.; Udisti, R.

    2009-12-01

    An integrated system for the determination of 39 major and trace (including Rare Earths Elements -REE) metals in soils and marine sediments was set up by using Inductively Coupled Plasma - Sector Field Mass Spectrometry (ICP-SFMS) and Inductively Coupled Plasma - Atomic Emission Spectrophotometry (ICP - AES) devices, in order to achieve an extensive geochemical characterization. Major elements, in particular silicon, are also quantified with PIXE technique. Method selectivity, accuracy and reproducibility was evaluated analyzing six certified materials: Basalt, Hawaiian Volcanic Observatory (BHVO-1); Japanese Andesite (JA-2); Montana Soil (NIST 2711); Antarctic Sediment (CRM-MURST-ISS-A1); Antarctic Sediment (GBW 073113) e Antarctic Sediment (NIST 2702); after mineralization with fluoridric, nitric and perchloric acids on hot plate. The choice of the isotope (ICP-SFMS) or wavelength (ICP-AES) was addressed obtaining the best compromise between high sensitivity and suitable selectivity for the metal determination. Particular care was paid in optimizing analytical quantification of each species, because of the huge difference in concentration of major and trace elements in geological samples. For ICP-SFMS, high resolution (10,000 m/Δm) was selected for all metals to avoid isobaric interferences. An accurate blank evaluation was carried out, especially for metals present at sub-ppb levels in the extract solutions (REE and other trace elements). The obtained operative blank values included sample manipulation and digestion, reagent content and analytical procedures. ICP-SFMS and ICP-AES methods were applied to the characterization of the geochemical composition of sample from the first 90 m of Mc Murdo Ice Shelf (MIS) marine core, in the framework of the ANDRILL (ANtarctic DRILLing) Project. This international project aims to study the role of the Antarctic Continent within the global climatic system, by the recovery and analysis of two deep sediment cores (named MIS

  6. [Atomic emission spectrometry determination of Au, Pt and Pd after separation and enrichment by hyperbranched polymer].

    PubMed

    Li, Hui-Zhi; Zhai, Dian-Tang; Shou, Chong-Qi; Zhao, Shu-Ying; Wei, Qin

    2006-09-01

    The present paper shows that the trace amount of gold, platinum and palladium in hydrochloric acid solution can be concentrated by hyperbranched polymer. The new reagent has a rapid adsorption rate and big concentrating capacity. The determination of trace Au, Pt and Pd in sample using carbon powder and strontium carbonate as buffer was carried out by atomic emission spectrometry(AES). Zirconium was selected as internal standard line. The sample was directly loaded into ordinary electrode. The method is simple, rapid and accurate. The condition of determination, and factors of influence were studied. The analysis line of Au, Pt and Pd is 312.3, 306.5 and 311.4 nm respectively. The internal standard line of Zr is 310.7 nm. The linear range of the determination of Au, Pt and Pd is 0-0. 20%, 0-0. 40% and 0-0. 20% respectively. The detection limit of Au, Pt and Pd is 0.010%, 0.0030% and 0.0030% respectively. The method has been applied to the determination of Au, Pt and Pd with satisfactory results.

  7. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively.

  8. [Determination of trace zirconium and hafniumin sample by atomic emission spectrometry].

    PubMed

    Li, Hui-zhi; Yang, Chun-xia; Zhai, Dian-tang

    2005-02-01

    This paper describes the determination of trace Zr and Hf in the sample using carbon powder and titanium oxide as the buffer by Atomic Emission Spectrometry (AES). Titanium was selected for the internal standard line. Sample separation and chemical treatment were not required. The sample was directly loaded into an ordinary electrode. The method is simple, rapid and accurate. The conditions for the determination, and the factors of influence have been studied. A new method has been developed for the determination of zirconium and hafnium. The analytical lines of Zr and Hf were 327.3 and 286.6 nm respectively. The internal standard line of Ti was 308.8 nm. The linear range of the determination of Zr and Hf was 0-0.50% and 0-0.25% respectively. The detection limit of Zr and Hf was 0.0010% and 0.010% respectively. The range of the recovery of zirconium and hafnium was 96.67%-105.0%. The results for these elements in standard sample are in agreement with certified values with a precision of 3.61% RSD for Zr (n = 9), and 4.82% RSD for Hf (n = 9). The method has been applied to the determination of Zr and Hf with satisfactory results.

  9. Atomic emission detection for gas chromatographic analysis of nitrogen-containing herbicides in water.

    PubMed

    Olson, N L; Carrell, R; Cummings, R; Rieck, R; Reimer, S

    1995-01-01

    A gas chromatography-atomic emission detection (GC-AED) system was used to analyze nitrogen-containing herbicides. Two methods of sample preparation were used to demonstrate the system's applicability. Method 1 was U.S. Environmental Protection Agency (EPA) Method 507. Method 2 was a modification of EPA Method 507 using larger sample volumes and smaller extract volumes to yield compound detection levels 30 times lower than detection levels from method 1. Analysis of replicate reagent water spikes with method 1 gave analyte recoveries ranging from 82 to 107%, with standard deviations of recovery of not more than 6.7%. Method 2 gave recoveries ranging from 50 to 112%, with a standard deviation of recovery of not more than 33%. A loss in recovery and precision with method 2 compared with method 1 was attributed to loss of more volatile analytes during extract concentration. Selectivity was demonstrated with solvent spiked with fuel oil and atrazine. Response factors generated with the GC-AED system showed compound-independent elemental linearity for analytes. Relative standard deviations of not more than 5.34% were obtained for 3 elements tested: nitrogen, sulphur, and chlorine. An elemental calibration mixture was prepared to validate traditional methods of quantitation. Samples were analyzed for nitrogen-containing herbicides, which were quantitated with both an analyte calibration and an elemental calibration, and results were compared.

  10. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively. PMID:26304350

  11. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. PMID:24630410

  12. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350 °C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  13. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry. PMID:26415467

  14. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  15. Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS.

    PubMed

    Pereira, João B; Dantas, Kelly G F

    2016-04-01

    The determination of Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, and Zn by inductively coupled plasma optical emission spectrometry (ICP OES), and Se by graphite furnace atomic absorption spectrometry (GF AAS), has been carried out in dry matter and teas from 11 samples of the cat's claw plant. The accuracy and precision values were verified against GBW 07604 (Poplar leaves) certified reference material and by the recovery test. Results showed a high content of Ca in the medicinal plant studied, followed by Mg and P. The values obtained showed that the elements studied have different concentrations depending on the method of tea preparation. The highest levels were observed in Ca and Mg, and the lowest for Se and Pb, by both infusion and decoction. Teas prepared from this plant were found to be at safe levels for human consumption, and may be suitable as sources of these elements in the human diet. PMID:26593498

  16. Energetic ion, atom, and molecule reactions and excitation in low-current H2 discharges: spatial distributions of emissions.

    PubMed

    Petrović, Z Lj; Phelps, A V

    2009-07-01

    Spatial distributions of H alpha , H beta , and the near-uv continuum emission from the H2 a ;{3}Sigma g;+ state are measured and compared with a model for low-current electrical discharges in H2 at high E/N and low Nd , where E is the spatially uniform electric field, N is the gas density, and d is the electrode separation. Data are analyzed for 300 Tdatoms and molecules with mean energies from 5 to 1500 eV. Electron-induced emission, dominant at low E/N and low pressures, is distinguished by its buildup toward the anode. Excitation of H alpha by fast H atoms dominates at high E/N and increases toward the cathode. The observed H alpha emission at low E/N is normalized to previous experiments to yield absolute experimental excitation coefficients for all E/N and Nd . Small adjustments of model parameters yield good agreement with H alpha data. Cross sections are derived for excitation of the H2 near-uv continuum by H atoms. Spatial and pressure dependencies of H alpha and H2 near-uv emissions agree well with a model in which reactions of H2+ , H3+ , and H+ ions with H2 lead to fast H atoms and H2 molecules, which then excite H atoms or H2 molecules. PMID:19658824

  17. Investigations of the use of inductively coupled plasma emissions for chemical analysis

    NASA Astrophysics Data System (ADS)

    Heine, D. R.

    Investigations of applications of the inductively coupled plasma (ICP) for analytical atomic emission spectroscopy are performed. Emissions below 185 nm, analysis of wear metals in lubricating oils, and use of the ICP as a selective detector for high performance liquid chromatography (HPLC) are studied. A unique plasma coolant tube containing a side arm which allows direct observation of the discharge is used to investigate emissions in the vacuum ultraviolet spectral region between 120 and 185 nm. Emission from elements which do not emit radiation in the visible region are observed. A heated sample introduction system attached to a Babington nebulizer is investigated as a means to aerosolize lubricating oils for introduction into the ICP. This allows direct analysis of wear metals in oil samples without requiring the usual sample dilutions. The ICP is used as a selective detector for HPLC. Nucleotides separated by anion exchange chromatography are determined in the ICP by observing phosphorous emissions. Methanol and acetonitrile used for reverse phase HPLC are successfully run in the IPC.

  18. Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques.

    PubMed

    Amorim, Fábio A C; Welz, Bernhard; Costa, Antônio C S; Lepri, Fábio G; Vale, Maria Goreti R; Ferreira, Sérgio L C

    2007-04-30

    Vanadium is recognized worldwide as the most abundant metallic constituent in petroleum. It is causing undesired side effects in the refining process, and corrosion in oil-fired power plants. Consequently, it is the most widely determined metal in petroleum and its derivatives. This paper offers a critical review of analytical methods based on atomic spectrometric techniques, particularly flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ET AAS), inductively coupled plasma optical emission spectrometry (ICP OES), inductively coupled plasma mass spectrometry (ICP-MS). In addition an overview is provided of the sample pretreatment and preparation procedures for vanadium determination in petroleum and petroleum products. Also included are the most recent studies about speciation and fractionation analysis using atomic spectrometric techniques.

  19. Emergence of non-Markovianity in the emission process of an atom in a half-cavity

    NASA Astrophysics Data System (ADS)

    Tufarelli, Tommaso; Kim, M. S.; Ciccarello, Francesco

    2014-04-01

    We study quantum non-Markovianity in the early stage of the emission process of a two-level atom coupled to a semi-infinite waveguide, where the waveguide termination behaves like a perfect mirror. Specifically, we restrict ourselves to analysis of the process for times shorter than twice the time delay td, where td is the duration of a round trip along the atom-mirror path. We show the emergence of a threshold in the parameter space separating the Markovian and non-Markovian regions.

  20. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  1. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    NASA Astrophysics Data System (ADS)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  2. ICP-MS for multiplex absolute determinations of proteins.

    PubMed

    Sanz-Medel, Alfredo

    2010-11-01

    In the last few years MS-based proteomics has been turning quantitative because only the quantity of existing proteins or changes of their abundance in a studied sample reflect the actual status and the extent of possible changes in a given biological system. So far, however, only relative quantifications are common place. Recently, the ideal analytical features of ICP-MS that allow robust, accurate and precise absolute determinations of heteroelements (present in proteins and their peptides) have opened the door to its use, as a complementary ion source of MALDI- and/or ESI-(MS), in achieving the "absolute" quantification of a protein. Unfortunately, so far such "heteroatom-tagged proteomics" applications deal with only single-heteroatom measurements. Thus, the outstanding capability of ICP-MS for multi-element (-isotope) simultaneous determinations is somewhat wasted. On the other hand, multiplexed determinations of proteins (e.g. in common or new multiplexed formats) today constitute a pressing need in medical science (e.g. to determine accurately many biomarkers at a time). This is a clear trend in analytical science where ICP-MS could eventually play an important role. Therefore, reported approaches to multiplex protein determinations using ICP-MS, with liquid sample nebulisation and with laser direct sampling from a solid, are discussed here. Apart from such multiplex bioassays for absolute protein determinations, efforts to simultaneously quantitate enzyme activities are also discussed. It appears that the time is ripe to combine the multi-isotopic character of ICP-MS with well-known multi-analyte separation techniques (e.g. HPLC or multiplex immunoassays) to tackle the challenge of analysing abundances and activities of several proteins and enzymes, respectively, in a single assay. Many attractive opportunities for creative work and interdisciplinary developments for analytical atomic spectroscopists seem to lie ahead related to multiplexed quantitative

  3. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine A.; Martyshenko, Kseniia V.; Manuilova, Rada O.; Feofilov, Artem G.

    2016-09-01

    The main goal of this study is to propose and then to justify a set of methods for retrieving the [O] and [O3] altitude distributions from the observation of emissions of the excited oxygen molecules and O(1D) atom at daytime in the mesosphere and lower thermosphere (MLT) region. In other words, we propose retrieving the [O] and [O3] using the proxies. One of the main requirements for the proxy is that the measured value should be directly related to a variable of our interest while, at the same time, the influence of the proxies on [O3] and [O(3P)] should be minimal. For a comprehensive analysis of different O3 and O(3P) proxies, we use a full model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in the MLT of the Earth. Based on this model, we have tested five excited components; namely, O2(b1Σg+, v = 0, 1, 2), O2(a1Δg , v = 0) and O(1D) as the [O3] and [O(3P)] proxies in the MLT region. Using an analytical approach to sensitivity studies and uncertainty analysis, we have therefore developed the following methods of [O(3P)] and [O3] retrieval, which utilise electronic-vibrational transitions from the oxygen molecule second singlet level (O2(b1 Σg+, v = 0, 1, 2). We conclude that O2(b1 Σg+, v = 2) and O2(b1 Σg+, v = 0) are preferable proxies for [O(3P)] retrieval in the altitude range of 90-140 km, while O2(b1 Σg+, v = 1) is the best proxy for [O3] retrieval in the altitude range of 50-98 km.

  4. Comparison of several spray chambers operating at very low liquid flow rates in inductively coupled plasma atomic emission spectrometry.

    PubMed

    Todolí, J L; Maestre, S; Mora, J; Canals, A; Hernandis, V

    2000-12-01

    Four different spray chambers were evaluated in ICP-AES at very low liquid flow rates: a double-pass (Scott type), a conventional cyclonic, and two low-volume cyclonic-type spray chambers (i.e., Cinnabar and Genie). A glass concentric pneumatic micro nebulizer (Atom Mist) was used in conjunction with all four chambers. The liquid flow rate was varied from 10 to 160 microL min(-1). The conventional cyclonic spray chamber gave rise to coarser tertiary aerosols, higher analyte and solvent transport rates, higher sensitivity and lower limits of detection than the remaining ones. The low-volume spray chambers afforded analytical figures of merit similar to the double-pass one, despite their very different designs. However, these spray chambers exhibited shorter wash-out times. The matrix effects were significant only for the double-pass. This fact allowed the analysis of reference samples by employing aqueous standards at a minimum level of sample consumption. The recoveries obtained for the cyclonic spray chambers and several certified samples were close to 100%, being always lower in the case of the double-pass spray chamber.

  5. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  6. Coherent control of cooperative spontaneous emission from two identical three-level atoms in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Woldeyohannes, Mesfin; Idehenre, Ighodalo; Hardin, Tyler

    2015-08-01

    The coherent control of cooperative spontaneous emission from two identical non-overlapping three-level atoms in the V-configuration located within a photonic band gap (PBG) material with two resonant frequencies near the upper band edge of the PBG and confined to a region small in comparison to their radiation wavelengths but still greater than their atomic sizes is investigated. The dependencies of cooperative effects in which a photon emitted by one atom is reabsorbed by the other atom on the inter-atomic separation, on the initial state of the two-atom system, on the strength of the driving control laser field, and on the detuning of the atomic resonant frequencies from the upper band edge frequency is analyzed so as to identify the conditions for which these cooperative effects are enhanced or inhibited. Cooperative effects between atoms are shown to be influenced more by the PBG than by the nature of the atomic transitions involved. Excited state populations as well as coherences between excited levels are expressed in terms of time-dependent amplitudes which are shown to satisfy coupled integro-differential equations for which analytic solutions are derived under special conditions. Unlike for the case of one atom in a PBG where the fractional non-zero steady state populations on the excited levels as well as the coherence between the excited levels are constants independent of time, in the case of two atoms in PBG these quantities continuously oscillate as a manifestation of beating due to the continuous exchange between the two atoms of the photon trapped by the PBG. The values of these quantities as well as the amplitudes and frequencies of their oscillations depend of the parameters of the system, providing different ways of manipulating the system. The general formalism presented here is shown to recapture the special results of investigations of similar systems in free space when the non-Markovian memory kernels of the PBG are replaced by delta

  7. Atomizing characteristics of swirl can combustor modules with swirl blast fuel injectors. [in terms of NOX emission rate

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1980-01-01

    Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studues with the same swirl can combustors. It was found that the fuel injector design that gave the best combustor performance in terms of a low NOx emission index also gave the best atomizing performance as characterized by a spray of relatively small mean drop diameter. It was also demonstrated that at constant inlet air stream momentum the nitrogen oxides emission index was found to vary inversely with the square of the mean drop diameter of the spray produced by the different swirl blast fuel injectors. Test conditions were inlet air static pressures of 100,000 to 200,000 N/sq m at an inlet air temperature of 293 K.

  8. Exploring star formation in high-z galaxies using atomic and molecular emission lines

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten

    2016-03-01

    The conditions under which stars are formed and the reasons for triggering and quenching of starburst events in high-z galaxies, are still not well understood. Studying the interstellar medium (ISM) and the morphology of high-z galaxies are therefore key points in order to understand galaxy evolution. The cosmic star formation rate density peaks between 1>1, and low to moderate [CII] optical depth tau(CII)<1. Combining millimetre/sub-millimetre and optical data cubes for the high-z radio galaxy (HzRG) MRC0943-242, has revealed a much more complicated morphology than seen in the individual data sets. The millimetre/sub-millimetre observations data have allowed us to spatially separate of the AGN and starburst dominated components, which ~65 kpc apart. The optical data reveal structures of emitting and absorbing gas at multiple wavelengths. A deep high resolution millimetre/sub-millimetre study of the HzRG MRC1138-262, shows emission from water (H2O) and an unusually large amount of neutral atomic carbon ([CI]) relative to highly excited CO compared to lensed DSFGs. The

  9. Chemical separation and ICP-AES determination of 22 metallic elements in U and Pu matrices using cyanex-923 extractant and studies on stripping of U and Pu.

    PubMed

    Argekar, A A; Kulkarni, M J; Mathur, J N; Page, A G

    2002-03-11

    Comprehensive studies have been carried out on the extraction behavior of uranium and plutonium matrices using cyanex-923 extractant. The near total extraction of U/Pu and quantitative separation of 22 metallic elements at trace levels has been established using inductively coupled plasma-atomic emission spectrometry (ICP-AES). The studies carried out on back extraction of U/Pu from organic phase have established the near total recovery of these matrices into the aqueous phase using 1 M Na(2)CO(3) and saturated oxalic acid, respectively.

  10. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  11. Characterisation of Supra- and Infratentorial ICP Profiles.

    PubMed

    Moyse, Emmanuel; Ros, Maxime; Marhar, Fouad; Swider, Pascal; Schmidt, Eric Albert

    2016-01-01

    In pathophysiology and clinical practice, the intracranial pressure (ICP) profiles in the supratentorial and infratentorial compartments are unclear. We know that the pressure within the skull is unevenly distributed, with demonstrated ICP gradients. We recorded and characterised the supra- and infratentorial ICP patterns to understand what drives the transtentorial ICP gradient.A 70-year-old man was operated on for acute cerebellar infarction. One supratentorial probe and one cerebellar probe were implanted. Both signals were recorded concurrently and analysed off-line. We calculated mean ICP, ICP pulse amplitude, respiratory waves, slow waves and the RAP index of supra- and infratentorial ICP signals. Then, we measured transtentorial difference and performed correlation analysis for every index.Supratentorial ICP mean was 8.5 mmHg lower than infratentorial ICP, but the difference lessens for higher values. Both signals across the tentorium showed close correlation. Supra- and infratentorial pulse amplitude, respiratory waves and slow waves also showed a high degree of correlation. The compensatory reserve (RAP) showed good correlation. In this case report, we demonstrate that the mean value of ICP is higher in the posterior fossa, with a strong correlation across the tentorium. All other ICP-derived parameters display a symmetrical profile. PMID:27165873

  12. The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure.

    NASA Astrophysics Data System (ADS)

    Leonovich, Ludmila; Leonovich, Vitaly; Tashchilin, Anatoly

    The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure was revealed at mid-latitudes. The paper presents the study results of the dependence of the observed emissions intensity from the sudden variations in the solar wind and the geomagnetic field. These results show a relationship of the emissions disturbance amplitude with the solar wind speed, as well as with the geomagnetic field variations. We used the zenith photometer optical data, the geomagnetic field and the total electron content variations obtained for the Eastern Siberia region (52(°) N, 103(°) E). The investigation was supported by the RFFI grants № 12-05-00024-а, № 13-05-00733.

  13. Bias and uncertainty in the absorption emission measurement of atomic sodium density in the SSME exit plane

    NASA Technical Reports Server (NTRS)

    Bauman, Leslie E.

    1990-01-01

    The measurement of atomic sodium concentration in the TTB 019 firing of April 1990 is significant in that it represents the first measurement of density at the exit plane of the space shuttle main engine. The knowledge of the sodium density, combined with the certainty that the exit plane of the plume is optically thin at the sodium D-line wavelengths, provides essential information for evaluation of diagnostic techniques using sodium atoms, such as resonant Doppler velocimetry for temperature, pressure, and velocity through high resolution fluorescent lineshape analysis. The technique used for the sodium atom line transmission (SALT) measurements is that of resonant absorption emission using a hollow cathode lamp as the reference source. Through the use of two-dimensional kinetic (TDK) predictions of temperature and density for the flight engine case and radiative transfer calculations, this line-of-sight spectrally integrated transmission indicates a sodium atom concentration, i.e., mole fraction, of 0.91e-10. The subject of this paper is the assumptions and measurement uncertainties tied into the calculation. Because of the narrow shape of the source emission, the uncertainties in the absorption profile could introduce considerable bias in the measurement. The following were investigated: (1) the inclusion of hyperfine splitting of the D-lines in the calculation; (2) the use of the flight engine predictions of plume temperature and density versus those for the large throat engine; (3) the assumption of a Gaussian, i.e., Doppler, distribution for the source radiance with a temperature of 400 K; (4) the use of atomic collisional shift and width values for the work by Jongerius; and (5) a Doppler shift for a 7 degree outward velocity vector at the plume edge. Also included in the study was the bias introduced by an uncertainty in the measurement of the D1/D2 line ratio in the source.

  14. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    SciTech Connect

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  15. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES).

    PubMed

    Thangavel, S; Dash, K; Dhavile, S M; Sahayam, A C

    2015-01-01

    A method has been developed for the determination of traces of arsenic, boron, bismuth, gallium, germanium, phosphorus, lead, antimony, selenium, silicon and tellurium in nickel matrix. The sample was dissolved in HClO4 (~ 150°C) and nickel was settled as crystalline nickelperchlorate [Ni(ClO4)2] on cooling. The mixture was ultrasonicated and after the separation of Ni(ClO4)2, analytes of interest were determined in the supernatant using ICP-OES. Similarly, it was also found that, after the dissolution of nickel in perchloric acid, when the solution temperature was maintained at ~ 100°C, long needle like crystals of nickel perchlorate were formed. The crystals were separated from the mixture and trace elements in the supernatant were determined using ICP-OES. In both methods the matrix removal was >99% and the recoveries of analytes were in the range 92-97%. The limits of detection for As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te were found to be 0.18, 0.21, 0.07, 0.06, 0.25, 0.11, 0.09, 0.10, 0.17, 0.20 and 0.07 μg g(-1) respectively. The procedure was applied for the analysis of a standard reference material nickel oxide (SRM 761, Nickel Oxide No.1, NBS, USA) and the values obtained are in close agreement with the certified values. PMID:25281133

  16. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation

    NASA Astrophysics Data System (ADS)

    Sivakumaran, V.; Ajai, Kumar; K. Singh, R.; Prahlad, V.; C. Joshi, H.

    2013-03-01

    High resolution spectral analysis of lithium plasma formed by single and double laser ablation has been undertaken to understand the plume-laser interaction, especially at the early stages of the plasma plume. In order to identify different atomic processes in evolving plasma, time resolved spectral emission studies at different inter-pulse delays have been performed for ionic and neutral lithium lines emitting from different levels. Along with the enhancement in emission intensity, a large line broadening and spectral shift, especially in the case of excited state transition Li I 610.3 nm have been observed in the presence of the second pulse. This broadening and shift gradually decrease with increasing time delay. Another interesting feature is the appearance of a multi-component structure in the ionic line at 548.4 nm and these components change conversely into a single structure at the later stages of the plasma. The multi-component structures are correlated with the presence of different velocity (temperature) distributions in non-LTE conditions. Atomic analyses by computing photon emissivity coefficients with an ADAS code have been used to identify the above processes.

  17. AGB circumstellar environments probed through the 21 cm atomic hydrogen line emission. A programme for the SKA?

    NASA Astrophysics Data System (ADS)

    Gerard, E.; Le Bertre, T.

    2006-06-01

    Red giant stars are responsible for 70% of the recycling of stellar matter in the local interstellar medium (ISM) through mass loss, mainly along the AGB sequence. Most of the matter in circumstellar shells is hydrogen in atomic (or molecular form). However, up to now, atomic hydrogen has remained largely undetected due to the weakness of its emission, the merging of circumstellar matter with the ambient ISM and the confusion from foreground and background interstellar hydrogen along the same line of sight. With the upgraded Nancay Radiotelescope, we have started a new search for HI at 21 cm towards AGB stars and post-AGBs, including PNs. We illustrate our results on one case, EP~Aqr, which shows that the contamination by interstellar emission must be treated with great care and discuss the prospects with the SKA. In order to sort out the genuine circumstellar HI emission from the interstellar one, it is necessary to map large areas of the sky (at all angular scales from sub-arcsec to degrees) with high spectral resolution, high sensitivity and a large dynamical range.

  18. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    PubMed

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events. PMID:20047806

  19. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    PubMed

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events.

  20. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement.

  1. Automated detection and interpretation of spectral information using cross-correlation, millilitre volumes, pneumatic nebulization sample introduction and inductively coupled plasma-atomic emission spectrometry with photodiode array detection

    NASA Astrophysics Data System (ADS)

    Karanassios, V.; Drouin, P. J.; Spiers, G. A.

    1998-08-01

    A method for automated detection and interpretation of spectral information from ˜230 nm spectral windows, millilitre volume samples for 15 elements is presented. The basic approach involves cross-correlation of a spectral pattern obtained by running laboratory prepared multi-element `unknowns' with a reference spectral pattern obtained by running a single element standard. From the resultant cross-correlogram, it can be decided whether or not the sought-for reference spectral pattern (and the corresponding element) are present in the unknown. Spectral patterns were acquired using an inductively coupled plasma-atomic emission spectrometry (ICP-AES) system equipped with a linear, 1024-element, photo-diode array (Leco, Plasmarray). Reference spectral patterns for Al, Au, Be, Cd, Cu, Ga, Mg, Mn, Ni, Pd, Si, Sc, Y, Sr and Zn were converted to noise-free and interference-free binary software masks and, subsequently, to analogue software masks. Cross-correlation of the analogue masks with spectral patterns acquired by running multi-element unknowns is discussed, an algorithm that does not rely on fast Fourier transforms (FFT) to calculate cross-correlations is presented and a context-sensitive, colour-coded and interrogatable periodic table graphical user-interface that presents the likely composition of an unknown on the computer screen is described in detail.

  2. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. PMID:27591646

  3. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products. PMID:15127813

  4. Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES.

    PubMed

    Sooriyaarachchi, Melani; Gailer, Jürgen

    2010-08-28

    The iron chelation therapy drugs desferrioxamine B (DFO) and deferiprone (DFP) are used to treat iron overload patients, but not much is known about their adverse effects on other essential metals in vivo. After the addition of a clinically relevant dose of DFP or an equimolar dose of DFO to human plasma in vitro, the mixtures were analyzed by size exclusion chromatography (SEC) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES). Simultaneous detection of the emission lines of copper, iron and zinc allowed the visualization of changes that these drugs exerted at the metalloprotein level. After the addition of DFP, a <10 kDa novel Fe-peak was detected and identified as (DFP)(3)Fe, whereas DFO resulted in the elution of a much smaller amount of Fe in this elution range. In fact, DFP was approximately 8-times more efficient than DFO regarding the removal of Fe from plasma proteins. The addition of both iron chelators also resulted in the elution of a <10 kDa novel Zn-peak. DFP abstracted twice as much Zn from plasma proteins compared to DFO. The identification of one of these peaks as (DFP)(2)Zn establishes a feasible biomolecular basis for the etiology of Zn-deficiency in patients that undergo long-term treatment with these drugs. Our results demonstrate that the analysis of plasma by SEC-ICP-AES can simultaneously provide insight into the efficacy of chelation therapy drugs and their adverse health effects at the metalloprotein level. Thus, SEC-ICP-AES emerges as a useful analytical tool to visualize health-relevant bioinorganic chemistry-related reactions of medicinal drugs in blood plasma in vitro.

  5. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    SciTech Connect

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-11-28

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments.

  6. Laser ablation in liquids: an efficient sample preparation technique in ICP elemental analysis of art materials

    NASA Astrophysics Data System (ADS)

    Klyachkovskaya, E. V.; Kozhukh, N. M.; Muravitskaya, E. V.; Rosantsev, V. A.; Belkov, M. V.; Ershov-Pavlov, E. A.

    2007-06-01

    Laser ablation in liquid media is proposed as a new sample preparation technique in elemental composition analysis of art pigments using inductively coupled plasma optical emission spectroscopy (ICP-OES). Solid samples are transformed to colloidal solutions of nanosized analyte particles. This makes the technique compatible with convevtional solutionbased standardization. The dissociation of particles in solution is improved, which increases the accuracy of quantitative ICP measurements.

  7. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions

    NASA Astrophysics Data System (ADS)

    Ciocan, A. C.; Mao, X. L.; Borisov, Oleg V.; Russo, R. E.

    1998-03-01

    The amount of ablated mass can influence the temperature and excitation characteristics of the inductively coupled plasma (ICP) and must be taken into account to ensure accurate chemical analysis. The ICP electron number density was investigated by using measurements of the Mg ionic to atomic resonant-line ratios during laser ablation of an aluminum matrix. The ICP excitation temperature was measured by using selected Fe lines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulse duration) at 266 nm was used for these ablation-sampling studies. Laser energy, power density, and repetition rate were varied in order to change the quantity of ablated mass into the ICP. Over the range of laser operating conditions studied herein, the ICP was not significantly influenced by the quantity of solid sample. Therefore, analytical measurements can be performed accurately and fundamental studies of laser ablation processes (such as ablation mass roll-off, fractional vaporization) can be investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  8. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  9. Retrieval of thermospheric atomic oxygen, nitrogen and temperature from the 732 NM emission measured by the ISO on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Fennelly, Judy A.; Torr, Douglas G.; Torr, Marsha R.; Richards, Phillip G.; Yung, Sopo

    1993-01-01

    The Imaging Spectrometric Observatory (ISO) was a part of the ATLAS 1 Mission flown on the shuttle Atlantis from March 24 to April 2, 1992. During limb scanning operations, the ISO measured the O+(2P) ion emission at 732 nm. We have used a numerical inversion technique to retrieve thermospheric atomic oxygen, molecular nitrogen and temperature profiles. These preliminary results indicate a lower thermospheric temperature cooler than that predicted by MSIS for the solar conditions during the mission. Although the densities agree at low altitudes, the reduced scale height produces O and N2 densities 25 percent lower than the MSIS at 300 km.

  10. New method for determining relative oscillator strengths of atoms through combined absorption and emission measurements - Application to titanium /Ti I/

    NASA Technical Reports Server (NTRS)

    Cardon, B. L.; Smith, P. L.; Whaling, W.

    1979-01-01

    The paper introduces a procedure that combines measurements of absorption and emission by atoms to obtain relative oscillator strengths that are independent of temperature determination in the sources and of assumptions regarding local thermodynamic equilibrium. The experimental observations are formed into sets of transitions and required to satisfy defined ratios. The procedure is illustrated with the published data of Whaling et al. and Smith and Kuehne for 16 transitions in Ti I. It is shown that the relative oscillator strengths resulting from this procedure have calculated uncertainties between 5 and 17% (about 95% confidence level). Evidence is presented to suggest that these uncertainties have been overestimated.

  11. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Liu, Xing Qiang; Wang, Ti; Chen, Chao; Wu, Hao; Liao, Lei; Liu, Chang

    2013-03-01

    Two-dimensional arrays of Al nanoparticles (NPs) were used to demonstrate the localized surface plasmon resonance (LSPR) enhanced UV light emission from ZnO grown by atomic layer deposition. Well defined NP arrays with different shapes were fabricated on the surface of ZnO by electron-beam lithography. A theoretical analysis based on the finite-difference time-domain method was carried out to show the shape dependence of the LSPR wavelength. Time resolved photoluminescence and temperature-dependent photoluminescence measurements suggested that the Al NPs arrays increase the radiative recombination rate by the resonance coupling between the localized surface plasmons and the excitons of the ZnO. By top excitation of the Al NP arrays coupled with ZnO, a 2.6-fold enhancement in peak photoluminescence intensity was measured. The enhancement strongly depended on the NP’s shape, revealing an important way of geometrical tuning the UV-emission.

  12. Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition.

    PubMed

    Lin, Ying; Liu, Xing Qiang; Wang, Ti; Chen, Chao; Wu, Hao; Liao, Lei; Liu, Chang

    2013-03-29

    Two-dimensional arrays of Al nanoparticles (NPs) were used to demonstrate the localized surface plasmon resonance (LSPR) enhanced UV light emission from ZnO grown by atomic layer deposition. Well defined NP arrays with different shapes were fabricated on the surface of ZnO by electron-beam lithography. A theoretical analysis based on the finite-difference time-domain method was carried out to show the shape dependence of the LSPR wavelength. Time resolved photoluminescence and temperature-dependent photoluminescence measurements suggested that the Al NPs arrays increase the radiative recombination rate by the resonance coupling between the localized surface plasmons and the excitons of the ZnO. By top excitation of the Al NP arrays coupled with ZnO, a 2.6-fold enhancement in peak photoluminescence intensity was measured. The enhancement strongly depended on the NP's shape, revealing an important way of geometrical tuning the UV-emission. PMID:23466715

  13. Methyl oleate as matrix simulacrum for the simultaneous determination of metals in biodiesel samples by flame atomic emission spectroscopy.

    PubMed

    Ferreira, Conny Cerai; Costa, Letícia Malta; Barbeira, Paulo Jorge Sanches

    2015-06-01

    A measurement procedure for direct and simultaneous quantification of Na, K and Ca in biodiesel by flame atomic emission spectroscopy (FAES) was developed. A lab-made device was constructed by coupling a nebulizer/combustion system from a commercial photometer to a continuous emission detector in a spectral range of 255 to 862 nm. Instrumental optimizations were carried out evaluating the most important variables, such as gas flow rates and sample introduction temperature, indicating that a temperature of 50°C enhances the analytical signals and assures good precision. The direct analysis method was properly validated and presented limits of quantification of 0.09, 0.07 and 0.43 μg kg(-1) for Na, K and Ca, respectively. Accuracy of the proposed procedure was checked by comparing the results with those obtained by the standard procedure described in ABNT NBR 15556 and the standard addition method. PMID:25863364

  14. Comment on ''Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission''

    SciTech Connect

    Sancho, Pedro; Plaja, Luis

    2011-06-15

    T. Tanabe et al. [Phys. Rev. A 82, 040101(R) (2010)] have experimentally demonstrated that the emission properties of unstable atoms in entangled and product states are different. The authors define an apparent decay time as a fitting parameter which falls below the lifetime of the single atom for entangled pairs. We argue that their results about coincidence time spectra are correct, but those concerning lifetimes cannot be considered conclusive because they assume the emission of photons by the two atoms to be independent processes, a doubtful hypothesis for entangled states. We suggest an improved evaluation of the lifetimes based on a rigorous approach, which demands some modifications of the experimental procedure.

  15. A Coupled Chemistry-emission Model for Atomic Oxygen Green and Red-doublet Emissions in the Comet C/1996 B2 Hyakutake

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-03-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H2O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O(1 S) and O(1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H2O to the green (red) line emission is 30%-70% (60%-90%), while CO2 and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O(1 S) to O(1 D) would be around 0.03 (±0.01) if H2O is the main source of oxygen lines, whereas it is ~0.6 if the parent is CO2. Our calculations suggest that the yield of O(1 S) production in the photodissociation of H2O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  16. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    SciTech Connect

    Bhardwaj, Anil; Raghuram, Susarla E-mail: anil_bhardwaj@vssc.gov.in

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  17. Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn(2+) emission.

    PubMed

    Lin, Jian; Zhang, Qian; Wang, Le; Liu, Xiaochun; Yan, Wenbo; Wu, Tao; Bu, Xianhui; Feng, Pingyun

    2014-03-26

    We report a simple and yet effective method to introduce Mn(2+) ions into semiconducting nanoclusters with atomically precise control. Our method utilizes one type of micrometer-sized crystals, composed of well-defined isolated supertetrahedral chalcogenide nanoclusters (∼2 nm, [Cd6In28S52(SH)4]) whose core metal site is unoccupied in as-synthesized pristine form. This unique model structure with vacant core site makes it possible to achieve ordered distribution of Mn(2+) dopants, and at the same time effectively preclude the formation of Mn(2+) clusters in the host matrix. A two-step synthesis strategy is applied to realize an atomically precise doping of Mn(2+) ion into the core site of the nanoclusters, and to achieve uniform distribution of Mn(2+) dopants in the crystal lattice. The PL, X-ray photoelectron (XPS), as well as the electron paramagnetic resonance (EPR) spectra reveal the successful incorporation of Mn(2+) ion into the core site of the nanocluster. Different from the pristine host material with weak green emission (∼490 nm), the Mn(2+)-doped material shows a strong red emission (630 nm at room temperature and 654 nm at 30 K), which is significantly red-shifted relative to the orange emission (∼585 nm) observed in traditional Mn(2+)-doped II-VI semiconductors. Various experiments including extensive synthetic variations and PL dynamics have been performed to probe the mechanistic aspects of synthesis process and resultant unusual structural and PL properties. The quaternary semiconductor material reported here extends the emission window of Mn(2+)-doped II-VI semiconductor from yellow-orange to red, opening up new opportunities in applications involving photonic devices and bioimaging.

  18. Ultrafast emission of ions during laser ablation of metal for 3D atom probe

    NASA Astrophysics Data System (ADS)

    Vella, A.; Houard, J.; Vurpillot, F.; Deconihout, B.

    2009-03-01

    The 3D atom probe(3DAP) is an imaging instrument based on the controlled field evaporation of single atoms from a sample having a tip shape with an end radius of 50 nm. In the fs laser assisted 3DAP the evaporation is induced by the laser pulses so that the physical process involved in this 3DAP analysis might correspond to the very early stages of the ablation process. In this paper we present the principle of the 3DAP and we discuss the existing models of the fs assisted evaporation. At last, we test the relevance of these models with pump-probe experiments on tungsten tips in the tomographic atom probe.

  19. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    SciTech Connect

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  20. Determination of gaseous semi- and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry.

    PubMed

    Sun, Yifei; Watanabe, Nobuhisa; Wang, Wei; Zhu, Tianle

    2013-01-01

    A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described the use of barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry, for the detection of semi- and low-volatile organic halogen compounds (SLVOXs), which can be collected by Carbotrap adsorbents and analyzed using thermal desorption. The optimal carrier gas flow rates at the injection and desorption lines were established to be 100 mL/min. The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms. Measuring F was more difficult than measuring C1 or Br, because the wavelength of F is close to that of air. The barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample. It has been found that Carbotrap B is appropriate for high-boiling-point compounds, and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points, in the range 200-2300C. Under optimal analysis conditions, a chlorine-containing plastic was destroyed using different oxygen concentrations. Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds. PMID:23586317

  1. CHIANTI-AN ATOMIC DATABASE FOR EMISSION LINES. XIII. SOFT X-RAY IMPROVEMENTS AND OTHER CHANGES

    SciTech Connect

    Landi, E.; Young, P. R.; Dere, K. P.; Del Zanna, G.; Mason, H. E.

    2013-02-15

    The CHIANTI spectral code consists of two parts: an atomic database and a suite of computer programs in Python and IDL. Together, they allow the calculation of the optically thin spectrum of astrophysical objects and provide spectroscopic plasma diagnostics for the analysis of astrophysical spectra. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, ionization, and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7.1 has been released, which includes improved data for several ions, recombination rates, and element abundances. In particular, it provides a large expansion of the CHIANTI models for key Fe ions from Fe VIII to Fe XIV to improve the predicted emission in the 50-170 A wavelength range. All data and programs are freely available at http://www.chiantidatabase.org and in SolarSoft, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

  2. Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-07-01

    A simple, rapid, and portable system consisted of a laboratory-built miniaturized dielectric barrier discharge atomic emission spectrometer and a microwave-assisted persulfate oxidation reactor was developed for sensitive flow injection analysis or continuous monitoring of total organic carbon (TOC) in environmental water samples. The standard/sample solution together with persulfate was pumped to the reactor to convert organic compounds to CO2, which was separated from liquid phase and transported to the spectrometer for detection of the elemental specific carbon atomic emission at 193.0 nm. The experimental parameters were systematically investigated. A limit of detection of 0.01 mg L(-1) (as C) was obtained based on a 10 mL sample injection volume, and the precision was better than 6.5% (relative standard deviation, RSD) at 0.1 mg L(-1). The system was successfully applied for TOC analysis of real environmental water samples. The obtained TOC value of 30 test samples agreed well with those by the standard high-temperature combustion coupled nondispersive infrared absorption method. Most importantly, the system showed good capability of in situ continuous monitoring of total organic carbon in environmental water.

  3. Determination of gaseous semi- and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry.

    PubMed

    Sun, Yifei; Watanabe, Nobuhisa; Wang, Wei; Zhu, Tianle

    2013-01-01

    A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described the use of barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry, for the detection of semi- and low-volatile organic halogen compounds (SLVOXs), which can be collected by Carbotrap adsorbents and analyzed using thermal desorption. The optimal carrier gas flow rates at the injection and desorption lines were established to be 100 mL/min. The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms. Measuring F was more difficult than measuring C1 or Br, because the wavelength of F is close to that of air. The barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample. It has been found that Carbotrap B is appropriate for high-boiling-point compounds, and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points, in the range 200-2300C. Under optimal analysis conditions, a chlorine-containing plastic was destroyed using different oxygen concentrations. Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds.

  4. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS.

    PubMed

    Barin, J S; Pereira, J S F; Mello, P A; Knorr, C L; Moraes, D P; Mesko, M F; Nóbrega, J A; Korn, M G A; Flores, E M M

    2012-05-30

    The advantages and shortcomings of focused microwave-induced combustion (FMIC) for digestion of plant samples were studied. The effects of sample mass, absorbing solution, oxygen gas flow-rate, and time of reflux step on recoveries of major, minor and trace metals were systematically evaluated. Afterwards, Al, Ba, Ca, Co, Cr, Cu, Mg, Mn, Ni, Sr, V, and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES) and by inductively coupled plasma mass spectrometry (ICP-MS). The main advantages of FMIC when compared to microwave-assisted wet digestion (MAWD) and focused-microwave-assisted wet digestion (FMAWD) are the possibility to digest larger masses of samples (up to 3g) using shorter heating times and diluted nitric acid solution for absorbing all analytes. Using the selected experimental conditions for FMIC, residual carbon content was lower than 0.7% for all samples and relative standard deviation (RSD) varied from 1.5 to 14.1%. Certified reference materials (NIST 1515 apple leaves and NIST 1547 peach leaves) were used for checking accuracy and determined values for all metals were in agreement with certified values at a 95% confidence level. No statistical difference (ANOVA, 95% of confidence level) was observed for results obtained by FMIC, FMAWD, and MAWD. Limits of detection were lower when using FMIC in the range of 0.02-0.15 μg g(-1) for ICP OES and 0.001-0.01 μg g(-1) for ICP-MS, which were about 3 and 6 times lower than the values obtained by FMAWD and MAWD, respectively. It is important to point out that FMIC was a suitable sample preparation method for major, minor and trace metals by both determination techniques (ICP OES and ICP-MS). Additionally, since it allows lower LODs (because up to 3g of sample can be digested) and diluted acid solutions are used (without any further dilution), the use of ICP-MS is not mandatory. PMID:22608453

  5. Electron emission in slow collisions of inert gas and reactive ions with W(110) partially covered by alkali atoms

    NASA Astrophysics Data System (ADS)

    Müller, H.; Hausmann, R.; Brenten, H.; Kempter, V.

    1993-05-01

    Electron energy spectra from slow (50 to 1000 eV) collisions of inert gas (He +, He 2+ and Ar +) and reactive (H +, N +) ions colliding under grazing incidence with W(110) surfaces are reported. The surface work function is varied by the exposure of the W(110) surface to alkali atoms. For clean W(110) the sequence of electronic transitions during a slow (50 eV, typically) collision is similar as reported for other clean metals: Auger capture processes involving two electrons from the surface dominate for all projectiles. For sufficiently large coverages by alkali atoms resonant capture of one or two surface electrons by the projectiles leads to the formation of excited states of the projectiles with one or two electrons occupying valence orbitals. These states decay by Auger deexcitation (Penning ionization) and intra-atomic Auger processes (autoionization and autodetachment), respectively. For the case of Ar + ions colliding with W(110) partially covered by potassium it is demonstrated that core vacancies (Ar3p -1) are created during the collision provided the kinetic energy of the projectile surmounts about 300 eV. Contributions from both potential and kinetic emission can then be seen in the spectra of the emitted electrons.

  6. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  7. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  8. Individualized Career Plan (ICP): Implementation Manual.

    ERIC Educational Resources Information Center

    Batsche, Catherine; And Others

    This implementation manual was designed to assist local education agency personnel implement the individualized career plan (ICP) concept in high schools. Questions commonly asked about the ICP are answered. Guidelines are then provided for implementing the four stages of the process: planning, developing, implementing, and evaluating/refining.…

  9. Post sunset behavior of the 6300 A atomic oxygen airglow emission

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1976-01-01

    A theoretical model of the 6300 A OI airglow emission was developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of 6300 A OI emission line were calculated using electron density true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler broadened 6300 A emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere were varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 A emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer. Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. Theoretical calculations indicate that contamination of the 6300 A OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 A OI intensity. This combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann--Runge continuum and associated absorption cross sections. Results show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more

  10. Determination of heavy metals for the quality control in Argentinian herbal medicines by ETAAS and ICP-OES.

    PubMed

    Gomez, María R; Cerutti, Soledad; Sombra, Lorena L; Silva, María F; Martínez, Luis D

    2007-06-01

    The determination of trace elements in Hypericum perforatum leaves and flowers, their teas, tinctures and tablets was carried out by Electrothermal Atomic Absorption Spectrometry (ETAAS) and Ultrasonic Nebulization System coupled to Inductively Coupled Plasma Optical Emission Spectrometry (USN-ICP-OES). Hypericum perforatum (St. John's wort), is a phytomedicine used for the treatment of depression. Samples were collected from different sources in the argentinian market. Heavy metals contents in the investigated samples were found at different levels. Chromium and cobalt were undetectable above their limits of detection in both liquid and solid samples; while aluminum, cadmium, lead, iron and vanadium were present in the majority of samples. The analytical results obtained for all metals indicate that they were present at concentration well below the acceptable daily intake recommended by the World Health Organization. Based on the results obtained in the present work, it is concluded that the present techniques are suitable for the routine determination of heavy metals concentration in phytopharmaceuticals.

  11. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    NASA Astrophysics Data System (ADS)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  12. Improved statistical determination of absolute neutrino masses via radiative emission of neutrino pairs from atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-06-01

    The atomic transition from an excited state |e ⟩ to the ground state |g ⟩ by emitting a neutrino pair and a photon, i.e., |e ⟩→|g ⟩+|γ ⟩+|νi⟩+|ν¯j⟩ with i , j =1 , 2, 3, has been proposed by Yoshimura and his collaborators as an alternative way to determine the absolute scale m0 of neutrino masses. More recently, a statistical analysis of the fine structure of the photon spectrum from this atomic process has been performed [N. Song et al. Phys. Rev. D 93, 013020 (2016)] to quantitatively examine the experimental requirements for a realistic determination of absolute neutrino masses. In this paper, we show how to improve the statistical analysis and demonstrate that the previously required detection time can be reduced by one order of magnitude for the case of a 3 σ determination of m0˜0.01 eV with an accuracy better than 10%. Such an improvement is very encouraging for further investigations on measuring absolute neutrino masses through atomic processes.

  13. Solar-energy conversion and light emission in an atomic monolayer p-n diode.

    PubMed

    Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  14. Solar-energy conversion and light emission in an atomic monolayer p-n diode

    NASA Astrophysics Data System (ADS)

    Pospischil, Andreas; Furchi, Marco M.; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices--rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ~0.5% and ~0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  15. Solar-energy conversion and light emission in an atomic monolayer p-n diode.

    PubMed

    Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies. PMID:24608229

  16. Efficient field emission from α-Fe2O3 nanoflakes on an atomic force microscope tip

    NASA Astrophysics Data System (ADS)

    Zhu, Y. W.; Yu, T.; Sow, C. H.; Liu, Y. J.; Wee, A. T. S.; Xu, X. J.; Lim, C. T.; Thong, J. T. L.

    2005-07-01

    Aligned arrays of flake-shaped hematite (α-Fe2O3) nanostructure have been fabricated on an atomic force microscope (AFM) tip. They are created by simply heating an iron-coated AFM tip in ambience on a hot plate. These nanoflakes are characterized as α-Fe2O3 single crystalline structures with tip radii as small as several nanometers and are highly effective as electron field emitters. With a vacuum gap of about 150μm, field emission measurements of α-Fe2O3 nanoflakes on AFM tips show a low turn-on voltage of about 400-600V and a high current density of 1.6Acm-2 under 900V. Such high emission current density is attributed to the nanoscale sharp tips of the as-grown nanoflakes. Based on the Fowler-Nordheim theory, it is demonstrated the enhancement factor of α-Fe2O3 nanoflakes on AFM tips is comparable to that of carbon nanotubes. Our findings suggest that α-Fe2O3 nanoflakes are potentially useful as candidates for future electron field emission devices.

  17. Solid state effects in electron emission from atomic collisions near surfaces

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J.; Minniti, R.; Elston, S.B.

    1996-10-01

    We present a brief progress report of recent studies of the ejected electron spectra arising from glancing-angle ion-surface scattering involving collision energies of hundreds of keV/u. A broad range of electron energies and emission angles is analyzed containing prominent structures such as the convoy electron peak and the binary ridge. Particular emphasis is placed on the search for signatures of dynamic image interactions and multiple scattering near surfaces. 30 refs., 8 figs.

  18. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ˜ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ˜2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  19. REVIEWS OF TOPICAL PROBLEMS: Spontaneous and induced emission of a Rydberg atom in a cavity

    NASA Astrophysics Data System (ADS)

    Beterov, I. M.; Lerner, P. B.

    1989-12-01

    Experimental and theoretical studies of Rydberg masers-quantum-electronic devices which produce and employ microwave radiation from highly excited atoms in a cavity-are reviewed. The experimental results are based mainly on studies performed by S. Haroche's group in Paris and H. Walther's group in Munich. In contradistinction to the usual quantum generators the quantum properties of the electromagnetic field itself play an important role in the analysis of the behavioral dynamics of Rydberg masers. The most striking results obtained in this field are the discovery of "quantum revival" and the achievement of maser generation on two-photon transitions and Fok states of the electromagnetic field.

  20. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1994--December 31, 1994

    SciTech Connect

    Montaser, A.

    1994-09-01

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  1. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    SciTech Connect

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  2. Solid phase microextraction capillary gas chromatography combined with furnace atomization plasma emission spectrometry for speciation of mercury in fish tissues

    NASA Astrophysics Data System (ADS)

    Grinberg, Patricia; Campos, Reinaldo C.; Mester, Zoltan; Sturgeon, Ralph E.

    2003-03-01

    The use of solid phase microextraction in conjunction with tandem gas chromatography-furnace atomization plasma emission spectrometry (SPME-GC-FAPES) was evaluated for the determination of methylmercury and inorganic mercury in fish tissue. Samples were digested with methanolic potassium hydroxide, derivatized with sodium tetraethylborate and extracted by SPME. After the SPME extraction, species were separated by GC and detected by FAPES. All experimental parameters were optimized for best separation and analytical response. A repeatability precision of typically 2% can be achieved with long-term (3 months) reproducibility precision of 4.3%. Certified Reference Materials DORM-2, DOLT-2 and TORT-2 from the National Research Council of Canada were analyzed to verify the accuracy of this technique. Detection limits of 1.5 ng g -1 for methylmercury and 0.7 ng g -1 for inorganic mercury in biological tissues were obtained.

  3. Subnanogram determination of inorganic and organic mercury by helium-microwave induced plasma-atomic emission spectrometry

    SciTech Connect

    Fukushi, K. ); Willie, S.N.; Sturgeon, R.E. )

    1993-02-01

    Inorganic and organic mercury were determined by helium-microwave induced plasma-atomic emission spectrometry following cold vapor generation. Whereas only inorganic mercury was reduced by stannous ion in an acidic medium, both inorganic and organic mercury (total mercury) were reduced by stannous ion in the presence of cupric ion in a basic medium. Organic mercury was determined as the difference between total and inorganic mercury. Detection limits for inorganic and organic mercury were 11 and 10 pg, respectively. The accuracy of the proposed method was verified through the determination of inorganic, total and organic mercury in two marine biological standard reference materials, DORM-1 and TORT-1. 21 refs., 1 fig., 4 tabs.

  4. Study of soft X-ray emission from Z-pinches with a complex atomic composition

    SciTech Connect

    Volkov, G. S.; Zaitsev, V. I.; Grabovski, E. V.; Fedulov, M. V.; Aleksandrov, V. V.; Lakhtyushko, N. I.

    2010-03-15

    Results are presented from experimental studies of Z-pinches produced by implosion of aluminum and tungsten cylindrical wire arrays in the Angara-5-1 facility. The electron temperature T{sub e} and density n{sub e} of the high-temperature pinch plasma have been determined by analyzing line emission from multicharged ions. For the same mass and radius of the array and the same number of wires in it, the intensity of line emission of H- and He-like Al ions from an imploded Al + W wire array containing even a small amount of tungsten (7 wt %) is one order of magnitude lower than that from an Al array. As the W content increases, the total soft X-ray (SXR) yield increases, while the duration of the SXR pulse decreases. For the 30% W content in the array, the power and duration of the SXR pulse are nearly the same as those recorded during the implosion of a W array with the same linear mass and radius and the same number of wires. Results are also presented from experiments with nested wire arrays in which the outer and inner shells were made of Al and W wires, respectively. It is found that, in this case, the effect of tungsten on the line emission of aluminum is much weaker than that in experiments with arrays in which tungsten and aluminum wires were placed in the same shell, even if the mass of the inner (tungsten) shell was larger than that of the outer (aluminum) one. At the same time, the inner W shell plays a significant role in the implosion dynamics of a nested wire array, reducing the duration of the SXR pulse and increasing the SXR power.

  5. Dissolution of uranophane: An AFM, XPS, SEM and ICP study

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Freund, Michael; Hawthorne, Frank C.; Burns, Peter C.; Maurice, Patricia A.

    2009-05-01

    Dissolution experiments on single crystals of uranophane and uranophane-β, Ca(H 2O) 5[(UO 2)(SiO 3(OH)] 2, from the Shinkolobwe mine of the Democratic Republic of Congo, were done in an aqueous HCl solution of pH 3.5 for 3 h, in HCl solutions of pH 2 for 5, 10 and 30 min, and in Pb 2+-, Ba-, Sr-, Ca- and Mg-HCl solutions of pH 2 for 30 min. The basal surfaces of the treated uranophane crystals were examined using atomic-force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Solutions after dissolution experiments on single crystals and synthetic powders were analysed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectroscopy (ICP-MS). The morphology of the observed etch pits (measured by AFM) were compared to the morphology, predicted on the basis of the bond-valence deficiency of polyhedron chains along the edges of the basal surface. Etch pits form in HCl solutions of pH 2. Their decrease in depth with the duration of the dissolution experiment is explained with the stepwave dissolution model, which describes the lowering of the surrounding area of an etch pit with continuous waves of steps emanated from the etch pit into the rest of the crystal surface. Hillocks form in an HCl solution of pH 3.5, and the chemical composition of the surface (as indicated by XPS) shows that these hillocks are the result of the precipitation of a uranyl-hydroxy-hydrate phase. Well-orientated hillocks form on the surface of uranophane in a SrCl 2-HCl solution of pH 2. They are part of an aged silica coating of composition Si 2O 2(OH) 4(H 2O) n. An amorphous layer forms on the surface of uranophane in a MgCl 2-HCl solution of pH 2, which has a composition and structure similar to silicic acid. Small crystallites of uranyl-hydroxy-hydrate phases form on the surface of uranophane after treatment in Pb(NO 3) 2-HCl and BaCl 2-HCl solutions of pH 2. Dissolution experiments on synthetic uranophane powders

  6. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry.

    PubMed

    Dancsak, Stacia E; Silva, Sidnei G; Nóbrega, Joaquim A; Jones, Bradley T; Donati, George L

    2014-01-01

    High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg(-1) for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg(-1) for Na and K, and between 0.22 and 0.43 mg kg(-1) for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are comparable to other traditional methods.

  7. Effect of the electronic structure of target atoms on the emission continuum of laser plasma

    SciTech Connect

    Kask, Nikolai E; Michurin, Sergei V; Fedorov, Gennadii M

    2004-06-30

    The low-temperature laser plasma at the surface of metal targets is experimentally investigated. Continuous spectra emitted from a laser plume are found to be similar for targets consisting of the elements of the same subgroup of the Mendeleev periodic table. The similarity manifests itself both in the dependence of the emission intensity on the external pressure and in the structure of absorption bands related to a fine-dispersed phase existing in the peripheral regions of the plume. (interaction of laser radiation with matter. laser plasma)

  8. Dressed projectile charge state dependence of differential electron emission from Ne atom

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Monti, J. M.; Rivarola, R. D.; Tribedi, L. C.

    2015-01-01

    We study the projectile charge state dependence of doubly differential electron emission cross section (DDCS) in ionization of Ne under the impact of dressed and bare oxygen ions. Experimental DDCS results measured at different angles are compared with the calculations based on a CDW-EIS approximation using the GSZ model potential to describe projectile active-electron interaction. This prescription gives an overall very good agreement. In general a deviation from the q2-law was observed in the DDCS. The observations crudely identify the dominance of different projectile electron loss mechanisms at certain electron energy range.

  9. Electron Emission Properties and Surface Atom Behavior of an Impregnated Cathode Coated with Tungsten Thin Film Containing Sc2O3

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigehiko; Taguchi, Sadanori; Watanabe, Isato; Kawase, Susumu

    1986-07-01

    A new cathode has been developed which shows similar electron emission characteristics as a previously reported Sc2O3 mixed matrix impregnated cathode (Sc2O3 MM Cathode). Contrary to the Sc2O3 MM cathode, the new cathode is resistive to prolonged heating at high temperatures and to ion bombardment. This has been made possible by applying to a standard impregnated cathode a tungsten thin-film containing about 5 weight percent Sc2O3. The electron-emission property is found to be strongly linked to the surface atom composition as well as to the distribution of surface atoms.

  10. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF).

    PubMed

    Cairns, Warren R L; De Boni, Antonella; Cozzi, Giulio; Asti, Massimo; Borla, Edoardo Merlone; Parussa, Flavio; Moretto, Ezio; Cescon, Paolo; Boutron, Claude; Gabrieli, Jacopo; Barbante, Carlo

    2011-03-01

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g(-1) for Pd, 0.4 ng g(-1) for Rh and 4.3 ng g(-1) for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and "soluble" phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km(-1) for Rh to 70.5 ng km(-1) for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter.

  11. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    NASA Astrophysics Data System (ADS)

    Martínez, Filiberto; Miranda, Javier

    2013-07-01

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Física for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields (ωLi) and Coster-Kronig transition probabilities (fij) for elements with 55 ≤ Z ≤ 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  12. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body-like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  13. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    SciTech Connect

    Martinez, Filiberto; Miranda, Javier

    2013-07-03

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Fisica for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields ({omega}{sub Li}) and Coster-Kronig transition probabilities (f{sub ij}) for elements with 55 {<=} Z {<=} 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  14. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body–like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  15. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  16. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    PubMed

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications. PMID:27409977

  17. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    PubMed

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications.

  18. Pesticide analysis in herbal infusions by solid-phase microextraction and gas chromatography with atomic emission detection.

    PubMed

    Campillo, Natalia; Peñalver, Rosa; Hernández-Córdoba, Manuel

    2007-02-28

    A direct immersion solid-phase microextraction (SPME) procedure was used in combination with capillary gas chromatography with atomic emission detection (GC-AED) for the determination of 10 pesticides (organochlorines, organophosphorus compounds and pyrethrins) in herbal and tea infusions. Ionic strength, sample dilution and time and temperature of the absorption and desorption stages were some of the parameters investigated in order to select the optimum conditions for SPME with a 100mum PDMS fiber-coating. Element-specific detection and quantification was carried out by monitoring the chlorine (479nm) and bromine (478nm) emission lines, which provided nearly specific chromatograms. Calibration was carried out by using a spiked sample infusion. The detection limits varied between 11.9ngml(-1) for deltamethrin and 0.03ngml(-1) for p,p'-DDE and p,p'-DDD. The recoveries ranged from 73.5% for deltamethrin to 108.3% for p,p'-DDT in a spiked white tea infusion. Two of the eight samples analyzed contained low levels of some the pesticides considered. PMID:19071467

  19. Theory of electron emission in high fields from atomically sharp emitters: Validity of the Fowler-Nordheim equation

    NASA Astrophysics Data System (ADS)

    Cutler, P. H.; He, Jun; Miller, J.; Miskovsky, N. M.; Weiss, B.; Sullivan, T. E.

    1993-04-01

    Field emission from metallic emitters is generally described by the Fowler-Nordheim [F-N] theory, which is based on a planar model of the tip with a classical image correction. Within the free electron model and the WKB approximation, the planar tip model leads to the well-known Fowler-Nordheim equation, which predicts that a plot of log J/F 2 versus 1/F, where J is the current density and F, the field, should be a straight line within the narrow range of field strengths of typical field emission experiments, 3 - 5V/nm. This has been experimentally confirmed for conventional emitters, (i.e., electrolytically etched tips with radii ⪆50 nm). Field emitters fabricated with today's new techniques are much sharper with radii of curvature of the order of nm's or even the size of a single atom. Hence, the local geometry of the tip may become an important factor in the electron emission process. To investigate the effects of the shape and/or size on emission, the authors, in a recent series of papers, studied the dependence of the current-voltage characteristics on the local geometry of pointed emitters. It was found that the calculated results, plotted as log J/V 2 vs. 1/V, do not exhibit the straight line behavior predicted by the Fowler-Nordheim theory. In addition, there is a dramatic increase in the tunneling current for a fixed external bias, V, relative to the Fowler-Nordheim result for a planar model of the tip with the same bias voltage. Using the exact current integral additional results have been obtained exhibiting the effects of emitter curvature on field electron energy distributions and on electron emission in high fields and temperatures. These results continue to differ with the predictions of the Fowler-Nordheim equation for the same emitter models. Therefore, the adequacy of a β-factor in the conventional planar model Fowler-Nordheim equation to account for emitter curvature is examined. It is demonstrated that even a β-modified Fowler

  20. The interaction of 193-nm excimer laser radiation with single-crystal zinc oxide: The generation of atomic Zn line emission at laser fluences below breakdown

    SciTech Connect

    Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

    2013-08-28

    The production of gas phase atomic and ionic line spectra accompanying the high laser fluence irradiation of solid surfaces is well known and is most often due to the production and interaction of high densities of atoms, ions, and electrons generated from laser-induced breakdown. The resulting plasma expands and moves rapidly away from the irradiated spot and is accompanied by intense emission of light. This type of “plume” is well studied and is frequently exploited in the technique of chemical analysis known as laser induced breakdown spectroscopy. Here, we describe a similar but weaker emission of light generated in vacuum by the laser irradiation of single crystal ZnO at fluences well below breakdown; this emission consists entirely of optical line emission from excited atomic Zn. We compare the properties of the resulting laser-generated gas-phase light emission (above and below breakdown) and describe a mechanism for the production of the low-fluence optical emission resulting from a fortuitous choice of material and laser wavelength.

  1. Rapid coal analysis. Part II: Slurry atomization DCP emission analysis of NBS coal

    SciTech Connect

    McCurdy, D.L.; Wichman, M.D.; Fry, R.C.

    1985-11-01

    A McCrone Micronising Mills is used to wet grind NBS bituminous coal to a median particle diameter of 5.7 m within 10 min. The finely divided coal slurry is immediately nebulized without sieving into a three-electrode DCP for accurate trace element determinations within 15 min overall lapsed time. Three important parameters contribute to near-quantitative elemental recovery without the use of wet or dry ashing, matrix matching, standard additions, as correction factors. These parameters are: (1) extremely small coal particle size, (2) spray chamber conditions favoring unusually efficient characteristic of the hot DCP. Near-unity response factors are observed for the rapid DCP emission determination of trace metals in finely divided coal slurry. Calibration may therefore be performed simply with aqueous standards. The slurry method gives near quantitative agreement between experimental and certified values for Cr, Cu, Mg, Mn, Ni, and Pb in NBS bituminous coal.

  2. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    SciTech Connect

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3) oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.

  3. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus).

    PubMed

    Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna

    2015-04-01

    The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences.

  4. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.

  5. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak. PMID:26939686

  6. Atomic Emission, Absorption and Fluorescence in the Laser-induced Plasma

    SciTech Connect

    Winefordner, J. D.

    2009-01-22

    The main result of our efforts is the development and successful application of the theoretical model of laser induced plasma (LIP) that allows a back-calculation of the composition of the plasma (and the condensed phase) based on the observable plasma spectrum. The model has an immediate experimental input in the form of LIP spectra and a few other experimentally determined parameters. The model is also sufficiently simple and, therefore, practical. It is conveniently interfaced in a graphical user-friendly form for using by students and any laboratory personnel with only minimal training. In our view, the model opens up the possibility for absolute analysis, i.e. the analysis which requires no standards and tedious calibration. The other parts of this proposal (including plasma diagnostics) were somewhat subordinate to this main goal. Plasma diagnostics provided the model with the necessary experimental input and led to better understanding of plasma processes. Another fruitful direction we pursued was the use of the correlation analysis for material identification and plasma diagnostics. Through a number of computer simulations we achieved a clear understanding of how, where and why this approach works being applied to emission spectra from a laser plasma. This understanding will certainly improve the quality of forensic and industrial analyses where fast and reliable material identification and sorting are required.

  7. Measuring atomic emission from beacons for long-distance chemical signaling.

    PubMed

    LaFratta, Christopher N; Pelse, Ian; Falla, Jose Luis; Liu, Yi; Palacios, Manuel A; Manesse, Mael; Whitesides, George M; Walt, David R

    2013-10-01

    In an effort to exploit chemistry for information science, we have constructed a system to send a message powered by a combustion reaction. Our system uses the thermal excitation of alkali metals to transmit an encoded signal over long distances. A message is transmitted by burning a methanol-soaked cotton string embedded with combinations of high, low, or zero levels of potassium, rubidium, and/or cesium ions. By measuring the intensities at the characteristic emission wavelengths of each metal in the near-infrared, 19 unique signals can be distinguished. We have built a custom telescope to detect these signals from 1 km away for nearly 10 min. The signal is isotropic, is self-powered, and has a low background. A potential application of this platform is for search and rescue signaling where another layer of information can be transmitted, in addition to the location of the beacon. This work, which seeks to encode and transmit information using chemistry instead of electronics, is part of the new field of "infochemistry".

  8. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  9. Evaluation of an improved atomic data basis for carbon in UEDGE emission modeling for L-mode plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Muñoz Burgos, J. M.; Leonard, A. W.; Loch, S. D.; Ballance, C. P.

    2013-07-01

    New scaled carbon atomic electron-impact excitation data is utilized to evaluate comparisons between experimental measurements and fluid emission modeling of detached plasmas at DIII-D. The C I and C II modeled emission lines for 909.8 and 514.7 nm were overestimated by a factor of 10-20 than observed experimentally for the inner leg, while the outer leg was within a factor of 2. Due to higher modeled emissions, a previous study using the UEDGE code predicted that a higher amount of carbon was required to achieve a detached outboard divertor plasma in L-mode at DIII-D. The line emission predicted by using the new scaled carbon data yields closer results when compared against experiment. We also compare modeling and measurements of Dα emission from neutral deuterium against predictions from newly calculated R-Matrix with pseudostates data available at the ADAS database.

  10. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  11. Comparison of four analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs.

    PubMed

    Boutakhrit, K; Crisci, M; Bolle, F; Van Loco, J

    2011-02-01

    Different techniques for the determination of total tin in beverages and canned foods by atomic spectrometry were compared. The performance characteristics of inductively coupled plasma-mass spectrometry (ICP-MS), hydride generation-inductively coupled plasma-atomic emission spectrometry (HG-ICP-AES), electrothermal atomisation-atomic absorption spectrometry (ETA-AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were determined in terms of linearity, precision, recovery, limit of detection, decision limit (CCα) and detection capability (CCβ) (Decision 2002/657/EC). Calibration ranges were covered from ng l⁻¹ to mg l⁻¹ level. Limits of detection that ranged from 0.01, 0.05, 2.0 to 200 µg l⁻¹ were reached for ICP-MS; HG-ICP-AES; ETA-AAS and ICP-AES, respectively. Precision, calculated according to ISO 5725-2 for repeatability and within-laboratory reproducibility and expressed as relative standard deviation (RSD), ranged from 1.6% to 4.9%; and recovery, based on Decision 2002/657/EC, was found to be between 95% and 110%. Procedures for the mineralisation or extraction of total tin were compared. Wet digestion, sequentially, with nitric acid and hydrogen peroxide provided the best results. The influence of possible interferences present in canned food and beverage was studied, but no interference in the determination of tin was observed. Since maximum levels for tin established by European Union legislation vary from 50 mg kg⁻¹ in canned baby foods and infant foods up to 200 mg kg⁻¹ in canned food, ICP-AES was chosen as the preferred technique for routine analysis thanks to its good precision, reliability and ease of use. The accuracy of this routine method was confirmed by participation in six proficiency test schemes with z-scores ranging from -1.9 to 0.6. Several canned foodstuffs and beverage samples from a local market were analysed with this technique.

  12. Ignition Delay in a Pulsed Inductively Coupled Plasma (ICP) in Tandem with an Auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Donnelly, Vincent M.; Liu, Lei; Sridhar, Shyam; Economou, Demetre J.

    2015-09-01

    Plasma ignition delays were observed in a ``main'' ICP, in tandem with an ``auxiliary'' ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~ 99.5%. The ignition delay could be manipulated by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion (n+) densities. These measurements revealed that the plasma was re-ignited shortly after the decaying n+ in the main ICP reached the density (n+,aux) measured when only the auxiliary ICP was powered. At that time, the depressed electron density increased sharply resulting in plasma re-ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for n+ to reach n+,aux during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  13. Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2015-01-01

    A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.

  14. Element-tagged immunoassay with ICP-MS detection: evaluation and comparison to conventional immunoassays

    PubMed Central

    Razumienko, Eva; Ornatsky, Olga; Kinach, Robert; Milyavsky, Michael; Lechman, Eric; Baranov, Vladimir; Winnik, Mitchell A.; Tanner, Scott D.

    2008-01-01

    We have investigated the possibility of using element-tagged antibodies for protein detection and quantification in microplate format using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and compared the results to conventional immunoassays, such as Enzyme-Linked Immunosorbent Assay (ELISA) and Western blotting. The technique was further employed to detect low levels and measure DNA-binding activity of transcription factor p53 in leukemia cell lysates through its interaction with immobilized oligonucleotides and recognition by element-tagged antibodies. The advantages of ICP-MS detection for routine performance of immunoassays include increased sensitivity, wide dynamic range, minimal interference from complex matrices, and high throughput. Our approach advances the ICP-MS technology and demonstrates its applicability to proteomic studies through the use of antibodies directly labeled with polymer tags bearing multiple atoms of lanthanides. Development of this novel methodology will enable fast and quantitative identification of multiple analytes in a single well. PMID:18456275

  15. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  16. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  17. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  18. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. PMID:22483872

  19. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels.

  20. Pressurized liquid extraction followed by gas chromatography with atomic emission detection for the determination of fenbutatin oxide in soil samples.

    PubMed

    Canosa, P; Montes, R; Lamas, J P; García-López, M; Orriols, I; Rodríguez, I

    2009-08-15

    A novel method for the determination of the miticide bis[tris(2-methyl-2-phenylpropyl)tin] oxide, also known as fenbutatin oxide (FBTO), in agricultural soils is presented. Pressurized liquid extraction (PLE) followed by analyte derivatization and extraction into isooctane was the used sample preparation approach. Selective determination was achieved by gas chromatography with atomic emission detection (GC-AED). Influence of different parameters on the performance of the extraction process is thoroughly discussed; moreover, some relevant aspects related to derivatization, determination and quantification steps are also presented. As regards PLE, the type of solvent and the temperature were the most relevant variables. Under optimized conditions, acetone, without any acidic modifier, was employed as extractant at 80 degrees C. Cells were pressurized at 1500 psi, and 2 static cycles of 1 min each were applied. Acetone extracts (ca. 25 mL) were concentrated to 1 mL, derivatized with sodium tetraethyl borate (NaBEt(4)) and the FBTO derivative, resulting from cleavage of the Sn-O-Sn bond followed by ethylation of the hydroxyl fragments, extracted into isooctane and determined by GC-AED. Under final working conditions, the proposed method provided recoveries from 76 to 99% for spiked soil samples, a limit of quantification of 2 ng g(-1) and an acceptable precision. Analysis of samples from vineyards sprayed with FBTO, confirmed the persistence of the miticide in soil for more than 1 year after being applied.

  1. [Characterization of dinosaur fossils and their surrounding rocks by atomic emission spectrometry and X-ray powder diffractometry].

    PubMed

    Yang, Qun; Wang, Yi-lin; Li, Chao-zhen; Yuan, Bo

    2005-02-01

    More dinosaur fossils have been found in the Laochangqing valley, Lufeng county than anywhere else in the world, and the dinosaur fossils found here cover the longest time span (including the early and middle Jurassic ages). This excavation offers an ideal experimental base for prehistoric biology studies. This paper presents an elementary analysis of the components and structure of the dinosaur fossils in three different geologic-layers and their surrounding rocks in the above mentioned area. Atomic emission spectrum shows that the fossils are rich in the contents of calcium (>5%) and phosphor, but low in the content of silicon (3%-8%), while the surrounding rocks are high in the content of silicon (>10%). Furthermore, XRD results show that the major compound of the fossils is CaCO3 (66%), followed by SiO2 (17%); while that of the surrounding rocks is SiO2 (>80%), followed by CaCO3 (<12%). The most important difference between the fossils and the surrounding rocks is, according to the experiment, that phosphate has been identified in the former but not in the latter. This is a characteristic that can be used to distinguish the dinosaur fossils from other rocks. This paper provides valuable data for further zoological studies on the living conditions and evolution of the dinosaurs in the Laochangqing valley, Lufeng county.

  2. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    PubMed

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  3. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The

  4. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  5. Prediction of CO Cameron band and atomic oxygen visible emissions in comets C/2013 A1 (Siding Spring) and 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Raghuram, S.; Bhardwaj, A.

    2014-04-01

    The forbidden emissions of cometary species have special importance in the cometary spectra. The excited species which produce these forbidden emissions can not be populated by direct solar radiation excitation. These metastable species are produced mainly from dissociative excitation and ion-electron recombination reactions. Thus the observed emissions have been used as tracers of parent cometary species. The CO (a3 -X1) is a forbidden transition which produces Cameron band emission in the ultraviolet region during dissociative excitation of CObearing neutrals and the dissociative recombination of CO-ionic species in the cometary coma. Similarly, the forbidden transitions of metastable atomic oxygen 1S-3P (green, 5577 Å), and 1D-3P (red-doublet, 6300 and 6364 Å) produce line emissions in the visible region. These emissions have been used to probe H2O and CO2 abundances in the comets. We have developed a coupled chemistry-emission model to study various production and loss mechanisms of these excited metastable states. The model is applied to comet C/2013 A1 (Siding Spring) which will have a close fly-by of Mars during mid October, 2014, when Indian Mars orbiter Mission and NASA's Maven, would be orbiting the planet. The model is also applied on ESA's Rosetta mission target comet 67P/Churyumov-Gerasimenko which will be useful for different observations over various heliocentric distances. The predicted intensities and quantitative analysis of these emissions can be a theoretical support for various space and ground-based observations.

  6. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  7. Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system.

    PubMed

    Hosoba, Minako; Oshita, Koji; Katarina, Rosi K; Takayanagi, Toshio; Oshima, Mitsuko; Motomizu, Shoji

    2009-04-20

    A novel chitosan resin, cross-linked chitosan functionalized with histidine moiety (histidine-type chitosan resin), was synthesized for the collection and concentration of trace silver in aquatic samples. A triplet automated-pretreatment system (Triplet Auto-Pret System) installed mini-columns packed with the synthesized histidine-type chitosan resin was coupled with an inductively coupled plasma-atomic emission spectrometry (ICP-AES) for a rapid and sensitive analysis. Adsorption behavior of 50 elements on the histidine-type chitosan resin was examined. A trace amount of Ag(I) was shown a good adsorption in wide pH regions (pH 5-9), and Ag(I) adsorbed was readily recovered with 1 M nitric acid solution. The limit of detection (3sigma) for silver was 0.03 microg L(-1). The system was successfully applied to river water and dipped water in silver coated container.

  8. Modification and control of coherence effects in the spontaneous emission spectrum of a three-level atom at weak field regime

    NASA Astrophysics Data System (ADS)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2016-09-01

    It has been shown that coherence effects have a marked influence in the spontaneous emission spectrum of a three-level Λ -type atom driven by weak coherent and incoherent fields. Phase dependent evolution of interference effects leading to spectral narrowing, generation of spectral hole and dark line are exhibited in the present scheme when the atom does not interact with the incoherent fields. The basic mechanism underlying this scheme seems to be appropriate for a phaseonium. Apart from phase-coherence introduced in the system the phenomenon of line narrowing, in the presence of weak incoherent pumping, can be achieved in a different way as a consequence of two competitive resonant effects: sharp non-Lorentzian and symmetric Fano-like-resonance contributions to the line shape. In both the situations, the evolution of narrow structures in the line shape can be achieved even when the emission is influenced by the dephasing of Raman coherence.

  9. Spectral evolution of energetic neutral atom emissions at the heliospheric poles as measured by IBEX during its first three years

    SciTech Connect

    Dayeh, M. A.; Allegrini, F.; Desai, M. I.; Ebert, R. W.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Schwadron, N. A.; DeMajistre, R.; Janzen, P.; Reisenfeld, D.; Siewert, M.

    2014-12-10

    The Interstellar Boundary Explorer (IBEX) mission continues to measure energetic neutral atom (ENA) emissions produced by charge exchange between solar wind (SW) protons and interstellar neutrals at the edge of our heliosphere. Using the first 3 yr of IBEX-Hi ENA measurements (2009-2011), we examined the spectral evolution of ∼0.5-6 keV ENAs at the polar regions (above 60°). We found the following: (1) pixels with a characteristic 'ankle' spectra (lower spectral index at higher energies) increase by ∼5% in 2010 and ∼10% in 2011 compared to 2009. (2) The averaged spectral index in 2011 is smaller than that of 2009. (3) The slope of the ENA spectrum above ∼1.7 keV is more variable than the slope below ∼1.7 keV. The lower spectral index at higher energies of the spectrum does not appear to be caused by an increase of the ENA production at these energies, but rather from a consistent decrease at lower energies. (4) The decrease in polar ENA fluxes does not correlate significantly with the averaged SW dynamic pressure, back-traced in time to 1 AU along the flow streamlines (originating between 10° and 30° for slow SW, and 60° and 80° for fast SW), assuming these are the respective conditions of ENA progenitors back in time. These results provide insights into the complexity of relating the slow and fast SW contributions to polar ENAs and shed light on how the solar output and the resulting change in the global heliospheric structure possibly affect the heliosheath (HS) populations.

  10. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    PubMed

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.

  11. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  12. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    SciTech Connect

    Hasselstroem, J.; Karis, O.; Weinelt, M.

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  13. Spectral Evolution of Energetic Neutral Atom Emissions at the Heliospheric Poles as Measured by IBEX during its First Three Years

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Allegrini, F.; DeMajistre, R.; Desai, M. I.; Ebert, R. W.; Fuselier, S. A.; Janzen, P.; Livadiotis, G.; McComas, D. J.; Reisenfeld, D.; Schwadron, N. A.; Siewert, M.

    2014-12-01

    The Interstellar Boundary Explorer (IBEX) mission continues to measure energetic neutral atom (ENA) emissions produced by charge exchange between solar wind (SW) protons and interstellar neutrals at the edge of our heliosphere. Using the first 3 yr of IBEX-Hi ENA measurements (2009-2011), we examined the spectral evolution of ~0.5-6 keV ENAs at the polar regions (above 60°). We found the following: (1) pixels with a characteristic "ankle" spectra (lower spectral index at higher energies) increase by ~5% in 2010 and ~10% in 2011 compared to 2009. (2) The averaged spectral index in 2011 is smaller than that of 2009. (3) The slope of the ENA spectrum above ~1.7 keV is more variable than the slope below ~1.7 keV. The lower spectral index at higher energies of the spectrum does not appear to be caused by an increase of the ENA production at these energies, but rather from a consistent decrease at lower energies. (4) The decrease in polar ENA fluxes does not correlate significantly with the averaged SW dynamic pressure, back-traced in time to 1 AU along the flow streamlines (originating between 10° and 30° for slow SW, and 60° and 80° for fast SW), assuming these are the respective conditions of ENA progenitors back in time. These results provide insights into the complexity of relating the slow and fast SW contributions to polar ENAs and shed light on how the solar output and the resulting change in the global heliospheric structure possibly affect the heliosheath (HS) populations.

  14. Methods of atomic oxygen and ozone retrieval from observations of the O2 dayglow emissions in the MLT region

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine; Martyshenko, Kseniia; Manuilova, Rada

    2015-04-01

    The problem of creating the new methods of remote sensing of altitude profile of the [O(3P)] and [O3] in the daytime is actual for the mesosphere and lower thermosphere range. Currently there is no reliable method for remote sensing of altitude profile of the [O(3P)], but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO2 molecules and also one of basic quencher of excited components in MLT region. The airglow emission in 1.27 µm IR Atm(0 - 0) band from [O2(a1Δg, v=0)] has been used as a proxy for [O3] in MLT for over a decade. However, lifetime of O2(a1Δg, v=0) is more than 1 hour, therefore this method is not suitable for detecting of relatively rapid [O3] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The aim of this study is revealing of proxies for retrievals of [O(3P)] and [O3]. In the framework of developed model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in MLT of the Earth (model YM-2011) [1] we consider the photolysis of O2 in the Schumann-Runge continuum and Lyaman-A H atom and of O3 in Hartley band and for excited products of photolysis ( O2(a1Δg, v=0 - 5), O2(b1Σ+g, v=0, 1, 2) and excited oxygen atom O(1D)) we took into account more than 60 aeronomical reactions of photoexcitation and deexcitation by energy transfer between the excited levels and of quenching of the levels in collisions with O(3P) O2, N2, O(3P), O3, CO2. We tested 5 excited components, namely, O2(b1Σ+g, v=0, 1, 2), O2(a1Δg, v=0 - 5) and O(1D) as the O(3P) and O3 proxies. The total system of kinetic equations for 10 components has been solved and altitude profiles of concentrations of O(1D), O2(b1Σ+g, v=0, 1, 2), and O2(a1Δg, v=0 - 5) have been calculated. To compare characteristics of assumed proxies we used sensitivity analysis of the proxy concentrations altitude profiles to variations of [O3] and

  15. Electron emission spectra of thermal collisions of He metastable atoms with Au(111) and Pt(111) surfaces: Evidence for Penning ionization

    SciTech Connect

    Masuda, S.; Sasaki, K.; Sogo, M.; Aoki, M.; Morikawa, Y.

    2009-10-15

    Electron emission spectra obtained by thermal collisions of He*(2{sup 1}S and 2{sup 3}S) atoms with Au(111) and Pt(111) surfaces were measured to clarify the electronically excited atom-metal interactions. It has been recognized that the metastable atoms de-excite on ordinary noble- and transition-metal surfaces via resonance ionization (RI) followed by Auger neutralization (AN) without no indication of Penning ionization (PI). Our data show that this traditional criterion partially breaks down in the He*-Au(111) collision system. The local electronic states near the surface were examined by first-principles calculations using density functional theory. It reveals that the itinerant sp states are significantly spilled out toward the vacuum compared to the localized 5d states, and their asymptotic features play a crucial role in determining the branching ratio between PI and RI+AN.

  16. The study on air pollution with nickel and vanadium in Croatia by using moss biomonitoring and ICP-AES.

    PubMed

    Vučković, Ivana; Špirić, Zdravko; Stafilov, Trajče; Kušan, Vladimir; Bačeva, Katerina

    2013-10-01

    Moss samples were collected from 121 sampling sites all over Croatia during the summer and autumn of 2010. They were totally digested by using microwave digestion system and analysed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). Descriptive statistics and maps of distribution were made. The data obtained in this study were compared with those from the study in 2006 and additionally with the data obtained in the similar studies in neighbouring countries and Norway as pristine area. The median value of nickel is 3.16 mg kg(-1) and the content varies from 1.04 to 14.66 mg kg(-1). The content of vanadium ranges between 0.23 and 37.26 mg kg(-1) with the median value of 2.55 mg kg(-1). High contents of these elements are found in the vicinity of Rijeka, Zagreb and Sisak as a result of their emission from oil refinery, thermal power plant and industrial processes. PMID:23884171

  17. The study on air pollution with nickel and vanadium in Croatia by using moss biomonitoring and ICP-AES.

    PubMed

    Vučković, Ivana; Špirić, Zdravko; Stafilov, Trajče; Kušan, Vladimir; Bačeva, Katerina

    2013-10-01

    Moss samples were collected from 121 sampling sites all over Croatia during the summer and autumn of 2010. They were totally digested by using microwave digestion system and analysed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). Descriptive statistics and maps of distribution were made. The data obtained in this study were compared with those from the study in 2006 and additionally with the data obtained in the similar studies in neighbouring countries and Norway as pristine area. The median value of nickel is 3.16 mg kg(-1) and the content varies from 1.04 to 14.66 mg kg(-1). The content of vanadium ranges between 0.23 and 37.26 mg kg(-1) with the median value of 2.55 mg kg(-1). High contents of these elements are found in the vicinity of Rijeka, Zagreb and Sisak as a result of their emission from oil refinery, thermal power plant and industrial processes.

  18. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  19. Mobile fiber optic emission spectrograph

    SciTech Connect

    Spencer, W.A.; Coleman, C.J.; McCarty, J.E.; Beck, R.S.

    1997-05-01

    Technical Assistance Request HLW/DWPF-TAR-970064 asked SRTC to evaluate the use of a fiber optic coupled emission spectrometer. The spectrometer would provide additional ICP analyses in the DWPF laboratory.

  20. Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission

    SciTech Connect

    Tanabe, Takehiko; Odagiri, Takeshi; Nakano, Motoyoshi; Kumagai, Yoshiaki; Kitajima, Masashi; Kouchi, Noriyuki; Suzuki, Isao H.

    2010-10-15

    We have measured the coincidence time spectra of two Lyman-{alpha} photons emitted by a pair of H(2p) atoms in the photodissociation of H{sub 2} at the incident photon energy of 33.66 eV and at the hydrogen gas pressures of 0.40 and 0.02 Pa. The decay time constant at 0.02 Pa is approximately half the lifetime of a single H(2p) atom, 1.60 ns, while the decay time constant at 0.40 Pa is in agreement with the lifetime of a single H(2p) atom. It turns out that the decay faster than the lifetime of a single H(2p) atom originates from the entanglement in the pair of H(2p) atoms. We have demonstrated an effect of entanglement on atomic decay.

  1. TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis.

    PubMed

    Contado, Catia; Pagnoni, Antonella

    2008-10-01

    A new method for determining the size of titanium dioxide particles is proposed and assayed in a commercial sunscreen product. Today many sun protection cosmetics incorporate physical UV filters as active ingredients, and there are no official methods for determining these compounds in sunscreen cosmetics. Here flow field-flow fractionation (FlFFF) has been tested, first to sort two different types of TiO2 nano- and microstandard materials (AeroxideTiO2 Degussa P-25 and TiO2 rutile 0.1-0.2-microm size) and then to fractionate TiO2 particles, extracted from a commercial sunscreen lotion. All the TiO2 FlFFF separations were detected by UV but during elution fractions were collected and their Ti content measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES); the Ti concentration profiles obtained by ICP-AES were well correlated with the UV signals. The TiO2 particle mass-size distribution were calculated from the UV profiles. This methodology is relatively simple and rapid, and the sample treatment is as a whole easy and low cost.

  2. Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition.

    PubMed

    Chang, Yuan-Ming; Shieh, Jiann; Chu, Pei-Yuan; Lee, Hsin-Yi; Lin, Chih-Ming; Juang, Jenh-Yih

    2011-11-01

    Room-temperature ultraviolet (UV) luminescence was investigated for the atomic layer deposited ZnO films grown on silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma. For films deposited at 200 °C, an intensive UV emission corresponding to free-exciton recombination (~3.31 eV) was observed with a nearly complete suppression of the defect-associated broad visible range emission peak. On the other hand, for ZnO films grown at 25 °C, albeit the appearance of the defect-associated visible emission, the UV emission peak was observed to shift by ~60 meV to near the direct band edge (3.37 eV) recombination emission. The high-resolution transmission electron microscopy (HRTEM) showed that the ZnO films obtained at 25 °C were consisting of ZnO nanocrystals with a mean radius of 2 nm embedded in a largely amorphous matrix. Because the Bohr radius of free-exictons in bulk ZnO is ~2.3 nm, the size confinement effect may have occurred and resulted in the observed direct band edge electron-hole recombination. Additionally, the results also demonstrate order of magnitude enhancement in emission efficiency for the ZnO/Si-NP structure, as compared to that of ZnO directly deposited on Si substrate under the same conditions.

  3. Multi-Window Classical Least Squares Multivariate Calibration Methods for Quantitative ICP-AES Analyses

    SciTech Connect

    CHAMBERS,WILLIAM B.; HAALAND,DAVID M.; KEENAN,MICHAEL R.; MELGAARD,DAVID K.

    1999-10-01

    The advent of inductively coupled plasma-atomic emission spectrometers (ICP-AES) equipped with charge-coupled-device (CCD) detector arrays allows the application of multivariate calibration methods to the quantitative analysis of spectral data. We have applied classical least squares (CLS) methods to the analysis of a variety of samples containing up to 12 elements plus an internal standard. The elements included in the calibration models were Ag, Al, As, Au, Cd, Cr, Cu, Fe, Ni, Pb, Pd, and Se. By performing the CLS analysis separately in each of 46 spectral windows and by pooling the CLS concentration results for each element in all windows in a statistically efficient manner, we have been able to significantly improve the accuracy and precision of the ICP-AES analyses relative to the univariate and single-window multivariate methods supplied with the spectrometer. This new multi-window CLS (MWCLS) approach simplifies the analyses by providing a single concentration determination for each element from all spectral windows. Thus, the analyst does not have to perform the tedious task of reviewing the results from each window in an attempt to decide the correct value among discrepant analyses in one or more windows for each element. Furthermore, it is not necessary to construct a spectral correction model for each window prior to calibration and analysis: When one or more interfering elements was present, the new MWCLS method was able to reduce prediction errors for a selected analyte by more than 2 orders of magnitude compared to the worst case single-window multivariate and univariate predictions. The MWCLS detection limits in the presence of multiple interferences are 15 rig/g (i.e., 15 ppb) or better for each element. In addition, errors with the new method are only slightly inflated when only a single target element is included in the calibration (i.e., knowledge of all other elements is excluded during calibration). The MWCLS method is found to be vastly

  4. QED Theory of Radiation Emission and Absorption Lines for Atoms and Ions in a Strong Laser Field

    SciTech Connect

    Glushkov, A. V.

    2008-10-22

    The results of numerical calculating the multi-photon resonance shift and width for transition 6S-6F in the atom of Cs (wavelength 1059nm) in a laser pulse of the Gaussian and soliton-like shapes are presented. QED theory of radiation atomic lines is used.

  5. Isotopic ratio measurements with ICP-MS

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1986-06-03

    An inductively-coupled-plasma source mass spectrometer (ICP-MS) has been used to measure the isotopic composition of U, Pb, Os, and B standards. Particular emphasis has been placed on uranium because of its nuclear and environmental interest and because of the availability of a well-characterized set of standards with a wide range of isotopic compositions. The precision and accuracy obtainable in isotope ratio measurements by ICP-MS depend on many factors including background, interferences, dead time, mass fractionation (bias), abundance sensitivity, and counting statistics. Which, if any, of these factors controls accuracy and precision depends on the type of sample being analyzed and the characteristics of the mass spectrometer. These issues are discussed in detail.

  6. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  7. Spectra, Emission Yields, Cross Sections, and Kinetic Energy Distributions of Hydrogen Atoms from H2 X 1Eg+-d 3IIu Excitation by Electron Impact

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Johnson, Paul V.; Malone, Charles P.; Ajello, Joseph M.

    2016-02-01

    Electron-impact excitation of H2 triplet states plays an important role in the heating of outer planet upper thermospheres. The {d}3{{{\\Pi }}}u state is the third ungerade triplet state, and the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ emission is the largest cascade channel for the a{}3{{{Σ }}}g+ state. Accurate energies of the d{}3{{{\\Pi }}}u-(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the {d}3{{{\\Pi }}}u(v, J) levels are obtained by an accurate evaluation of the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ spectra at 20 eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the {X}1{{{Σ }}}g+-{d}3{{{\\Pi }}}u excitation, and significant cascade excitation occurs at the {d}3{{{\\Pi }}}u(v = 0,1) levels. Kinetic energy (Ek) distributions of H atoms produced via predissociation of the {d}3{{{\\Pi }}}u state and the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ cascade dissociative emission are obtained. Predissociation of the {d}3{{{\\Pi }}}u state produces H atoms with an average Ek of 2.3 ± 0.4 eV/atom, while the Ek distribution of the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ channel is similar to that of the {X}1{{{Σ }}}g+-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ channel and produces H(1s) atoms with an average Ek of 1.15 ± 0.05 eV/atom. On average, each H2 excited to the {d}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits 3.3 ± 0.4 eV into the atmosphere, while each H2 directly excited to the a{}3{{{Σ }}}g+ state gives 2.2-2.3 eV to the atmosphere. The spectral distribution of the calculated a{}3{{{Σ }}}g+ -b{}3{{{Σ }}}u+ continuum emission due to the {X}1{{{Σ }}}g+-{d}3{{{\\Pi }}}u excitation is significantly different from

  8. HERSCHEL KEY PROGRAM, ''DUST, ICE, AND GAS IN TIME'' (DIGIT): THE ORIGIN OF MOLECULAR AND ATOMIC EMISSION IN LOW-MASS PROTOSTARS IN TAURUS

    SciTech Connect

    Lee, Jeong-Eun; Lee, Seokho; Lee, Jinhee; Evans II, Neal J.; Green, Joel D.

    2014-10-01

    Six low-mass embedded sources (L1489, L1551-IRS5, TMR1, TMC1-A, L1527, and TMC1) in Taurus have been observed with Herschel-PACS to cover the full spectrum from 50 to 210 μm as part of the Herschel key program, ''Dust, Ice, and Gas In Time''. The relatively low intensity of the interstellar radiation field surrounding Taurus minimizes contamination of the [C II] emission associated with the sources by diffuse emission from the cloud surface, allowing study of the [C II] emission from the source. In several sources, the [C II] emission is distributed along the outflow, as is the [O I] emission. The atomic line luminosities correlate well with each other, as do the molecular lines, but the atomic and molecular lines correlate poorly. The relative contribution of CO to the total gas cooling is constant at ∼30%, while the cooling fraction by H{sub 2}O varies from source to source, suggesting different shock properties resulting in different photodissociation levels of H{sub 2}O. The gas with a power-law temperature distribution with a moderately high density can reproduce the observed CO fluxes, indicative of CO close to LTE. However, H{sub 2}O is mostly subthermally excited. L1551-IRS5 is the most luminous source (Ł{sub bol} = 24.5 L {sub ☉}) and the [O I] 63.1 μm line accounts for more than 70% of its FIR line luminosity, suggesting complete photodissociation of H{sub 2}O by a J shock. In L1551-IRS5, the central velocity shifts of the [O I] line, which exceed the wavelength calibration uncertainty (∼70 km s{sup –1}) of PACS, are consistent with the known redshifted and blueshifted outflow direction.

  9. Herschel Key Program, "Dust, Ice, and Gas In Time" (DIGIT): The Origin of Molecular and Atomic Emission in Low-mass Protostars in Taurus

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Lee, Jinhee; Lee, Seokho; Evans, Neal J., II; Green, Joel D.

    2014-10-01

    Six low-mass embedded sources (L1489, L1551-IRS5, TMR1, TMC1-A, L1527, and TMC1) in Taurus have been observed with Herschel-PACS to cover the full spectrum from 50 to 210 μm as part of the Herschel key program, "Dust, Ice, and Gas In Time." The relatively low intensity of the interstellar radiation field surrounding Taurus minimizes contamination of the [C II] emission associated with the sources by diffuse emission from the cloud surface, allowing study of the [C II] emission from the source. In several sources, the [C II] emission is distributed along the outflow, as is the [O I] emission. The atomic line luminosities correlate well with each other, as do the molecular lines, but the atomic and molecular lines correlate poorly. The relative contribution of CO to the total gas cooling is constant at ~30%, while the cooling fraction by H2O varies from source to source, suggesting different shock properties resulting in different photodissociation levels of H2O. The gas with a power-law temperature distribution with a moderately high density can reproduce the observed CO fluxes, indicative of CO close to LTE. However, H2O is mostly subthermally excited. L1551-IRS5 is the most luminous source (Łbol = 24.5 L ⊙) and the [O I] 63.1 μm line accounts for more than 70% of its FIR line luminosity, suggesting complete photodissociation of H2O by a J shock. In L1551-IRS5, the central velocity shifts of the [O I] line, which exceed the wavelength calibration uncertainty (~70 km s-1) of PACS, are consistent with the known redshifted and blueshifted outflow direction.

  10. Determination of impurities in thoria (ThO 2) using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Alamelu, Devanathan; Choudhary, Ashwini Kumar; Aggarwal, Suresh Kumar

    2010-11-01

    Elemental impurities in nuclear grade thoria were determined using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) employing ArF laser (20 ns, 193 nm, 20 Hz). Three certified standards of thoria, prepared in the Department of Atomic Energy (DAE), India were used for this work. Magnesium was used as an internal standard for quantification in view of its addition during fuel fabrication. The concentrations determined for 16 different elements (Al, B, Cd, Ce, Cu, Dy, Er, Eu, Fe, Gd, Mg, Mn, Mo, Ni, Sb, Sm and V), spanning four orders of magnitude, were within 20% of the certified values in the standards. The methodology is of interest to reduce the analytical effort with regard to dissolution of thoria samples, avoid the production of radioactive liquid waste streams and relatively simple mass spectrum as compared to complex emission spectra in atomic emission spectroscopy (AES) and laser induced breakdown spectroscopy (LIBS). The development and validation of analytical methodologies based on independent physico-chemical principles is of great relevance to characterize the in-house prepared working standards for routine applications.

  11. Geochemical applications of the tandem LA-ICP-MS/LIBS analytical technique

    NASA Astrophysics Data System (ADS)

    Guitreau, M.; Gonzalez, J. J.; Mukasa, S. B.; Colucci, M. T.

    2013-12-01

    Improvements in Laser Ablation for material sampling over the past few decades have led to the emergence of several applications of this in-situ technique to some important geochemical measurements. The technique is commonly used for both elemental [1] and isotopic analyses [2], and has multiple advantages compared to dissolution techniques, notably higher spatial resolution, easier and faster sample preparation, and for many applications a non-destructive method. A significant advantage of this technique in geochemistry is full characterization of a sample (e.g., glass or mineral) using a single spot of limited size (i.e., 20-80 μm) to eliminate or minimize complexities due to potential chemical zonations. Major advancement is being realized in the analysis of volcanic glasses for their elemental and volatile concentrations as well as zircon elemental and U-Pb isotopic compositions using a new approach that combines the capabilities of the two most common laser ablation modalities; LA-ICP-MS/LIBS, which stands for Laser Ablation Inductively Coupled Plasma Mass Spectrometry/Laser Induced Breakdown Spectroscopy. LIBS is based on direct measurement of the optical emission originating from the laser-induced plasma [3] whereas LA-ICP-MS involves transport and excitation of the ablated aerosol to a secondary source (ICP), before entering a mass spectrometer [4]. Analysis by these two techniques can complement each other quite well, as every laser pulse for ablation provides the optical plasma for emission spectroscopy and particles for ICP mass spectrometry. We will present data demonstrating that rare-earth element (REE) concentrations can be determined using LIBS in both zircon and volcanic glasses. In addition, we have promising, provisional hydrogen concentration data measured concurrently with the REE in volcanic glasses, which is not possible using only LA-ICP-MS.

  12. Fundamental properties of an ICP with a graphite torch injector

    SciTech Connect

    Clemons, P.S.; Houk, R.S.; Praphairakisit, N.

    1996-09-01

    A hollow graphite torch injector can be used to constrict the analyte zone in an ICP. From a practical standpoint, oxide levels can be reduced to 0.01% for the signal ratio LaO{sup +}/La{sup +} and analyte signals increased by factors of three to fifteen, depending on the element. This paper reports recent measurements of background mass spectra, temperature and electron density in the plasma flowing into the sampler using a graphite torch injector. The graphite injector improves BEC values for most analytes that suffer interference from prominent polyatomic ions like ArO{sup +}, ClO{sup +}, and ArCl{sup +}. One notable exception is ArC{sup +}, which is substantially worse because of the high level of carbon injected into the plasma. Carbon evaporation rates of 1x10{sup 17} to 5x10{sup 17} atoms/s have been measured, the actual values depending on the grade of graphite used. This is sufficient carbon for C{sup +} to become a major background ion and for formation of CO to help reduce the level of O atoms in the plasma. Charge transfer reactions from C{sup +} to neutral As and Se help enhance the sensitivity for these important elements. Doubly charged ions are somewhat more abundant with the graphite injector than with a conventional torch, because a hotter region of the plasma is sampled with the graphite injector.

  13. Non-local-thermodynamical-equilibrium effects in the x-ray emission of radiatively heated materials of different atomic numbers

    NASA Astrophysics Data System (ADS)

    Földes, I. B.; Eidmann, K.; Veres, G.; Bakos, J. S.; Witte, K.

    2001-07-01

    X-ray self-emission of radiatively heated materials with different values of Z has been investigated. Thin foils were uniformly heated by a 120-eV Hohlraum radiation of 400-ps duration in order to study the self-emission of a homogeneous, optically thin material. The x-ray emission spectra were followed for more than 2 ns. The spectrally integrated emission shows not only a strong Z dependence, but different temporal behaviors for different values of Z. The lower is the value of Z of the x-ray heated matter, the longer is the duration of self-emission. Theoretical comparison with a hydrocode and FLY post-processing shows a non-local-thermal equilibrium behavior caused by direct photoionization due to the thermal pumping radiation, which has a higher brightness temperature than the matter temperature of the heated material.

  14. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  15. [Determination of Mineral Elements in Choerospondias Axillaris and Its Extractives by ICP-AES].

    PubMed

    Zhai, Yu-xin; Chen, Jun; Li, Ti; Liu, Ji-yan; Wang, Xie-yi; Cheng, Chao; Liu, Cheng-mei

    2015-04-01

    Nine elements in Choerospondias axillaris flesh, peels, aqueous extractives and gastric digesta were determined by the inductively coupled plasma atomic emission spectrometry (ICP-AES) in the present study. The results showed that the contents of Fe, Ca, Zn, Mn, Al, Mg, Cu, K and P in the flesh were 27.37, 269.88, 1.51, 2.45, 1.95, 195.30, 2.45, 2,970.11, and 133.94 µg · g(-1), respectively. They are lower than that in the peels, about 40.31%, 11.70%, 21.68%, 4.27%, 10.58%, 15.76%, 68.72%, 42.04%, and 22.59%, respectively. For microwave assistant extraction, the release rate of Mn was highest (81.68%), while Fe was lowest (4.42%) in the flesh. The release rate of Zn was the highest (79.00%), while that of A1 was the lowest (4.94%) in the peels. Except Fe, Cu and Zn, the release rates of the other elements in flesh were higher than those in the peels. After gastric digestion, the release rates of nine elements were 3.25%-87.51% in the flesh and 7.11%-50.69% in the peels. The release rates of minerals in the flesh were found to be higher than those in the peels except Fe and Cu. Microwave assistant extraction can more efficiently release Fe, Ca, Mn, Mg and K from the flesh than the gastric digestion do. While gastric digestion had a significant effect on the peels, the release rates of elements, except Zn, were higher than those in microwave assistant extraction. Therefore, the difference of distribution and release of mineral elements between peels and flesh of Choerospondias axillaris was understood, which will provide a positive guide for further study of bioavailability of minerals for human body.

  16. [Determination of nano-silver spatiotemporal distribution in cut gerbera flowers by ICP-AES].

    PubMed

    Lü, Pei-Tao; Huang, Xin-Min; Lu, Yi-Min; Liu, Ji-Ping; Zhang, Zhao-Qi; He, Sheng-Gen

    2011-08-01

    The spatiotemporal distribution of nano-silver in cut gerbera (Gerbera hybrida cv. Crossfire) flowers were determined by inductively coupled plasma-atomic emission spectrometry technique (ICP-AES). The relative standard deviations of this method were between 0.14% and 2.89%, and the recovery ratio obtained by standard addition method ranged from 93.33% to 106.67%. The method was proved to be simple, rapid, reliable and highly sensitive, which can meet the demands of actual sample analysis. The experimental results also showed that Ag could be found in the basal stem end, upper stem end and petal of the cut gerbera flowers treated in nano-silver solution of 5 mg x L(-1) for 24 h and thereafter placed in distilled water. However, the Ag content in basal stem ends was much higher than those in upper stem ends and petals. The results indicated that nano-silver particles could enter into the flower stems through the cuts of stem ends and then moved to different parts of the cut gerbera flowers, but most of them located in the basal stem ends during the vase period. The fact that Ag was centred in basal stem end implied that the positive preservation effects of nano-silver on cut gerbera flowers is related to its strong and sustainable antiseptic action in the stem ends of cut flowers. The above results provide a reliable method for the determination of nano-silver and theoretical basis for its futher research and application in the preservation of cut flowers.

  17. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry.

    PubMed

    Bentlin, Fabrina R S; Pozebon, Dirce; Mello, Paola A; Flores, Erico M M

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO3)2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 microg g(-1) of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES).

  18. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.

    PubMed

    Sawada, Hidetaka; Tanishiro, Yasumasa; Ohashi, Nobuhiro; Tomita, Takeshi; Hosokawa, Fumio; Kaneyama, Toshikatsu; Kondo, Yukihito; Takayanagi, Kunio

    2009-12-01

    A spherical aberration-corrected electron microscope has been developed recently, which is equipped with a 300-kV cold field emission gun and an objective lens of a small chromatic aberration coefficient. A dumbbell image of 47 pm spacing, corresponding to a pair of atomic columns of germanium aligned along the [114] direction, is resolved in high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) with a 0.4-eV energy spread of the electron beam. The observed image was compared with a simulated image obtained by dynamical calculation.

  19. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples. PMID:18964076

  20. Measurement of the helium 23S metastable atom density by observation of the change in the 23S-23P emission line shape due to radiation reabsorption

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Ogane, S.; Iida, Y.; Hasuo, M.

    2016-01-01

    In helium discharge plasmas, the relative emission intensities of the fine-structure transitions belonging to the HeI 23S-23P transition can be affected by radiation reabsorption. Since the magnitude of the reabsorption depends on the density and temperature of the 23S metastable atoms, their density can be determined by measuring the 23S-23P emission line shape using a high wavelength-resolution spectrometer. In this study, the applicable conditions of the method in terms of the opacity and line broadening are revealed, and possible causes of errors in the measurement, i.e. spatial distributions of the density and temperature and the effects of external magnetic and electric fields, are investigated. The effect of reabsorption under an external magnetic field is experimentally confirmed using a glow discharge plasma installed in a superconducting magnet.

  1. Retrieval algorithm for densities of mesospheric and lower thermospheric metal atom and ion species from satellite-borne limb emission signals

    NASA Astrophysics Data System (ADS)

    Langowski, M.; Sinnhuber, M.; Aikin, A. C.; von Savigny, C.; Burrows, J. P.

    2014-01-01

    Meteoroids bombard Earth's atmosphere during its orbit around the Sun, depositing a highly varying and significant amount of matter into the thermosphere and mesosphere. The strength of the material source needs to be characterized and its impact on atmospheric chemistry assessed. In this study an algorithm for the retrieval of metal atom and ion number densities for a two-dimensional (latitude, altitude) grid is described and explained. Dayglow emission spectra of the mesosphere and lower thermosphere are used, which are obtained by passive satellite remote sensing with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on board Envisat. The limb scans cover the tangent altitude range from 50 to 150 km. Metal atoms and ions are strong emitters in this region and form sharply peaked layers with a FWHM (full width at half maximum) of several 10 km in the mesosphere and lower thermosphere measuring peak altitudes between 90 to 110 km. The emission signal is first separated from the background signal, arising from Rayleigh and Raman scattering of solar radiation by air molecules. A forward radiative transfer model calculating the slant column density (SCD) from a given vertical distribution was developed. This nonlinear model is inverted in an iterative procedure to yield the vertical profiles for the emitting species. Several constraints are applied to the solution for numerical stability reasons and to get physically reasonable solutions. The algorithm is applied to SCIAMACHY limb-emission observations for the retrieval of Mg and Mg+ using emission signatures at 285.2 and 279.6/280.4 nm, respectively. Results are presented for these three lines as well as error estimations and sensitivity tests on different constraint strength and different separation approaches for the background signal.

  2. Application of ICP-OES for Evaluating Energy Extraction and Production Wastewater Discharge Impacts on Surface Waters in Western Pennsylvania

    EPA Science Inventory

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) w...

  3. Microfabricated hollow microneedle array using ICP etcher

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  4. Elemental Analysis and Comparison of Bulk Soil Using LA-ICP-MS and LIBS methods

    NASA Astrophysics Data System (ADS)

    Almirall, J.

    2012-04-01

    . Results for both LA-ICP-MS and µXRF were generally consistent for most elements, resulting in good intra-laboratory precision (< 8 % RSD for LA-ICP-MS; < 20 % RSD for µXRF) and low bias (< 10% for LA-ICP-MS; < 35 % for µXRF), which are important characteristics for forensic comparison of soils. Linear calibration curves were also obtained for both µXRF and LIBS. Results for LIBS showed good precision (< 15 %) and bias (< 15 %) for most elements. Limits of detection for trace and minor elements were in the 0.01 - 1 ppm range for LA-ICP-MS and 1 to 200 ppm for LIBS. Finally, the results of a study comparing the bulk elemental composition from soil collected in different locations in Florida and in Canada for the purposes of providing forensic information as part of a broader forensic examination of soil samples are also reported. 1. L Arroyo, T Trejos, P.R. Gardinali, and J.R. Almirall, Optimization and Validation of a LA-ICP-MS Method for the Quantitative Analysis of Soils and Sediments, Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1), 14-25. 2. L Arroyo, T Trejos, T Hosick, S Machemer, JR. Almirall, and PR Gardinali, Analysis of Soils and Sediments by Laser Ablation ICP-MS: An Innovative Tool for Environmental Forensics, J. of Environmental Forensics, 2010, 11(4), 315-327. 3. SC Jantzi and JR. Almirall, Characterization and forensic analysis of soil samples using Laser-Induced Breakdown Spectroscopy (LIBS), Analytical and Bioanalyt. Chem, 2011, 400(10) 3341-3351.

  5. Determination of ammonium and organic bound nitrogen by inductively coupled plasma emission spectroscopy.

    PubMed

    Jaber, A M Y; Mehanna, N A; Sultan, S M

    2009-06-15

    The continuous flow sample introduction technique with a hydride generator system in conjunction with an inductively coupled plasma emission spectrometer (ICP-AES-HG), is used in this study for quantitative determination of ammonium and organic bound nitrogen in aqueous and solid samples. Ammonia vapor released from ammonium salt after treatment with concentrated NaOH is transferred by argon to plasma for detection at 174.273 nm using axial argon plasma mode. The calibration curves were linear within a range of 25-1000 mg L(-1)N as ammonium molybdate with correlation coefficients of better than 0.99 and limits of detection of about 10-25mg L(-1)N. The percent recovery of N (25-500 mg L(-1)N) in soft (distilled) water and high salt content (1.7 mol L(-1) NaCl) matrices was found to be in the range of about 97-102% with %RSD in the range of 4.6-0.62. The sensitivity, limit of detection, and blank contribution from the atmospheric nitrogen, were tremendously improved in this method compared with the available ICP-AES spray chamber counterpart. Furthermore, the ICP-AES-HG method gave results for real samples (soil, fertilizer, waste water) containing about 50-1800 mg L(-1)N in good agreement with those obtained by the standard Kjeldahl method. No statistical differences at the 95% confidence level on applying the t-test were observed between the values obtained by the two methods. Thus, the ICP-AES-HG method is reliable and faster than the conventional tedious Kjeldahl method, superior to the ICP-AES spray chamber method, and almost free from matrix interference which is usually a critical factor in atomic emission spectroscopic techniques.

  6. [Determination of trace elements in Mongolian medicine Susi-12 curing cholecystitis and gallstone disease by ICP-AES].

    PubMed

    E, Er-Deng-sang; Hang, Gai-ba-te-re; Ba, Tu; Duan, Yi-wen

    2009-04-01

    Trace elements in Mongolian medicine Susi-12 for cholecystitis and gallstones were analyzed in order to discuss the relation between Susi-12's drug action and the trace elements. The analysis was carried out using the pressure seal microwave digestion and inductive coupled plasma atomic emission spectrometry (ICP-AES). It was found that the medicine contained great amount of trace elements, especially human-body-needed trace elements, such as Ca, Al, Mg, Fe, Sr, Mn, Zn, Cu etc., whereas heavy metals are very little, e.g. the contents of Pb, Cb, As etc are below the country's limit. The recoveries of standard addition are in the range of 94.63%-106.40%. The relative standard deviation RSD< or =3.35%, and detection limit is < or =0.009 mg x L(-1). It is concluded that Mongolian medicine Susi-12 can effectively control and cure cholecystitis and gallstones, and the effective rate reaches 91.2% to 100%. So the trace elements in Susi-12 must have a close connection with the drug action. PMID:19626913

  7. [Determination of trace elements in Mongolian medicine Susi-12 curing cholecystitis and gallstone disease by ICP-AES].

    PubMed

    E, Er-Deng-sang; Hang, Gai-ba-te-re; Ba, Tu; Duan, Yi-wen

    2009-04-01

    Trace elements in Mongolian medicine Susi-12 for cholecystitis and gallstones were analyzed in order to discuss the relation between Susi-12's drug action and the trace elements. The analysis was carried out using the pressure seal microwave digestion and inductive coupled plasma atomic emission spectrometry (ICP-AES). It was found that the medicine contained great amount of trace elements, especially human-body-needed trace elements, such as Ca, Al, Mg, Fe, Sr, Mn, Zn, Cu etc., whereas heavy metals are very little, e.g. the contents of Pb, Cb, As etc are below the country's limit. The recoveries of standard addition are in the range of 94.63%-106.40%. The relative standard deviation RSD< or =3.35%, and detection limit is < or =0.009 mg x L(-1). It is concluded that Mongolian medicine Susi-12 can effectively control and cure cholecystitis and gallstones, and the effective rate reaches 91.2% to 100%. So the trace elements in Susi-12 must have a close connection with the drug action.

  8. Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission

    NASA Astrophysics Data System (ADS)

    Pichler, H.; Daley, A. J.; Zoller, P.

    2010-12-01

    We analyze in detail the heating of bosonic atoms in an optical lattice due to incoherent scattering of light from the lasers forming the lattice. Because atoms scattered into higher bands do not thermalize on the time scale of typical experiments, this process cannot be described by the total energy increase in the system alone (which is determined by single-particle effects). The heating instead involves an important interplay between the atomic physics of the heating process and the many-body physics of the state. We characterize the effects on many-body states for various system parameters, where we observe important differences in the heating for strongly and weakly interacting regimes, as well as a strong dependence on the sign of the laser detuning from the excited atomic state. We compute heating rates and changes to characteristic correlation functions based on both perturbation-theory calculations and a time-dependent calculation of the dissipative many-body dynamics. The latter is made possible for one-dimensional systems by combining time-dependent density-matrix-renormalization-group methods with quantum trajectory techniques.

  9. Coherently controlled emissions |4P3/2,1/2> ↔ |4S1/2> from a femtosecond Λ-type excitation scheme in potassium atom

    NASA Astrophysics Data System (ADS)

    Pentaris, D.; Damianos, D.; Papademetriou, G.; Lyras, A.; Steponkevičius, K.; Vaičaitis, V.; Efthimiopoulos, T.

    2016-07-01

    The combined excitation of high density potassium (K) vapour by 100 fs pump-coupling pulses is experimentally studied. The intense pump pulse excites the two-photon ? transition and internally generated emissions are initiated along the atomic paths: ? (path-1) and, ? (path-2). The temporally delayed coupling pulse coherently drives the ? transitions, in a Λ-type excitation scheme. The competing axial and conical emission components of the well-resolved ? transitions (D2 and D1 lines of K) are substantially enhanced and controlled, for appropriate detunings and pump-coupling temporal delays. The coherence relaxation time (CRT) of the two-photon excited ? state is determined by exploiting the temporal delay in the pulse sequence. The effect of the pulse delay and the fs pulse bandwidth on the system dynamics is discussed as well as the role of dephasing collisions between K and buffer gas atoms. The proposed scheme can be employed in radiative multi-level systems, for the direct estimation of coherence relaxation rates of various states.

  10. Native defects affecting the Li atom distribution tune the optical emission of ZnO:Li epitaxial thin film

    SciTech Connect

    Sahu, R.; Dileep, K.; Loukya, B.; Datta, R.

    2014-02-03

    It is found that the oxygen vacancy (V{sub O}) defect concentration affecting the separation between individual species in Li{sub Zn}-Li{sub i} complex influences the optical emission property of Li{sub 0.06}Zn{sub 0.94}O epitaxial thin film grown by pulsed laser deposition. The film grown under low oxygen partial pressure (n-type conductivity)/higher partial pressure (resistive-type) has broad emission at ∼2.99 eV/∼2.1 eV and a narrower emission at 3.63 eV/3.56 eV, respectively. First principle based mBJLDA electronic structure calculation suggests that the emission at 2.99 eV is due to the Li{sub Zn}-Li{sub i} pair complex and the emission at 2.1 eV is when the component species are away from each other.

  11. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.

    PubMed

    Idris, Nasrullah; Terai, Sumito; Lie, Tjung Jie; Kurniawan, Hendrik; Kobayashi, Takao; Maruyama, Tadashi; Kagawa, Kiichiro

    2005-01-01

    Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.

  12. [Simultaneous Determination of Sn and S in Methyltin Mercaptide by Microwave-Assisted Acid Digestion and ICP-OES].

    PubMed

    Chen, Qian; Wu, Xi; Hou, Xian-deng; Xu, Kai-lai

    2015-09-01

    Methyltin mercaptide is widely used as one of the best heat stabilizer in the polyvinylchloride (PVC) thermal processing due to its excellent stability, good transparency, high compatibility and weather resistance. The content of sulfur and tin significantly affects its quality and performance, so it is of great significance to develop an analytical method for the simultaneous determination of sulfur and tin. Inductively coupled plasma atomic emission spectrometry (ICP-OES) has been a powerful analytical tool for a myriad of complex samples owing to its advantages of the low detection limits, rapid and precise determinations over wide dynamic ranges, freedom from chemical inter-element interferences, the high sample throughput and above all, simultaneous multi-elements analysis. Microwave technique as a well-developed method for sample preparation can dramatically reduce the digestion time and the loss of volatile elements compared with the traditional open digestion. Hereby, a microwave-assisted acid digestion (MW-AAD) procedure followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was developed for the simultaneous determination of Sn and S in methyltin mercaptide. This method has the advantages of simplicity, rapidness, good accuracy, green and less use of samples. Parameters affecting the MW-AAD such as the digestion solution and digestion time were optimized by using a chemical analyzed reference sample (DX-181) to attain tin and sulfur quantitative recoveries. HNO3-HCl-HClO4 (v/v/v=9:3:1) and 10 min were the optimum digestion solution and digestion time, respectively. Under optimum conditions, the standard addition method and the standard calibration curve method were both been used to detect Sn and S in DX-181. There was no significant difference between two methods and the relative deviations to the chemical analysis values were both less than 2%. Additionally, the accuracy of the MW-AAD method was examined by analyzing

  13. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study

    NASA Astrophysics Data System (ADS)

    Parsons, Patrick J.; Slavin, Walter

    1999-05-01

    Results of an interlaboratory study are reported for the determination of lead in urine. Two levels of a lyophilized material containing biologically-bound lead were prepared using pooled urine obtained from lead-poisoned children undergoing the CaNa 2EDTA mobilization test. The materials were circulated to a group of reference laboratories that participate in the `New York State Proficiency Testing Program for Blood Lead'. Results of the initial round-robin gave all-method consensus target values of 145±22 μg/l (S.D.) for lot 17 and 449±43 μg/l (S.D.) for lot 20. The interlaboratory exercise was repeated some 5 years later and consensus target values were re-calculated using the grand mean (excluding outliers) of results reported by laboratories using electrothermal atomization atomic absorption spectrometry (ETAAS). The re-calculated target values were 139±10 μg/l (S.D.) and 433±12 μg/l (S.D.). The urine reference materials were also analyzed for lead by several laboratories using other instrumental techniques including isotope dilution (ID), inductively coupled plasma (ICP) mass spectrometry (MS), flame atomic absorption with extraction, ICP-atomic emission spectrometry, ID-gas chromatography MS and flow injection-hydride generation AAS, thus providing a rich source of analytical data with which to characterize them. The materials were also used in a long-term validation study of an ETAAS method developed originally for blood lead determinations that has since been used unmodified for the determination of lead in urine also. Recently, urine lead method performance has been tracked in a proficiency testing program specifically for this analysis. In addition, a number of commercial control materials have been analyzed and evaluated.

  14. Some aspects of pulsed laser deposited nanocrystalline LaB(6) film: atomic force microscopy, constant force current imaging and field emission investigations.

    PubMed

    Late, Dattatray J; Date, Kalyani S; More, Mahendra A; Misra, Pankaj; Singh, B N; Kukreja, Lalit M; Dharmadhikari, C V; Joag, Dilip S

    2008-07-01

    Nanocrystalline lanthanum hexaboride (LaB(6)) films have been deposited on molybdenum foil by the pulsed laser deposition (PLD) technique. The as-deposited films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The XRD pattern shows the cubic crystallinity of the LaB(6) film. The AFM studies reveal that the conical shaped LaB(6) nanostructures have height 60 nm, base 800 nm, and a typical radius of curvature ∼20 nm. A comparison of force and in situ current imaging AFM studies reveals that current contrast does not originate from the surface topography of the LaB(6) film. Field emission studies have been performed in the planar diode configuration. A current density of 4.4 × 10(-2) A cm(-2) is drawn from the actual emitting area. The Fowler-Nordheim plot is found to be linear, in accordance with the quantum mechanical tunneling phenomenon. The field enhancement factor is estimated to be 3585, indicating that the field emission is from LaB(6) nanocrystallites present on the emitter surface, as confirmed by the AFM. The emission current-time plots show current stability to the extent of 5% fluctuation about the average current over a period of 3 h.

  15. ICP-MS Data Analysis Software

    1999-01-14

    VG2Xl - this program reads binary data files generated by VG instrumentals inductively coupled plasma-mass spectrometers using PlasmaQuad Software Version 4.2.1 and 4.2.2 running under IBM OS/2. ICPCalc - this module is a macro for Microsoft Excel written in VBA (Virtual Basic for Applications) that performs data analysis for ICP-MS data required for nuclear materials that cannot readily be done with the vendor''s software. VG2GRAMS - This program reads binary data files generated by VGmore » instruments inductively coupled plasma mass spectrometers using PlasmaQuad software versions 4.2.1 and 4.2.2 running under IBM OS/2.« less

  16. A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry.

    PubMed

    Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J

    2011-11-01

    Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques. PMID:21573840

  17. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  18. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: a review.

    PubMed

    Barin, Juliano S; Mello, Paola A; Mesko, Marcia F; Duarte, Fabio A; Flores, Erico M M

    2016-07-01

    Interest in the determination of elemental impurities in pharmaceuticals has increased in recent years because of changes in regulatory requirements and the need for changing or updating the current limit tests recommended in pharmacopeias. Inductively coupled plasma (ICP) optical emission spectrometry and ICP mass spectrometry are suitable alternatives to perform multielemental analysis for this purpose. The main advantages and limitations of these techniques are described, covering the applications reported in the literature in the last 10 years mainly for active pharmaceutical ingredients, raw materials, and pharmaceutical dosage forms. Strategies used for sample preparation, including dissolution in aqueous or organic solvents, extraction, wet digestion and combustion methods are described, as well as direct solid analysis and ICP-based systems applied for speciation analysis. Interferences observed during the analysis of pharmaceutical products using ICP-based methods are discussed. Methods currently recommended by pharmacopeias for elemental impurities are also covered, showing that the use of ICP-based methods could be considered as a trend in the determination of these impurities in pharmaceuticals. However, the development of a general method that is accurate for all elemental impurities and the establishment of an official method are still challenges. In this regard, the main drawbacks and suitable alternatives are discussed.

  19. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2)

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2016-08-01

    We probe the room temperature photoluminescence of N -layer molybdenum ditelluride (MoTe2) in the continuous wave (cw) regime. The photoluminescence quantum yield of monolayer MoTe2 is three times larger than in bilayer MoTe2 and 40 times greater than in the bulk limit. Mono- and bilayer MoTe2 display almost symmetric emission lines at 1.10 and 1.07 eV, respectively, which predominantly arise from direct radiative recombination of the A exciton. In contrast, N ≥3 -layer MoTe2 exhibits a much reduced photoluminescence quantum yield and a broader, redshifted, and seemingly bimodal photoluminescence spectrum. The low- and high-energy contributions are attributed to emission from the indirect and direct optical band gaps, respectively. Bulk MoTe2 displays a broad emission line with a dominant contribution at 0.94 eV that is assigned to emission from the indirect optical band gap. As compared to related systems (such as MoS2,MoSe2,WS2, and WSe2), the smaller energy difference between the monolayer direct optical band gap and the bulk indirect optical band gap leads to a smoother increase of the photoluminescence quantum yield as N decreases. In addition, we study the evolution of the photoluminescence intensity in monolayer MoTe2 as a function of the exciton formation rate Wabs up to 3.6 ×1022cm-2s-1 . The line shape of the photoluminescence spectrum remains largely independent of Wabs, whereas the photoluminescence intensity grows sublinearly above Wabs˜1021cm-2s-1 . This behavior is assigned to exciton-exciton annihilation and is well captured by an elementary rate equation model.

  20. Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2016-08-01

    Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.

  1. Selection of operating conditions and analytical procedure in multi-metal analysis of animal tissues by d.c. plasma-atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Frank, Adrian; Petersson, Lars R.

    In order to expand the analytical capacity and achieve better utilization of tissue materials (liver, kidney, etc.) so as to assess the degrees of environmental pollution, a method for simultaneous determination of 14 metals (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, V, W, and Zn) has been developed by applying d.c. plasma-atomic emission spectroscopy. The analytical emission lines were chosen after considering the absence of more important interfering emission lines from elements present in the matrix, and taking into account their intensity, background, range of linearity and working range. At increasing ionic buffer concentration most metals seem to have a region of relatively little change in intensity. A 0.25 M LiNO 3 solution was chosen as ionic buffer. Optimization of plasma position to obtain maximum light intensity at each of the analytical wavelengths was studied with both single- and multi-element cassettes. The intention was to find a plasma position with satisfactory light intensity for all metals to be determined simultaneously. Spectral interferences, stray light effects included, from elements present in the matrix were investigated and linear relationships were usually found between the "false" signal contribution and the concentration of the interfering element. These signals were expressed as spectral interference correction coefficients (SICC values) on a concentration equivalent basis, viz. μ ml -1 per μ ml -1. The effect of Ca on the analytical emission lines of Al, Pb, and W was not linear in contrast to the usual relationship. Organ tissues are prepared by automated wet digestion. Transfer of sample solution from the sample tray into the plasma is performed automatically. A microcomputer is used for evaluation of metal contents in the solutions, background correction by use of SICC values, and final calculation of metal concentrations in the tissues.

  2. HSV-1 ICP0: paving the way for viral replication.

    PubMed

    Smith, Miles C; Boutell, Chris; Davido, David J

    2011-04-01

    Herpes simplex virus type 1 (HSV-1) has two distinct phases of its viral life cycle: lytic and latent. One viral immediate-early protein that is responsible for determining the balance between productive lytic replication and reactivation from latency is infected cell protein 0 (ICP0). ICP0 is a 775-amino acid really interesting new gene (RING)-finger-containing protein that possesses E3 ubiquitin ligase activity, which is required for ICP0 to activate HSV-1 gene expression, disrupt nuclear domain (ND) 10 structures, mediate the degradation of cellular proteins, and evade the host cell's intrinsic and innate antiviral defenses. This article examines our current understanding of ICP0's transactivating, E3 ubiquitin ligase, and antihost defense activities and their inter-relationships to one another. Lastly, we will discuss how these properties of ICP0 may be utilized as possible targets for HSV-1 antiviral therapies. PMID:21765858

  3. Improving the accuracy of carbon-to-hydrogen ratio determination for P, N, S, O, Cl, and Br-containing organic compounds using atomic emission detection.

    PubMed

    Chernetsova, Elena S; Revelsky, Alexander I; Durst, Dupont; Sobolevsky, Tim G; Revelsky, Igor A

    2005-05-01

    The objective of this work was to investigate the dependence of atomic emission detector C and H response on microwave-induced plasma conditions and to improve the accuracy of carbon-to-hydrogen ratio determination for trialkylphosphates, herbicides, chlorophenols, and sulfur-containing organic compounds. Compounds which differed structurally from the analytes were used as reference compounds. It was found that when the oxygen concentration in the helium was the maximum for the instrument (9%) relative errors in carbon-to-hydrogen ratio determination were 3-8%, irrespective of analyte and reference compound structure, whereas when working in the mode of operation recommended by the manufacturer of the instrument (1.5% oxygen in helium) the respective errors were 10-20% or higher. This improvement in the accuracy of carbon-to-hydrogen ratio determination was accompanied by a factor of ten decrease in sensitivity. PMID:15688154

  4. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  5. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  6. Pressure dissolution and real sample matrix calibration for multielement analysis of raw agricultural crops by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Kuennen, R.W.; Woinik, K.A.; Fricke, F.L.; Caruso, J.A.

    1982-11-01

    A method utilizing a pressure dissolution technique to minimize sample pretreatment is described for multielement analysis of raw agricultural crops by inductively coupled argon plasma atomic emission spectrometry. The procedure employs a 30-min pressure dissolution of sample composite with 6 M HCI at 80/sup 8/C in 60-mL linear polyethylene bottles. A sample introduction system is also described which permits direct atomization of complex organic matrices. Combined with a real sample matrix callbration technique, this introduction system allows rapid and accurate multielement analysis of complex HCl sample matrix solutions. The procedure compares favorably to more time-consuming conventional wet ashing methods for the determination of major, minor, and trace elements occurring in lettuce, potatoes, peanuts, soybeans, spinach, sweet corn, and wheat. Recoveries for spiked samples, precision studies, and analyses of NBS reference materials demonstrate the reliability and accuracy of the procedure. Advantages and limitations of this technique relative to conventional wet ashing methods are discussed. 2 figures, 7 tables.

  7. Thermospheric atomic oxygen concentrations from WINDII O+(2P→2D) 732 nm emission: Comparisons with the NRLMSISE-00 and C-IAM models and with GUVI observations

    NASA Astrophysics Data System (ADS)

    Shepherd, Gordon G.; Cho, Young-Min; Fomichev, Victor I.; Martynenko, Oleg V.

    2016-09-01

    Thermospheric atomic oxygen concentrations have been retrieved from observations by the Wind Imaging Interferometer (WINDII) O+(2P→2D) 732 and 733 nm emissions and are compared with results obtained by the Global Ultraviolet Imager (GUVI). Although the observations compared were taken ten years apart, the periods were selected on the basis of solar activity, using the Canadian Ionosphere and Atmosphere Model (C-IAM) to bridge the time gap. Results from all of these were compared with those from the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter (NRLMSISE-00) model. Comparisons were made on the basis of F10.7 solar flux, day of year, local time, season, latitude and longitude. The WINDII local time variations showed enhanced values for the Northern spring season. Latitude and longitude plots showed smooth variations for NRLMSISE-00 and large variations for both WINDII and GUVI observations; in particular a depression in atomic oxygen concentration around 40 °S latitude and 100 °E longitude that is tentatively identified with a longitudinal wave 1 that does not propagate in local time but has an annual variation. The averaged values showed the WINDII values to be 0.75 that of NRLMSISE-00 compared with 0.80 for GUVI. Thus the WINDII values agreed with those of GUVI to within 6%, although taken 10 years apart.

  8. The emission of energetic electrons from atoms by fast ions considered as a charge-transfer process

    NASA Astrophysics Data System (ADS)

    Miraglia, J. E.; Ponce, V. H.

    1980-03-01

    The ejection of energetic electrons from atoms by fast ions is described using as final electron states the continuum orbitals in the field of the projectile. The electronic distribution in the first-order Born approximation is equal to the distribution for direct ionisation where the final electron state is described by a plane wave times the Coulomb factor centred on the projectile. In the second-order Born approximation the distribution of ejected electrons is significantly decreased, and it is shown that it is equivalent to the correct distribution for direct ionisation in first order times the Coulomb factor around the projectile. For the case of ejected electrons with negligible momentum in the frame of the projectile, it is shown that the electron distribution centered on the projectile is isotropic to order v to the -12th, while the double scattering term in v to the -11th depends on the direction of motion of the electron.

  9. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

    PubMed

    Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred

    2015-11-01

    We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented. PMID:26488757

  10. A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

    PubMed

    Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred

    2015-11-01

    We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

  11. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples.

  12. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. PMID:24607119

  13. LA-ICP-MS of magnetite: Methods and reference materials

    USGS Publications Warehouse

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  14. A non-statistical atomic model for beam emission and motional Stark effect diagnostics in fusion plasmas.

    PubMed

    Ralchenko, Yu; Marchuk, O; Biel, W; Schlummer, T; Schultz, D R; Stambulchik, E

    2012-10-01

    In this work we analyze magnetic sublevel populations in a neutral beam penetrating a fusion plasma. The collisional-radiative model NOMAD was extended to include magnetic parabolic sublevels with principal quantum numbers n ≤ 10. The collisional parameters were calculated with the advanced atomic-orbital close coupling method and the Glauber approximation. The ionization by the induced electric field was also included in the model. The results of our calculations show significant deviations of the sublevel populations and, accordingly, line intensities of the σ and π components, from the statistical approximation. It is shown, for instance, that for a number of experimental conditions the total intensity of σ components is not equal to the total intensity of π components, which has a strong effect on determination of magnetic field and pitch angle in fusion devices. The results are presented for a wide range of plasma and beam parameters. The most significant deviations are observed for strong magnetic fields and high beam energies typical for the ITER plasma, where component intensity ratios may deviate by more than 20% from the statistical values.

  15. Uncertainty estimation in the determination of metals in superficial water by ICP-OES

    NASA Astrophysics Data System (ADS)

    Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.

    2016-07-01

    From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.

  16. A continuous flow cold vapour procedure for mercury determination by atomic emission using the reverse flow injection approach

    NASA Astrophysics Data System (ADS)

    De Andrade, João Carlos; Bueno, Maria Izabel M. S.

    1994-07-01

    An experimental set-up for on-line Hg 2+ reduction and determination was devised using the reverse flow injection analysis (r-FIA) concept and the cold vapour (CV) technique, injecting an acidic Sn 2+ solution into the mercury sample line. The elemental mercury generated is separated from the reacting mixture by a 100 ml min -1 helium stream, which passes through a gas-liquid separator connected to a permeation cell. This gas stream is used as the plasma medium. The permeated Hg° is then concentrated on a 0.3 g gold foil placed inside a quartz tube connected to an 11 W He de discharge plasma chamber. The mercury retained on the gold surface is released by resistive heating and the emission intensity is observed at the 253.7 nm mercury line. For an injection cycle of 30 s, the calibration graphs are linear up to 50 ng ml -1(itr 2 = 0.999). An injection frequency of 120 h -1 is achieved, with negligible carry-over. The calculated relative standard deviation of the transient peaks is 1.6%. Higher sensitivities can be achieved using longer injection cycles. Samples of Human Hair Certified Reference Material were used to determine the accuracy of the method.

  17. Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Egorov, V. S.; Mekhov, I. B.; Moroshkin, P. V.; Chekhonin, I. A.; Davliatchine, E. M.; Kindel, E.

    2003-10-01

    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broadband of amplification appears. The theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.

  18. Online Standard Additions Technique for La-ICP-MS Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Roy, J.; Asogan, D.; Moody, S.; Clarke, D.

    2014-12-01

    Historically, quantification with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been limited to the ability to matrix match both standards and samples. This can prove problematic when a particular matrix matched standard is not readily available. Liquid standard addition has been shown1-4 as an alternative technique for quantification that does not require matrix matching; however, further fundamental study is needed especially considering the different mass flow rates delivered to the plasma from traditional pneumatic nebulizers and laser ablation itself. In this work, the authors combine a specialized low-flow desolvating nebulizer system with LA-ICP-MS. This nebulizer system efficiently removes water vapour, thereby significantly reducing oxide based mass spectral interferences. For the instrument setup, the output from the laser is combined with the dried aerosol from the nebulizer system prior to entering the ICP-MS source. By using two sources of dry aerosol, mixing efficiency is improved whilst minimising plasma power lost to solvent (water vapour) processing. The method was applied to both USGS Green River Shale and an Arkansas Womble Shale. The results showed a number of elements that were correctly quantified using the technique as compared to reference values. References Gunther, D., Cousin, H., Magyar, B., Leopold, I., J. Anal. Atom. Spectrom., 1997, 12, 165 - 170. Leach, J.J., Allen, L. A., Aeschliman, D.B., Houk, R.S., Anal. Chem., 1999, 71, 440 - 445. O'Conner, C.J.P., Sharp, B.L, Evans, P.J., Anal. Atom. Spectrom., 2006, 21, 556. Yang, C.K., Chi, P.H., Lin, Y.C., Sun, Y.C., Yang, M.H., Talanta, 2010, 80, 1222 - 1227.

  19. The Interaction of the Cellular Export Adaptor Protein Aly/REF with ICP27 Contributes to the Efficiency of Herpes Simplex Virus 1 mRNA Export

    PubMed Central

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export. PMID:23637401

  20. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  1. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate.

    PubMed

    Asai, Shiho; Limbeck, Andreas

    2015-04-01

    Rare earth elements (REE) concentrated on cation-exchange resin particles were measured with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain chondrite-normalized REE plots. The sensitivity of REE increased in ascending order of the atomic number, according to the sensitivity trend in pneumatic nebulization ICP-MS (PN-ICP-MS). The signal intensities of REE were nearly proportional to the concentrations of REE in the immersion solution used for particle-preparation. Minimum measurable concentration calculated from the net signals of REE was approximately 1 ng/g corresponding to 0.1 ng in the particle-preparation solution. In LA analysis, formation of oxide and hydroxide of the light REE and Ba which causes spectral interferences in the heavy REE measurement was effectively attenuated due to the solvent-free measurement capability, compared to conventional PN-ICP-MS. To evaluate the applicability of the proposed method, the REE-adsorbed particles prepared by immersing them in a U-bearing solution (commercially available U standard solution) were measured with LA-ICP-MS. Aside from the LA analysis, each concentration of REE in the same U standard solution was determined with conventional PN-ICP-MS after separating REE by cation-exchange chromatography. The concentrations of REE were ranging from 0.04 (Pr) to 1.08 (Dy) μg/g-U. The chondrite-normalized plot obtained through LA-ICP-MS analysis of the U standard sample exhibited close agreement with that obtained through the PN-ICP-MS of the REE-separated solution within the uncertainties.

  2. Element Distribution in Allende Determined by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Wombacher, F.; Funk, C.; Frick, D. A.; Koch, J.; Günther, D.

    2016-08-01

    A novel LA-ICP-MS method has been developed in order to evaluate elemental distributions of 26 major and trace elements in chondritic meteorites. A reconnaissance study on a section from the Allende chondrite is presented.

  3. Effect of slurry mineralogy on slurry ICP-AES.

    PubMed

    Walker, C J; Davey, D E; Turner, K E; Hamilton, I C

    1996-07-01

    Direct slurry analysis by FI ICP-AES has been tested on seven iron-containing and five zinc-containing minerals. Results indicate that the method can be applied for traces and majors in a range of different materials.

  4. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S. . Santa Barbara Operations); Mroz, E.; Olivares, J.A. )

    1993-01-01

    A method has been developed to analyze mercuric iodide (HgI[sub 2]) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI[sub 2], as well as preliminary correlations between HgI[sub 2] detector performance and elemental contamination levels.

  5. A novel method for simultaneous determination of selected elements in dolomite and magnesia by Inductively Coupled Plasma Atomic Emission Spectroscopy with slurry sample introduction

    NASA Astrophysics Data System (ADS)

    Bok-Badura, Joanna; Jakóbik-Kolon, Agata; Turek, Marian; Szczerba, Jacek; Lemanowicz, Marcin; Karoń, Krzysztof

    2015-11-01

    The slurry nebulization ICP-AES method for simultaneous determination of selected elements in dolomite and magnesia was proposed. Based on the investigation results the optimal conditions for this analysis were as follows: particle size < 40 μm, the nitric acid concentration 10%, the RF power 1.0 kW, aqueous solutions (no dispersing agents) and mixing on magnetic stirrer, during the sample introduction into plasma, as homogenization method. The certified reference materials Dolomite CRM 782-1 and High Purity Magnesia BCS-CRM 389/1 were analyzed. Student's t-test proved that there were no statistically significant differences between determined values and the certified ones. This proves that the slurry sample introduction into plasma in ICP-AES technique can be applied for simultaneous determination of elements in dolomite and magnesia.

  6. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  7. Introducing wet aerosols into the static high sensitivity ICP (SHIP).

    PubMed

    Scheffer, Andy; Engelhard, Carsten; Sperling, Michael; Buscher, Wolfgang

    2007-08-01

    A demountable design of the static high sensitivity ICP (SHIP) for optical emission spectrometry is presented, and its use as an excitation source with the introduction of wet aerosols was investigated. Aerosols were produced by standard pneumatic sample introduction systems, namely a cross flow nebulizer, Meinhard nebulizer and PFA low flow nebulizer, which have been applied in conjunction with a double pass and a cyclonic spray chamber. The analytical capabilities of these sample introduction systems in combination with the SHIP system were evaluated with respect to the achieved sensitivity. It was found that a nebulizer tailored for low argon flow rates (0.3-0.5 L min(-1)) is best suited for the low flow plasma (SHIP). An optimization of all gas flow rates of the SHIP system with the PFA low flow nebulizer was carried out in a two-dimensional way with the signal to background ratio (SBR) and the robustness as optimization target parameters. Optimum conditions for a torch model with 1-mm injector tube were 0.25 and 0.36 L min(-1) for the plasma gas and the nebulizer gas, respectively. A torch model with a 2-mm injector tube was optimized to 0.4 L min(-1) for the plasma gas and 0.44 L min(-1) for the nebulizer gas. In both cases the SHIP system saves approximately 95% of the argon consumed by conventional inductively coupled plasma systems. The limits of detection were found to be in the low microgram per litre range and below for many elements, which was quite comparable to those of the conventional setup. Furthermore, the short-term stability and the wash out behaviour of the SHIP were investigated. Direct comparison with the conventional setup indicated that no remarkable memory effects were caused by the closed design of the torch. The analysis of a NIST SRM 1643e (Trace Elements in Water) with the SHIP yielded recoveries of 97-103% for 13 elements, measured simultaneously.

  8. Laser excited analytical atomic and ionic fluorescence in flames, furnaces and inductively coupled plasmas—II. Fluorescence characteristics and detection limits for fourteen elements

    NASA Astrophysics Data System (ADS)

    Human, H. G. C.; Omenetto, N.; Cavalli, P.; Rossi, G.

    An account is given of the analytical characteristics of the elements Al, B, Ba, Ga, Mo, Pb, Si, Sn, Ti, Tl, V, Y, Zr and U in atomic and ionic fluorescence spectrometry using an excimer (XeCl) pumped pulsed dye laser as excitation source. The inductively coupled argon plasma was mainly used as atom/ion reservoir. The detection limits were found to be in the range 0.4-20 ng ml -1, improving "standard" tabulated ICP emission values by factors between 1 and 66. The separated air-acetylene flame and the carbon rod were also used as atom reservoir for a few volatile elements, the practical detection limit for lead with the latter being 6 × 10 -15g. The advantages and disadvantages of such an analytical system are discussed, one of the main advantages being certainly the high spectral selectivity of the technique.

  9. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed. PMID:16049580

  10. Effect of surfactant addition on ultrasonic leaching of trace elements from plant samples in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Borkowska-Burnecka, Jolanta; Jankowiak, Urszula; Zyrnicki, Wieslaw; Anna Wilk, Kazimiera

    2004-04-01

    The applicability of surfactants in sample preparation of plant materials followed by analysis by inductively coupled plasma atomic emission spectrometry has been examined. Reference materials (INCT-MPH-2-Mixed Polish Herbs, INCT-TL-1 black tea leaves and CTA-VTL-2 -Virginia tobacco leaves) and commercially available tea leaves were analyzed. Effects of addition surfactants (Triton X-100, didodecyldimethylammonium bromide and cetyltrimethylammonium bromide) on efficiency of ultrasonic leaching of elements from the plant samples and on plasma parameters were investigated. Low concentrations of the surfactants in solutions did not affect, in practice, analytical line intensities and the nebulization process. Quantitative recovery of some elements could be obtained by ultrasonic diluted acid leaching with the aid of surfactants. However, the element recovery depended on type of surfactant, as well as element and sample material. Plasma parameters, i.e. the excitation temperatures of Ar I, Fe II and Ca II as well as the electron number density and the Mg II/Mg I intensity ratio did not vary significantly due to the surfactants in solutions.

  11. Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon

    NASA Astrophysics Data System (ADS)

    Jankowski, Krzysztof; Yao, Jun; Kasiura, Krzysztof; Jackowska, Adrianna; Sieradzka, Anna

    2005-03-01

    A novel continuous powder introduction microwave-induced plasma atomic emission spectrometry method (CPI-MIP-AES) has been developed for trace determination of metals in ground and tap water samples after preconcentration on activated carbon. The experimental setup consisted of integrated rectangular cavity TE 101 and vertically positioned plasma torch. The technical arrangement of the sample introduction system has been designed based on the fluidized bed concept. The satisfactory signal stability required for sequential analysis was attained owing to the vertical plasma configuration, as well as the plasma gas flow rate compatibility with sample introduction flow rate. The elements of interest (Cd, Cu, Cr, Fe, Mn, Pb, Zn) were preconcentrated in a batch procedure at pH 8-8.5 after addition of activated carbon and then, after filtering and drying of the activated carbon suspension, introduced to the MIP by the CPI system. An enrichment factor of about 1000-fold for a sample volume of 1 l was obtained. The detection limit values for the proposed method were 17-250 ng l -1. The proposed method was validated by analyzing the certified reference materials: SRW "Warta" Synthetic River Water and BCR CRM 399 major elements in freshwater. The method was successfully applied to the determination of the heavy metals in tap water samples.

  12. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. PMID:26830585

  13. Determination of white phosphorus residues in ducks: An atomic emission detection/compound-independent calibration-based method of generating residue data for risk assessment and environmental monitoring

    SciTech Connect

    Johnston, J.J.; Goldade, D.A.; Kohler, D.J.; Cummings, J.L.

    2000-05-01

    Analysis of phosphorus concentrations in the gizzards of ducks harvested from munitions sites is necessary to ascertain if acute phosphorus toxicity was the cause of death and to estimate potential secondary hazards to predators and scavengers, such as eagles that readily consume the dead ducks. Gas chromatography-atomic emission detection analysis permitted compound-independent quantification of white phosphorus standards following analysis of the stable phosphorus-containing compound triethyl phosphate. The white phosphorus standards were then used to quantify white phosphorus residues in duck gizzard extracts by gas chromatography-flame photometric detection analysis. For gizzards containing less than 0.01 {micro}g of phosphorus, quantification was based on a three-point calibration curve. For gizzards containing 0.01 {micro}g or more of white phosphorus, single-point calibration was used. Mean recoveries for phosphorus-fortified gizzards ranged from 73 to 91%. The method limit of detection was 0.013 {micro}g of phosphorus. This method was successfully applied to the quantification of white phosphorus in ducks collected from Eagle River Flats, AK. Potential applications to risk assessment and environmental monitoring are also discussed.

  14. Simple and robust method for lithium traces determination in drinking water by atomic emission using low-power capacitively coupled plasma microtorch and microspectrometer.

    PubMed

    Zsigmond, Andreea R; Frentiu, Tiberiu; Ponta, Michaela; Frentiu, Maria; Petreus, Dorin

    2013-12-15

    A method for Li determination in drinking water using atomic emission spectrometry in a new low-power Ar capacitively coupled plasma microtorch (15 W, 0.6 L min(-1)) with a detection limit of 0.013 μg L(-1) was developed. The method is based on external calibration in the presence of a buffering solution containing 5 mg L(-1) Na, K, Ca, Mg added both to calibration standards and water samples. The statistical validation on 31 bottled drinking water samples (0.4-2140 μg L(-1) Li) using the Bland and Altman test and regression analysis has shown results similar to those obtained by the standard additions method. The buffering solution approach is simpler than the standard additions and has demonstrated good intra- and interday precision, accuracy and robustness. It was successfully applied over a wide concentration range of Li and multimineral matrix with a pooled precision of 2.5-3.5% and 99±9% accuracy.

  15. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  16. A pulsed source for Xe(6s[3/2]1) and Xe(6s'[1/2]1) resonance state atoms using two-photon driven amplified spontaneous emission from the Xe(6p) and Xe(6p') states

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Setser, D. W.

    1996-09-01

    A new, simple method for the generation of Xe(6s[3/2]1) and Xe(6s'[1/2]1) atoms is described. The method involves resonant two-photon excitation of Xe(6p[1/2]0 and 6p'[3/2]2) states followed by amplified spontaneous emission (ASE) to the Xe(6s[3/2]1 and 6s'[1/2]1) states. The vacuum ultraviolet transitions, Xe(6s[3/2]1→5p6(1S0)) at 147 nm and Xe(6s'[1/2]1→5p6(1S0)) at 129.6 nm, were used to monitor the time dependence of the resonance state atom concentrations. The quenching rate constants of these resonance atoms with ten molecules were measured at 300 K. The quenching cross-sections of the Xe(6s and 6s') resonance atoms are compared to the cross-sections of the metastable Xe(6s[3/2]2) atoms and Xe(6p[3/2]2) atoms. The correlation between quenching cross-sections and photoabsorption cross-section of the molecules predicted by the resonance dipole-dipole energy transfer model is discussed. The applicability of the two-photon driven ASE method for the generation of other resonance state atoms is considered.

  17. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:15702309

  18. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  19. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    SciTech Connect

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  20. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations

    NASA Astrophysics Data System (ADS)

    Yamada, Noriyuki

    2015-08-01

    Kinetic energy discrimination (KED) is one of the means to control cell-formed interferences in collision/reaction cell ICP-MS, and also a technique to reduce polyatomic ion interferences derived from the plasma or vacuum interface in collision cell ICP-MS. The operation of KED is accurately described to explain how spectral interferences from polyatomic ions are reduced by this technique. The cell is operated under non-thermal conditions to implement KED, where the hard sphere collision model is aptly employed to portray the transmission of ions colliding with the cell gas that they don't chemically react with. It is theoretically explained that the analyte atomic ions surmount the energy barrier placed downstream of the cell and the interfering polyatomic ions do not due to their lower kinetic energy than the atomic ions, resulting in polyatomic interference reduction. The intrinsic limitations of this technique are shown to lie in the statistical nature of collision processes, which causes the broadening of ion kinetic energy distribution that hinders efficient KED. The reaction cell operation with KED, where plasma-derived interferences are reduced by the reactive cell gas while cell-formed interferences are suppressed by the energy barrier, is also described in a quantitative manner. This review paper provides an in-depth understanding of KED in cell-based ICP-MS for analysts to make better use of it.

  1. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES].

    PubMed

    Han, Wen-xuan; Xu, Yi-ming; Du, Wei; Tang, Ao-han; Jiang, Rong-feng

    2009-09-01

    Thlaspi caerulescens is commonly known as a zinc (Zn) and cadmium (Cd) hyperaccumulator, which can be used to clean up the Zn- and/or Cd-contaminated soil. However, it is unclear whether high soil Zn concentrations will stimulate undue accumulations of other elements to such an extent as to cause the nutrient unbalance in the soil. To address this question, the inductively coupled plasma-atomic emission spectrometry (ICP-AES) was employed to investigate the effect of Zn on the stoichiometry of Zn, Cd, K, P, Mg, Ca, Fe, Mn and Cu in T. caerulescens (Ganges ecotype) exposed to low, middle and high Zn concentrations (5, 50 and 500 micromol x L(-1), respectively) in a hydroponic experiment. The results showed that there were no significant variations in contents of Cd, K, P, Mg, Ca, Fe, Mn and Cu in the shoot of T. caerulescens, however, the Zn content in the shoot and root with 500 mciromol x L(-1) Zn treatment increased as much as 13 times higher than that with low Zn exposure, indicating that the plant is capable of Zn hyperaccumulating. The authors' study suggests that it is improbable to induce soil nutrient unbalance when T. caerulescensis (Ganges) is used for phytoremediation of Zn-contaminated soil, in that over-uptake of nutrient elements from the soil other than Zn was not observed, at least for the elements K, P, Mg, Ca, Fe, Mn and Cu. PMID:19950676

  2. Mineralogical basis for the interpretation of multi-element (ICP-AES), oxalic acid, and aqua regia partial digestions of stream sediments for reconnaissance exploration geochemistry

    USGS Publications Warehouse

    Church, S.E.; Mosier, E.L.; Motooka, J.M.

    1987-01-01

    We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures. ?? 1987.

  3. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES].

    PubMed

    Han, Wen-xuan; Xu, Yi-ming; Du, Wei; Tang, Ao-han; Jiang, Rong-feng

    2009-09-01

    Thlaspi caerulescens is commonly known as a zinc (Zn) and cadmium (Cd) hyperaccumulator, which can be used to clean up the Zn- and/or Cd-contaminated soil. However, it is unclear whether high soil Zn concentrations will stimulate undue accumulations of other elements to such an extent as to cause the nutrient unbalance in the soil. To address this question, the inductively coupled plasma-atomic emission spectrometry (ICP-AES) was employed to investigate the effect of Zn on the stoichiometry of Zn, Cd, K, P, Mg, Ca, Fe, Mn and Cu in T. caerulescens (Ganges ecotype) exposed to low, middle and high Zn concentrations (5, 50 and 500 micromol x L(-1), respectively) in a hydroponic experiment. The results showed that there were no significant variations in contents of Cd, K, P, Mg, Ca, Fe, Mn and Cu in the shoot of T. caerulescens, however, the Zn content in the shoot and root with 500 mciromol x L(-1) Zn treatment increased as much as 13 times higher than that with low Zn exposure, indicating that the plant is capable of Zn hyperaccumulating. The authors' study suggests that it is improbable to induce soil nutrient unbalance when T. caerulescensis (Ganges) is used for phytoremediation of Zn-contaminated soil, in that over-uptake of nutrient elements from the soil other than Zn was not observed, at least for the elements K, P, Mg, Ca, Fe, Mn and Cu.

  4. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. PMID:27260458

  5. Optical diagnostics of radio-frequency plasmas containing CHF3 and CHF3/O2: Laser-induced fluorescence of CF2, CF, and O atoms, and optical emission from H, F, and O

    NASA Astrophysics Data System (ADS)

    Hancock, G.; Sucksmith, J. P.

    2002-01-01

    Laser-induced fluorescence (LIF) has been used to measure absolute concentrations of CF2, CF, and O atoms in a parallel-plate capacitatively coupled radio-frequency-driven plasma containing CHF3 and its mixtures with Ar and O2 at pressures between 50 and 500 mTorr. In CHF3 the spatial distribution of CF2 peaks at the driven electrode, and shows the importance of surface processes for its production. Time-resolved studies show evidence for its homogeneous chemical removal. CF concentrations are an order of magnitude lower than those of CF2, and removal by reaction with H atoms is consistent with time-resolved data taken on plasma extinction. For both radicals the absolute concentrations are higher than those found for similar plasmas in CF4. In the presence of O2 the fluorinated radical concentrations drop to below the detection limit, and the influence of surface removal processes is again invoked to explain the increase in O atom concentration observed when a small amount of CHF3 is added to a dominantly O2 gas flow. Optical emission from excited F, H, and O atoms is observed, and even when corrected by actinometry, is shown to be an unreliable indicator of the relative concentration of the ground-state species because of contributions from dissociative excitation of stable species in the discharge. Excited H atoms are found to be translationally hot from measurements of their linewidths, and are clearly not all formed from excitation of H atoms. Time-resolved actinometry (TRA) can be used in some cases to remove the contribution to the emission from dissociative excitation, but in the case of O atoms where both LIF and TRA were compared, the influence of a time-dependent dissociative excitation step complicates the analysis and is attributed to the presence of other species such as O2(a1Δg) in the discharge.

  6. The application of ICP-SMS, GF-AAS and HG-AFS to the analysis of water and sediment samples from a temperate stratified estuary.

    PubMed

    Townsend, A T; O'Sullivan, J; Featherstone, A M; Butler, E C; Mackey, D J

    2001-02-01

    Three atomic spectrometry techniques, namely sector field inductively coupled plasma mass spectroscopy, graphite furnace atomic absorption spectrometry and hydride generation atomic fluorescence spectroscopy (ICP-SMS, GF-AAS and HG-AFS, respectively), housed at separate independent laboratories, were used to analyse water and sediment samples collected from the Huon River Estuary, SE Tasmania (Australia) in the Austral spring 1998. A dithiocarbamate-chelation/back-extraction technique was used to separate and preconcentrate Co, Ni, Cu, Zn, Cd and Pb from eight collected water samples prior to analysis by ICP-SMS and GF-AAS. A number of other elements in the waters were analysed directly (Mn, Fe and Zn by GF-AAS; As by HG-AFS), or following sample dilution (1 + 19: V, Mn, Fe, As, Mo, Ba and U by ICP-SMS). Where possible, previously corroborated GF-AAS and HG-AFS techniques were used to verify obtained ICP-SMS results. From the analysis of four reference waters (SLEW-1 and -2, SLRS-3 and NASS-5), good agreement, to within +/- 10-20%, was typically found between certified (or information only values) and measured results (irrespective of analytical technique). Exceptions included Zn (and sometimes Fe) that could not be quantified by ICP-SMS due to elevated blank signals, and As which was found to lie below ICP-SMS detection limits. For Huon Estuary water samples, inter-method agreement was within +/- 10-20% (for those elements amenable to analysis by more than one technique). Nitric acid extracts of two certified reference materials (Buffalo River Sediment and BCSS-1) and six Huon Estuary sediments were analysed by ICP-SMS (for Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb) and HG-AFS (for As). Results from the certified reference materials indicated extraction efficiencies of 60 70% (for most elements). A close correlation between ICP-SMS and HG-AFS was obtained for leachable As in the sediments. In terms of potential inorganic contaminants, the Huon Estuary

  7. The CHIANTI atomic database

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Dere, K. P.; Landi, E.; Del Zanna, G.; Mason, H. E.

    2016-04-01

    The freely available CHIANTI atomic database was first released in 1996 and has had a huge impact on the analysis and modeling of emissions from astrophysical plasmas. It contains data and software for modeling optically thin atom and positive ion emission from low density (≲1013 cm-3) plasmas from x-ray to infrared wavelengths. A key feature is that the data are assessed and regularly updated, with version 8 released in 2015. Atomic data for modeling the emissivities of 246 ions and neutrals are contained in CHIANTI, together with data for deriving the ionization fractions of all elements up to zinc. The different types of atomic data are summarized here and their formats discussed. Statistics on the impact of CHIANTI to the astrophysical community are given and examples of the diverse range of applications are presented.

  8. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals. Annual performance report, February 1, 1989--January 31, 1992

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  9. Tungsten coil atomic emission spectrometry combined with dispersive liquid-liquid microextraction: A synergistic association for chromium determination in water samples.

    PubMed

    Vidal, Lorena; Silva, Sidnei G; Canals, Antonio; Nóbrega, Joaquim A

    2016-02-01

    A novel and environment friendly analytical method is reported for total chromium determination and chromium speciation in water samples, whereby tungsten coil atomic emission spectrometry (WCAES) is combined with in situ ionic liquid formation dispersive liquid-liquid microextraction (in situ IL-DLLME). A two stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selection of the significant factor involved in the in situ IL-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were complexant concentration: 0.5% (or 0.1%); complexant type: DDTC; IL anion: PF6(-); [Hmim][Cl] IL amount: 60 mg; ionic strength: 0% NaCl; pH: 5 (or 2); centrifugation time: 10 min; and centrifugation speed: 1000 rpm. Under the optimized experimental conditions the method was evaluated and proper linearity was obtained with a correlation coefficient of 0.991 (5 calibration standards). Limits of detection and quantification for both chromium species were 3 and 10 µg L(-1), respectively. This is a 233-fold improvement when compared with chromium determination by WCAES without using preconcentration. The repeatability of the proposed method was evaluated at two different spiking levels (10 and 50 µg L(-1)) obtaining coefficients of variation of 11.4% and 3.6% (n=3), respectively. A certified reference material (SRM-1643e NIST) was analyzed in order to determine the accuracy of the method for total chromium determination and 112.3% and 2.5 µg L(-1) were the recovery (trueness) and standard deviation values, respectively. Tap, bottled mineral and natural mineral water samples were analyzed at 60 µg L(-1) spiking level of total Cr content at two Cr(VI)/Cr(III) ratios, and relative recovery values ranged between 88% and 112% showing that the matrix has a negligible effect. To our knowledge, this is the first time that combines in situ IL-DLLME and WCAES.

  10. ICP etching of GaAs via hole contacts

    SciTech Connect

    Shul, R.J.; Baca, A.G.; Briggs, R.D.; McClellan, G.B.; Pearton, S.J.; Constantine, C.

    1996-09-01

    Deep etching of GaAs is a critical process step required for many device applications including fabrication of through-substrate via holes for monolithic microwave integrated circuits (MMICs). Use of high-density plasmas, including inductively coupled plasmas (ICP), offers an alternative approach to etching vias as compared to more conventional parallel plate reactive ion etch systems. This paper reports ICP etching of GaAs vias at etch rates of about 5.3 {mu}m/min with via profiles ranging from highly anistropic to conical.

  11. Isotopic analyses by ICP-MS in clinical samples.

    PubMed

    Rodushkin, Ilia; Engström, Emma; Baxter, Douglas C

    2013-03-01

    This critical review focuses on inductively coupled plasma mass spectrometry (ICP-MS) based applications for isotope abundance ratio measurements in various clinical samples relevant to monitoring occupational or environmental exposure, human provenancing and reconstruction of migration pathways as well as metabolic research. It starts with a brief overview of recent advances in ICP-MS instrumentation, followed by selected examples that cover the fields of accurate analyte quantification using isotope dilution, tracer studies in nutrition and toxicology, and areas relying upon natural or man-made variations in isotope abundance ratios (Pb, Sr, actinides and stable heavy elements). Finally, some suggestions on future developments in the field are provided.

  12. ICPES analyses using full image spectra and astronomical data fitting algorithms to provide diagnostic and result information

    SciTech Connect

    Spencer, W.A.; Goode, S.R.

    1997-10-01

    ICP emission analyses are prone to errors due to changes in power level, nebulization rate, plasma temperature, and sample matrix. As a result, accurate analyses of complex samples often require frequent bracketing with matrix matched standards. Information needed to track and correct the matrix errors is contained in the emission spectrum. But most commercial software packages use only the analyte line emission to determine concentrations. Changes in plasma temperature and the nebulization rate are reflected by changes in the hydrogen line widths, the oxygen emission, and neutral ion line ratios. Argon and off-line emissions provide a measure to correct the power level and the background scattering occurring in the polychromator. The authors` studies indicated that changes in the intensity of the Ar 404.4 nm line readily flag most matrix and plasma condition modifications. Carbon lines can be used to monitor the impact of organics on the analyses and calcium and argon lines can be used to correct for spectral drift and alignment. Spectra of contaminated groundwater and simulated defense waste glasses were obtained using a Thermo Jarrell Ash ICP that has an echelle CID detector system covering the 190-850 nm range. The echelle images were translated to the FITS data format, which astronomers recommend for data storage. Data reduction packages such as those in the ESO-MIDAS/ECHELLE and DAOPHOT programs were tried with limited success. The radial point spread function was evaluated as a possible improved peak intensity measurement instead of the common pixel averaging approach used in the commercial ICP software. Several algorithms were evaluated to align and automatically scale the background and reference spectra. A new data reduction approach that utilizes standard reference images, successive subtractions, and residual analyses has been evaluated to correct for matrix effects.

  13. Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy.

    PubMed

    Nakata, Kenichi; Hashimoto, Bunji; Uchihara, Hiroshi; Okamoto, Yasuaki; Ishizaka, Syoji; Fujiwara, Terufumi

    2015-06-01

    An electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct determination of chlorine in metallic nanopowders and fine powder samples with detection by inductively coupled plasma optical emission spectroscopy (ICP-OES). A portion of a powder or particle sample was placed into a small tungsten sample cuvette and weighed accurately. A modifier solution of aqueous or alcoholic potassium hydroxide was added to it. Then, the cuvette was positioned on the TBF incorporated into the ETV apparatus. The analyte was vaporized and introduced into the ICP optical emission spectrometer with a carrier gas stream of argon and hydrogen. The metal samples were analyzed by using an external calibration curve prepared from aqueous standard solutions. Few chemical species including analyte and some chlorine-free species were introduced into the ICP, because the analyte has been separated from the matrix before introduction. Under such dry plasma conditions, the energy of plasma discharge was focused on the excitation of chlorine atoms, and as a result, lower detection limits were achieved. A detection limit of 170 ng g(-1) of chlorine in solid metal samples was established when 60 mg sample was used. The relative standard deviation for 16 replicate measurements obtained with 100 ng chlorine was 8.7%. Approximately 30 batches could be vaporized per hour. The analytical results for various nanopowders (iron (III) oxide, copper, silver, and gold) and metallic fine powder samples (silver and gold) are described. PMID:25863402

  14. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  15. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  16. A rapid ICP-OES strategy for determination of gold and silver in blister copper by nitric acid digestion

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2014-03-01

    A rapid strategy for the analysis of gold and silver in blister copper by inductively coupled plasma optical emission spectrometry (ICP-OES) was firstly proposed. Nitric acid was used to digest blister copper instead of commonly used sulfuric acid. This prevented forming the salt of copper sulfate in the filtration process when the volume of the mixture is very small. Thus, the time of filtration was saved. After filtrating, aqua regia was used to digest the residue and acidize the filter liquor. Two parts of gotten solution were directly determined by ICP-OES. The cycle of analysis was shortened compared with sulfuric acid-fire assay. The proposed method was successfully applied to determine gold and silver in blister copper, and the results were in good agreement with those obtained by lead fire assay.

  17. Touching Base with Parents--Neglected ICP Stakeholders

    ERIC Educational Resources Information Center

    Linney, Grant

    2011-01-01

    In this article, the author introduces another key and, to-date, largely neglected stakeholder in high-school integrated curriculum programs (ICPs). If one wishes to have a deeper understanding of the unique, powerful, and lasting impacts of these programs, the author suggests to include the perspective and input of participants' parents. The…

  18. The Approach to Reducing the Detection Limit for LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Poteshin, S. S.; Sysoev, Alexey A.; Torbotryas, R.

    This work is a part of the RED-100 big project. The aim of the RED-100 experiment is to detect the presently undiscovered coherent neutrino scattering off xenon atomic nuclei. The manufacture of such detectors requires ultrapure materials with very low content of natural radioactive elements. So the pure titanium was selected to assay the uranium and thorium contaminations on 1 ng/g level. In this paper we investigate the possibility of reducing the LOD for LA-ICP-MS analysis by increasing the pulse repetition rate of solid-state laser irradiation up to 4,000 Hz and appropriate adjusting the irradiation power. LODs for U and Th in titanium matrix estimation fell in the sub 10-10 g g- 1 level.

  19. Plasma Formed in Argon, Acid Nitric and Water Used in Industrial ICP Torches

    NASA Astrophysics Data System (ADS)

    Bendjebbar, F.; P., Andre; Benbakkar, M.; Rochette, D.; Flazi, S.; Vacher, D.

    2012-08-01

    Inductively coupled plasmas (ICPs) are used in spectrochemical analyses. The introduction of the sample by means of an aerosol are widely used. The introduction and the total evaporation of the aerosol is required in order to obtain a good repeatability and reproducibility of analyses. To check whether the vaporization of the aerosol droplets inside the plasma is completed, a solution could be used to compare the experimental results of the emission spectral lines with theoretical results. An accurate calculation code to obtain monatomic spectral lines intensities is therefore required, which is the purpose of the present paper. The mixtures of argon, water and nitric acid are widely used in spectrochemical analyses with ICPs. With these mixtures, we calculate the composition, thermodynamic functions and monatomic spectral lines intensities of the plasma at thermodynamic equilibrium and at atmospheric pressure. To obtain a self sufficient paper and also to allow other researchers to compare their results, all required data and a robust accurate algorithm, which is simple and easy to compute, are given.

  20. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    SciTech Connect

    Sullivan, Patrick Allen

    2005-12-17

    %-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.

  1. Tungsten coil atomic emission spectrometry combined with dispersive liquid-liquid microextraction: A synergistic association for chromium determination in water samples.

    PubMed

    Vidal, Lorena; Silva, Sidnei G; Canals, Antonio; Nóbrega, Joaquim A

    2016-02-01

    A novel and environment friendly analytical method is reported for total chromium determination and chromium speciation in water samples, whereby tungsten coil atomic emission spectrometry (WCAES) is combined with in situ ionic liquid formation dispersive liquid-liquid microextraction (in situ IL-DLLME). A two stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selection of the significant factor involved in the in situ IL-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were complexant concentration: 0.5% (or 0.1%); complexant type: DDTC; IL anion: PF6(-); [Hmim][Cl] IL amount: 60 mg; ionic strength: 0% NaCl; pH: 5 (or 2); centrifugation time: 10 min; and centrifugation speed: 1000 rpm. Under the optimized experimental conditions the method was evaluated and proper linearity was obtained with a correlation coefficient of 0.991 (5 calibration standards). Limits of detection and quantification for both chromium species were 3 and 10 µg L(-1), respectively. This is a 233-fold improvement when compared with chromium determination by WCAES without using preconcentration. The repeatability of the proposed method was evaluated at two different spiking levels (10 and 50 µg L(-1)) obtaining coefficients of variation of 11.4% and 3.6% (n=3), respectively. A certified reference material (SRM-1643e NIST) was analyzed in order to determine the accuracy of the method for total chromium determination and 112.3% and 2.5 µg L(-1) were the recovery (trueness) and standard deviation values, respectively. Tap, bottled mineral and natural mineral water samples were analyzed at 60 µg L(-1) spiking level of total Cr content at two Cr(VI)/Cr(III) ratios, and relative recovery values ranged between 88% and 112% showing that the matrix has a negligible effect. To our knowledge, this is the first time that combines in situ IL-DLLME and WCAES. PMID:26653490

  2. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus

    PubMed Central

    Phairoh, Panapat; Suthibatpong, Thana; Rattanarojpong, Triwit; Jongruja, Nujarin; Senapin, Saengchan; Choowongkomon, Kiattawee; Khunrae, Pongsak

    2016-01-01

    ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity. PMID:27348862

  3. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology.

    PubMed

    Hu, Xiao; Xu, Peng; Asgari, Shadnaz; Vespa, Paul; Bergsneider, Marvin

    2010-05-01

    Interventions of intracranial pressure (ICP) elevation in neurocritical care is currently delivered only after healthcare professionals notice sustained and significant mean ICP elevation. This paper uses the morphological clustering and analysis of ICP (MOCAIP) algorithm to derive 24 metrics characterizing morphology of ICP pulses and test the hypothesis that preintracranial hypertension (Pre-IH) segments of ICP can be differentiated, using these morphological metrics, from control segments that were not associated with any ICP elevation or at least 1 h prior to ICP elevation. Furthermore, we investigate whether a global optimization algorithm could effectively find the optimal subset of these morphological metrics to achieve better classification performance as compared to using full set of MOCAIP metrics. The results showed that Pre-IH segments, using the optimal subset of metrics found by the differential evolution algorithm, can be differentiated from control segments at a specificity of 99% and sensitivity of 37% for these Pre-IH segments 5 min prior to the ICP elevation. While the sensitivity decreased to 21% for Pre-IH segments, 20 min prior to ICP elevation, the high specificity of 99% was retained. The performance using the full set of MOCAIP metrics was shown inferior to results achieved using the optimal subset of metrics. This paper demonstrated that advanced ICP pulse analysis combined with machine learning could potentially leads to the forecasting of ICP elevation so that a proactive ICP management could be realized based on these accurate forecasts.

  4. Atomic scale investigations on Cd{sub x}Zn{sub 1−x}Se quantum dots: Correlation between the composition and emission properties

    SciTech Connect

    Benallali, H. Hoummada, K.; Mangelinck, D.; Cremel, T.; André, R.; Tatarenko, S.; Kheng, K.

    2014-08-04

    Atom probe tomography and photoluminescence spectroscopy have been used to study Cd{sub x}Zn{sub 1−x}Se quantum dots embedded in a ZnSe layer grown on a (001) GaAs substrate. Atom probe tomography analyses show significant cadmium incorporation in the center of the dots surrounded by poor cadmium region. These measurements illustrate that the maximum cadmium concentration in the quantum dots is significantly higher than the concentration estimated by transmission electron microscopy. The composition and size of quantum dots obtained by atom probe tomography have been used to calculate the transition energies including excitonic and strain effects.

  5. LIBS and LA-ICP-MS; Old techniques, new approaches

    NASA Astrophysics Data System (ADS)

    Mueller, P. A.; Foster, D. A.; Gonzalez, J.; Colucci, M.; Russo, R.

    2012-12-01

    Over the past decade laser ablation in-situ solid sampling for chemical analysis with an ICP-MS analyzer (LA-ICP-MS, single and multi-collector) has become a generally accepted technique across a wide range of disciplines (geochemistry, forensic science, life sciences, etc). More recently, Laser Induced Breakdown Spectrometry (LIBS) has developed into a complementary technique that offers full spectral analysis of the laser plasma without the need for a mass spectrometer. Both techniques provide in-situ solid sample elemental and isotopic analysis at high spatial resolution (<5 microns) with minimal sample preparation. LA-ICP-MS affords the analyst low detection limits (ppb) and the ability to optimize across a specific mass range for high precision element or isotope ratios. LIBS, while providing slightly higher detection limits (ppm), allows for simultaneous and near complete spectral coverage of the laser plasma. Both techniques are capable of producing semi-quantitative and quantitative data. Integration of a LA and LIBS system could be a powerful tool to allow full spectral element and isotope/element ratio data on the same laser plume (plasma and particulates). Although LIBS and LA typically operate under different conditions of pulse length, spot size, and energy, the ability to capture elemental abundance information from the light that is otherwise wasted during LA makes an important complement to the limited number of ions measured in multi-collector ICP-MS analyses. Such an approach would not require the compromises in sampled volume associated with either split-streams (two ICP-MS systems required; diluted aerosol streams) or with peak switching in the MS (magnetic or electrostatic) because extraction of light-based information does not impact the number of ions measured for isotope ratios. We present LIBS experiments with UV-nanosecond lasers at 17mJ energies delivered to spot sizes of <100 μm and light directed to an ICCD detection system on NIST

  6. Atom beams split by gentle persuasion

    SciTech Connect

    Pool, R.

    1994-02-25

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state.

  7. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1994-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper discusses the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels. The purified HgI{sub 2} is grown into a single crystal by physical vapor transport. The crystal are cut into slices and they are fabricated into room temperature radiation detectors and photocells. Crystals that produce good resolution gamma detector do not necessarily make good resolution photocells or x-ray detectors. Many factors other than elemental impurities may contribute to these differences in performance.

  8. ECR, ICP, and RIE plasma etching of GaN

    SciTech Connect

    Shul, R.J.; McClellan, G.B.; Rieger, D.J.; Hafich, M.J.

    1996-06-01

    The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

  9. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    SciTech Connect

    Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M.A.; Ludwig, Christian

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.

  10. The Kinetics of Nitrogen Atom Recombination

    ERIC Educational Resources Information Center

    Brown, G. Ronald; Winkler, C. A.

    1977-01-01

    Describes a study of the kinetics of the recombination of nitrogen atoms in which concentration-time relations are determined directly by utilizing visual observations of emissions to make gas phase titrations of N atoms with NO. (MLH)

  11. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions.

  12. Isolation of herpes simplex virus regulatory protein ICP4 as a homodimeric complex.

    PubMed Central

    Metzler, D W; Wilcox, K W

    1985-01-01

    The viral polypeptide ICP4 (or Vmw175) is synthesized during the immediate early phase of infection by herpes simplex virus and regulates the transcription of delayed early and late viral genes. We obtained a partially purified preparation of soluble ICP4 under nondenaturing conditions. Physical constants for native ICP4 were empirically determined by molecular sieve chromatography and sucrose density gradient ultracentrifugation. The Stokes radius of native ICP4 was 8.72 X 10(-7) cm. The sedimentation coefficient of native ICP4 was 9.00S. From these values, the calculated molecular weight of native ICP4 was 342,000, a value which is twice that of monomeric ICP4, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The failure of any other polypeptides to specifically coprecipitate with native ICP4 in the presence of anti-ICP4 antibody indicates that the 342,000-dalton complex is a homodimer of ICP4. The frictional coefficient ratio of native ICP4, which is 1.9, indicates that the homodimer is a highly elongated molecule. Images PMID:2991559

  13. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5×10(-5) mol L(-1) ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL(-1) with enhancement factor of 82.7 and 51.3 for Cu(2+) and Hg(2+), respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL(-1) for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL(-1) of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  14. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5 × 10-5 mol L-1 ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL-1 with enhancement factor of 82.7 and 51.3 for Cu2+ and Hg2+, respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL-1 for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL-1 of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  15. Retrieval of atomic oxygen and temperature in the thermosphere. Part 1: Feasibility of an experiment based on the spectrally resolved 147 micrometer limb emission

    NASA Astrophysics Data System (ADS)

    Zachor, A. S.; Sharma, R. D.; Yap, B. K.; Riehl, J. P.

    1989-04-01

    The importance of atomic oxygen and translational temperature in mesospheric/thermospheric processes is the motivation to study the feasibility of recovering vertical profiles of the temperature and O-atom density from limb scan data obtained near 147 micrometer and/or 63 micrometer wavelength, corresponding to the oxygen atom ground electronic state (OI) transitions. The limb radiance data must be spectrally resolved to recover both temperature and atomic oxygen density if only one of the OI lines is used, which is the approach investigated in this report. We show how the two vertical profiles can be recovered by applying an onion-peeling method to synthetic data. The temperature and O-atom density in each peeled layer are obtained simultaneously by nonlinear least-squares spectrum fitting. Spectral data in the 147 micrometer line was found to yield reasonably accurate and stable profiles from 300 km down to an altitude between 130 and 90 km, depending on the noise level and spectral resolution, and gave better results than the stronger 63 micrometer data below 140 km. We estimate that the S/N and spectral resolution required for successful retrievals could be provided by a confocal Fabry-Perot system operating near 147 micrometer although retrievals down to 90 km from data obtained at orbital altitude would require cooled foreoptics roughly a meter in diameter.

  16. Measuring sulfur isotopes by multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Adkins, J. F.

    2011-12-01

    The stable isotopes of sulfur have traditionally been measured by converting analytes to SO2, which is then introduced to a gas-source isotope ratio mass spectrometer (IRMS). Recently, we and several other groups have begun measuring S isotopes using a multicollector inductively-coupled plasma mass spectrometer (MC-ICP-MS). The approach offers several advantages, including decreased reliance on preparatory chemical conversion (including combustion) of analytes, greater flexibility of sample introduction, and increased sensitivity. Sulfur is measured as monoatomic S+ ions produced in the plasma source, and can be introduced in a variety of forms including dissolved sulfate or sulfide, or as organosulfur compounds either in solution or in the gas phase. A primary requirement for accurate measurements is resolving isobaric interferences from O2+, which requires a mass analyzer with resolution > 4000. Using a Thermo Neptune system, we document accuracy and precision for δ34S near the shot-noise limit (ie, counting statistics) for both aqueous solutions and gas streams. For samples containing 50 pmol S (as gaseous SF6), this corresponds to ~0.3%; for 50 nmol S (as aqueous SO4) this is ~0.02%. One important application of this new analytical approach is the measurement of S isotopes in volatile and semivolatile organic compounds. No IRMS-based methods for measuring compound-specific S isotopes currently exist. We have demonstrated this capability by coupling a capillary gas chromatograph (GC) directly to the ICP-MS via a heated transfer line. Isotope ratios (δ34S values) are calculated relative to co-injected peaks of SF6 reference gas, in the same manner as is used by GC-combustion-IRMS approaches. As a demonstration of this capability, we measured the δ34S values of individual thiophene isomers separated by GC from a crude oil, which range over 20% for compounds from the same oil. A second application of ICP-MS to sulfur isotopes is the measurement of dissolved

  17. High-order harmonic emission in bowtie-shaped nanostructure with few-cycle spatially inhomogeneous laser fields when the atom is placed at different spatial positions

    NASA Astrophysics Data System (ADS)

    Luo, Xiang-Yi; Wang, Tian; Wang, Qun; Liu, Xue-Shen

    2016-11-01

    In this study, we investigate the harmonic spectra in the vicinity of the center of the nanostructure gap when helium atom is placed at different spatial positions. We find that the high-order harmonic spectra is very sensitive to the atomic spatial positions in a inhomogeneous laser field. When the initial atomic spatial position is changed from  ‑9.0 a.u. to 9.0 a.u., the cutoff of the high-order harmonic generation (HHG) can be extended, and the supercontinuum harmonic spectrum of the second plateau is extended to the high-order and the low-order simultaneously. The HHG process is demonstrated by using the time-frequency analysis, the semi-classical three-step model and the ionization probability.

  18. Fingerprinting of ground water by ICP-MS. Progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Stetzenbach, K.

    1995-05-01

    This report contains the results of the chemical analysis of water from springs in Ash Meadows National Wildlife Refuge, Nevada. Each spring was sampled two to five times between July, 1992 and March, 1994. Samples were collected and analyzed by the Harry Reid Center for Environmental Studies (HRC) Environmental/Analytical Laboratory, at the University of Nevada, Las Vegas. Chemical analyses included major cations and anions and trace elements. The analyses for the major anions were performed by atomic absorption (AA) spectrophotometry, the anions by ion chromatography (IC) and the trace elements by inductively coupled plasma - mass spectrometry (ICP-MS). The standard operating procedures (SOP) used for each method are included. The concentrations of the analytes range from the part per million (ppm) levels for the major cations and anions to the sub part per trillion (ppt) levels for a number of the trace elements. Approximately nine orders of magnitude are covered from the highest to the lowest concentrations. The formation of molecular species in the ICP-MS, plasma produces false positives for a number of elements. None of the elements reported here, that the HRC is aware of, are subject to these isobaric interferences, with the exception of europium (Eu). Europium values are reported for samplings four and five where the HRC used an extraction procedure that extracted Eu but not barium (Ba), whose oxides cause the interference. In order to overcome matrix effects in the samples from high concentrations of cations and other elements, the method of standard additions was instituted for the analysis of samplings four and five as an alternative to external standardization. It is believed that these data, and those for the Death Valley Spring reported in January, 1995 are the first efforts at such a comprehensive trace element analysis of ground waters. HRC has had to develop, test, and refine sampling and analysis procedures throughout the course of this study.

  19. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  20. The Stair-Step Atom.

    ERIC Educational Resources Information Center

    Jordan, Thomas M.; And Others

    1992-01-01

    Presents a model of a generic atom that is used to represent the movement of electrons from lower to higher levels and vice-versa due to excitation and de-excitation of the atom. As the process of de-excitation takes place, photons represented by colored ping-pong balls are emitted, indicating the emission of light. (MDH)

  1. Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in Western Pennsylvania.

    PubMed

    Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S

    2015-10-01

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated.

  2. Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in Western Pennsylvania.

    PubMed

    Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S

    2015-10-01

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated. PMID:26005746

  3. Analysis of some Romanian fruit juices by ICP-MS

    NASA Astrophysics Data System (ADS)

    Dehelean, A.; Magdas, D. A.

    2013-11-01

    The present study was carried out to evaluate the heavy metal content of 21 Romanian single strength fruit (plum, apple, sour cherry) juices. The samples were collected from five Romanian areas namely: Alba, Maramures, Cluj, Salaj and Moldova. The results indicated macro (Na, Mg, Ca, P) and micro (Fe, Zn, Ni, Cr, Cd, Pb, etc) elements in the selected samples. The determination was performed by ICP-MS. Our results for fruit juice were compared with allowable limits for drinking water in the United Kingdom (NS30).

  4. High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine

    2007-03-01

    The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.

  5. Retrieval of atomic oxygen and temperature in the thermosphere. I - Feasibility of an experiment based on the spectrally resolved 147 micron limb emission

    NASA Astrophysics Data System (ADS)

    Zachor, A. S.; Sharma, R. D.

    1989-11-01

    Consideration is given to the possibility of recovering vertical profiles of the temperature and O-atom density from limb scan data obtained near 147 and/or 63 microns wavelength. It is shown that the two vertical profiles may be recovered by applying an onion-peeling method to synthetic data. The temperature and O-atom density are obtained simultaneously by a nonlinear least-squares spectrum fitting. It is found that spectral data in the 147-micron line from 300 km down to 130-90 km in altitude produces better results than the 63-micron data below 140 km. It is suggested that a confocal Fabry-Perot system operating near 147 microns could provide the S/N ratio and spectral resolution needed for successful retrievals. Retrievals down to 90 km from data obtained at orbital altitude would require cooled foreoptics with a diameter of about 1 meter.

  6. Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57.

    PubMed

    Tunnicliffe, Richard B; Hautbergue, Guillaume M; Kalra, Priti; Jackson, Brian R; Whitehouse, Adrian; Wilson, Stuart A; Golovanov, Alexander P

    2011-01-06

    The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104-112 and 103-120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway.

  7. Structural Basis for the Recognition of Cellular mRNA Export Factor REF by Herpes Viral Proteins HSV-1 ICP27 and HVS ORF57

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Kalra, Priti; Jackson, Brian R.; Whitehouse, Adrian; Wilson, Stuart A.; Golovanov, Alexander P.

    2011-01-01

    The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104–112 and 103–120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway. PMID:21253573

  8. Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within 2×10-13 atomic-unit accuracy by stimulated-emission detection

    NASA Astrophysics Data System (ADS)

    Guéna, J.; Lintz, M.; Bouchiat, M. A.

    2005-04-01

    We exploit the process of asymmetry amplification by stimulated emission which provides an original method for parity violation (PV) measurements in a highly forbidden atomic transition. The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the 7S-6P3/2 transition, probed after it is excited by an intense, linearly polarized, collinear laser, tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric field. We report here a 3.5-fold increase of the one-second-measurement sensitivity and subsequent reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Guéna , Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the setup include an increased repetition rate, better extinction of the probe beam at the end of the probe pulse, and, for the first time to our knowledge, the following: a polarization-tilt magnifier, quasisuppression of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We also present real-time tests of systematic effects and consistency checks on the data, as well as a 1% accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements performed in seven different vapor cells agree within the statistical error. Our present result is compatible with the more precise result of Wood within our present relative statistical accuracy of 2.6%, corresponding to a 2×10-13 atomic-unit uncertainty in E1pv . Theoretical motivations for further measurements are emphasized and we give a brief overview of a recent proposal that would allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry amplification is much greater.

  9. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  10. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers). PMID:24925919

  11. Glass particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  12. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  13. Recent applications on isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine; Sela, Hagit; Dobrowolska, Justina; Zoriy, Miroslav; Becker, J. Susanne

    2008-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have proved themselves to be powerful and sensitive inorganic mass spectrometric techniques for analysing stable and radioactive isotopes in different application fields because of their high sensitivity, low detection limits, good accuracy and precision. New applications of ICP-MS focus on tracer experiments and the development of isotope dilution techniques together with nanoflow injections for the analysis of small volumes of biological samples. Today, LA-ICP-MS is the method of choice for direct determination of metals, e.g., on protein bands in gels after the gel electrophoresis of protein mixtures. Tracer experiments using highly enriched 65Cu were utilized in order to study the formation of metal-binding bovine serum proteins. A challenging task for LA-ICP-MS is its application as an imaging mass spectrometric technique for the production of isotope images (e.gE, from thin sections of brain tissues stained with neodymium). In this paper, we demonstrate the application of imaging mass spectrometry on single particles (zircon and uranium oxide). Single Precambrian zircon crystals from the Baltic Shield were investigated with respect to isotope ratios using LA-ICP-MS for age dating. The U-Pb age was determined from the isochrone with (1.48 ± 0.14) × 109 a. Using isotope ratio measurements on 10 nuclear uranium oxide single particles the 235U/238U isotope ratio was determined to be 0.032 ± 0.004. This paper describes recent developments and applications of isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles.

  14. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  15. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  16. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (Hn-PAHs) and their Relation to the 3.4 and 6.9 µm PAH Emission Features

    PubMed Central

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm−1 (2.5–20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11–15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that ‘normal’ PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules. PMID:26435553

  17. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH EXCESS PERIPHERAL H ATOMS (H {sub n} -PAHs) AND THEIR RELATION TO THE 3.4 AND 6.9 {mu}m PAH EMISSION FEATURES

    SciTech Connect

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (H {sub n} -PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm{sup -1} (2.5-20 {mu}m) infrared spectra of 23 H {sub n} -PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 {mu}m weaken and are replaced with stronger aliphatic bands near 3.4 {mu}m, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 {mu}m region shift and weaken concurrent with growth of a strong aliphatic -CH{sub 2}- deformation mode near 6.9 {mu}m. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 {mu}m features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 {mu}m features. We show that 'normal' PAH emission objects contain relatively few H {sub n} -PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  18. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  19. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    SciTech Connect

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening and collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.

  20. Optical emission spectroscopy studies of the influence of laserablated mass on dry inductively coupled plasma conditions

    SciTech Connect

    Ciocan, A.C.; Mao, X.L.; Borisov, Oleg V.; Russo, R.E.

    1997-07-01

    The amount of ablated mass can influence the temperature andexcitation characteristics of the inductively coupled plasma (ICP) andmust be taken into account to ensure accurate chemical analysis. The ICPelectron number density was investigated by using measurements of the Mgionic to atomic resonant-line ratios during laser ablation of an aluminummatrix. The ICP excitation temperature was measured by using selected Felines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulseduration) at 266 nm was used for these ablation-sampling studies. Laserenergy, power density, and repetition rate were varied in order to changethe quantity of ablated mass into the ICP. Over the range of laseroperating conditions studied herein, the ICP was not significantlyinfluenced by the quantity of solid sample. Therefore, analyticalmeasurements can be performed accurately and fundamental studies of laserablation processes (such as ablation mass roll-off, fractionalvaporization) can be investigated using inductively coupled plasma-atomicemission spectroscopy (ICP-AES).

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved aluminum and boron in water by inductively coupled plasma-atomic emission spectrometry

    USGS Publications Warehouse

    Struzeski, T.M.; DeGiacomo, W.J.; Zayhowski, E.J.

    1996-01-01

    Inductively coupled plasma-atomic emission spectrometry is a sensitive, rapid, and accurate method for determining the dissolved concentration of aluminum and boron in water samples. The method detection limits are 5 micrograms per liter for aluminum and 4 micrograms per liter for boron. For aluminum, low-level (about 30 micrograms per liter) short-term precision (single-operator, seven days) is about 5 percent relative standard deviation and the low-level long-term precision (single-operator, nine months) is about 8 percent relative standard deviation. For boron, the low-level short-term precision is about 4 percent relative standard deviation, and the low-level long-term precision is about 5 percent relative standard deviation. Spike recoveries for aluminum ranged from 86 to 100 percent, and recoveries for boron ranged from 92 to 109 percent.

  2. Acquired acid resistance of human enamel treated with laser (Er:YAG laser and Co2 laser) and acidulated phosphate fluoride treatment: An in vitro atomic emission spectrometry analysis

    PubMed Central

    Mathew, Anju; Reddy, N. Venugopal; Sugumaran, D. K.; Peter, Joby; Shameer, M.; Dauravu, Liju Marcely

    2013-01-01

    Background: Dental caries is essentially a process of diffusion and dissolution. If the aspect of dissolution can be curtailed some degree of prevention can be achieved. Aims: The present study was carried out to evaluate and compare the effect of Er:YAG laser and Co2 laser irradiation combined with acidulated phosphate fluoride treatment on in vitro acid resistance of human enamel. Design: An in vitro study was carried out on 30 human premolars to evaluate the enamel's acid resistance using an atomic emission spectrometry analysis. Materials and Methods: A total of 60 enamel specimens were prepared from 30 human premolars and were randomly assigned to 6 groups: (1) Untreated (control); (2) 1.23% acidulated phosphate fluoride (APF) gel application alone for 4 min; (3) Er:YAG laser treatment alone; (4) Co2 laser treatment alone; (5) Er:YAG laser + APF gel application; (6) Co2 laser + APF gel application. The specimens were then individually immersed in 5 ml of acetate buffer solution (0.1 mol/L, pH 4.5) and incubated at 37°C for 24 h, and the acid resistance was evaluated by determining the calcium ion concentration using the atomic emission spectrometry. Statistical Analysis: An ANOVA model was constructed (P value of 0.05), followed by Tukey's test for multiple pair wise comparisons of mean values. Results: Significant differences were found between the control group and the test groups (P < 0.001). Conclusions: Combining acidulated phosphate fluoride with either Er:YAG or Co2 laser had a synergistic effect in decreasing the enamel demineralization more than either fluoride treatment or laser treatment alone. PMID:24015004

  3. High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

    NASA Technical Reports Server (NTRS)

    Tang, Ming; McDonough, William F.; Arevalo, Ricardo, Jr.

    2014-01-01

    Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (greater than 100 millimeters) and line scanning mode. In addition: (1) ion yields decrease when using spot sizes above 100 millimeters; (2) (Eu/Eu*)(sub raw) (i.e. Europium anomaly) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(sub raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference

  4. Metal particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  5. Sensitive redox speciation of neptunium by CE-ICP-MS.

    PubMed

    Stöbener, Nils; Amayri, Samer; Gehl, Aaron; Kaplan, Ugras; Malecha, Kurtis; Reich, Tobias

    2012-11-01

    Capillary electrophoresis (CE) was used to separate the neptunium oxidation states Np(IV) and Np(V), which are the only oxidation states of Np that are stable under environmental conditions. The CE setup was coupled to an inductively coupled plasma mass spectrometer (Agilent 7500ce) using a Mira Mist CE nebulizer and a Scott-type spray chamber. The combination of the separation capacity of CE with the detection sensitivity of inductively coupled plasma mass spectrometry (ICP-MS) allows identification and quantification of Np(IV) and Np(V) at the trace levels expected in the far field of a nuclear waste repository. Limits of detection of 1 × 10(-9) and 5 × 10(-10) mol L(-1) for Np(IV) and Np(V), respectively, were achieved, with a linear range from 10(-9) to 10(-6) mol L(-1). The method was applied to study the redox speciation of the Np remaining in solution after interaction of 5 × 10(-7) mol L(-1) Np(V) with Opalinus Clay. Under mildly oxidizing conditions, a Np sorption of 31% was found, with all the Np remaining in solution being Np(V). A second sorption experiment performed in the presence of Fe(2+) led to complete sorption of the Np onto the clay. After desorption with HClO(4), a mixture of Np(IV) and Np(V) was found in solution by CE-ICP-MS, indicating that some of the sorbed Np had been reduced to Np(IV) by Fe(2+).

  6. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  7. Early Implementation of THAM for ICP Control: Therapeutic Hypothermia Avoidance and Reduction in Hypertonics/Hyperosmotics

    PubMed Central

    Zeiler, F. A.; Gillman, L. M.; Teitelbaum, J.; West, M.

    2014-01-01

    Background. Tromethamine (THAM) has been demonstrated to reduce intracranial pressure (ICP). Early consideration for THAM may reduce the need for other measures for ICP control. Objective. To describe 4 cases of early THAM therapy for ICP control and highlight the potential to avoid TH and paralytics and achieve reduction in sedation and hypertonic/hyperosmotic agent requirements. Methods. We reviewed the charts of 4 patients treated with early THAM for ICP control. Results. We identified 2 patients with aneurysmal subarachnoid hemorrhage (SAH) and 2 with traumatic brain injury (TBI) receiving early THAM for ICP control. The mean time to initiation of THAM therapy was 1.8 days, with a mean duration of 5.3 days. In all patients, after 6 to 12 hours of THAM administration, ICP stability was achieved, with reduction in requirements for hypertonic saline and hyperosmotic agents. There was a relative reduction in mean hourly hypertonic saline requirements of 89.1%, 96.1%, 82.4%, and 97.0% for cases 1, 2, 3, and 4, respectively, comparing pre- to post-THAM administration. Mannitol, therapeutic hypothermia, and paralytics were avoided in all patients. Conclusions. Early administration of THAM for ICP control could potentially lead to the avoidance of other ICP directed therapies. Prospective studies of early THAM administration are warranted. PMID:25544901

  8. Advances in the measurement of sulfur isotopes by multi-collector ICP-MS (MC-ICP- MS)

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Wilson, S. A.; Anthony, M. W.

    2006-12-01

    The demonstrated capability to measure 34S/32S by MC-ICP-MS with a precision (2ó) of ~0.2 per mil has many potential applications in geochemistry. However, a number of obstacles limit this potential. First, to achieve the precision indicated above requires sufficient mass resolution to separate isobaric interferences of 16O2 and 17O2 on 32S and 34S, respectively. These requirements for high resolution mean overall instrument sensitivity is reduced. Second, current methods preclude analysis of samples with complex matrices, a common characteristic of sulfur-bearing geologic materials. Here, we describe and discuss a method that provides both efficient removal of matrix constituents, and provides pre-concentration of S, thus overcoming these obstacles. The method involves the separation of sulfur from matrix constituents by high pressure (1000 psi) ion chromatography (HPIC), followed by isotope measurement using MC-ICP-MS. This combination allows for analysis of liquid samples with a wide range of S concentrations. A powerful advantage of this technique is the efficient separation of many sulfur species from matrix cations and anions (for instance in a seawater or acid mine drainage matrix), as well as the separation of sulfur species, e.g., sulfate, sulfite, thiosulfate, thiocynate, from each other for isotope analysis. The automated HPIC system uses a carbonate-bicarbonate eluent with eluent suppression, and has sufficient baseline separation to collect the various sulfur species as pure fractions. The individual fractions are collected over a specific time interval based upon a pre-determined elution profile and peak retention times. The addition of a second ion exchange column into the system allows pre-concentration of sulfur species by 2-3 orders of magnitude for samples that otherwise would have sulfur concentrations too low to provide precise isotopic ratios. The S isotope ratios are measured by MC-ICP-MS using a desolvating sample introduction system, a

  9. The determination of sulfur and chlorine in used oil by X-ray fluorescence, ICP and ion chromatography

    SciTech Connect

    Kendall, D.S.; Siao, M.; Hendricks, S.; Schoenwald, S.D.

    1995-12-31

    Methods for the determination of total sulfur and chlorine in used oil were evaluated and compared using actual waste oil samples. Oxygen bomb combustion was followed by either ion chromatographic determination of sulfate and chloride or determination of sulfur by inductively coupled plasma (ICP) optical emission spectroscopy. Total sulfur and chlorine were determined by X-ray fluorescence (XRF) spectroscopy in samples prepared by fivefold dilution in mineral spirits. Oxygen bomb combustion and XRF gave results with good precision, and, by comparison with each other, very little bias. Problems with the settling of particulates in the XRF analyses were largely overcome by using a thin layer method for sample presentation to the spectrometer. Due to the presence of particulates and emulsified water, the determination of sulfur and chlorine in used oil is more difficult than in pristine oil. Bomb combustion, when followed by IC or ICP, and XRF have been shown to be satisfactory analytical methods for determining total sulfur and chlorine in used or waste oil. 12 refs., 1 fig., 3 tabs.

  10. Online elemental analysis of process gases with ICP-OES: a case study on waste wood combustion.

    PubMed

    Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M A; Ludwig, Christian

    2012-10-01

    A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. PMID:22739429

  11. Superradiant Pulse And Amplified Spontaneous Emission From The Flash Pumped Atomic Iodine System Undergoing The Laser Transition Of 2P 1/2- 2P3/2

    NASA Astrophysics Data System (ADS)

    Hahn, Jae W.; Kim, Gyu U.; Lee, Sang S.

    1987-01-01

    Recently, Jaroszynski and King found superradiance(SR) occurring in photodissociatively created systems using NaI and n-C3F7I moleculesl) , and Hahn and Lee have performe2)d the amplified spontaneous emission(ASE) experiment in an iodine photodissociation laser(IPL) amplifier . In general, to observe SR experimentally, a very short intense pumping pulse of which FWHM is about a few tens of nanoseconds, is used for making a totally inverted system. But in this work, the amplifier is pumped with conventional flashlamps of FWHM=3us, yet we have detected a output pulse which is a superposition of ASE and SR. The temporal behaviour of the pulse is investigated in detail, and the experimental results are compared with theoretical results.

  12. Quantitating Iron in Serum Ferritin by Use of ICP-MS

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Gillman, Patricia L.

    2003-01-01

    A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid

  13. Can we estimate plasma density in ICP driver through electrical parameters in RF circuit?

    SciTech Connect

    Bandyopadhyay, M. Sudhir, Dass Chakraborty, A.

    2015-04-08

    To avoid regular maintenance, invasive plasma diagnostics with probes are not included in the inductively coupled plasma (ICP) based ITER Neutral Beam (NB) source design. Even non-invasive probes like optical emission spectroscopic diagnostics are also not included in the present ITER NB design due to overall system design and interface issues. As a result, negative ion beam current through the extraction system in the ITER NB negative ion source is the only measurement which indicates plasma condition inside the ion source. However, beam current not only depends on the plasma condition near the extraction region but also on the perveance condition of the ion extractor system and negative ion stripping. Nevertheless, inductively coupled plasma production region (RF driver region) is placed at distance (∼ 30cm) from the extraction region. Due to that, some uncertainties are expected to be involved if one tries to link beam current with plasma properties inside the RF driver. Plasma characterization in source RF driver region is utmost necessary to maintain the optimum condition for source operation. In this paper, a method of plasma density estimation is described, based on density dependent plasma load calculation.

  14. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  15. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  16. Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  17. Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development.

    PubMed

    Cuyckens, Filip; Balcaen, Lieve I L; De Wolf, Kenny; De Samber, Bjorn; Van Looveren, Cis; Hurkmans, Rob; Vanhaecke, Frank

    2008-04-01

    A combination of inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization mass spectrometry (ESI-MS) was deployed for the metabolite profiling and metabolite identification of a new antituberculosis compound (R207910, also known as TMC207) that is currently in drug development. R207910 contains one bromine atom, allowing the detection by ICP-MS. Fluctuations in the Br sensitivity caused by the HPLC gradient were counteracted by the use of species-unspecific isotope dilution. In order to evaluate the method developed, the results obtained were compared with those acquired via radioactivity detection. HPLC-ESI-MS was used for the structural identification of R207910 and its metabolites. The (79)Br/(81)Br isotope ratio is also valuable in the search for metabolites in the complex background of endogenous compounds obtained using HPLC-ESI-MS analyses. Data-dependent scanning using isotope recognition with an ion trap mass spectrometer or processing of Q-Tof data provides HPLC-ICP-MS-like "bromatograms". The combination of accurate mass measurements and the fragmentation behavior in the MS(2) spectra obtained using the Q-Tof Ultima mass spectrometer or MS(n) spectra acquired using the LTQ-Orbitrap allowed structural characterization of the main metabolites of R207910 in methanolic dog and rat faeces extracts taken 0-24 h post-dose.

  18. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    SciTech Connect

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

    2011-02-01

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  19. Enhanced detection of DNA sequences using end-point PCR amplification and online gel electrophoresis (GE)-ICP-MS: determination of gene copy number variations.

    PubMed

    González, T Iglesias; Espina, M; Sierra, L M; Bettmer, J; Blanco-González, E; Montes-Bayón, M; Sanz-Medel, A

    2014-11-18

    The design and evaluation of analytical methods that permit quantitative analysis of specific DNA sequences is exponentially increasing. For this purpose, highly sensitive methodologies usually based on labeling protocols with fluorescent dyes or nanoparticles are often explored. Here, the possibility of label-free signal amplification using end-point polymerase chain reaction (PCR) are exploited using on-column agarose gel electrophoresis as separation and inductively coupled plasma-mass spectrometry (ICP-MS) for the detection of phosphorus in amplified DNA sequences. The calibration of the separation system with a DNA ladder permits direct estimation of the size of the amplified gene fragment after PCR. With this knowledge, and considering the compound-independent quantification capabilities exhibited by ICP-MS for phosphorus (it is only dependent on the number of P atoms per molecule), the correlation of the P-peak area of the amplified gene fragment, with respect to the gene copy numbers (in the starting DNA), is then established. Such a relationship would permit the determination of copy number variations (CNVs) in genomic DNA using ICP-MS measurements. The method detection limit, in terms of the required amount of starting DNA, is ∼6 ng (or 1000 cells if 100% extraction efficiency is expected). The suitability of the proposed label-free amplification strategy is applied to CNVs monitoring in cells exposed to a chemical agent capable of deletion induction, such as cisplatin. PMID:25312744

  20. High temperature liquid chromatography hyphenated with ESI-MS and ICP-MS detection for the structural characterization and quantification of halogen containing drug metabolites.

    PubMed

    de Vlieger, Jon S B; Giezen, Mark J N; Falck, David; Tump, Cornelis; van Heuveln, Fred; Giera, Martin; Kool, Jeroen; Lingeman, Henk; Wieling, Jaap; Honing, Maarten; Irth, Hubertus; Niessen, Wilfried M A

    2011-07-18

    In this paper we describe the hyphenation of high temperature liquid chromatography with ICP-MS and ESI-MS for the characterization of halogen containing drug metabolites. The use of temperature gradients up to 200°C enabled the separation of metabolites with low organic modifier content. This specific property allowed the use of detection methods that suffer from (significant) changes in analyte response factors as a function of the organic modifier content such as ICP-MS. Metabolites of two kinase inhibitors (SB-203580-Iodo and MAPK inhibitor VIII) produced by bacterial cytochrome P450 BM3 mutants and human liver microsomes were identified based on high resolution MS(n) data. Quantification was done using their normalized and elemental specific response in the ICP-MS. The importance of these kinds of quantification strategies is stressed by the observation that the difference of the position of one oxygen atom in a structure can greatly affect its response in ESI-MS and UV detection.

  1. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  2. Determination of selenium, zinc and cadmium in antidandruff shampoos by atomic spectrometry after microwave assisted sample digestion.

    PubMed

    Salvador, A; Pascual-Martí, M C; Aragó, E; Chisvert, A; March, J G

    2000-05-01

    Microwave assisted pre-treatments for atomic spectrometric determination (inductive coupled plasma-optical emission spectrometry, ICP-OES or flame atomic absorption spectrometry, FAAS) of metallic elements, usually present in antidandruff shampoos, are proposed. They are based on the digestion of the sample with HNO(3) into a closed reactor, which is irradiated at 800 W for a few minutes. Selenium was determined by ICP-OES. The limit of detection was 0.11 mg l(-1); the relative standard deviation (R.S.D.) for the selenium content in the samples was in the 0.6-3.6% range. The results obtained were in agreement with the label contents and the recovery of the proposed method was in the 100-106% range. Zinc and cadmium were determined by FAAS. The limit of detection for zinc determination was 0.078 mg l(-1); the R.S.D. for zinc contents was in the 0.8-8.6% range. A limit of detection of 0.09 mg l(-1) was obtained for cadmium determination; the R.S.D. for cadmium contents was in the 0.7-2.7% range. The determinations were performed after two different sample mineralization pre-treatments - dry ashing (in an electric furnace) and wet mineralization (in a microwave oven). Both methodologies provided comparable results for zinc and cadmium determination in shampoos. The proposed microwave assisted digestion procedures allow a precise and accurate determination of selenium, zinc and cadmium in commercial antidandruff shampoos, and the sample pre-treatment is less time-consuming than the classic methods.

  3. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model.

    PubMed

    Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique

    2016-02-01

    The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. PMID:26969551

  4. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model.

    PubMed

    Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique

    2016-02-01

    The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn.

  5. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells

    PubMed Central

    Matoušek, Tomáš; Currier, Jenna M.; Trojánková, Nikola; Saunders, R. Jesse; Ishida, María C.; González-Horta, Carmen; Musil, Stanislav; Mester, Zoltán; Stýblo, Miroslav; Dědina, Jiří

    2013-01-01

    An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at −196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL−1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL−1 total As was performed. The concentrations of methylated As species in tens of pg mL−1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species. PMID:24014931

  6. On line vapor generation of osmium based on solution cathode glow discharge for the determination by ICP-OES.

    PubMed

    Zhu, Zhenli; Huang, Chunying; He, Qian; Xiao, Qing; Liu, Zhifu; Zhang, Suicheng; Hu, Shenghong

    2013-03-15

    A novel plasma induced vapor generation method is proposed to determine osmium in solutions. Without any chemical oxidizing agents, osmium ion can be readily converted to volatile osmium tetraoxide vapor in the solution cathode glow discharge (SCGD) system. The generated osmium vapor is then transported to inductively coupled plasma for determination by optical emission spectrometry. The influences of background electrolyte, carrier gas flow rate, sample flow rate, ICP power and discharge current were investigated. The analytical performances of this proposed technique were evaluated under optimized conditions. The detection limit of Os was calculated to be 0.51 ng mL(-1). The reproducibility, expressed as the relative standard deviation (n=11) of a 2.0 μg mL(-1) standard solution, was 1.9%. This SCGD induced vapor generation is sensitive and simple, oxidation reagents free, providing an alternative analytical method for measuring Os in geological or environmental water samples. PMID:23598105

  7. On line vapor generation of osmium based on solution cathode glow discharge for the determination by ICP-OES.

    PubMed

    Zhu, Zhenli; Huang, Chunying; He, Qian; Xiao, Qing; Liu, Zhifu; Zhang, Suicheng; Hu, Shenghong

    2013-03-15

    A novel plasma induced vapor generation method is proposed to determine osmium in solutions. Without any chemical oxidizing agents, osmium ion can be readily converted to volatile osmium tetraoxide vapor in the solution cathode glow discharge (SCGD) system. The generated osmium vapor is then transported to inductively coupled plasma for determination by optical emission spectrometry. The influences of background electrolyte, carrier gas flow rate, sample flow rate, ICP power and discharge current were investigated. The analytical performances of this proposed technique were evaluated under optimized conditions. The detection limit of Os was calculated to be 0.51 ng mL(-1). The reproducibility, expressed as the relative standard deviation (n=11) of a 2.0 μg mL(-1) standard solution, was 1.9%. This SCGD induced vapor generation is sensitive and simple, oxidation reagents free, providing an alternative analytical method for measuring Os in geological or environmental water samples.

  8. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and (1)H NMR analysis.

    PubMed

    Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook

    2014-10-15

    ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability.

  9. In situ trapping of As, Sb and Se hydrides on nanometer-sized ceria-coated iron oxide-silica and slurry suspension introduction to ICP-OES.

    PubMed

    Dados, A; Kartsiouli, E; Chatzimitakos, Th; Papastephanou, C; Stalikas, C D

    2014-12-01

    A procedure is developed for the analysis of sub-μg L(-1) levels of arsenic, antimony and selenium after preconcentration of their hydrides. The study highlights the capability of an aqueous suspension of a nanometer-sized magnetic ceria, in the presence of iodide, to function as a sorbent for the in situ trapping and preconcentration of the hydrides of certain metalloids. After extraction, the material is magnetically separated from the trapping solution and analyzed. A slurry suspension sampling approach with inductively coupled plasma-optical emission spectrometry (ICP-OES) is employed for measurements, as the quantitative elution of the adsorbed metalloids is not feasible. The whole analytical procedure consists of five steps: (i) pre-reduction of As, Sb and Se, (ii) generation of the hydrides AsH3, SbH3 and SeH2, (iii) in situ collection in the trapping suspension of magnetic ceria, (iv) isolation of the particles by applying a magnetic field, and (v) measurement of As, Sb and Se concentrations using ICP-OES. Under the established experimental conditions, the efficiency of trapping accounted for 94 ± 2%, 89 ± 2% and 98 ± 3% for As, Sb and Se, respectively, signifying the effective implementation of the overall procedure. The applicability of the procedure has been demonstrated by analyzing tap and lake water and a reference material (soft drinking water). The obtained analytical figures of merit were satisfactory for the analysis of the above metalloids in natural waters by ICP-OES.

  10. CORONAL EMISSION LINES AS THERMOMETERS

    SciTech Connect

    Judge, Philip G.

    2010-01-10

    Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

  11. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  12. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  13. ICP MS selection of radiopure materials for the GERDA experiment

    SciTech Connect

    Di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-17

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.

  14. ICP MS selection of radiopure materials for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-01

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system

  15. Automatable on-line generation of calibration curves and standard additions in solution-cathode glow discharge optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew J.; Ray, Steven J.; Hieftje, Gary M.

    2015-03-01

    Two methods are described that enable on-line generation of calibration standards and standard additions in solution-cathode glow discharge optical emission spectrometry (SCGD-OES). The first method employs a gradient high-performance liquid chromatography pump to perform on-line mixing and delivery of a stock standard, sample solution, and diluent to achieve a desired solution composition. The second method makes use of a simpler system of three peristaltic pumps to perform the same function of on-line solution mixing. Both methods can be computer-controlled and automated, and thereby enable both simple and standard-addition calibrations to be rapidly performed on-line. Performance of the on-line approaches is shown to be comparable to that of traditional methods of sample preparation, in terms of calibration curves, signal stability, accuracy, and limits of detection. Potential drawbacks to the on-line procedures include signal lag between changes in solution composition and pump-induced multiplicative noise. Though the new on-line methods were applied here to SCGD-OES to improve sample throughput, they are not limited in application to only SCGD-OES-any instrument that samples from flowing solution streams (flame atomic absorption spectrometry, ICP-OES, ICP-mass spectrometry, etc.) could benefit from them.

  16. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  17. Application of laser microdissection ICP-MS for high resolution elemental mapping in mouse brain tissue: a comparative study with laser ablation ICP-MS.

    PubMed

    Sussulini, Alessandra; Becker, J Sabine

    2015-01-01

    Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed. PMID:25476347

  18. Precise and accurate measurement of U and Th isotopes via ICP-MS using a single solution

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Sharp, W. D.; Ludwig, K. R.

    2012-04-01

    , allowing the sample's 238U/235U ratio to be measured. In step 3, we monitor peak-tails at half-mass positions (229.5, 231.5, 234.5) and on mass 237 while aspirating sample solution. Tail measurement requires a distinct cup configuration to maintain 238U in the cups; however, no sample is consumed during automated cup reconfiguration. We monitor the accuracy of 234U/238U ratios using CRM 145, which gives a weighted mean atom ratio of (5.2846 ± 0.0029) - 10-5 (all errors 2σ), consistent with published and reference values. The reproducibility of 230Th/238U ratios is monitored using the Schwartzwalder Mine secular-equilibrium standard (SM). We detect no bias in 230Th/238U or 234U/238U ratios measured for SM at beam intensities ranging over a factor of four, consistent with accurate correction for IC yields. Aladdin's cave coral (AC-1) was analyzed to check our ICP-MS method (and the preceding purification by ion exchange) on a carbonate and yields a mean age of 125.43 ± 0.38 ka, in agreement with published values. We are currently applying the method to corals, speleothems, pedogenic coatings, and tufas.

  19. Resolving global versus local/regional Pu sources in the environment using sector ICP-MS

    USGS Publications Warehouse

    Ketterer, M.E.; Hafer, K.M.; Link, C.L.; Kolwaite, D.; Wilson, Jim; Mietelski, J.W.

    2004-01-01

    Sector inductively coupled plasma mass spectrometry is a versatile method for the determination of plutonium activities and isotopic compositions in samples containing this element at fallout levels. Typical detection limits for 239+240Pu are 0.1, 0.02 and 0.002 Bq kg -1Pu for samples sizes of 0.5 g, 3 g, and 50 g of soil, respectively. The application of sector ICP-MS-based Pu determinations is demonstrated in studies in sediment chronology, soil Pu inventory and depth distribution, and the provenance of global fallout versus local or regional Pu sources. A sediment core collected from Sloans Lake (Denver, Colorado, USA) exhibits very similar 137Cs and 239+240Pu activity profiles; 240Pu/239Pu atom ratios indicate possible small influences from the Nevada Test Site and/or the Rocky Flats Environmental Technology Site. An undisturbed soil profile from Lockett Meadow (Flagstaff, Arizona, USA) exhibits an exponential decrease in 239+240Pu activity versus depth; 240Pu/239Pu in the top 3 cm is slightly lower than the global fallout range of 0.180 ?? 0.014 due to possible regional influence of Nevada Test Site fallout. The 239??240Pu inventory at Lockett Meadow is 56 ?? 4 Bq m-2, consistent with Northern Hemisphere mid-latitude fallout. Archived NdF3 sources, prepared from Polish soils, demonstrate that substantial 239+240Pu from the 1986 Chernobyl disaster has been deposited in north eastern regions of Poland; compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/239pu and 241Pu/239Pu co-vary and range from 0.186-0.348 and 0.0029-0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407??[240Pu/239Pu] - 0.0413; r2 = 0.9924). ?? The Royal Society of Chemistry 2004.

  20. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    PubMed

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended