Sample records for icp emission spectrometry

  1. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.

    2000-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.

  2. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  3. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  5. Comparison method for uranium determination in ore sample by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Sert, Şenol

    2013-07-01

    A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.

  6. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.

    PubMed

    Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S

    2008-01-01

    The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.

  7. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  8. Comparison of analytical performances of inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry for trace analysis of bismuth and bismuth oxide

    NASA Astrophysics Data System (ADS)

    Medvedev, Nickolay S.; Shaverina, Anastasiya V.; Tsygankova, Alphiya R.; Saprykin, Anatoly I.

    2018-04-01

    The paper presents а comparison of analytical performances of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for trace analysis of high purity bismuth and bismuth oxide. Matrix effects in the ICP-MS and ICP-AES methods were studied as a function of Bi concentration, ICP power and nebulizer flow rate. For ICP-MS the strong dependence of the matrix effects versus the atomic mass of analytes was observed. For ICP-AES the minimal matrix effects were achieved for spectral lines of analytes with low excitation potentials. The optimum degree of sample dilution providing minimum values of the limits of detection (LODs) was chosen. Both methods let us to reach LODs from n·10-7 to n·10-4 wt% for more than 50 trace elements. For most elements the LODs of ICP-MS were lower in comparison to ICP-AES. Validation of accuracy of the developed techniques was performed by "added-found" experiments and by comparison of the results of ICP-MS and ICP-AES analysis of high-purity bismuth oxide.

  9. Potentialities of mass spectrometry (ICP-MS) for actinides determination in urine.

    PubMed

    Bouvier-Capely, C; Ritt, J; Baglan, N; Cossonnet, C

    2004-05-01

    The applicability of inductively coupled plasma-mass spectrometry (ICP-MS) for determining actinides in urine was investigated. Performances of ICP-MS including detection limit and analysis time were studied and compared with alpha spectrometry performances. In the field of individual monitoring of workers, the comparison chart obtained in this study can be used as a guide for medical laboratories to select the most adequate procedure to be carried out depending on the case in question (the radioisotope to be measured, the required sensitivity, and the desired response time).

  10. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS.

    PubMed

    Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su

    2013-12-15

    This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  12. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  13. Spectroscopic Characteristic and Analytical Capability of Ar-N₂ Inductively Coupled Plasma in Axially Viewing Optical Emission Spectrometry.

    PubMed

    Ohata, Masaki

    2016-01-01

    The spectroscopic characteristics and analytical capability of argon-nitrogen (Ar-N2) inductively coupled plasma (ICP) in axially viewing optical emission spectrometry (OES) were examined and figures of merit were determined in the present study. The spectroscopic characteristics such as the emission intensity profile and the excitation temperature observed from the analytical zone of Ar-N2 ICP in axially viewing ICPOES, in order to elucidate the enhancement of the emission intensity of elements obtained in our previous study, were evaluated and compared to those of the standard ICP. The background and emission intensities of elements as well as their excitation behavior for both atom and ion lines were also examined. As results, a narrower emission intensity profile and an increased excitation temperature as well as enhancements for both background and emission intensities of elements, which could be due to the ICP shrunken as well as the enhancement of the interaction between the central channel of the ICP and samples introduced, were observed for Ar-N2 ICP in axially viewing OES. In addition, the elements with relatively higher excitation and ionization energies such as As, Bi, Cd, Ni, P, and Zn revealed larger enhancements of the emission intensities as well as improved limits of detection (LODs), which were also attributed to the enhanced interaction between Ar-N2 ICP and the samples. Since the Ar-N2 ICP could be obtained easily only by the addition of a small amount of N2 gas to the Ar plasma gas of the standard ICP and no optimization on the alignment between Ar-N2 ICP and the spectrometer in commercially available ICPOES instruments was needed, it could be utilized as simple and optional excitation and ionization sources in axially viewing ICPOES.

  14. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  15. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  16. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  17. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.

    PubMed

    Ammann, Adrian A

    2007-04-01

    Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.

  18. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Elements in Whole-Water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Struzeski, Tedmund M.

    1998-01-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.

  19. A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry.

    PubMed

    Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J

    2011-11-01

    Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.

  20. Using Gamma ray and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to Evaluate Elemental Sequences in Cap-carbonates and Cap-like Carbonates of the Death Valley Region

    NASA Astrophysics Data System (ADS)

    Holter, S. A.; Theissen, K. M.; Hickson, T. A.; Bostick, B.

    2004-12-01

    The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material into the oceans; hence, we might expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. In January of 2004 we collected spectral gamma data (K, U, Th) and hand samples from cap carbonates (Noonday Dolomite) and cap-like carbonates (Beck Spring Dolomite) of the Death Valley region in order to explore elemental changes in post-snowball Earth oceans. Based on our spectral gamma results, Th/U ratio trends suggested variations in the oxidation state of the Precambrian ocean. We pursued further investigations of trace elements to ascertain the reliability of these results by using ICP-OES. A suite of 25 trace elements was measured, most notably including U and Th. The ICP-OES data not only allow us to compare elemental changes between cap-carbonates and cap-like carbonates, but they also allow for a comparison of optical emission spectrometry and hand held gamma spectrometry methods. Both methods show similar trends in U and Th values for both the cap-carbonates and cap-like carbonates.

  1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    PubMed

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Ultra-Shallow Depth Profiling of Arsenic Implants in Silicon by Hydride Generation-Inductively Coupled Plasma Atomic Emission Spectrometry

    NASA Astrophysics Data System (ADS)

    Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi

    1995-08-01

    High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.

  3. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Challenges in the quality assurance of elemental and isotopic analyses in the nuclear domain benefitting from high resolution ICP-OES and sector field ICP-MS.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Van Winckel, Stefaan

    Accurate analytical data reinforces fundamentally the meaningfulness of nuclear fuel performance assessments and nuclear waste characterization. Regularly lacking matrix-matched certified reference materials, quality assurance of elemental and isotopic analysis of nuclear materials remains a challenging endeavour. In this context, this review highlights various dedicated experimental approaches envisaged at the European Commission-Joint Research Centre-Institute for Transuranium Elements to overcome this limitation, mainly focussing on the use of high resolution-inductively coupled plasma-optical emission spectrometry (HR-ICP-OES) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). However, also α- and γ-spectrometry are included here to help characterise extensively the investigated actinide solutions for their actual concentration, potential impurities and isotopic purity.

  5. Improved documentation of spectral lines for inductively coupled plasma emission spectrometry

    NASA Astrophysics Data System (ADS)

    Doidge, Peter S.

    2018-05-01

    An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.

  6. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  7. High-Resolution Inductively Coupled Plasma Optical Emission Spectrometry for (234)U/(238)Pu Age Dating of Plutonium Materials and Comparison to Sector Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert

    2016-09-06

    Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass

  8. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  9. [Determination of heavy metals for RoHS compliance by ICP-OES spectrometry coupled with microwave extraction system].

    PubMed

    Hua, Li; Wu, Yi-Ping; An, Bing; Lai, Xiao-Wei

    2008-11-01

    The harm of heavy metals contained in electronic and electrical equipment (EEE) on environment is of high concern by human. Aiming to handle the great challenge of RoHS compliance, the determinations of trace or ultratrace chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb) by inductively coupled plasma optical emission spectrometry (ICP-OES) was performed in the present paper, wherein, microwave extraction technology was used to prepare the sample solutions. In addition, the precision, recovery, repeatability and interference issues of this method were also discussed. The results exhibited that using the microwave extraction system to prepare samples is more quick, lossless, contamination-free in comparison with the conventional extraction methods such as dry ashing, wet-oven extraction etc. By analyzing the recoveries of these four heavy metals over different working time and wavelengths, the good recovery range between 85% and 115% showed that there was only tiny loss or contamination during the process of microwave extraction, sample introduction and ICP detection. Repeatability experiments proved that ICP plasma had a good stability during the working time and the matrix effect was small. Interference was a problem troublesome for atomic absorption spectrometry (AAS), however, the techniques of standard additions or inter-element correction (IEC) method can effectively eliminated the interferences of Ni, As, Fe etc. with the Cd determination. By employing the multi-wavelengths and two correction point methods, the issues of background curve sloping shift and spectra overlap were successfully overcome. Besides, for the determinations of trace heavy metal elements, the relative standard deviation (RSD) was less than 3% and the detection limits were less than 1 microg x L(-10 (3sigma, n = 5) for samples, standard solutions, and standard additions, which proved that ICP-OES has a good precision and high reliability. This provided a reliable technique support

  10. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences

    NASA Astrophysics Data System (ADS)

    Xu, Gu-feng; Wang, Hong-mei

    2001-08-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  11. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  12. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  13. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.

  14. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  15. [Interest and limits of inductively coupled plasma mass spectrometry (ICP-MS) for urinary diagnosis of radionuclide internal contamination].

    PubMed

    Lecompte, Yannick; Bohand, Sandra; Laroche, Pierre; Cazoulat, Alain

    2013-01-01

    After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (β emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.

  16. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  17. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  18. Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS.

    PubMed

    Trejos, Tatiana; Montero, Shirly; Almirall, José R

    2003-08-01

    The discrimination potential of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is compared with previously reported solution ICP-MS methods using external calibration (EC) with internal standardization and a newly reported solution isotope dilution (ID) method for the analysis of two different glass populations. A total of 91 different glass samples were used for the comparison study; refractive index and elemental composition were measured by the techniques mentioned above. One set consisted of 45 headlamps taken from a variety of automobiles that represents a range of 20 years of manufacturing dates. A second set consisted of 46 automotive glasses (side windows, rear windows, and windshields) representing casework glass from different vehicle manufacturers over several years. The element menu for the LA-ICP-MS and EC-ICP-MS methods include Mg, Al, Ca, Mn, Ce, Ti, Zr, Sb, Ga, Ba, Rb, Sm, Sr, Hf, La, and Pb. The ID method was limited to the analysis of two isotopes each of Mg, Sr, Zr, Sb, Ba, Sm, Hf, and Pb. Laser ablation analyses were performed with a Q switched Nd:YAG, 266 nm, 6 mJ output energy laser. The laser was used in depth profile mode while sampling using a 50 microm spot size for 50 sec at 10 Hz (500 shots). The typical bias for the analysis of NIST 612 by LA-ICP-MS was less than 5% in all cases and typically better than 5% for most isotopes. The precision for the vast majority of the element menu was determined generally less than 10% for all the methods when NIST 612 was measured (40 microg x g(-1)). Method detection limits (MDL) for the EC and LA-ICP-MS methods were similar and generally reported as less than 1 microg x g(-1) for the analysis of NIST 612. While the solution sample introduction methods using EC and ID presented excellent sensitivity and precision, these methods have the disadvantages of destroying the sample, and also involve complex sample preparation. The laser ablation method was simpler, faster, and

  19. Provenance establishment of coffee using solution ICP-MS and ICP-AES.

    PubMed

    Valentin, Jenna L; Watling, R John

    2013-11-01

    Statistical interpretation of the concentrations of 59 elements, determined using solution based inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma emission spectroscopy (ICP-AES), was used to establish the provenance of coffee samples from 15 countries across five continents. Data confirmed that the harvest year, degree of ripeness and whether the coffees were green or roasted had little effect on the elemental composition of the coffees. The application of linear discriminant analysis and principal component analysis of the elemental concentrations permitted up to 96.9% correct classification of the coffee samples according to their continent of origin. When samples from each continent were considered separately, up to 100% correct classification of coffee samples into their countries, and plantations of origin was achieved. This research demonstrates the potential of using elemental composition, in combination with statistical classification methods, for accurate provenance establishment of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. [Study on microwave digestion of gypsum for the determination of multielement by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yang, Rui-ming; Yao, Qiang; Chen, Chang-he

    2010-09-01

    Three acids (HNO3, HNO3/HF and HNO3 /HF+ H3BO3) were used to decompose gypsum with microwave digestion system. The contents of 10 mineral elements (Al, Ca, Mg, Fe, K, Na, S, Ti, Si and Sr) in gypsum were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) while 6 heavy metals (V, Cr, Mn, Zn, Se and Ce) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). GBW03109a, GBW03110 and FGD-2 were used as gypsum standard reference materials. The results showed that two-step microwave digestion with HNO3/HF at 210 degrees C and then adding H3BO3 for the removal of HF and fluorides completely decomposed the gypsums, while this method achieved good recoveries for all elements in the three gypsum standard reference materials. The recovery was from 88% to 112% and the RSD of tests was below 3%. The method was applied to the elemental analysis for flue gas desulfurization gypsums from three coal-fired power plants.

  1. Assessment of heavy metal contamination in core sediment samples in Gulf of Izmir, Aegean Sea, Turkey (by inductively coupled plasma-optical emission spectrometry (ICP-OES))

    NASA Astrophysics Data System (ADS)

    Ünal Yumun, Zeki; Kam, Erol; Kurt, Dilek

    2017-04-01

    Heavy metal and radionuclide analysis studies are crucial in explaining biotic and abiotic interactions in ecosystems. This type of analysis is highly needed in environments such as coastal areas, gulfs or lakes where human activities are generally concentrated. Sediments are one of the best biological indicators for the environment since the pollution accumulates in the sediments by descent to the sea floor. In this study, sediments were collected from the Gulf of Izmir (Eastern Aegean Sea, Turkey) considering the accumulated points of domestic and industrial wastes to make an anthropogenic pollution analysis. The core sediments had different depths of 0.00-30.00 m at four different locations where Karsiyaka, Bayrakli, Incialti and Cesmealti in the Gulf of Izmir. The purpose of the study was determining Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in the drilling samples to assess their levels and spatial distribution in crucial areas of the Aegean Sea by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion techniques. The heavy metal concentrations found in sediments varied for Cd: ICP-OES, pollution, sediment.

  2. Studies on transport phenomena in electrothermal vaporization sample introduction applied to inductively coupled plasma for optical emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C.

    2005-10-01

    In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl 2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20-800 pg mass range by ICP-MS and in the 1-50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl 2 matrix concentration (loaded amount of 2-10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.

  3. Study of the chemical composition of particulate matter from the Rio de Janeiro metropolitan region, Brazil, by inductively coupled plasma-mass spectrometry and optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Mateus, Vinícius Lionel; Monteiro, Isabela Luizi Gonçalves; Rocha, Rafael Christian Chávez; Saint'Pierre, Tatiana Dillenburg; Gioda, Adriana

    2013-08-01

    Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m- 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m- 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3-6 μg m- 3). The anions found in the highest average concentrations were SO42 - in PM2.5 (2-4 μg m- 3) and Cl- in TSP (2-6 μg m- 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.

  4. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  5. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.

    PubMed

    Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W

    2006-01-23

    Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.

  6. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu

    2012-06-01

    Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%.

  8. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  9. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  10. Determination of (236)U and transuranium elements in depleted uranium ammunition by alpha-spectrometry and ICP-MS.

    PubMed

    Desideri, D; Meli, M A; Roselli, C; Testa, C; Boulyga, S F; Becker, J S

    2002-11-01

    It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement. The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.

  11. Low gas flow inductively coupled plasma optical emission spectrometry for the analysis of food samples after microwave digestion.

    PubMed

    Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang

    2014-11-01

    In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rapid and simple determination of selenium in blood serum by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Labat, L; Dehon, B; Lhermitte, M

    2003-05-01

    An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.

  13. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Developments in ICP-MS: electrochemically modulated liquid chromatography for the clean-up of ICP-MS blanks and reduction of matrix effects by flow injection ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Cory Thomas

    2008-01-01

    The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.

  15. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side.

    PubMed

    Linscheid, Michael W

    2018-03-30

    To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just

  16. Lead isotope ratios in lichen samples evaluated by ICP-ToF-MS to assess possible atmospheric pollution sources in Havana, Cuba.

    PubMed

    Alvarez, Alfredo Montero; Estévez Alvarez, Juan R; do Nascimento, Clístenes Williams Araújo; González, Iván Pupo; Rizo, Oscar Díaz; Carzola, Lázaro Lima; Torres, Roberto Ayllón; Pascual, Jorge Gómez

    2017-01-01

    Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The 206 Pb/ 207 Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 μg L -1 ) confirms the official statement that leaded gasoline is no longer used in Cuba.

  17. Quantitative determination of total cesium in highly active liquid waste by using liquid electrode plasma optical emission spectrometry.

    PubMed

    Do, Van-Khoai; Yamamoto, Masahiko; Taguchi, Shigeo; Takamura, Yuzuru; Surugaya, Naoki; Kuno, Takehiko

    2018-06-01

    A sensitive analytical method for determination of total cesium (Cs) in highly active liquid waste (HALW) by using modified liquid electrode plasma optical emission spectrometry (LEP-OES) is developed in this study. The instrument is modified to measure radioactive samples in a glove box. The effects of important factors, including pulsed voltage sequence and nitric acid concentration, on the emission of Cs are investigated. The limit of detection (LOD) and limit of quantification (LOQ) are 0.005 mg/L and 0.02 mg/L, respectively. The achieved LOD is one order lower than that of recently developed spectroscopic methods using liquid discharge plasma. The developed method is validated by subjecting a simulated HALW sample to inductively coupled plasma mass spectrometry (ICP-MS). The recoveries obtained from a spike-and-recovery test are 96-102%, implying good accuracy. The method is successfully applied to the quantification of Cs in a real HALW sample at the Tokai reprocessing plant in Japan. Apart from dilution and filtration of the HALW sample, no other pre-treatment process is required. The results agree well with the values obtained using gamma spectrometry. The developed method offers a reliable technique for rapid analysis of total Cs in HALW samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  20. The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.

    2016-01-01

    Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conductedmore » by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.« less

  1. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  2. Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes.

    PubMed

    Boros, Eszter; Pinkhasov, Omar R; Caravan, Peter

    2018-01-01

    Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Two known peptide-DOTA conjugates were chelated with nat Ga and nat In. Limit of detection of HPLC-ICP-MS for 69 Ga and 115 In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. The limits of detection were 0.16 pmol for 115 In and 0.53 pmol for 69 Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.

  3. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.

    2009-06-01

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  4. Application of plasma gas modulation technique for improvement of the measurement of Mn emission intensity in ICP-AES.

    PubMed

    Kubota, K; Wagatsuma, K

    2001-01-02

    A phase-sensitive detection technique associated with a digital lock-in amplifier was applied for an improvement of the detection in ICP-AES. The lock-in amplifier works as an extremely narrow band pass filter. It can pick up the modulated signal, which has the same frequency as the reference signal, from any noise and thus it can improve the signal-to-noise ratio. Modulation of the ICP can be performed by mixing small amounts of air to argon as the outer gas cyclically, because the emission intensities of ionic lines are enhanced by using the mixed gas. An electromagnetic valve, which is placed in the outer-gas flow path, causes periodic variation in the air gas in the outer-gas flow, and thus switching the valve on/off can modulate the ICP. By choosing the appropriate conditions, the addition of air gas enhances the emission intensity of ionic lines more than that of the background, thus leading to improved signal-to-background ratios. At the same time the lock-in amplifier further enhances the ionic emissions because it picks up only the modulated part of the signal. By applying the plasma gas flow modulation technique the detection and the determination limits of the Mn II 257.610 nm line are improved in comparison with the conventional method. A change in plasma shape corresponding to the modulation frequency is observed when the ICP is modulated.

  5. [Determination of tungsten and cobalt in the air of workplace by ICP-OES].

    PubMed

    Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F

    2017-08-20

    Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.

  6. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  8. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    PubMed

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  9. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less

  10. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    PubMed

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  11. Method of low tantalum amounts determination in niobium and its compounds by ICP-OES technique.

    PubMed

    Smolik, Marek; Turkowska, Magdalena

    2013-10-15

    A method of determination of low amounts of tantalum in niobium and niobium compounds without its prior separation by means of inductively coupled plasma optical emission spectrometry (ICP-OES) has been worked out. The method involves dissolution of the analyzed samples of niobium as well as its various compounds (oxides, fluorides, chlorides, niobates(V)) in fluoride environments, precipitation of sparingly soluble niobic(tantalic) acid (Nb2O5(Ta2O5) · xH2O), converting them into soluble complex compounds by means of oxalic acid with addition of hydrogen peroxide and finally analyzing directly obtained solutions by ICP-OES. This method permits determination of Ta in niobium at the level of 10(-3)% with relatively good precision (≤ 8% RSD) and accuracy (recovery factor: 0.9-1.1). Relative differences in the results obtained by two independent methods (ICP-OES and ICP-MS) do not exceed 14%, and other elements present in niobium compounds (Ti, W, Zr, Hf, V, Mo, Fe, Cr) at the level of 10(-2)% do not affect determination. © 2013 Elsevier B.V. All rights reserved.

  12. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry and hydrology, Part 1. Analytical performance

    USGS Publications Warehouse

    Brenner, I.B.; Taylor, Howard E.

    1992-01-01

    Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.

  13. Boron determination in steels by Inductively-Coupled Plasma spectometry (ICP)

    NASA Technical Reports Server (NTRS)

    Coedo, A. G.; Lopez, M. T. D.

    1986-01-01

    The sample is treated with 5N H2SO4 followed by concentrated HNO3 and the diluted mixture is filtered. Soluble B is determined in the filtrate by Inductively-Coupled Plasma (ICP) spectrometry after addition HCl and extraction of Fe with ethyl-ether. The residue is fused with Na2CO3 and, after treatment with HCl, the insoluble B is determined by ICP spectrometry as before. The method permits determination of ppm amounts of B in steel.

  14. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  15. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL WIPE SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  16. Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP OES analysis.

    PubMed

    Arantes de Carvalho, Gabriel G; Kondaveeti, Stalin; Petri, Denise F S; Fioroto, Alexandre M; Albuquerque, Luiza G R; Oliveira, Pedro V

    2016-12-01

    Analytical methods for the determination of rare earth elements (REE) in natural waters by plasma spectrochemical techniques often require sample preparation procedures for analytes preconcentration as well as for removing matrix constituents, that may interfere on the analytical measurements. In the present work, calcium alginate (CA) beads were used for the first time aiming at Ce, La and Nd preconcentration from groundwater samples for further determination by inductively coupled plasma optical emission spectrometry (ICP OES). Test samples were analyzed in batch mode by transferring a 40mL test portion (pH=5±0.2) into a 50mL polyethylene flask containing 125mg CA beads. After 15min contact, the analytes were quantitatively extracted from the loaded CA beads with 2.0mL of 1.0molL -1 HCl solution for further determination by ICP OES, using Ce (II) 456.236, La (II) 379.478 and Nd (II) 430.358nm emission lines. The proposed approach is a reliable alternative for REE single-stage preconcentration from aqueous samples, as it provided accurate results based on the addition and recovery analysis of groundwater. The results obtained by the proposed method were also compared with those from reference method based on inductively coupled plasma mass spectrometry (ICP-MS) and no significant differences were observed after applying the Student's t-test at 95% confidence level. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods

    NASA Astrophysics Data System (ADS)

    Böhme, Steffi; Stärk, Hans-Joachim; Meißner, Tobias; Springer, Armin; Reemtsma, Thorsten; Kühnel, Dana; Busch, Wibke

    2014-09-01

    In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size ( x BET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 ( x BET = 111 nm) and Alu3 ( x BET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

  18. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  19. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less

  20. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  1. Elemental bioimaging by means of LA-ICP-OES: investigation of the calcium, sodium and potassium distribution in tobacco plant stems and leaf petioles.

    PubMed

    Thyssen, G M; Holtkamp, M; Kaulfürst-Soboll, H; Wehe, C A; Sperling, M; von Schaewen, A; Karst, U

    2017-06-21

    Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g -1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.

  2. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  3. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  4. Preparation of hair for measurement of elements by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Puchyr, R F; Bass, D A; Gajewski, R; Calvin, M; Marquardt, W; Urek, K; Druyan, M E; Quig, D

    1998-06-01

    The preparation of hair for the determination of elements is a critical component of the analysis procedure. Open-beaker, closed-vessel microwave, and flowthrough microwave digestion are methods that have been used for sample preparation and are discussed. A new digestion method for use with inductively coupled plasma-mass spectrometry (ICP-MS) has been developed. The method uses 0.2 g of hair and 3 mL of concentrated nitric acid in an atmospheric pressure-low-temperature microwave digestion (APLTMD) system. This preparation method is useful in handling a large numbers of samples per day and may be adapted to hair sample weights ranging from 0.08 to 0.3 g. After digestion, samples are analyzed by ICP-MS to determine the concentration of Li, Be, B, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Rb, Sr, Zr, Mo, Pd, Ag, Cd, Sn, Sb, I, Cs, Ba, Pt, Au, Hg, Tl, Pb, Bi, Th, and U. Benefits of the APLTMD include reduced contamination and sample handling, and increased precision, reliability, and sample throughput.

  5. Two-dimensional on-line detection of brominated and iodinated volatile organic compounds by ECD and ICP-MS after GC separation.

    PubMed

    Schwarz, A; Heumann, K G

    2002-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.

  6. Self-aliquoting micro-grooves in combination with laser ablation-ICP-mass spectrometry for the analysis of challenging liquids: quantification of lead in whole blood.

    PubMed

    Nischkauer, Winfried; Vanhaecke, Frank; Limbeck, Andreas

    2016-08-01

    We present a technique for the fast screening of the lead concentration in whole blood samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The whole blood sample is deposited on a polymeric surface and wiped across a set of micro-grooves previously engraved into the surface. The engraving of the micro-grooves was accomplished with the same laser system used for LA-ICP-MS analysis. In each groove, a part of the liquid blood is trapped, and thus, the sample is divided into sub-aliquots. These aliquots dry quasi instantly and are then investigated by means of LA-ICP-MS. For quantification, external calibration against aqueous standard solutions was relied on, with iron as an internal standard to account for varying volumes of the sample aliquots. The (208)Pb/(57)Fe nuclide ratio used for quantification was obtained via a data treatment protocol so far only used in the context of isotope ratio determination involving transient signals. The method presented here was shown to provide reliable results for Recipe ClinChek® Whole Blood Control levels I-III (nos. 8840-8842), with a repeatability of typically 3 % relative standard deviation (n = 6, for Pb at 442 μg L(-1)). Spiked and non-spiked real whole blood was analysed as well, and the results were compared with those obtained via dilution and sectorfield ICP-MS. A good agreement between both methods was observed. The detection limit (3 s) for lead in whole blood was established to be 10 μg L(-1) for the laser ablation method presented here. Graphical Abstract Micro-grooves are filled with whole blood, dried, and analyzed by laser ablation ICP-mass spectrometry. Notice that the laser moves in perpendicular direction with regard to the micro-grooves.

  7. Uncertainty estimation in the determination of metals in superficial water by ICP-OES

    NASA Astrophysics Data System (ADS)

    Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.

    2016-07-01

    From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.

  8. Determination of Heavy Metals in Almonds and Mistletoe as a Parasite Growing on the Almond Tree Using ICP-OES or ICP-MS.

    PubMed

    Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa

    2017-12-28

    In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.

  9. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  10. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  12. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  13. Gunshot residue (GSR) analysis by single particle inductively coupled plasma mass spectrometry (spICP-MS).

    PubMed

    Heringer, Rodrigo D; Ranville, James F

    2018-05-25

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) was investigated as a screening-level technique for the analysis and characterization of inorganic gunshot residue (IGSR) nanoparticles. spICP-MS works with undigested samples whereby nanoparticles (NPs) in a suspension are individually atomized and ionized as they reach the plasma, each resulting in a pulse of analyte ions that can be quantified. The method is rapid, and signals from hundreds of NPs can be collected in 1-2min per sample. The technique is quantitative for NP mass and number concentration when only one element (single element mode) is measured using a quadrupole MS. Likewise, a qualitative elemental fingerprint can be obtained for individual NPs when peak-hopping between two elements (dual element mode). For this proof of concept study, each shooter's hand was sampled with ultrapure water or swab to obtain NPs suspensions. Measurements of antimony, barium, and lead were performed using both analysis modes. With no sample preparation and fully automated sample introduction, it is possible to analyze more than 100 samples in a day. Results show that this technique opens a new perspective for future research on GSR sample identification and characterization and can complement SEM/EDX analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Micro-scale flow system for on-line multielement preconcentration from saliva digests and determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Fernanda Giné, Maria

    2001-10-01

    A micro-scale flow system is proposed for on-line preconcentration of Cd, Cu, Mn, Ni and Pb in saliva samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). A small column containing 8 μl of AG50W-X8 resin was inserted into the flow system, assembled with capillary tubes and connected to a micro-concentric nebulizer. The elution of the analytes was performed with 3 mol l -1 HCl at a flow rate of 82 μl min -1. The ICP-OES signal acquisition program permits measurements for 5 s in the concentrated portion of the transient elution peaks. A sample volume of 1 ml was required to obtain enrichment factors of 46, 23, 17, 18 and 44 for Cd, Cu, Mn, Ni and Pb, respectively. The relative standard deviations for a 50-μg l -1 multi-analyte solution were ≤6.5%. The recoveries for Cd, Cu, Mn, Ni and Pb in digested human saliva samples were between 86 and 111%. The sample throughput was 24 h -1.

  15. Accurate quantitation standards of glutathione via traceable sulfur measurement by inductively coupled plasma optical emission spectrometry and ion chromatography

    PubMed Central

    Rastogi, L.; Dash, K.; Arunachalam, J.

    2013-01-01

    The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814

  16. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  17. Tissue gadolinium deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi

    2015-06-01

    This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.

  18. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Meharg, Andrew A; Charnock, John M; Feldmann, Jörg

    2008-04-01

    The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

  19. Stoichiometry determination of (Pb,La)(Zr,Ti)O3-type nano-crystalline ferroelectric ceramics by wavelength-dispersive X-ray fluorescence spectrometry.

    PubMed

    Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata

    2006-07-01

    Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.

  20. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  1. [Convertibility of the data determined by ICP-AES and FAAS for soil available K and Na].

    PubMed

    Zhang, Jian-min; Wang, Meng; Ge, Xiao-ping; Wu, Jian-zhi; Ge, Ying; Li, Shi-peng; Chang, Jie

    2009-05-01

    In recent years, inductively coupled plasma atomic emission spectrometry (ICP-AES) have been commonly used to determine the soil available K and Na with the extraction solution of HCl-H2SO4, while previous data of soil available K and Na were measured by flame atomic absorption spectrometry (FAAS) with the extraction solution of NH4OAc. In order to utilize previous data, quest for the convertibility of the data determined by ICP-AES and FAAS, and compare the data determined by both methods, the authors chose four types of soil to determine soil available K and Na by ICP-AES and FAAS, respectively. Four types of soil represent grit soil, clay, silt from river and silt from sea, respectively. Soil samples included four types of soil and these samples represent different soil nutrition. The authors analyzed the correlations of two kinds of measured data. The paired samples t-test proves that there was significantly positively correlation between these two methods. The correlation coefficient of the data between these two methods for measuring soil available K is 0.98. The results of soil available K determined by the two methods can be conversed through the formula, y = l.14x + 6.53 (R2 = 0.91, n=24, p < 0.001). As for Na, although there is a significantly positively correlation between these two methods, the slopes of single model of clay and grit soil were different from that of general model. And so the results determined by the two methods can be conversed through different formula according to the types of soil, that is, for clay: y = l.23x + 10.03; for grit soil: y = 3.12x - 23.03; for silt: y = 0.60x. In conclusion, the authors' results showed that previous data of available K and Na measured by FAAS with the extraction solution of NH4OAc were available. And these data were comparable to the data measured by ICP-AES through definite formula The authors' results also suggested that ICP-AES was preferable when many elements were measured at the same time. Under

  2. Implementation of ICP-MS protocols for uranium urinary measurements in worker monitoring.

    PubMed

    Baglan, N; Cossonnet, C; Trompier, F; Ritt, J; Bérard, P

    1999-10-01

    The uranium concentration in human urine spiked with natural uranium and rat urine containing metabolized depleted uranium was determined by ICP-MS. The use of ICP-MS was investigated without any chemical treatment or after the different stages of a purification protocol currently carried out for routine monitoring. In the case of spiked urine, the measured uranium concentrations were consistent with those certified by an intercomparison network in radiotoxicological analysis (PROCORAD) and with those obtained by alpha spectrometry in the case of the urine containing metabolized uranium. The quantitative information which could be obtained in the different protocols investigated shows the extent to which ICP-MS provides greater flexibility for setting up appropriate monitoring approaches in radiation protection routines and accidental situations. This is due to the combination of high sensitivity and the accuracy with which traces of uranium in urine can be determined in a shorter time period. Moreover, it has been shown that ICP-MS measurement can be used to quantify the 235U isotope, which is useful for characterizing the nature of the uranium compound, but difficult to perform using alpha spectrometry.

  3. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?

    PubMed

    Santamaria-Fernandez, Rebeca

    2010-06-01

    This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.

  5. Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS.

    PubMed

    Pereira, João B; Dantas, Kelly G F

    2016-04-01

    The determination of Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, and Zn by inductively coupled plasma optical emission spectrometry (ICP OES), and Se by graphite furnace atomic absorption spectrometry (GF AAS), has been carried out in dry matter and teas from 11 samples of the cat's claw plant. The accuracy and precision values were verified against GBW 07604 (Poplar leaves) certified reference material and by the recovery test. Results showed a high content of Ca in the medicinal plant studied, followed by Mg and P. The values obtained showed that the elements studied have different concentrations depending on the method of tea preparation. The highest levels were observed in Ca and Mg, and the lowest for Se and Pb, by both infusion and decoction. Teas prepared from this plant were found to be at safe levels for human consumption, and may be suitable as sources of these elements in the human diet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2015-01-01

    A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.

  7. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn.

    PubMed

    Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-09-06

    A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%.

  9. LA-ICP-MS-derived U-concentrations and microstructural domains within biogenic aragonite of Arctica islandica shell.

    PubMed

    Helama, Samuli; Heikkilä, Pasi; Rinne, Katja; Nielsen, Jan Kresten; Nielsen, Jesper Kresten

    2015-05-01

    Understanding of the uranium uptake processes (both in vivo and post-mortem) into the skeletal structures of marine calcifiers is a subject of multi-disciplinary interest. U-concentration changes within the molluscan shell may serve as a paleoceanographic proxy of the pH history. A proxy of this type is needed to track the effects of fossil fuel emissions to ocean acidification. Moreover, attaining reliable U-series dates using shell materials would be a geochronological breakthrough. Picturing the high-resolution changes of U-concentrations in shell profiles is now possible by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Here, we analyzed in situ U-concentration variations in sub-fossilized shells of ocean quahog (Arctica islandica), a commonly studied bivalve species in Quaternary geoscience, using LA-ICP-MS. Microstructural details of the shell profiles were achieved by the scanning electron microscopy (SEM). Comparison of the shell aragonite microstructure with the changes in U-concentration revealed that uranium of possibly secondary origin is concentrated into the porous granular layers of the shell. Our results reinforce the hypothesis that U-concentration variations can be linked with microstructural differences within the shell. A combination of LA-ICP-MS and SEM analyses is recommended as an interesting approach for understanding the U-concentration variations in similar materials.

  10. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  11. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.

    PubMed

    Yang, Lu

    2009-01-01

    For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.

  12. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  13. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  14. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  15. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred

  16. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  17. Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel.

    PubMed

    Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal

    2009-10-15

    Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.

  18. Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: applications and instrumentation

    NASA Astrophysics Data System (ADS)

    Rosen, Amy L.; Hieftje, Gary M.

    2004-02-01

    To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.

  19. Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas

    2014-05-01

    Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected

  20. Exploration of robust operating conditions in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tromp, John W.; Pomares, Mario; Alvarez-Prieto, Manuel; Cole, Amanda; Ying, Hai; Salin, Eric D.

    2003-11-01

    'Robust' conditions, as defined by Mermet and co-workers for inductively coupled plasma (ICP)-atomic emission spectrometry, minimize matrix effects on analyte signals, and are obtained by increasing power and reducing nebulizer gas flow. In ICP-mass spectrometry (MS), it is known that reduced nebulizer gas flow usually leads to more robust conditions such that matrix effects are reduced. In this work, robust conditions for ICP-MS have been determined by optimizing for accuracy in the determination of analytes in a multi-element solution with various interferents (Al, Ba, Cs, K, Na), by varying power, nebulizer gas flow, sample introduction rate and ion lens voltage. The goal of the work was to determine which operating parameters were the most important in reducing matrix effects, and whether different interferents yielded the same robust conditions. Reduction in nebulizer gas flow and in sample input rate led to a significantly decreased interference, while an increase in power seemed to have a lesser effect. Once the other parameters had been adjusted to their robust values, there was no additional improvement in accuracy attainable by adjusting the ion lens voltage. The robust conditions were universal, since, for all the interferents and analytes studied, the optimum was found at the same operating conditions. One drawback to the use of robust conditions was the slightly reduced sensitivity; however, in the context of 'intelligent' instruments, the concept of 'robust conditions' is useful in many cases.

  1. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    PubMed

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-03-30

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.

  2. Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES).

    PubMed

    Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang

    2007-02-05

    A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.

  3. ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.

    PubMed

    Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard

    2012-12-15

    The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.

    PubMed

    Niedzielski, P; Kozak, L; Wachelka, M; Jakubowski, K; Wybieralska, J

    2015-01-01

    The article presents the optimisation, validation and application of the microwave induced plasma optical emission spectrometry (MIP-OES) dedicated for a routine determination of Ag, Al, B, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn, in the geological samples. The three procedures of sample preparation has been proposed: sample digestion with the use of hydrofluoric acid for determination of total concentration of elements, extraction by aqua regia for determination of the quasi-total element concentration and extraction by hydrochloric acid solution to determine contents of the elements in acid leachable fraction. The detection limits were on the level 0.001-0.121 mg L(-1) (from 0.010-0.10 to 1.2-12 mg kg(-1) depend on the samples preparation procedure); the precision: 0.20-1.37%; accuracy 85-115% (for recovery for certified standards materials analysis and parallel analysis by independent analytical techniques: X-ray fluorescence (XRF) and flame absorption spectrometry (FAAS)). The conformity of the results obtained by MIP-OES analytical procedures with the results obtained by XRF and FAAS analysis allows to propose the procedures for studies of elemental composition of the fraction of the geological samples. Additionally, the MIP-OES technique is much less expensive than ICP techniques and much less time-consuming than AAS techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Analysis and Evaluation of Inorganic Elements in Euryale Semen from Different Habitats by Microwave Digestion-ICP-OES].

    PubMed

    Wang, Hong; Wu, Qi-nan; Wu, Cheng-ying; Fan, Xiu-he; Jiang, Zheng; Gu, Wei; Yue, Wei

    2015-01-01

    To establish a simple, rapid and efficient method for determination of different inorganic elements in Euryale Semen from different habitats. Inductively coupled plasma-optical emission spectrometry(ICP-OES) was applied to determine inorganic elements in Euryale Semen, and the results were analyzed by principal component analysis. Euryale Semen from different habitats contained the kind of inorganic elements ranging from 22 to 26, including micronutrient elements like Iron, Zinc, Selenium, Copper, Molybdenum, Chrome and Cobalt, as well as macronutrient elements such as Potassium, Calcium, Sodium, Magnesium and Phosphorus. Five factors were extracted and used to comprehensively evaluate Euryale Semen from 20 different habitats covered almost China. The comprehensive function was F = 0. 38828F1 + 0. 25603F2 + 0. 07617F3 + 0. 06860F4 + 0. 04868F5, which resulted in the top three samples coming from Jiangsu Gaoyou, Hunan Xiangxi and Jiangsu Suzhou respectively. The study indicates that ICP-OES is a quick, accurate and sensitive method to determine the contents of inorganic elements in Euryale Semen,which provides scientific and reliable reference for its quality control and safety assessment.

  6. Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g(-1) levels.

    PubMed

    Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G

    2004-01-01

    The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.

  7. Hybrid Sargassum-sand sorbent: a novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry.

    PubMed

    Vijayaraghavan, K; Joshi, U M

    2013-01-01

    Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.

  8. Association between ICP pulse waveform morphology and ICP B waves.

    PubMed

    Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao

    2012-01-01

    The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.

  9. The potential of inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous determination of trace elements in whole blood, plasma and serum.

    PubMed

    Krachler, M; Irgolic, K J

    1999-11-01

    The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.

  10. Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS.

    PubMed

    Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González-Iglesias, Héctor; Coca-Prados, Miguel; Sanz-Medel, Alfredo

    2014-04-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.

  11. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction.

    PubMed

    Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek

    2018-06-05

    Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    NASA Astrophysics Data System (ADS)

    Pedreira, W. R.; Sarkis, J. E. S.; da Silva Queiroz, C. A.; Rodrigues, C.; Tomiyoshi, I. A.; Abrão, A.

    2003-02-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL-1. The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences.

  14. Direct analysis of deodorants for determination of metals by inductively coupled plasma optical emission spectrometry.

    PubMed

    da Costa, Wiviane Kássia Oliveira Correia; da Silva, Caroline Santos; Figueiredo, José Fernando Dagnone; Nóbrega, Joaquim Araujo; Paim, Ana Paula Silveira

    2018-06-05

    A fast and simple dilute-and-shoot procedure for determination of Al, As, Ba, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Sc, Ti, V, Zn and Zr in deodorants by inductively coupled plasma optical emission spectrometry (ICP OES) was developed. Sample preparation was carried out by diluting 1 mL of deodorant sample in 1% (v v -1 ) HNO 3 . The accuracy of the analytical procedure was evaluated using addition and recovery experiments, and recoveries ranged from 80 to 119%. The limits of detection varied from 0.001 to 0.76 mg kg -1 . Nine deodorants samples of different brands were analyzed. The maximum concentrations found (mg kg -1 ) were: Fe (1.0), Mn (0.1), Ti (1.02), V (0.33), Zn (255.2) and Zr (0.5); for Al and Mg, determined concentrations varied from 0.01 to 7.0% and from 0.005 to 1.44 mg kg -1 , respectively, showing wide variation depending on the sample type. The developed procedure was adequate for determining these analytes in routine analysis presenting high sample throughput and demonstrated the feasibility of direct analysis measurements after simple dilution step. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS).

    PubMed

    Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2016-05-30

    A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability <10% RSD) and accurate (recovery between 95 and 105%) and shows a linear dynamic range (R(2)>0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    PubMed

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  17. Determination of Microelements in Human Milk and Infant Formula Without Digestion by ICP-OES.

    PubMed

    Đurović, Dijana; Milisavljević, Branka; Nedović-Vuković, Mirjana; Potkonjak, Branislav; Spasić, Snežana; Vrvić, Miroslav

    2017-06-01

    The concentrations of zinc (Zn), iron (Fe) and copper (Cu) in both human milk and infant formula were determined using a new sample preparation method, by inductively coupled plasma - optical emission spectometry (ICP-OES) and flame atomic absorption spectrometry (FAAS). Human milk samples were diluted in ultrapure water. The infant formula of powder samples (suitable for an infant 1-6 months of age) and standard reference material (SRM-1849) were analyzed in parallel. The results have shown that FAAS method was more sensitive for Fe determination in human milk while ICP-OES was more sensitive for both Zn and Cu detection. The limit of quantification for both Zn and Cu was 5 μg L-1 and 10 μg L-1 for Fe and the recovery for Zn, Fe and Cu was ranged from 90% to 94%, 97% to 103% and 90% to 102%, respectively. Mean concentrations of Zn, Fe, and Cu in human milk samples were 5.35, 0.47 and 0.83 mg L-1, respectively while these values in infant formula were ranged from 3.52-4.75 mg L-1, 3.37-4.56 mg L-1 and 0.28-0.41 mg L-1, respectively. Despite the sample complexity, the proposed method using dilution of milk samples with water was simple, rapid, effective and accurate. ICP-OES was a better method for Zn determination while FAAS was a better method for Fe determination. In the case of Cu both methods were comparable.

  18. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES).

    PubMed

    de la Calle, Inmaculada; Menta, Mathieu; Klein, Marlène; Séby, Fabienne

    2017-08-15

    Cosmetics are part of the daily life of most of the people. Thus, a complete characterization of the products we applied in our skin is necessary. In this work, an analytical investigation of a wide variety of cosmetics from the point of view of total element content and metallic nanoparticles (NPs) has been performed. Firstly, we analyzed the total element content by ICP-MS and ICP-OES after acid digestion as an assessment of the presence of metal impurities. Prohibited elements in cosmetics, according to the European Commission regulation No 1223/2009, were not detected, and only elements mentioned in the label were found (e.g. Al, Fe, Ti and Si). Secondly, a screening of the presence of NPs has been performed by Dynamic Light Scattering (DLS) and Single Particle Inductively-Coupled Plasma Mass Spectrometry (SP-ICP-MS). Two sample preparation procedures were applied. The first protocol consisted in the preparation of suspensions in 0.1% w/v SDS and the second based on defatting with hexane followed by resuspension in water. DLS was employed as a routine method for a fast analysis of NPs, but this technique showed limitations due to the lack of specificity. SP-ICP-MS analyses were then performed, first as a screening technique to evaluate the presence of TiO 2 and Au NPs in cosmetics suspensions prepared in SDS; and second, when a positive answer was obtained about the presence of NPs from the screening, SP-ICP-MS was used for particle size determination. Results showed that only TiO 2 NPs were present in two sunscreens, one anti-wrinkle day cream, one lip balm protector labeled as 'nano' and in one brand of toothpaste not labeled as 'nano'. Sizes obtained for both sample preparations were compared and ranged from 30 to 120nm in most of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry.

    PubMed

    Silva, Sidnei G; Donati, George L; Santos, Luana N; Jones, Bradley T; Nóbrega, Joaquim A

    2013-05-30

    Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L(-1) Co, WCAES limit of detection for Cr (λ=425.4 nm) is calculated as 0.070 mg L(-1); a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr(+) by charge transfer reactions. In a second step, Cr(+)/e(-) recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25-10 mg L(-1) and repeatability of 3.8% (RSD, n=10) for a 2.0 mg L(-1) Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and 112%. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields.

    PubMed

    Gulson, Brian; Kamenov, George D; Manton, William; Rabinowitz, Michael

    2018-04-11

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields.

  2. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields

    PubMed Central

    Gulson, Brian; Manton, William; Rabinowitz, Michael

    2018-01-01

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields. PMID:29641487

  3. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION, AND MAINTENANCE OF THE JOBIN-YVON MODEL 70 INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROMETER (BCO-L-7.1)

    EPA Science Inventory

    The purpose of this SOP is to detail the operation and maintenance of an Instruments, SA Inc., Jobin-Yvon Model 70 (JY-70) inductively coupled plasma atomic emissions spectrometry (ICP-AES). This procedure was followed to ensure consistent data retrieval during the Arizona NHEXA...

  4. Validation of uranium determination in urine by ICP-MS.

    PubMed

    Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C

    2003-08-01

    A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.

  5. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Kanki, Akihiko; Watanabe, Shigeru; Nishimura, Hirotake; Tanimoto, Daigo; Higashi, Hiroki; Yamamoto, Akira

    2013-10-01

    To quantify tissue gadolinium (Gd) deposition in renally impaired rats exposed to Gd-EOB-DTPA and other Gd-based MRI contrast agents by means of inductively coupled plasma mass spectrometry (ICP-MS), and to compare the differences in distribution among major organs as possible triggers for nephrogenic systemic fibrosis (NSF). A total of 15 renally impaired rats were injected with Gd-EOB-DTPA, Gd-DTPA-BMA and Gd-HP-DO3A. Gd contents of skin, liver, kidney, lung, heart, spleen, diaphragm and femoral muscle were measured by inductively coupled plasma mass spectrometry (ICP-MS). Histological assessment was also conducted. Tissue Gd deposition in all organs was significantly higher (P=0.005~0.009) in the Gd-DTPA-BMA group than in the Gd-HP-DO3A and Gd-EOB-DTPA groups. In the Gd-DTPA-BMA group, Gd was predominantly deposited in kidney (1306±605.7μg/g), followed by skin, liver, lung, spleen, femoral muscle, diaphragm and heart. Comparing Gd-HP-DO3A and Gd-EOB-DTPA groups, Gd depositions in the kidney, liver and lung were significantly lower (P=0.009~0.011) in the Gd-EOB-DTPA group than in the Gd-HP-DO3A group although no significant differences were seen for any other organs. Gd-EOB-DTPA is a stable and safe Gd-based contrast agent (GBCA) showing lower Gd deposition in major organs in renally impaired rats, compared with other GBCAs. This fact suggests that the risk of NSF onset would be low in the use of Gd-EOB-DTPA. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite.

    PubMed

    Meyer, S; López-Serrano, A; Mitze, H; Jakubowski, N; Schwerdtle, T

    2018-01-24

    Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus.

  7. Rapid determination of 237Np in soil samples by multi-collector inductively-coupled plasma mass spectrometry and gamma spectrometry.

    PubMed

    Yi, Xiaowei; Shi, Yanmei; Xu, Jiang; He, Xiaobing; Zhang, Haitao; Lin, Jianfeng

    A radiochemical procedure is developed for the determination of 237 Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239 Np (milked from 243 Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO 3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. 239 Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the 237 Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the 237 Np activity concentration, the feasibility of the procedure was validated.

  8. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna

    2014-09-15

    Various sample preparation procedures for the simultaneous determination of As, Sb and Se in fruit juices by hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES) were examined. Applicability of total wet digestion with HNO3/H2O2, partial decomposition (solubilisation in aqua regia), 1:1 dilution with 2% (v/v) HNO3 and direct analysis were evaluated. Hydrides were generated in the reaction of an acidified sample with NaBH4 after pre-reduction with KI-ascorbic acid for total As and Sb, and boiling with HCl for total Se. Best results, i.e. limits of detection (LODs) of 0.51-0.73 ng mL(-1), precision (RSD) within 1.7-3.6% and recoveries for spiked samples between 101% and 106% were found using aqua regia treatment. This procedure simplifying and improving sample preparation step prior to As, Sb and Se measurements in fruit juices by HG-ICP-OES, thus could be adequate for the routine analysis in terms of the quality control of these drinks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening andmore » collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.« less

  10. Differentiating the Bishop ash bed and related tephra layers by elemental-based similarity coefficients of volcanic glass shards using solution inductively coupled plasma-mass spectrometry (S-ICP-MS)

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.

    2007-01-01

    Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.

  11. The study on air pollution with nickel and vanadium in Croatia by using moss biomonitoring and ICP-AES.

    PubMed

    Vučković, Ivana; Špirić, Zdravko; Stafilov, Trajče; Kušan, Vladimir; Bačeva, Katerina

    2013-10-01

    Moss samples were collected from 121 sampling sites all over Croatia during the summer and autumn of 2010. They were totally digested by using microwave digestion system and analysed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). Descriptive statistics and maps of distribution were made. The data obtained in this study were compared with those from the study in 2006 and additionally with the data obtained in the similar studies in neighbouring countries and Norway as pristine area. The median value of nickel is 3.16 mg kg(-1) and the content varies from 1.04 to 14.66 mg kg(-1). The content of vanadium ranges between 0.23 and 37.26 mg kg(-1) with the median value of 2.55 mg kg(-1). High contents of these elements are found in the vicinity of Rijeka, Zagreb and Sisak as a result of their emission from oil refinery, thermal power plant and industrial processes.

  12. Isotope ratios of trace elements in samples from human nutrition studies determined by TIMS and ICP-MS: precision and accuracy compared.

    PubMed

    Turnlund, Judith R; Keyes, William R

    2002-09-01

    Stable isotopes are used with increasing frequency to trace the metabolic fate of minerals in human nutrition studies. The precision of the analytical methods used must be sufficient to permit reliable measurement of low enrichments and the accuracy should permit comparisons between studies. Two methods most frequently used today are thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to compare the two methods. Multiple natural samples of copper, zinc, molybdenum, and magnesium were analyzed by both methods to compare their internal and external precision. Samples with a range of isotopic enrichments that were collected from human studies or prepared from standards were analyzed to compare their accuracy. TIMS was more precise and accurate than ICP-MS. However, the cost, ease, and speed of analysis were better for ICP-MS. Therefore, for most purposes, ICP-MS is the method of choice, but when the highest degrees of precision and accuracy are required and when enrichments are very low, TIMS is the method of choice.

  13. Quantification and visualization of glutathione S-transferase omega 1 in cells using inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence microscopy.

    PubMed

    Liang, Yong; Jiang, Xin; Tang, Nannan; Yang, Limin; Chen, Haifeng; Wang, Qiuquan

    2015-03-01

    We report a novel activity-based and Cu-free click chemistry (CC) mediated methodology for glutathione S-transferase omega 1 (GSTO1) quantification using species-unspecific isotope dilution inductively coupled plasma mass spectrometry (SUID ICP-MS), in which dibenzylcyclooctyne-modified 2-chloroacetamide (DBCO-ChAcA) was designed and synthesized, meanwhile, as a navigator towards GSTO1 for subsequent N3-DOTA-Eu-tagging via Cu-free CC. Using (153)Eu-SUID ICP-MS coupled with size exclusion chromatography (SEC), the LOD (3σ) of GSTO1 reached 6.9 fmol with an RSD of 2.4% at the 0.1 μM level (n = 5) considering the recovery of GSTO1 on the SEC was 96.5 ± 2.4%. The GSTO1 contents in the cells of human hepatocellular carcinoma C7721 and breast carcinoma MCF-7 as well as normal hepatic C7701 without or with cis-platin administration were quantified to be from 1.2 μg/10,000 cells (n = 3, RSD = 4.5%) corresponding to 1.2 × 10(-2) ng per cell to 4.76 μg/10,000 cells (n = 3, RSD = 2.9%) corresponding to 4.76 × 10(-2) ng per cell. For a comparative study, DBCO-ChAcA-fluor 488-based fluorescence microscopy could not alone visualize GSTO1 in the cells but could together with those from the small SH-containing molecules such as GSH and that from extra N3-fluor 488 in the cells. This activity-based CC-mediated tagging/labeling strategy provided an opportunity for ICP-MS-based targeted protein quantification, and is very much expected to find its applications in biological mechanism study and the subsequent drug design.

  14. Preliminary studies of laser-induced breakdown spectrometry for the determination of Ba, Cd, Cr and Pb in toys

    NASA Astrophysics Data System (ADS)

    Godoi, Quienly; Santos, Dario, Jr.; Nunes, Lidiane C.; Leme, Flávio O.; Rufini, Iolanda A.; Agnelli, José A. M.; Trevizan, Lilian C.; Krug, Francisco J.

    2009-06-01

    The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of São Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time, integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated.

  15. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues.

    PubMed

    Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M Laird

    2016-09-01

    Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85-115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze-thaw and for up to three months. © The Author(s) 2016.

  16. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues

    PubMed Central

    Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M. Laird

    2016-01-01

    Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85–115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze–thaw and for up to three months. PMID:27527103

  17. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS.

    PubMed

    Loeschner, Katrin; Correia, Manuel; López Chaves, Carlos; Rokkjær, Inge; Sloth, Jens J

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by conventional ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N = 21), respectively. Aluminium-containing nanoparticles were detected by spICP-MS in all 21 samples. Depending on the assumed particle composition, Al 2 O 3 or Al 2 O 3 ∙2SiO 2 ∙2H 2 O, the median particle diameters were either below or above 100 nm, respectively. The minimum detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass recovery of aluminium in the form of particles was between 5% and 18%. The presented work reports for the first time the detection of Al-containing particles in food by spICP-MS.

  18. Determination of 238u/235u, 236u/238u and uranium concentration in urine using sf-icp-ms and mc-icp-ms: an interlaboratory comparison.

    PubMed

    Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David

    2006-02-01

    Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein.

  19. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry.

    PubMed

    Feist, Barbara; Mikula, Barbara

    2014-03-15

    A method of separation and preconcentration of cadmium, cobalt, copper, nickel, lead, and zinc at trace level using activated carbon is proposed. Activated carbon with the adsorbed trace metals was mineralised using a high-pressure microwave mineraliser. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The influence of several parameters, such as pH, sorbent mass, shaking time was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The experiment shows that foreign ions did not influence recovery of the determined elements. The detection limits (DL) of Cd, Co, Cu, Ni, Pb, and Zn were 0.17, 0.19, 1.60, 2.60, 0.92 and 1.50 μg L(-)(1), respectively. The recovery of the method for the determined elements was better than 95% with relative standard deviation from 1.3% to 3.7%. The preconcentration factor was 80. The proposed method was applied for determination of Cd, Co, Cu, Ni, Pb, and Zn in fruits materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Determination of phosphorus in small amounts of protein samples by ICP-MS.

    PubMed

    Becker, J Sabine; Boulyga, Sergei F; Pickhardt, Carola; Becker, J; Buddrus, Stefan; Przybylski, Michael

    2003-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.

  1. Quantification of 60Fe atoms by MC-ICP-MS for the redetermination of the half-life.

    PubMed

    Kivel, Niko; Schumann, Dorothea; Günther-Leopold, Ines

    2013-03-01

    In many scientific fields, the half-life of radionuclides plays an important role. The accurate knowledge of this parameter has direct impact on, e.g., age determination of archeological artifacts and of the elemental synthesis in the universe. In order to derive the half-life of a long-lived radionuclide, the activity and the absolute number of atoms have to be analyzed. Whereas conventional radiation measurement methods are typically applied for activity determinations, the latter can be determined with high accuracy by mass spectrometric techniques. Over the past years, the half-lives of several radionuclides have been specified by means of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) complementary to the earlier reported values mainly derived by accelerator mass spectrometry. The present paper discusses all critical aspects (amount of material, radiochemical sample preparation, interference correction, isotope dilution mass spectrometry, calculation of measurement uncertainty) for a precise analysis of the number of atoms by MC-ICP-MS exemplified for the recently published half-life determination of 60Fe (Rugel et al, Phys Rev Lett 103:072502, 2009).

  2. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives.

    PubMed

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente; Sturup, Stefan; Nielsen, Camilla

    2006-02-24

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, the resolution of the test substances was only slightly affected when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). However, the sensitivity of ICP-MS detection decreased when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). Analytical figures of merit were determined at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection and quantification were better than 3.3 and 11 microg BrL(-1), respectively. The analysis time was reduced to 2.7 min when the flow rate was increased to 90 microL min(-1) and limits of detection and quantification were better than 20 and 65 microg BrL(-1), respectively. The method was applied for quantitative analysis of bromine-containing preservatives in commercially available cosmetic products.

  3. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air. Crown Copyright © 2013 Published by

  4. Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation

    NASA Astrophysics Data System (ADS)

    dos Santos, Éder José; Herrmann, Amanda Beatriz; de Caires, Suzete Kulik; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José

    2009-06-01

    A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH 4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 µg L - 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL - 1 was 0.10 µg g - 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.

  5. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  6. Removal of uranium from soil samples for ICP-OES analysis of RCRA metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wero, M.; Lederer-Cano, A.; Billy, C.

    1995-12-01

    Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.

  7. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane.

    PubMed

    Stettin, Eduard; Paulat, Klaus; Schulz, Chris; Kunz, Ulrich; Mauer, Uwe Max

    2011-06-01

    We investigated whether ICP can be assessed by measuring infrasonic emissions from the tympanic membrane. An increase in ICP was induced in 22 patients with implanted ICP pressure sensors. ICP waveforms that were obtained invasively and continuously were compared with infrasonic emission waveforms. In addition, the noninvasive method was used in a control group of 14 healthy subjects. In a total of 83 measurements, the changes in ICP that were observed in response to different types of stimulation were detected in the waveforms obtained noninvasively as well as in those acquired invasively. Low ICP was associated with an initial high peak and further peaks with smaller amplitudes. High ICP was associated with a marked decrease in the number of peaks and in the difference between the amplitudes of the initial and last peaks. The assessment of infrasonic emissions, however, does not yet enable us to provide exact figures. It is conceivable that the assessment of infrasonic emissions will become suitable both as a screening tool and for the continuous monitoring of ICP in an intensive care environment.

  8. ICP27-dependent resistance of herpes simplex virus type 1 to leptomycin B is associated with enhanced nuclear localization of ICP4 and ICP0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lengyel, Joy; Strain, Anna K.; Perkins, Keith D.

    2006-09-01

    It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged whenmore » it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.« less

  9. Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.

    1989-01-01

    Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.

  10. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  11. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  12. Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS

    DOE PAGES

    Thompson, Robert L.; Bank, Tracy; Roth, Elliot; ...

    2016-07-30

    Here, the supply and price of rare earth elements (REEs) have become a concern to many countries in the world, which has led to renewed interest in exploration and recovery of REEs from secondary or waste sources. Potential high REE waste sources that are of particular interest are coal mining, preparation, combustion, and other fossil energy by-products, including those from natural gas production. In this work, we have examined a set of five solid samples from the treatment of produced and flowback water containing elevated concentrations of barium. In order to confirm the correct concentrations of Eu, we studied thesemore » materials using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), which is capable of resolving species of nearly identical masses, including Eu and BaO. While the use of quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) for the REE analysis of most geological sample matrices should pose no problem, the presence of large amounts of Ba, as encountered in water treatment solids from natural gas produced and flowback samples may require SF-ICP-MS for accurate determination of all REEs.« less

  13. Direct determination of lead in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after furnace-fusion in the sample cuvette-tungsten boat furnace.

    PubMed

    Okamoto, Y

    2000-06-01

    The newly conceived electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct analysis of solid samples with detection by inductively coupled plasma mass spectrometry (ICP-MS). Into this small sample cuvette, a solid mixture of the biological samples and diammonium hydrogenphosphate powder as a fusion flux was placed and situated on a TBF. Tetramethylammonium hydroxide solution was added to the mixture. After the on-furnace digestion had been completed, the analyte in the cuvette was vaporized and introduced into the ICP mass spectrometer. The solid samples were analyzed by using a calibration curve prepared from the aqueous standard solutions. The detection limit was estimated to be 5.1 pg of lead, which corresponds to 10.2 ng g(-1) of lead in solid samples when a prepared sample amount of 1.0 mg was applied. The relative standard deviation for 8 replicate measurements obtained with 100 pg of lead was calculated to be 6.5%. The analytical results for various biological samples are described.

  14. Ion-pair chromatography coupled to inductively coupled plasma-mass spectrometry (IPC-ICP-MS) as a method for thiomolybdate speciation in natural waters.

    PubMed

    Lohmayer, Regina; Reithmaier, Gloria Maria Susanne; Bura-Nakić, Elvira; Planer-Friedrich, Britta

    2015-03-17

    Molybdenum precipitates preferentially under reducing conditions; therefore, its occurrence in sediment records is used as an indicator of paleoredox conditions. Although thiomolybdates (MoO4-xSx(2-) with x = 1-4) supposedly are necessary intermediates in the process of molybdenum precipitation under anoxic conditions, there is no information about their abundance in natural environments, because of a lack of element-specific methods with sufficiently low detection limits. Here, we optimized ion-pair chromatographic separation for coupling to an inductively coupled plasma-mass spectrometry detector (IPC-ICP-MS). 2-Propanol (10%-25% gradient) replaced the previously used acetonitrile (25%-75%) as the solvent, to reduce the carbon load into the plasma. In synthetic solutions, formation of thiomolybdates was found to occur spontaneously in the presence of excess sulfide and the degree of thiolation was highest at pH 7. Excess hydroxyl led to a transformation of thiomolybdates to molybdate. Under acidic to neutral conditions, precipitation of molybdenum and hydrolysis of tetrathiomolybdate were observed. Flash-freezing was found to be suitable to stabilize tetrathiomolybdate, with <4% transformation over more than two months. High ionic strengths matrices (>2 mM) negatively affected the detection of molybdate, which eluted mainly in the dead volume, but had no negative effect on higher thiolated molybdates. Detection limits were ∼10 nM. With the newly developed IPC-ICP-MS method, thiomolybdates were found to form spontaneously in euxinic marine waters after adding a molybdate spike and occur naturally in sulfidic geothermal waters.

  15. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  16. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  17. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  18. Identification of platinum nanoparticles in road dust leachate by single particle inductively coupled plasma-mass spectrometry.

    PubMed

    Folens, Karel; Van Acker, Thibaut; Bolea-Fernandez, Eduardo; Cornelis, Geert; Vanhaecke, Frank; Du Laing, Gijs; Rauch, Sebastien

    2018-02-15

    Elevated platinum (Pt) concentrations are found in road dust as a result of emissions from catalytic converters in vehicles. This study investigates the occurrence of Pt in road dust collected in Ghent (Belgium) and Gothenburg (Sweden). Total Pt contents, determined by tandem ICP-mass spectrometry (ICP-MS/MS), were in the range of 5 to 79ngg -1 , comparable to the Pt content in road dust of other medium-sized cities. Further sample characterization was performed by single particle (sp) ICP-MS following an ultrasonic extraction procedure using stormwater runoff for leaching. The method was found to be suitable for the characterization of Pt nanoparticles in road dust leachates. The extraction was optimized using road dust reference material BCR-723, for which an extraction efficiency of 2.7% was obtained by applying 144kJ of ultrasonic energy. Using this method, between 0.2% and 18% of the Pt present was extracted from road dust samples. spICP-MS analysis revealed that Pt in the leachate is entirely present as nanoparticles of sizes between 9 and 21nm. Although representing only a minor fraction of the total content in road dust, the nanoparticulate Pt leachate is most susceptible to biological uptake and hence most relevant in terms of bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Measurement of technetium-99 in Marshall Islands soil samples by ICP-MS

    PubMed

    Tagami; Uchida; Hamilton; Robison

    2000-07-01

    Extraction techniques for recovery of technetium-99 (99Tc) for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements were evaluated using soil samples collected from the Marshall Islands. The results of three different extraction techniques were compared: (MI) acid leaching of Tc from ashed soil; (M2) acid leaching of Tc from raw dry soil; and (M3) Tc volatilization from ashed soil using a combustion apparatus. Total Tc recoveries varied considerably between the extraction techniques but each method yielded similar analytical results for 99Tc. Applications of these extraction techniques to a series of environmental samples and ICP-MS measurements have yielded first data on the 99Tc content of Marshall Islands soil samples contaminated with close-in radioactive fallout from nuclear weapons testing. The 99Tc activity concentration in the soil samples ranged between 0.1 and 1.1 mBq g(-1) dry weight (dw). The limit of detection for 99Tc by ICP-MS was 0.17 mBq per sample or 0.014 mBq g(-1) dw under standard operating conditions.

  20. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    NASA Astrophysics Data System (ADS)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  1. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  2. Characterization of the General Electric CID-17 as a Detector for Plasma Emission Spectrometry.

    DTIC Science & Technology

    1985-11-25

    multiwavelength disreteetectors. All tnToes oF detectors ’or plasma emission snectroscopv must mntil there o eapresetutisemhas. been, byes ereounu ai!- numer...photomultiplier tubes. With almost 100,000 channels, true multiwavelength detection is obtained making a new wealth of information available to the analytical...of complex mixtures by optical emission spectrometry requires sensitive simultaneous multiwavelength detection. Until the present, this has been

  3. Elemental Analysis in Biological Matrices Using ICP-MS.

    PubMed

    Hansen, Matthew N; Clogston, Jeffrey D

    2018-01-01

    The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.

  4. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS

    NASA Astrophysics Data System (ADS)

    Boulyga, Sergei F.; Heumann, Klaus G.

    2005-04-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) with a special laser ablation system for bulk analyses (LINA-Spark(TM)-Atomiser) was applied for direct determinations of chlorine, bromine, and iodine in rock and sediment samples. Special attention was focused on possible inter-halogen fractionations and analyte/spike isotope fractionations by using LA-ICP-MS and LA-ICP-IDMS, respectively. A variation of Br/Cl and I/Cl element intensity ratios by a factor of 1.3-3 was observed when changing the nebulizer gas flow rate in the range of 0.84-1.0 L min-1 and the laser power density in the range of 2-10 GW cm-2, respectively. When using an internal standard for halogen quantification in LA-ICP-MS, this inter-element fractionation can cause systematic errors, which can be avoided by applying the isotope dilution technique. However, at high laser power densities (>5.7 GW cm-2 for iodine and >4.0 GW cm-2 for bromine and chlorine) the corresponding measured isotope ratio of the isotope-diluted sample deviates significantly from the target value. Under optimised conditions concentrations in the range of 30 [mu]g g-1-16 × 103 [mu]g g-1 for chlorine, <2-140 [mu]g g-1 for bromine, and <0.1-31 [mu]g g-1 for iodine were determined by LA-ICP-IDMS in two sediment reference materials (SRM 1646, SRM 2704) and three rock reference samples (GS-N, Granite; BX-N, Bauxite; DT-N, Disthene), which have not been certified for these halogens. The sediment results agree well within the given uncertainties with indicative values by different methods and the results of the rock samples with those obtained by negative thermal ionisation isotope dilution mass spectrometry. The detection limits of LA-ICP-IDMS are 8 [mu]g g-1 for chlorine, 1.7 [mu]g g-1 for bromine, and 0.1 [mu]g g-1 for iodine.

  5. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less

  6. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  7. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurementmore » at very low femtogram levels using this method in a ground water matrix is also demonstrated.« less

  8. Analysis of inorganic and organic constituents of myrrh resin by GC-MS and ICP-MS: An emphasis on medicinal assets.

    PubMed

    Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman

    2017-07-01

    The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.

  9. A validated inductively coupled plasma mass spectrometry (ICP-MS) method for the quantification of total platinum content in plasma, plasma ultrafiltrate, urine and peritoneal fluid.

    PubMed

    Lemoine, Lieselotte; Thijssen, Elsy; Noben, Jean-Paul; Adriaensens, Peter; Carleer, Robert; Speeten, Kurt Van der

    2018-04-15

    Oxaliplatin is a platinum (Pt) 1 containing antineoplastic agent that is applied in current clinical practice for the treatment of colon and appendiceal neoplasms. A fully validated, highly sensitive, high throughput inductively coupled plasma mass spectrometry (ICP-MS) method is provided to quantify the total Pt content in plasma, plasma ultrafiltrate, urine and peritoneal fluid. In this ICP-MS approach, the only step of sample preparation is a 1000-fold dilution in 0.5% nitric acid, allowing the analysis of 17 samples per hour. Detection of Pt was achieved over a linear range of 0.01-100 ng/mL. The limit of quantification was 18.0 ng/mL Pt in plasma, 8.0 ng/mL in ultrafiltrate and 6.1 ng/mL in urine and peritoneal fluid. The ICP-MS method was further validated for inter-and intraday precision and accuracy (≤15%), recovery, robustness and stability. Short-term storage of the biofluids, for 14 days, can be performed at -4 °C, -24 °C and -80 °C. As to long-term stability, up to 5 months, storage at -80 °C is encouraged. Furthermore, a timeline assessing the total and unbound Pt fraction in plasma and ultrafiltrate over a period of 45 h is provided. Following an incubation period of 5 h at 37 °C, 19-21% of Pt was recovered in the ultrafiltrate, emphasizing the extensive and rapid binding of oxaliplatin-derived Pt to plasma proteins. The described method can easily be implemented in a routine setting for pharmacokinetic studies in patients treated with oxaliplatin-based hyperthermic intraperitoneal perioperative chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Determination of Metal Levels in Shamma (Smokeless Tobacco) with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in Najran, Saudi Arabia

    PubMed

    Brima, Eid Ibrahim

    2016-10-01

    Objective: The use of Shamma (smokeless tobacco) by certain groups is giving rise to health problems, including cancer, in parts of Saudi Arabia. Our objective was to determine metals levels in Shamma using inductively coupled plasma mass spectrometry (ICP-MS). Methods: Thirty-three samples of Shamma (smokeless tobacco) were collected, comprising four types: brown Shamma (n = 14.0), red Shamma (n = 9.0), white Shamma (n = 4.0), and yellow Shamma (n = 6.0). All samples were collected randomly from Shamma users in the city of Najran. Levels of 11 elements (Al, As, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, and Zn) were determined by ICP-MS. Results: A mixed standard (20 ppb) of all elements was used for quality control, and average recoveries ranged from 74.7% to 112.2%. The highest average concentrations were found in the following order: Al (598.8–812.2 μg/g), Mn (51.0–80.6 μg/g), and Ni (23.2–53.3 μg/g) in all four Shamma types. The lowest concentrations were for As (0.7–1.0 μg/g) and Cd (0.0–0.06 μg/g). Conclusions: The colour of each Shamma type reflects additives mixed into the tobacco. Cr and Cu were showed significant differences (P < 0.05) among Shamma types. Moreover, Pb levels are higher in red and yellow Shamma, which could be due to use (PbCrO4) as yellow colouring agent and lead tetroxide, Pb3O4 as a red colouring agent. The findings from this study can be used to raise public awareness about the safety and health effects of Shamma, which is clearly a source of oral exposure to metals. Creative Commons Attribution License

  11. Mechanisms and Permanence of Sequestered Pb and As in Soils: Impact on Human Bioavailability

    DTIC Science & Technology

    2016-12-01

    Human health risk assessment ICP-MS Inductively coupled plasma - mass spectrometry ICP-OES Inductively coupled plasma – optical emission spectrometry...the most common contaminants of concern exceeding risk criteria because soil ingestion is the primary human health risk driver at many DoD sites...development activities must address to realize the use of bioavailability in human health risk assessment (HHRA). Our proposal addressed three of the

  12. Capillary electrophoresis-electrospray mass spectrometry and HR-ICP-MS for the detection and quantification of 10B-boronophenylalanine (10B-BPA) used in boron neutron capture therapy.

    PubMed

    Pitois, Aurélien; de las Heras, Laura Aldave; Zampolli, Antonella; Menichetti, Luca; Carlos, Ramon; Lazzerini, Guido; Cionini, Luca; Salvatori, Pietro Alberto; Betti, Maria

    2006-02-01

    Boron neutron capture therapy (BNCT) is a bimodal radiotherapeutic treatment based on the irradiation of neoplastic tissues with neutrons after the tissues have selectively accumulated molecules loaded with nuclides with large neutron capture cross-sections (such boron-10). Boron-10 carriers have been tested to a limited extent, and clinical trials have been conducted on sulfhydryl borane (10B-BSH) and boronophenylalanine (10B-BPA). However, precise and accurate measurements of boron-10 concentrations (0.1-100 microg/g) in specimens and samples of limited size (microg scale) are needed in order to be able to biologically characterise new compounds in predictive tissue dosimetry, toxicology and pharmacology studies as well as in clinical investigations. A new approach based on fast separation and detection of 10B-BPA performed by coupling capillary electrophoresis to electrospray mass spectrometry is reported. This method allows the quantitative analysis and characterisation of 10B-BPA in a short time with a high separation efficiency. Detection limits of 3 microM for 10B-BPA and 30 ng/mL for 10B were obtained with CE-ESI-MS. A quantification limit of 10 microM for 10B-BPA (100 ng/mL for 10B) was attained. The total boron-10 concentration was determined by high-resolution inductively coupled mass spectrometry in order to validate the method. Boron-10 isotope measurements were carried out by HR-ICP-MS at medium resolution (R=4000) due to the presence of an isobaric interference at mass 10. Good agreement was obtained between the values from CE-ESI-MS and those from HR-ICP-MS. The method has been successfully used to determine the 10B-BPA in two lines of cultured cells.

  13. Quantitative aspects of inductively coupled plasma mass spectrometry

    PubMed Central

    Wagner, Barbara

    2016-01-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644971

  14. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS).

    PubMed

    Weigel, Stefan; Peters, Ruud; Loeschner, Katrin; Grombe, Ringo; Linsinger, Thomas P J

    2017-08-01

    Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) promises fast and selective determination of nanoparticle size and number concentrations. While several studies on practical applications have been published, data on formal, especially interlaboratory validation of sp-ICP-MS, is sparse. An international interlaboratory study was organized to determine repeatability and reproducibility of the determination of the median particle size and particle number concentration of Ag nanoparticles (AgNPs) in chicken meat. Ten laboratories from the European Union, the USA, and Canada determined particle size and particle number concentration of two chicken meat homogenates spiked with polyvinylpyrrolidone (PVP)-stabilized AgNPs. For the determination of the median particle diameter, repeatability standard deviations of 2 and 5% were determined, and reproducibility standard deviations were 15 and 25%, respectively. The equivalent median diameter itself was approximately 60% larger than the diameter of the particles in the spiking solution. Determination of the particle number concentration was significantly less precise, with repeatability standard deviations of 7 and 18% and reproducibility standard deviations of 70 and 90%.

  15. Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.

    PubMed

    Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien

    2004-08-01

    Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have

  16. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics.

    PubMed

    Yücel, Yasin; Sultanoğlu, Pınar

    2013-09-01

    Chemical characterisation has been carried out on 45 honey samples collected from Hatay region of Turkey. The concentrations of 17 elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ca, K, Mg and Na were the most abundant elements, with mean contents of 219.38, 446.93, 49.06 and 95.91 mg kg(-1) respectively. The trace element mean contents ranged between 0.03 and 15.07 mg kg(-1). Chemometric methods such as principal component analysis (PCA) and cluster analysis (CA) techniques were applied to classify honey according to mineral content. The first most important principal component (PC) was strongly associated with the value of Al, B, Cd and Co. CA showed eight clusters corresponding to the eight botanical origins of honey. PCA explained 75.69% of the variance with the first six PC variables. Chemometric analysis of the analytical data allowed the accurate classification of the honey samples according to origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2002-12-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  18. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.

  19. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS.more » Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.« less

  20. Depth profiling of Pu, 241Am and 137Cs in soils from southern Belarus measured by ICP-MS and alpha and gamma spectrometry.

    PubMed

    Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine

    2003-08-01

    The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.

  1. Distinguishing Astragalus mongholicus and Its Planting Soil Samples from Different Regions by ICP-AES.

    PubMed

    Li, Lin; Zheng, Sihao; Yang, Qingzhen; Chen, Shilin; Huang, Linfang

    2016-04-12

    "Daodi herb" enjoys a good reputation for its quality and clinical effects. As one of the most popular daodi herbs, Astragalus membranaceus (Fisch.) Bge var. mongholicus (Bge.) Hsiao (A. membranaceus) is popularly used for its anti-oxidant, anti-inflammatory and immune-enhancing properties. In this study, we used inductively coupled plasma atomic emission spectrometry (ICP-AES) technique to investigate the inorganic elements contents in A. mongholicu and its soil samples from daodi area (Shanxi) and non-daodi areas (Inner Mongolia and Gansu). A total of 21 inorganic elements (Pb, Cd, As, Hg, Cu, P, K, Zn, Mn, Ca, Mg, Fe, Se, B, Al, Na, Cr, Ni, Ba, Ti and Sr) were simultaneously determined. Principal component analysis (PCA) was performed to differentiate A. mongholicu and soil samples from the three main producing areas. It was found that the inorganic element characteristics as well as the uptake and accumulation behavior of the three kinds of samples were significantly different. The high contents of Fe, B, Al, Na, Cr and Ni could be used as a standard in the elements fingerprint to identify daodi and non-daodi A. Mongholicus. As the main effective compounds were closely related to the pharmacodynamics activities, the inter-relationships between selected elements and components could reflect that the quality of A. Mongholicus from Shanxi were superior to others to a certain degree. This finding highlighted the usefulness of ICP-AES elemental analysis and evidenced that the inorganic element profile can be employed to evaluate the genuineness of A. mongholicus.

  2. [Studies on six heavy metal elements dissolution characteristics of Andrographis herb by ICP-OES].

    PubMed

    Tang, Rui; Li, Tian-Peng; Gu, Xue-Shi; Li, Yong-Jian; Yang, Yi

    2010-02-01

    A simple and accurate method for the simultaneous determination of As, Ba, Cd, Cr, Cu and Pb in andrographis herb by inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The samples were digested by HNO3-HClO4. The digestion-determination method was evaluated with the relative standard deviations for all these elements between 2.1% and 4.6%, and the recoveries were between 92.0% and 103.2%. The measuring method was proved to be simple, reliable and highly sensitive. The dissolution characteristics of the 6 heavy metal elements in different solvents and with different extraction methods such as refluxing, soaking, and ultrasonic assisted extraction were studied. The experimental results showed that Ba was in the highest concentration followed by Cu and Cr, and the concentration of As, Pb and Cd was relatively lower in the herb. With the increase in ethanol concentration, the dissolution amount of Ba decreased but that of Cu and Cr increased, and the highest concentration of Cd was dissolved in acidic solution. Overall, Cd and Pb were difficult to dissolve out with 85% ethanol refluxing, but As dissolved comparatively more under the same condition. Comparing the extraction methods, the higher concentration of these 6 metals was obtained by refluxing water or alkaline water than that by 85% ethanol maceration. These differences might be related to the existent forms of these six elements in the herb. The determination and study on dissolution characteristics of these elements by using ICP-OES was important for rational using medicinal resources and ensuring the safety of drugs.

  3. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    PubMed

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  5. Determination of glyphosate and AMPA in surface and waste water using high-performance ion chromatography coupled to inductively coupled plasma dynamic reaction cell mass spectrometry (HPIC-ICP-DRC-MS).

    PubMed

    Popp, Maximilian; Hann, Stephan; Mentler, Axel; Fuerhacker, Maria; Stingeder, Gerhard; Koellensperger, Gunda

    2008-05-01

    A novel method employing high-performance cation chromatography in combination with inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) for the simultaneous determination of the herbicide glyphosate (N-phosphonomethylglycine) and its main metabolite aminomethyl phosphonic acid (AMPA) is presented. P was measured as (31)P(16)O(+) using oxygen as reaction gas. For monitoring the stringent target value of 0.1 μg L(-1) for glyphosate, applicable for drinking and surface water within the EU, a two-step enrichment procedure employing Chelex 100 and AG1-X8 resins was applied prior to HPIC-ICP-MS analysis. The presented approach was validated for surface water, revealing concentrations of 0.67 μg L(-1) glyphosate and 2.8 μg L(-1) AMPA in selected Austrian river water samples. Moreover, investigations at three waste water-treatment plants showed that elimination of the compounds at the present concentration levels was not straightforward. On the contrary, all investigated plant effluents showed significant amounts of both compounds. Concentration levels ranged from 0.5-2 μg L(-1) and 4-14 μg L(-1) for glyphosate and AMPA, respectively.

  6. Comparative evaluation of GFAAS and ICP-MS for analyses of cadmium in blood.

    PubMed

    Fukui, Yoshinari; Ohashi, Fumiko; Sakuragi, Sonoko; Moriguchi, Jiro; Ikeda, Masayuki

    2011-01-01

    Cadmium in blood (Cd-B) is an important indicator, next to Cd in urine, in biological monitoring of exposure to Cd. The present study was initiated to examine compatibility in results of analysis for Cd-B between graphite furnace atomic absorption spectrophotometry (GFAAS) and inductively-coupled plasma mass-spectrometry (ICP-MS). For this purpose, 1,159 blood samples were collected from adult women (with no occupational exposure to Cd) in eight prefectures nation-widely in Japan. The samples were analyzed by the two methods; geometric mean (the maximum) concentrations were 1.22 (6.90) μg/l by ICP-MS, and 1.47 (7.40) μg/l by GFAAS. Statistical analyses showed that there was a close correlation between the results by the two methods. The regression line (with ICP-MS and GFAAS results as an independent variable and a dependent variable, respectively) had a slope close to one and an intercept next to zero to suggest that ICP-MS gave values compatible with that of GFAAS. Further analysis with the ratio of Cd-B by GFAAS over that by ICP-MS revealed that the two results were close to each other, and that the agreement was even closer when Cd-B was >2 μg/l. Thus, the two methods can be employed inter-convertibly when Cd-B is relatively high, e.g. >2 μg/l. Care may need to be practiced, however, for possible 'between methods' difference when Cd-B is low, e.g., ≤2 μg/l.

  7. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  8. Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2006-01-01

    The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and

  9. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry.

    PubMed

    Zhao, Lingling; Zhong, Shuxian; Fang, Keming; Qian, Zhaosheng; Chen, Jianrong

    2012-11-15

    A dual-cloud point extraction (d-CPE) procedure has been developed for simultaneous pre-concentration and separation of heavy metal ions (Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion) in water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on forming complexes of metal ion with 8-hydroxyquinoline (8-HQ) into the as-formed Triton X-114 surfactant rich phase. Instead of direct injection or analysis, the surfactant rich phase containing the complexes was treated by nitric acid, and the detected ions were back extracted again into aqueous phase at the second cloud point extraction stage, and finally determined by ICP-OES. Under the optimum conditions (pH=7.0, Triton X-114=0.05% (w/v), 8-HQ=2.0×10(-4) mol L(-1), HNO3=0.8 mol L(-1)), the detection limits for Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ions were 0.01, 0.04, 0.01, 0.34, 0.05, and 0.04 μg L(-1), respectively. Relative standard deviation (RSD) values for 10 replicates at 100 μg L(-1) were lower than 6.0%. The proposed method could be successfully applied to the determination of Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion in water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. High spatial resolution analysis of ferromanganese concretions by LA-ICP-MS†

    PubMed Central

    Axelsson, Mikael D; Rodushkin, Ilia; Baxter, Douglas C; Ingri, Johan; Öhlander, Björn

    2002-01-01

    A procedure was developed for the determination of element distributions in cross-sections of ferromanganese concretions using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The effects of carrier flow rates, rf forward power, ablation energy, ablation spot size, repetition rate and number of shots per point on analyte intensity were studied. It is shown that different carrier gas flow rates are required in order to obtain maximum sensitivities for different groups of elements, thus complicating the optimisation of ICP parameters. On the contrary, LA parameters have very similar effects on almost all elements studied, thus providing a common optimum parameter set for the entire mass range. However, for selected LA parameters, the use of compromise conditions was necessary in order to compensate for relatively slow data acquisition by ICP-MS and maintain high spatial resolution without sacrificing the multielemental capabilities of the technique. Possible variations in ablation efficiency were corrected for mathematically using the sum of Fe and Mn intensities. Quantification by external calibration against matrix-matched standards was successfully used for more than 50 elements. These standards, in the form of pressed pellets (no binder), were prepared in-house using ferromanganese concentrates from a deep-sea nodule reference material as well as from shallow-marine concretions varying in size and having different proportions of three major phases: aluminosilicates, Fe- and Mn-oxyhydroxides. Element concentrations in each standard were determined by means of conventional solution nebulisation ICP-MS following acid digestion. Examples of selected inter-element correlations in distribution patterns along the cross-section of a concretion are given.

  11. Final report on CCQM-K125: elements in infant formula

    NASA Astrophysics Data System (ADS)

    Merrick, J.; Saxby, D.; Dutra, E. S.; Sena, R. C.; Araújo, T. O.; Almeida, M. D.; Yang, L.; Pihillagawa, I. G.; Mester, Z.; Sandoval, S.; Wei, C.; Castillo, M. E. D.; Oster, C.; Fisicaro, P.; Rienitz, O.; Pape, C.; Schulz, U.; Jährling, R.; Görlitz, V.; Lampi, E.; Kakoulides, E.; Sin, D. W. M.; Yip, Y. C.; Tsoi, Y. T.; Zhu, Y.; Okumu, T. O.; Yim, Y. H.; Heo, S. W.; Han, M.; Lim, Y.; Osuna, M. A.; Regalado, L.; Uribe, C.; Buzoianu, M. M.; Duta, S.; Konopelko, L.; Krylov, A.; Shin, R.; Linsky, M.; Botha, A.; Magnusson, B.; Haraldsson, C.; Thiengmanee, U.; Klich, H.; Can, S. Z.; Coskun, F. G.; Tunc, M.; Entwisle, J.; O'Reilly, J.; Hill, S.; Goenaga-Infante, H.; Winchester, M.; Rabb, S. A.; Pérez, R.

    2017-01-01

    CCQM-K125 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (K, Cu and I) in infant formula. Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratory. In CCQM-K125, 25 institutes submitted the results for potassium, 24 institutes submitted the results for copper and 8 institutes submitted the results for iodine. For examination of potassium and copper, most of the participants used microwave-assisted acid digestion methods for sample dissolution. A variety of instrumental techniques including inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), atomic absorption spectrometry (AAS), flame atomic emission spectrometry (FAES) and microwave plasma atomic emission spectroscopy (MP-AES) were employed by the participants for determination. For analysis of iodine, most of the participants used alkaline extraction methods for sample preparation. ICP-MS and ID-ICP-MS were used by the participants for the determination. Generally, the participants' results of CCQM-K125 were found consistent for all measurands according to their equivalence statements. Except with some extreme values, most of the participants obtained the values of di/U(di) within +/- 1 for the measurands. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Determination of arsenic in traditional Chinese medicine by microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS).

    PubMed

    Ong, E S; Yong, Y L; Woo, S O

    1999-01-01

    A simple, rapid, and sensitive method with high sample throughput was developed for determining arsenic in traditional Chinese medicine (TCM) in the form of uncoated tablets, sugar-coated tablets, black pills, capsules, powders, and syrups. The method involves microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS). Method precision was 2.7-10.1% (relative standard deviation, n = 6) for different concentrations of arsenic in different TCM samples analyzed by different analysts on different days. Method accuracy was checked with a certified reference material (sea lettuce, Ulva lactuca, BCR CRM 279) for external calibration and by spiking arsenic standard into different TCMs. Recoveries of 89-92% were obtained for the certified reference material and higher than 95% for spiked TCMs. Matrix interference was insignificant for samples analyzed by the method of standard addition. Hence, no correction equation was used in the analysis of arsenic in the samples studied. Sample preparation using microwave digestion gave results that were very similar to those obtained by conventional wet acid digestion using nitric acid.

  13. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    NASA Astrophysics Data System (ADS)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  14. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model.

    PubMed

    Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique

    2016-02-01

    The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.

  15. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    PubMed

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  16. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.

    PubMed

    Chahrour, Osama; Cobice, Diego; Malone, John

    2015-09-10

    Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    PubMed Central

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  18. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  19. Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Faraji, Mohammad; Yamini, Yadollah; Shariati, Shahab

    2009-07-30

    Copper, as a heavy metal, is toxic for many biological systems. Thus, the determination of trace amounts of copper in environmental samples is of great importance. In the present work, a new method was developed for the determination of trace amounts of copper in water samples. The method is based on the formation of ternary Cu(II)-CAS-CTAB ion-pair and adsorption of it into a mini-column packed with cotton prior applying inductively coupled plasma optical emission spectrometry (ICP-OES). The experimental parameters that affected the extraction efficiency of the method such as pH, flow rate and volume of the sample solution, concentration of chromazurol S (CAS) and cethyltrimethylammonium bromide (CTAB) as well as type and concentration of eluent were investigated and optimized. The ion-pair (Cu(II)-CAS-CTAB) was quantitatively retained on the cotton under the optimum conditions, then eluted completely using a solution of 25% (v/v) 1-propanol in 0.5 mol L(-1) HNO(3) and directly introduced into the nebulizer of the ICP-OES. The detection limit (DL) of the method for copper was 40 ng L(-1) (V(sample)=100mL) and the relative standard deviation (R.S.D.) for the determination of copper at 10 microg L(-1) level was found to be 1.3%. The method was successfully applied to determine the trace amounts of copper in tap water, deep well water, seawater and two different mineral waters, and suitable recoveries were obtained (92-106%).

  20. Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.

    PubMed

    Becker, J S; Tenzler, D

    2001-07-01

    The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.

  1. ICPS Removal from Shipping Container

    NASA Image and Video Library

    2017-03-09

    Inside the United Launch Alliance (ULA) Horizontal Integration Facility at Cape Canaveral Air Force Station in Florida, a crane lifts the shipping container cover away from the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System rocket, followed by the ICPS bring removed and placed on a work stand for processing. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. The ICPS arrived from the ULA facility in Decatur, Alabama. The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.

  2. Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Pereira, Juliana S. F.; Mello, Paola A.; Moraes, Diogo P.; Duarte, Fábio A.; Dressler, Valderi L.; Knapp, Guenter; Flores, Érico M. M.

    2009-06-01

    In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l - 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l - 1 H 2O 2, 10 to 100 mmol l - 1 (NH 4) 2CO 3 or 0.1 to 14 mol l - 1 HNO 3) were studied. The influence of sample mass, O 2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l - 1 (NH 4) 2CO 3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g - 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g - 1 . Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.

  3. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4

    DOE PAGES

    Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; ...

    2018-01-30

    Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.

  4. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchkin, A.; Stebelkov, V.; Zhizhin, K.

    Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.

  5. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    PubMed

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  6. Study of oxygen/tetraethoxysilane plasmas in a helicon reactor using optical emission spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.

    2000-08-01

    Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.

  7. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  8. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

    PubMed

    Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R

    2015-09-01

    Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.

  9. Preconcentration and determination of rare-earth elements in iron-rich water samples by extraction chromatography and plasma source mass spectrometry (ICP-MS).

    PubMed

    Hernández González, Carolina; Cabezas, Alberto J Quejido; Díaz, Marta Fernández

    2005-11-15

    A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO(3), in a 2ml column preconditioned with 20ml 0.01M HNO(3). Subsequently, REEs were quantitatively eluted with 20ml 7M HNO(3). This solution was evaporated to dryness and the final residue was dissolved in 10ml 2% HNO(3) containing 1mugl(-1) of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ngl(-1). The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.

  10. Determination of depleted uranium in urine via isotope ratio measurements using large-bore direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry.

    PubMed

    Westphal, Craig S; McLean, John A; Hakspiel, Shelly J; Jackson, William E; McClain, David E; Montaser, Akbar

    2004-09-01

    Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.

  11. Specific determination of bromate in bread by ion chromatography with ICP-MS.

    PubMed

    Akiyama, Takumi; Yamanaka, Michiko; Date, Yukiko; Kubota, Hiroki; Nagaoka, Megumi Hamano; Kawasaki, Yoko; Yamazaki, Takeshi; Yomota, Chikako; Maitani, Tamio

    2002-12-01

    A sensitive method for detecting bromate in bread by ion chromatography with inductively-coupled plasma mass spectrometry (IC/ICP-MS) was developed. Bromate was extracted from bread with water. The clean-up procedure included a 0.2 micron filter, a C18 cartridge for defatting, a silver cartridge to remove halogen anions, a centrifugal ultrafiltration unit to remove proteins, and a cation-exchange cartridge to remove silver ions. A 500 microL sample solution was applied to IC/ICP-MS. The detection limit and the quantitation limit of bromate in the solution were 0.3 ng/mL and 1.0 ng/mL, expressed as HBrO3, respectively, which corresponded to 2 ng/g and 5 ng/g, respectively, in bread. Recovery of bromate was about 90%, and the CV was about 2%. Based on the detection limit in solution and recovery from bread, the detection limit of bromate in bread was estimated to be 2 ng/g.

  12. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud

    2009-11-15

    A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.

  13. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  14. Advances in the measurement of sulfur isotopes by multi-collector ICP-MS (MC-ICP- MS)

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Wilson, S. A.; Anthony, M. W.

    2006-12-01

    The demonstrated capability to measure 34S/32S by MC-ICP-MS with a precision (2ó) of ~0.2 per mil has many potential applications in geochemistry. However, a number of obstacles limit this potential. First, to achieve the precision indicated above requires sufficient mass resolution to separate isobaric interferences of 16O2 and 17O2 on 32S and 34S, respectively. These requirements for high resolution mean overall instrument sensitivity is reduced. Second, current methods preclude analysis of samples with complex matrices, a common characteristic of sulfur-bearing geologic materials. Here, we describe and discuss a method that provides both efficient removal of matrix constituents, and provides pre-concentration of S, thus overcoming these obstacles. The method involves the separation of sulfur from matrix constituents by high pressure (1000 psi) ion chromatography (HPIC), followed by isotope measurement using MC-ICP-MS. This combination allows for analysis of liquid samples with a wide range of S concentrations. A powerful advantage of this technique is the efficient separation of many sulfur species from matrix cations and anions (for instance in a seawater or acid mine drainage matrix), as well as the separation of sulfur species, e.g., sulfate, sulfite, thiosulfate, thiocynate, from each other for isotope analysis. The automated HPIC system uses a carbonate-bicarbonate eluent with eluent suppression, and has sufficient baseline separation to collect the various sulfur species as pure fractions. The individual fractions are collected over a specific time interval based upon a pre-determined elution profile and peak retention times. The addition of a second ion exchange column into the system allows pre-concentration of sulfur species by 2-3 orders of magnitude for samples that otherwise would have sulfur concentrations too low to provide precise isotopic ratios. The S isotope ratios are measured by MC-ICP-MS using a desolvating sample introduction system, a

  15. Association of glass fragments by their trace elemental content using ICP-MS and LA-ICP-MS in the analysis scheme

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.

    2002-08-01

    The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.

  16. An interlaboratory comparison of bone lead measurements via K-shell X-ray fluorescence spectrometry: validation against inductively coupled plasma mass spectrometry

    PubMed Central

    Bellis, David J.; Todd, Andrew C.

    2012-01-01

    109Cd-based K-shell X-ray fluorescence spectrometry (hereafter, for brevity, XRF) is used, often in epidemiological studies, to perform non-invasive, in vivo measurements of lead in bone. We conducted the first interlaboratory study of XRF via the circulation of nine goat tibiæ in which the mean lead value ranged from 4.0 µg g−1 to 55.3 µg g−1 bone mineral. The test tibiæ were subsequently analyzed via nitric acid digestion followed by lead determination by inductively coupled plasma mass spectrometry (ICP-MS) – along with certified reference materials for bone lead – thus providing measurement traceability to SI units. Analysis of dried bone for lead via nitric acid digestion and ICP-MS yields mass fraction data in units of µg g−1 dry weight. The mean bone lead value based on ICP-MS analysis ranged from 1.8 µg g−1 to 35.8 µg g−1 dry weight. For comparison purposes, XRF-measured Pb values (µg g−1 bone mineral) were converted into the ICP-MS-measured units (µg g−1dry weight bone) by multiplying the former by the average ash fraction from the nine tibiæ. Eight of the XRF systems did not yield a significant bias for any of the nine tibiæ; one system was biased for one of the tibiæ; two systems were biased for two tibiæ; one system was biased for four tibiæ; two systems (813-1 and 804-2) were biased for five tibiæ and one system (801-1) was biased for six of the nine tibiæ. Average bias for the systems (under those particular operating conditions) that were biased for the majority of samples ranged from −2.6 µg g−1 (−15.7%) to 5.1 µg g−1 (30.7%) dry weight bone. All participants now have the ICP-MS data, allowing any corrective actions deemed necessary to be implemented. The ICP-MS data, however, indicated that the lead mass fraction varied considerably with the sampling location within the tibiæ, to the extent of exceeding XRF variability for the higher lead values. Material heterogeneity is an unavoidable reality of

  17. Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.

    PubMed

    Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K

    1993-01-01

    Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.

  18. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  19. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Aksamija, Zlatan; Shin, Hyun-Cheol; Kim, Hyunseok; Blick, Robert H

    2013-06-12

    Time-of-flight (TOF) mass spectrometry has been considered as the method of choice for mass analysis of large intact biomolecules, which are ionized in low charge states by matrix-assisted-laser-desorption/ionization (MALDI). However, it remains predominantly restricted to the mass analysis of biomolecules with a mass below about 50,000 Da. This limitation mainly stems from the fact that the sensitivity of the standard detectors decreases with increasing ion mass. We describe here a new principle for ion detection in TOF mass spectrometry, which is based upon suspended silicon nanomembranes. Impinging ion packets on one side of the suspended silicon nanomembrane generate nonequilibrium phonons, which propagate quasi-diffusively and deliver thermal energy to electrons within the silicon nanomembrane. This enhances electron emission from the nanomembrane surface with an electric field applied to it. The nonequilibrium phonon-assisted field emission in the suspended nanomembrane connected to an effective cooling of the nanomembrane via field emission allows mass analysis of megadalton ions with high mass resolution at room temperature. The high resolution of the detector will give better insight into high mass proteins and their functions.

  20. In situ trapping of As, Sb and Se hydrides on nanometer-sized ceria-coated iron oxide-silica and slurry suspension introduction to ICP-OES.

    PubMed

    Dados, A; Kartsiouli, E; Chatzimitakos, Th; Papastephanou, C; Stalikas, C D

    2014-12-01

    A procedure is developed for the analysis of sub-μg L(-1) levels of arsenic, antimony and selenium after preconcentration of their hydrides. The study highlights the capability of an aqueous suspension of a nanometer-sized magnetic ceria, in the presence of iodide, to function as a sorbent for the in situ trapping and preconcentration of the hydrides of certain metalloids. After extraction, the material is magnetically separated from the trapping solution and analyzed. A slurry suspension sampling approach with inductively coupled plasma-optical emission spectrometry (ICP-OES) is employed for measurements, as the quantitative elution of the adsorbed metalloids is not feasible. The whole analytical procedure consists of five steps: (i) pre-reduction of As, Sb and Se, (ii) generation of the hydrides AsH3, SbH3 and SeH2, (iii) in situ collection in the trapping suspension of magnetic ceria, (iv) isolation of the particles by applying a magnetic field, and (v) measurement of As, Sb and Se concentrations using ICP-OES. Under the established experimental conditions, the efficiency of trapping accounted for 94 ± 2%, 89 ± 2% and 98 ± 3% for As, Sb and Se, respectively, signifying the effective implementation of the overall procedure. The applicability of the procedure has been demonstrated by analyzing tap and lake water and a reference material (soft drinking water). The obtained analytical figures of merit were satisfactory for the analysis of the above metalloids in natural waters by ICP-OES. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  3. High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine

    2007-03-01

    The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.

  4. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less

  5. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  6. Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Sonke, Jeroen E; Salters, Vincent J M

    2007-08-03

    The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.

  7. Final Report on Jobin Yvon Contained Inductively Coupled Plasma Emission Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennebaker, F.M.

    2003-03-17

    A new Inductively Coupled Plasma -- Emission Spectrometer (ICP-ES) was recently purchased and installed in Lab B-147/151 at SRTC. The contained JY Model Ultima 170-C ICP-ES has been tested and compared to current ADS ICP-ES instrumentation. The testing has included both performance tests to evaluate instrumental ability, and the measurement of matrix standards commonly analyzed by ICP-ES at Savannah River. In developing operating procedures for this instrument, we have implemented the use of internal standards and off-peak background subtraction. Both of these techniques are recommended by EPA SW-846 ICP-ES methods and are common to current ICP-ES operations. Based on themore » testing and changes, the JY Model Ultima 170-C ICP-ES provides improved performance for elemental analysis of radioactive samples in the Analytical Development Section.« less

  8. Contribution of ICP-IDMS to the certification of antimony implanted in a silicon wafer--comparison with RBS and INAA results.

    PubMed

    Pritzkow, W; Vogl, J; Berger, A; Ecker, K; Grötzschel, R; Klingbeil, P; Persson, L; Riebe, G; Wätjen, U

    2001-11-01

    A thin-layer reference material for surface and near-surface analytical methods was produced and certified. The surface density of the implanted Sb layer was determined by Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA), and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) equipped with a multi-collector. The isotopic abundances of Sb (121Sb and 123Sb) were determined by multi-collector ICP-MS and INAA. ICP-IDMS measurements are discussed in detail in this paper. All methods produced values traceable to the SI and are accompanied by a complete uncertainty budget. The homogeneity of the material was measured with RBS. From these measurements the standard uncertainty due to possible inhomogeneities was estimated to be less than 0.78% for fractions of the area increments down to 0.75 mm2 in size. Excellent agreement between the results of the three different methods was found. For the surface density of implanted Sb atoms the unweighted mean value of the means of four data sets is 4.81 x 10(16) cm(-2) with an expanded uncertainty (coverage factor k = 2) of 0.09 x 10(16) cm(-2). For the isotope amount ratio R (121Sb/123Sb) the unweighted mean value of the means of two data sets is 1.435 with an expanded uncertainty (coverage factor k = 2) of 0.006.

  9. Application of CE-ICP-MS and CE-ESI-MS/MS for identification of Zn-binding ligands in Goji berries extracts.

    PubMed

    Ruzik, Lena; Kwiatkowski, Piotr

    2018-06-01

    The identification of groups of ligands binding metals is a crucial issue for the better understanding of their bioaccessibility. In the current study, we have intended an approach for identification of Zn-binding ligands based on using capillary electrophoresis combined with inductively coupled plasma mass spectrometry (CE-ICP-MS) and tandem electrospray ionization mass spectrometry (CE-ESI-MS/MS). The approach, which featured the use of the coupling of capillary electrophoresis with inductively coupled plasma mass spectrometry allows to separate and observe zinc ions present in complexes with respect to their size and charge and to identify nine compounds with zinc isotopic profile. CE-ICP-MS provides us with information about presence of zinc species and elemental information about zinc distribution. CE-ESI-MS/MS provide us with information about the most favorable Zn binding ligands: amino acids, flavonols, stilbenoids, fenolic acids and carotenoids. The presented work is the continuation of previous studies based on using LC-ESI-MS/MS, though, now we presented a new solutions with the possibility of changing detectors without changing the separation techniques, what is important without re-optimizing the method. The new presented method allows to identify the zinc-binding ligands in shorter time. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  11. A candidate reference method using ICP-MS for sweat chloride quantification.

    PubMed

    Collie, Jake T; Massie, R John; Jones, Oliver A H; Morrison, Paul D; Greaves, Ronda F

    2016-04-01

    The aim of the study was to develop a method for sweat chloride (Cl) quantification using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to present to the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a candidate reference method for the diagnosis of cystic fibrosis (CF). Calibration standards were prepared from sodium chloride (NaCl) to cover the expected range of sweat Cl values. Germanium (Ge) and scandium (Sc) were selected as on-line (instrument based) internal standards (IS) and gallium (Ga) as the off-line (sample based) IS. The method was validated through linearity, accuracy and imprecision studies as well as enrolment into the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) for sweat electrolyte testing. Two variations of the ICP-MS method were developed, an on-line and off-line IS, and compared. Linearity was determined up to 225 mmol/L with a limit of quantitation of 7.4 mmol/L. The off-line IS demonstrated increased accuracy through the RCPAQAP performance assessment (CV of 1.9%, bias of 1.5 mmol/L) in comparison to the on-line IS (CV of 8.0%, bias of 3.8 mmol/L). Paired t-tests confirmed no significant differences between sample means of the two IS methods (p=0.53) or from each method against the RCPAQAP target values (p=0.08 and p=0.29). Both on and off-line IS methods generated highly reproducible results and excellent linear comparison to the RCPAQAP target results. ICP-MS is a highly accurate method with a low limit of quantitation for sweat Cl analysis and should be recognised as a candidate reference method for the monitoring and diagnosis of CF. Laboratories that currently practice sweat Cl analysis using ICP-MS should include an off-line IS to help negate any pre-analytical errors.

  12. Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.

    1995-07-01

    The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.

  13. Determination of 99Tc in fresh water using TRU resin by ICP-MS.

    PubMed

    Guérin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila; de Silva, Nimal; Cornett, Jack; Dai, Xiongxin

    2017-10-02

    Technetium-99 ( 99 Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine 99 Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO 4 ) solution. After the reduction of KMnO 4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    PubMed

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  15. Development of a certified reference material (NMIJ CRM 7531-a) for the determination of trace cadmium and other elements in brown rice flour.

    PubMed

    Miyashita, Shin-ichi; Inagaki, Kazumi; Narukawa, Tomohiro; Zhu, Yanbei; Kuroiwa, Takayoshi; Hioki, Akiharu; Chiba, Koichi

    2012-01-01

    A certified reference material (CRM) for trace cadmium and other elements in brown rice flour was developed at the National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder after drying and frozen pulverization of fresh brown rice obtained from a Japanese domestic market. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), ICP high-resolution mass spectrometry, isotope-dilution ICP-MS, ICP optical emission spectrometry, and graphite-furnace atomic-absorption spectrometry. Property values were provided for six elements (Mn, Fe, Cu, Zn, As, and Cd). The concentration range of the property values was from 0.280 mg kg(-1) of As to 31.8 mg kg(-1) of Zn. The combined relative standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, characterization, difference among analytical methods, dry-mass correction factor, and calibration standard. The range of the relative combined standard uncertainties was from 1.1% of Zn to 1.6% of As.

  16. Geographical traceability of wild Boletus edulis based on data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM)

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong

    2017-04-01

    In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms.

  17. Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Elwaer, Nagmeddin; Hintelmann, Holger

    2007-11-01

    The analytical performance of five sample introduction systems, a cross flow nebulizer spray chamber, two different solvent desolvation systems, a multi-mode sample introduction system (MSIS), and a hydride generation (LI2) system were compared for the determination of Se isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). The optimal operating parameters for obtaining the highest Se signal-to-noise (S/N) ratios and isotope ratio precision for each sample introduction were determined. The hydride generation (LI2) system was identified as the most suitable sample introduction method yielding maximum sensitivity and precision for Se isotope ratio measurement. It provided five times higher S/N ratios for all Se isotopes compared to the MSIS, 20 times the S/N ratios of both desolvation units, and 100 times the S/N ratios produced by the conventional spray chamber sample introduction method. The internal precision achieved for the (78)Se/(82)Se ratio at 100 ng mL(-1) Se with the spray chamber, two desolvation, MSIS, and the LI2 systems coupled to MC-ICP/MS was 150, 125, 114, 13, and 7 ppm, respectively. Instrument mass bias factors (K) were calculated using an exponential law correction function. Among the five studied sample introduction systems the LI2 showed the lowest mass bias of -0.0265 and the desolvation system showed the largest bias with -0.0321.

  18. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Meer, S. H.; Amr, M. A.; Helal, A.I.

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. Themore » solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)« less

  19. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    NASA Astrophysics Data System (ADS)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  20. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. [Simultaneous Determination of Sn and S in Methyltin Mercaptide by Microwave-Assisted Acid Digestion and ICP-OES].

    PubMed

    Chen, Qian; Wu, Xi; Hou, Xian-deng; Xu, Kai-lai

    2015-09-01

    Methyltin mercaptide is widely used as one of the best heat stabilizer in the polyvinylchloride (PVC) thermal processing due to its excellent stability, good transparency, high compatibility and weather resistance. The content of sulfur and tin significantly affects its quality and performance, so it is of great significance to develop an analytical method for the simultaneous determination of sulfur and tin. Inductively coupled plasma atomic emission spectrometry (ICP-OES) has been a powerful analytical tool for a myriad of complex samples owing to its advantages of the low detection limits, rapid and precise determinations over wide dynamic ranges, freedom from chemical inter-element interferences, the high sample throughput and above all, simultaneous multi-elements analysis. Microwave technique as a well-developed method for sample preparation can dramatically reduce the digestion time and the loss of volatile elements compared with the traditional open digestion. Hereby, a microwave-assisted acid digestion (MW-AAD) procedure followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was developed for the simultaneous determination of Sn and S in methyltin mercaptide. This method has the advantages of simplicity, rapidness, good accuracy, green and less use of samples. Parameters affecting the MW-AAD such as the digestion solution and digestion time were optimized by using a chemical analyzed reference sample (DX-181) to attain tin and sulfur quantitative recoveries. HNO3-HCl-HClO4 (v/v/v=9:3:1) and 10 min were the optimum digestion solution and digestion time, respectively. Under optimum conditions, the standard addition method and the standard calibration curve method were both been used to detect Sn and S in DX-181. There was no significant difference between two methods and the relative deviations to the chemical analysis values were both less than 2%. Additionally, the accuracy of the MW-AAD method was examined by analyzing

  2. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data

  3. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  4. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies.

    PubMed

    Coufalíková, Kateřina; Benešová, Iva; Vaculovič, Tomáš; Kanický, Viktor; Preisler, Jan

    2017-05-22

    A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Solid Phase Extraction of Trace Elements in Waterand Tissue Samples on a Mini Column with Diphenylcarbazone Impregnated Nano-TiO2 and Their Determination by Inductively Coupled Plasma Optical Emission Spectrometry

    PubMed Central

    Baytak, Sıtkı; Arslan, Zikri

    2015-01-01

    This study presents a simple, robust and environmentally friendly solid phase preconcentration procedure for multielement determination by inductively coupled plasma optical emission spectrometry (ICP-OES) using diphenylcarbazone (DPC) impregnated TiO2 nanopowder (n-TiO2). DPC was successfully impregnated onto n-TiO2 in colloidal solution. A number of elements, including Co(II), Cr(III), Cu(II), Fe(III), Mn(II) and Zn(II) were quantitatively preconcentrated from aqueous solutions between pH 8 and 8.5 at a flow rate of 2 mL min−1, and then eluted with 2 mL of 5% (v/v) HNO3. A mini-column packed with 0.12 g DPC impregnated n-TiO2 retained all elements quantitatively from up to 250 mL multielement solution (2.5 μg per analyte) affording an enrichment factor of 125. The limits of detection (LOD) for preconcentration of 50 mL blank solutions (n = 12) were 0.28, 0.15, 0.25, 0.22, 0.12, and 0.10 μg L−1 for Co, Cr, Cu, Fe, Mn, and Zn, respectively. The relative standard deviation (RSD) for five replicate determinations was 0.8, 3.4, 2.6, 2.2, 1.2 and 3.3% for Co, Cr, Cu, Fe, Mn and Zn, respectively, at 5 μg L−1 level. The method was validated with analysis of Freshwater (SRM 1643e) and Lobster hepatopancreas (TORT-2) certified reference materials, and then applied to the determination of the elements from tap water and lake water samples by ICP-OES. PMID:26236403

  6. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  7. Protein Quantification by Elemental Mass Spectrometry: An Experiment for Graduate Students

    ERIC Educational Resources Information Center

    Schwarz, Gunnar; Ickert, Stefanie; Wegner, Nina; Nehring, Andreas; Beck, Sebastian; Tiemann, Ruediger; Linscheid, Michael W.

    2014-01-01

    A multiday laboratory experiment was designed to integrate inductively coupled plasma-mass spectrometry (ICP-MS) in the context of protein quantification into an advanced practical course in analytical and environmental chemistry. Graduate students were familiar with the analytical methods employed, whereas the combination of bioanalytical assays…

  8. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  9. Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP

    ERIC Educational Resources Information Center

    Todebush, Patricia Metthe; Geiger, Franz M.

    2005-01-01

    The study of soil samples, using light scattering and Inductively Coupled Plasma spectrometry (ICP) to determine colloid sedimentation rates and the quantity of chromium, lead, and iron in the sample is described. It shows the physical and chemical behavior of solid components in soil, and how such pollutant binding colloid surfaces directly…

  10. A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells.

    PubMed

    Yang, Bin; Zhang, Yuan; Chen, Beibei; He, Man; Yin, Xiao; Wang, Han; Li, Xiaoting; Hu, Bin

    2017-10-15

    Inductively coupled plasma-mass spectrometry (ICP-MS) based bioassay and multimodal imaging have attracted increasing attention in the current development of cancer research and theranostics. Herein, a sensitive, simple, timesaving, and reliable immunoassay for cancer cells counting and dual-modal imaging was proposed by using ICP-MS detection and down-conversion fluorescence (FL)/upconversion luminescence (UCL) with the aid of a multifunctional probe for the first time. The probe consisted of a recognition unit of goat anti-mouse IgG to label the anti-EpCAM antibody attached cells, a fluorescent dye (Cy3) moiety for FL imaging as well as upconversion nanoparticles (UCNPs) tag for both ICP-MS quantification and UCL imaging of cancer cells. Under the optimized conditions, an excellent linearity and sensitivity were achieved owing to the signal amplification effect of nanoparticles and low spectral interference. Accordingly, a limit of detection (3σ) of 1×10 2 HepG2 cells and a relative standard deviation of 7.1% for seven replicate determinations of 1×10 3 HepG2 cells were obtained. This work proposed a method to employ UCNPs with highly integrated functionalities enabling us not only to count but also to see the cancer cells, opening a promising avenue for biological research and clinical theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  12. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  13. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  14. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions

    NASA Astrophysics Data System (ADS)

    Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida; Freire, Aline Soares

    2008-07-01

    Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO 3, and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 μg g - 1 , respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 μg g - 1 , were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niterói/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these types of samples

  15. Detection of transgenerational barium dual-isotope marks in salmon otoliths by means of LA-ICP-MS.

    PubMed

    Huelga-Suarez, Gonzalo; Fernández, Beatriz; Moldovan, Mariella; García Alonso, J Ignacio

    2013-03-01

    The present study evaluates the use of an individual-specific transgenerational barium dual-isotope procedure and its application to salmon specimens from the Sella River (Asturias, Spain). For such a purpose, the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with multiple linear regression for the determination of the isotopic mark in the otoliths of the specimens is presented. In this sense, a solution in which two barium-enriched isotopes ((137)Ba and (135)Ba) were mixed at a molar ratio of ca. 1:3 (N Ba137/N Ba135) was administered to eight returning females caught during the spawning period. After injection, these females, as well as their offspring, were reared in a governmental hatchery located in the council of Cangas de Onís (Asturias, Spain). For comparison purposes, as well as for a time-monitoring control, egg and larva data obtained by solution analysis ICP-MS are also given. Otoliths (9-month-old juveniles) of marked offspring were analysed by LA-ICP-MS demonstrating a 100 % marking efficacy of this methodology. The capabilities of the molar fraction approach for 2D imaging of fish otoliths are also addressed.

  16. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion.

    PubMed

    Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G

    2004-09-01

    Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.

  17. Multi-element screening by ICP-MS of two specimens of Napoleon's hair.

    PubMed

    Kintz, Pascal; Ginet, Morgane; Cirimele, Vincent

    2006-10-01

    Since 1960, it has been demonstrated by various analytical procedures that high concentrations of arsenic were present in Napoleon's hair. Various authors, indicating that the detected arsenic levels are a consequence of external contamination, have challenged the results of these examinations. In order to shed more light on this historical controversy, we have tested two samples of Napoleon's hair by inductively coupled plasma-mass spectrometry (ICP-MS). The samples of hair were decontaminated with acetone and were cut into small segments. For multi-element screening, hair samples were mineralized in concentrated nitric acid for 1 h at 70 degrees C, diluted 1:40 in specific solution with rhodium as an internal standard, and finally analyzed by ICP-MS on a Thermo Electron ICP/MS X7. Multi-element analysis of Napoleon's hair samples revealed massive amounts of arsenic (42.1 and 37.4 ng/mg), antimony (2.1 and 1.8 ng/mg) and elevated levels of mercury (3.3 and 4.7 ng/mg) and lead (229 and 112 ng/mg). In the case of arsenic, these concentrations, 40 times higher than the normal values, confirm the hypothesis of a significant exposure to arsenic. The concentrations of the other elements, in particular antimony and mercury, are in agreement with the data already known about the therapeutic treatments given to Napoleon, which were based on calomel (salt of mercury) and tartar emetic (antimony).

  18. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  19. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  20. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  1. Analysis of Inorganic Nanoparticles by Single-particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry.

    PubMed

    Hendriks, Lyndsey; Gundlach-Graham, Alexander; Günther, Detlef

    2018-04-25

    Due to the rapid development of nanotechnologies, engineered nanomaterials (ENMs) and nanoparticles (ENPs) are becoming a part of everyday life: nanotechnologies are quickly migrating from laboratory benches to store shelves and industrial processes. As the use of ENPs continues to expand, their release into the environment is unavoidable; however, understanding the mechanisms and degree of ENP release is only possible through direct detection of these nanospecies in relevant matrices and at realistic concentrations. Key analytical requirements for quantitative detection of ENPs include high sensitivity to detect small particles at low total mass concentrations and the need to separate signals of ENPs from a background of dissolved elemental species and natural nanoparticles (NNPs). To this end, an emerging method called single-particle inductively coupled plasma mass spectrometry (sp-ICPMS) has demonstrated great potential for the characterization of inorganic nanoparticles (NPs) at environmentally relevant concentrations. Here, we comment on the capabilities of modern sp-ICPMS analysis with particular focus on the measurement possibilities offered by ICP-time-of-flight mass spectrometry (ICP-TOFMS). ICP-TOFMS delivers complete elemental mass spectra for individual NPs, which allows for high-throughput, untargeted quantitative analysis of dispersed NPs in natural matrices. Moreover, the multi-element detection capabilities of ICP-TOFMS enable new NP-analysis strategies, including online calibration via microdroplets for accurate NP mass quantification and matrix compensation.

  2. Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (K[subscript sp]) of Potassium Hydrogen Phthalate

    ERIC Educational Resources Information Center

    Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John

    2007-01-01

    In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate (KHP) in the 0-65 [degree]C temperature range. From these data the solubility products (K[subscript sp]), the Gibbs free energies of solution ([Delta][subscript…

  3. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of whole-water recoverable arsenic, boron, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    2000-01-01

    Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.

  4. ICPS Turnover GSDO Employee Event

    NASA Image and Video Library

    2017-11-07

    Kennedy Space Center Associate Director Kelvin Manning, right, speaks with a guest during a ceremony marking NASA's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turning over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS) to the center's Ground Systems Development and Operations (GSDO) Directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.

  5. Utilization of ICP/OES for the determination of trace metal binding to different humic fractions.

    PubMed

    de la Rosa, G; Peralta-Videa, J R; Gardea-Torresdey, J L

    2003-02-28

    In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.

  6. Evaluation of analytical performance for the simultaneous detection of trace Cu, Co and Ni by using liquid cathode glow discharge-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Zhang, Xiaomin; Lu, Quanfang; Sun, Duixiong; Wang, Xing; Zhu, Shuwen; Zhang, Zhichao; Yang, Wu

    2018-07-01

    In this paper, a novel liquid cathode glow discharge (LCGD) was established as a micro-plasma excitation source of atomic emission spectrometry (AES) for simultaneous detection of trace Cu, Co and Ni in aqueous solution. In order to evaluate the analytical performance, the operating parameters such as discharge voltage, supporting electrolyte, solution pH and flow rate were thoroughly investigated. The results showed that the optimal conditions are 640 V discharge voltage, pH = 1 HNO3 as supporting electrolyte and 4.5 mL min-1 flow rate. The R2 of Cu, Co and Ni are 0.9977, 0.9991 and 0.9977, respectively. The relative standard deviation (RSD) is 1.4% for Cu, 3.2% for Co and 0.8% for Ni. Under this condition, the power of LCGD is below 55 W and the plasma is quite stable. The limits of detections (LODs) for Cu, Co and Ni are 0.380, 0.080, and 0.740 mg L-1, respectively, which are basically consistent with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). Compared with ICP-AES, the LCGD-AES has small size, low power consumption, no inert gas requirement and low cost in set-up. It may be developed as a portable instrument for in-site and real-time monitoring of metals in solution samples with further improvement.

  7. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory.

    PubMed

    Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J

    2007-01-01

    Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.

  8. Using ICP-OES and SEM-EDX in biosorption studies

    PubMed Central

    Chojnacka, Katarzyna; Marycz, Krzysztof

    2010-01-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution. Figure The advantages and disadvantages of ICP-OES and SEM-EDX techniques Electronic supplementary material The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users. PMID:21423317

  9. Using ICP-OES and SEM-EDX in biosorption studies.

    PubMed

    Michalak, Izabela; Chojnacka, Katarzyna; Marycz, Krzysztof

    2011-02-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.

  10. Improvement of a sample preparation procedure for multi-elemental determination in Brazil nuts by ICP-OES.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna

    2014-04-01

    Various sample preparation procedures, such as common wet digestions and alternatives based on solubilisation in aqua regia or tetramethyl ammonium hydroxide, were compared for the determination of the total Ba, Ca, Cr, Cd, Cu, Fe, Mg, Mn, Ni, P, Pb, Se, Sr and Zn contents in Brazil nuts using inductively coupled plasma optical emission spectrometry (ICP-OES). For measurement of Se, a hydride generation technique was used. The performance of these procedures was measured in terms of precision, accuracy and limits of detection of the elements. It was found that solubilisation in aqua regia gave the best results, i.e. limits of detection from 0.60 to 41.9 ng ml(-1), precision of 1.0-3.9% and accuracy better than 5%. External calibration with simple standard solutions could be applied for the analysis. The proposed procedure is simple, reduces sample handling, and minimises the time and reagent consumption. Thus, this can be a vital alternative to traditional sample treatment approaches based on the total digestion with concentrated reagents. A phenomenon resulting from levels of Ba, Se and Sr in Brazil nuts was also discussed.

  11. A novel strategy to evaluate the degradation of quantum dots: identification and quantification of CdTe quantum dots and corresponding ionic species by CZE-ICP-MS.

    PubMed

    Meng, Peijun; Xiong, Yamin; Wu, Yingting; Hu, Yue; Wang, Hui; Pang, Yuanfeng; Jiang, Shuqing; Han, Sihai; Huang, Peili

    2018-05-09

    In view of the significance and urgency of the speciation analysis of quantum dots (QDs) and their degradation products for clarifying their degradation rules and toxicity mechanisms, a method for the identification and quantification of CdTe QDs and corresponding ionic species in complex matrices was developed using capillary zone electrophoresis (CZE) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). The quality assessment of commercial CdTe QDs and serum pharmacokinetics of synthesized CdTe QDs in rats were successfully undertaken using the developed CZE-ICP-MS method.

  12. LA-iMageS: a software for elemental distribution bioimaging using LA-ICP-MS data.

    PubMed

    López-Fernández, Hugo; de S Pessôa, Gustavo; Arruda, Marco A Z; Capelo-Martínez, José L; Fdez-Riverola, Florentino; Glez-Peña, Daniel; Reboiro-Jato, Miguel

    2016-01-01

    The spatial distribution of chemical elements in different types of samples is an important field in several research areas such as biology, paleontology or biomedicine, among others. Elemental distribution imaging by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an effective technique for qualitative and quantitative imaging due to its high spatial resolution and sensitivity. By applying this technique, vast amounts of raw data are generated to obtain high-quality images, essentially making the use of specific LA-ICP-MS imaging software that can process such data absolutely mandatory. Since existing solutions are usually commercial or hard-to-use for average users, this work introduces LA-iMageS, an open-source, free-to-use multiplatform application for fast and automatic generation of high-quality elemental distribution bioimages from LA-ICP-MS data in the PerkinElmer Elan XL format, whose results can be directly exported to external applications for further analysis. A key strength of LA-iMageS is its substantial added value for users, with particular regard to the customization of the elemental distribution bioimages, which allows, among other features, the ability to change color maps, increase image resolution or toggle between 2D and 3D visualizations.

  13. Selective Iron(III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    PubMed Central

    2012-01-01

    Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218

  14. [Determination and principal component analysis of mineral elements based on ICP-OES in Nitraria roborowskii fruits from different regions].

    PubMed

    Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng

    2017-06-01

    The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.

  15. [Determination of 24 metal elements and their compounds in air of workplace by ICP-AES].

    PubMed

    Wang, Xiang; Qiu, Jianguo; Zhao, Zhonglin; Guo, Ying

    2014-06-01

    To establish a method for determination of the levels of 24 metal elements and their compounds in the air of workplace by inductively coupled plasma-atomic emission spectroscopy (ICP- AES). Sampling filters were digested by microwave, and diluted to 25 ml. Twenty-four elements (Mg, Ni, K, Mo, Zn, Ca, Ba, Pb, Mn, Cd, Cr, Co, Cu, Sr, Bi, Tl, Sn, Li, Sb, Zr, In, V, Y, and Be) were simultaneously measured by ICP-AES. The detection limits for 24 elements were 0.001∼0.029 mg/L; liner correlation coefficient r values were all equal to or above 0.9994; the relative standard derivations were less than 5%; the recovery rates were 91.2%∼103.9%; the degradation rates in 7 days were less than 9.7%. ICP-AES technique is a simple, rapid, accurate, and reliable method, which can be used to measure 24 metal elements and their compounds in the air of workplace.

  16. Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine

    2005-04-01

    Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.

  17. Determination of Minor and Trace Metals in Aluminum and Aluminum Alloys by ICP-AES; Evaluation of the Uncertainty and Limit of Quantitation from Interlaboratory Testing.

    PubMed

    Uemoto, Michihisa; Makino, Masanori; Ota, Yuji; Sakaguchi, Hiromi; Shimizu, Yukari; Sato, Kazuhiro

    2018-01-01

    Minor and trace metals in aluminum and aluminum alloys have been determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) as an interlaboratory testing toward standardization. The trueness of the measured data was successfully investigated to improve the analytical protocols, using certified reference materials of aluminum. Their precision could also be evaluated, feasible to estimate the uncertainties separately. The accuracy (trueness and precision) of the data were finally in good agreement with the certified values and assigned uncertainties. Repeated measurements of aluminum solutions with different concentrations of the analytes revealed the relative standard deviations of the measurements with concentrations, thus enabling their limits of quantitation. They differed separately and also showed slightly higher values with an aluminum matrix than those without one. In addition, the upper limit of the detectable concentration of silicon with simple acid digestion was estimated to be 0.03 % in the mass fraction.

  18. Geographical traceability of wild Boletus edulis based on data fusion of FT-MIR and ICP-AES coupled with data mining methods (SVM).

    PubMed

    Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong

    2017-04-15

    In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms. Copyright © 2017. Published by Elsevier B.V.

  19. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS

    NASA Astrophysics Data System (ADS)

    Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G.

    1998-05-01

    We have used an ArF excimer laser coupled to a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) for the measurement of a range of elements during excavation of a deepening ablation pit in a synthetic glass (NIST 612). Analyte behaviour shows progressive volatile element enrichment at shallow hole depths, with a change to refractory element enrichment as the ablation pit deepens further. Examination of ablation pit morphology and the surface condensate deposited around the ablation site reveals the importance of sequential condensation of refractory, then volatile phases from the cooling plasma plume after the end of the laser pulse. We interpret the observed element fractionation behaviour to reflect a change in ablation processes from photothermal dominated to plasma dominated mechanisms. The development of the surface deposit is greatly reduced by ablating in an ambient atmosphere of He instead of Ar and is accompanied by a two- to four-fold increase in ICP-MS sensitivity.

  20. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the

  1. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening.

    PubMed

    Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J

    2007-01-16

    An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.

  2. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  3. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    PubMed

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is <0.3‰ (1s). No significant matrix effects have been identified in calcite with the amplitude of chemical composition variation (i.e., MnO, SrO, MgO, or FeO) up to 2.5 wt %. Two modern corals were investigated using magmatic calcite as the calibration standard, and the average δ 13 C values for both corals are similar to the bulk IRMS values. Moreover, coral exhibits significant heterogeneity in carbon isotope compositions, with differences up to 4.85‰ within an individual coral. This study indicates that LA-MC-ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  4. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate

    PubMed Central

    Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H.; Pappas, R. Steven

    2017-01-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method limit of detection (LOD) was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. PMID:28164228

  5. [The matrix effects of organic acid compounds in ICP-MS].

    PubMed

    Nie, Xi-Du; He, Xiao-Mei; Li, Li-Bo; Xie, Hua-Lin

    2007-07-01

    The matrix effects arising from oxalic acid, lactic acid, tartaric acid and citric acid in inductively coupled plasma mass spectrometry (ICP-MS) were investigated. It has been proved that the sensitivity of analytes can be significantly enhanced by adding small amounts of organic acid compounds with adjusted nebulizer gas flow-rate, especially for the elements with ionization potential between 9 and 11 eV. The tartaric acid has higher enhancement effect on the signal intensity of the hard-to-ionize elements than oxalic acid, lactic acid and citric acid. The mechanism of the enhancement was investigated. The method has been used to determine Be, Zn, As, Se, Sb and Hg in water standard reference materials (SRM). The analytical results are very close to the certified values.

  6. Determination of (187)Os in molybdenite by ICP-MS with neutron-induced (186)Os and (188)Os spikes.

    PubMed

    Qu, W; Du, A; Zhao, D

    2001-10-31

    The article describes a method for the determination of (187)Os in molybdenite by isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) with neutron-induced (186)Os and (188)Os spike. The spike used in the present work was prepared in line with the principle by which artificial nuclides are produced in a nuclear reaction. The concentration and isotopic composition of osmium in the prepared spike were evaluated accurately with the isotope dilution method, using negative thermal ion mass spectrometry (N-TIMS). The advantage of this method is that using (186)Os and (188)Os double spikes can effectively compensate for the mass discrimination effects of ICP-MS. Thus, the common correction practice for mass bias in the isotope dilution method with a single spike is unnecessary. In addition, the method enables one to reduce the determined error arising from instrumental instability. The precision for the (187)Os/((186)Os+(188)Os) ratio was approximately 2% (2sigma, RSD), but in the case of (187)Os/(186)Os, (187)Os/(188)Os and (186)Os/(188)Os, precision ranged from 2.0 to 8% (2sigma, RSD). The results for (187)Os concentration in a molybdenite sample determined with this method showed good agreement with reference values.

  7. Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G

    2005-08-01

    Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.

  8. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system.

    PubMed

    D'Ilio, S; Violante, N; Di Gregorio, M; Senofonte, O; Petrucci, F

    2006-10-10

    A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulization system (APEX-IR) was employed to determine 17 elements (Al, As, Ba, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, V, and Zr) in blood samples. Ammonia (for Al, Cr, Mn, and V) and O2 (for As and Se) were used as reacting gases. Selection of the best flow rate of the gases and optimization of the quadrupole dynamic bandpass tuning parameter (RPq) were carried out, using digested blood diluted 1+9 with deionized water and spiked with 1 microg L(-1) of Al, Cr, Mn, V and 5 microgL(-1) of As and Se. Detection limits were determined in digested blood using the 3sigma criterion. The desolvating system allowed a sufficient sensitivity to be achieved to determine elements at levels of ng L(-1) without detriment of signal stability. The accuracy of the method was tested with the whole blood certified reference material (CRM), certified for Al, As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Sb, Se, and V, and with indicative values for Ba, Li, Sn, Sr, and Zr. The addition calibration approach was chosen for analysis. In order to confirm the DRC data, samples were also analyzed by means of sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), operating in medium (m/Deltam=4000) and high (m/Deltam=10,000) resolution mode and achieving a good agreement between the two techniques.

  9. Determination of (90)Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS).

    PubMed

    Feuerstein, J; Boulyga, S F; Galler, P; Stingeder, G; Prohaska, T

    2008-11-01

    A rapid method is reported for the determination of (90)Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of (90)Zr, which is present in soils at concentrations higher by more than six orders of magnitude than (90)Sr. Zirconium was separated from strontium in two steps to reduce the interference by (90)Zr(+) ions by a factor of more than 10(7): (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from (88)Sr on mass 90 u was found to be about 3 x 10(-9). Detection limits of 4 fg g(-1) (0.02 Bq g(-1)) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 microg g(-1) Sr and 50 ng g(-1) Zr a detection limit of 0.2 pg g(-1) soil (1 Bq g(-1) soil) was determined. (90)Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66+/-0.27, 13.48+/-0.68 and 12.9+/-1.5 pg g(-1) corresponding to specific activities of 23.7+/-1.3, 68.6+/-3.5 and 65.6+/-7.8 Bq g(-1), respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level (90)Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g(-1).

  10. ICPS Turnover GSDO Employee Event

    NASA Image and Video Library

    2017-11-07

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a ceremony is underway marking the agency's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turning over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS), to the center's Ground Systems Development and Operations (GSDO) Directorate. The ICPS is seen on the left in its shipping container and is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.

  11. ICP measurement accuracy: the effect of temperature drift. Design of a laboratory test for assessment of ICP transducers.

    PubMed

    Morgalla, M H; Mettenleiter, H; Katzenberger, T

    1999-01-01

    Intracranial pressure (ICP) monitoring has become the mainstay of multimodal neuromonitoring of comatous patients after head injury. In the presence of rising ICP and faced with pressures, difficult to control, aggressive measures, such as hypothermia may be used. The ICP readings should not be influenced by temperature changes. A laboratory test was designed to simulate temperature variations between 20 degrees C and 45 degrees C at different pressure levels under physiological conditions. Five types of transducers were examined: Epidyn Braun Melsungen, ICT/B-Titan Gaeltec, Camino-OLM-110-4B, Codman MicroSensor ICP-Transducer, Neurovent ICP transducer Rehau Ag+Co. Tests were performed at 6 different pressure levels between 0 mmHg and 50 mmHg. The results show very low drifts of less than 0.15 mmHg degree C-1 for Codman, Epidyn and Neurovent. Gaeltec and Camino exhibited higher drifts of 0.18 mmHg and 0.2 mmHg degree C-1 respectively. Within the temperature range from 35 degrees C to 42 degrees C all probes tested show insignificant temperature drift. Whether these results also apply to other types of transducers needs further evaluation. Problems and requirements related to the design of a laboratory test for the in vitro assessment of ICP transducers are discussed in detail.

  12. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles.

    PubMed

    Johnson, Monique E; Montoro Bustos, Antonio R; Winchester, Michael R

    2016-11-01

    Single particle inductively coupled plasma mass spectrometry (spICP-MS) is shown to be a practical technique to study the efficacy of rate-zonal sucrose density gradient centrifugation (SDGC) separations of mixtures of gold nanoparticles (AuNPs) in liquid suspension. spICP-MS enabled measurements of AuNP size distributions and particle number concentrations along the gradient, allowing unambiguous evaluations of the effectiveness of the separation. Importantly, these studies were conducted using AuNP concentrations that are directly relevant to environmental studies (sub ng mL -1 ). At such low concentrations, other techniques [e.g., dynamic light scattering (DLS), transmission and scanning electron microscopies (TEM and SEM), UV-vis spectroscopy, atomic force microscopy (AFM)] do not have adequate sensitivity, highlighting the inherent value of spICP-MS for this and similar applications. In terms of the SDGC separations, a mixture containing three populations of AuNPs, having mean diameters of 30, 80, and 150 nm, was fully separated, while separations of two other mixtures (30, 60, 100 nm; and 20, 50, 100 nm) were less successful. Finally, it is shown that the separation capacity of SDGC can be overwhelmed when particle number concentrations are excessive, an especially relevant finding in view of common methodologies taken in nanotechnology research. Graphical Abstract Characterization of the separation of a gold nanoparticle mixture by sucrose density gradient centrifugation by conventional and single particle ICP-MS analysis.

  13. The Means: Cytometry and Mass Spectrometry Converge in a Single Cell Deep Profiling Platform

    PubMed Central

    Weis-Garcia, Frances; Bandura, Dmitry; Baranov, Vladimir; Ornatsky, Olga; Tanner, Scott

    2013-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a distinct flavor of mass spectrometry that has had little association with cell biology: it remains the state of the art for the determination of the atomic composition of materials. Unrelatedly, flow cytometry is the superior method for distinguishing the heterogeneity of cells through the determination of antigen signatures using tagged antibodies. Simply replacing fluorophore tags with stable isotopes of the heavy metals, and measuring these cell-by-cell with ICP-MS, dramatically increases the number of probes that can be simultaneously measured in cytometry and enables a transformative increase in the resolution of rare cell populations in complex biological samples. While this can be thought of as a novel incarnation of single-cell targeted proteomics, the metal-labeling reagents, ICP-MS of single cells, and accompanying informatics comprise a new field of technology termed Mass Cytometry. While the conception of mass cytometry is simple the embodiment to address the issues of multi-parameter flow cytometry has been far more challenging. There are many elements, and many more stable isotopes of those elements, that might be used as distinct reporter tags. Still, there are many approaches to conjugating metals to antibodies (or other affinity reagents) and work in this area along with developing new applications is ongoing. The mass resolution and linear (quantitative) dynamic range of ICP-MS allows those many stable isotopes to be measured simultaneously and without the spectral overlap issues that limit fluorescence assay. However, the adaptation of ICP-MS to allow high-speed simultaneous measurement with single cell distinction at high throughput required innovation of the cell introduction system, ion optics (sampling, transmission and beam-shaping), mass analysis, and signal handling and processing. An overview of “the nuts and bolts” of Mass Cytometry is presented.

  14. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  15. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    PubMed Central

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  16. Imaging of metal bioaccumulation in hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS.

    PubMed

    Koelmel, Jeremy; Amarasiriwardena, Dulasiri

    2012-09-01

    Understanding Pb removal from the translocation stream is vital to engineering Pb hyperaccumulation in above ground organs, which would enhance the economic feasibility of Pb phytoextraction technologies. We investigated Cu, Pb, Sb and Zn distributions in Hay-scented fern (Dennstaedtia punctilobula) rhizomes on shooting range soils by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), analyzing digested rhizomes, stems, and fronds using ICP-MS. Nutrients Cu and Zn concentrated in fronds while toxic elements Pb and Sb did not, showing potential Pb and Sb sequestration in the rhizome. Frond and rhizome concentration of Pb was 0.17 ± 0.10% and 0.32 ± 0.21% of dry biomass, respectively. The 208Pb/13C and 121Sb/13C determined by LA-ICP-MS increased from inner sclerotic cortex to the epidermis, while Pb concentrated in the starchy cortex only in contaminated sites. These results suggest that concentration dependent bioaccumulation in the rhizome outer cortex removes Pb from the vascular transport stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  18. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less

  19. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  20. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry.

    PubMed

    Pontes, Fernanda V M; Mendes, Bruna A de O; de Souza, Evelyn M F; Ferreira, Fernanda N; da Silva, Lílian I D; Carneiro, Manuel C; Monteiro, Maria I C; de Almeida, Marcelo D; Neto, Arnaldo A; Vaitsman, Delmo S

    2010-02-05

    A method for determination of Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn in coal fly ash samples using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The digestion procedure consisted in the sonication of the previously dried sample with hydrofluoric acid and aqua regia at 80 degrees C for 30 min, elimination of fluorides by heating until dryness for about 1h and dissolution of the residue with nitric acid solution. A classical digestion method, used as comparative method, consisted in the addition of HCl, HNO(3) and HF to 1 g of sample, and heating on a hot plate until dryness for about 6h. The proposed method presents several advantages: it requires lower amounts of sample and reagents, and it is faster. It is also advantageous when compared to the published methods, which also use ultrasound-assisted digestion procedure: lower detection limits for Co, Cu, Ni, V and Zn, and it does not require shaking during the digestion. The detection limits (microg g(-1)) for Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn were 0.06, 0.37, 1.0, 25, 0.93, 0.45, 4.0, 1.7 and 4.3, respectively. The results were in good agreement with those obtained by the classical method and reference values. The exception was Cr, which presented low recoveries in classical and proposed methods (83 and 87%, respectively). Also, the concentration for Cu obtained by the proposed method was significantly different from the reference value, in spite of the good recovery (91+/-1%). Copyright 2009 Elsevier B.V. All rights reserved.

  1. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    PubMed

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  2. Correcting sensitivity drift during long-term multi-element signal measurements by solid sampling-ETV-ICP-MS.

    PubMed

    Martin-Esteban, A; Slowikowski, B; Grobecker, K H

    2004-06-17

    Solid sampling-electrothermal vaporisation-inductively coupled plasma-mass spectrometry (SS-ETV-ICP-MS) is an attractive technique for the direct simultaneous determination of trace elements in solid samples and especially in long-term studies (i.e. assessment of the homogeneity of reference materials). However, during these studies a downward drift in the instrument sensitivity has been observed due likely to deposits on the sampling and skimmer cones and on the ion lens of the mass spectrometer. Accordingly, in this paper, several means of correcting and/or suppressing sensitivity drift are proposed and evaluated for the monitoring of Cd, Cu, Hg, Mn, Pb, Sb, Se, Sn, Tl, U and V in different reference materials of inorganic and organic (biological) origin. From that studies, the combination of the use of the argon dimer as internal standard together with a modification in the ETV-ICP connection tube seems to be the best mean of getting stable sensitivity during at least 60 consecutive ETV runs.

  3. Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.

    PubMed

    Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L

    2014-05-01

    High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.

  4. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Application of ICP-OES for Evaluating Energy Extraction and Production Wastewater Discharge Impacts on Surface Waters in Western Pennsylvania

    EPA Science Inventory

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) w...

  6. Determination and identification of titanium dioxide nanoparticles in confectionery foods, marketed in South Korea, using inductively coupled plasma optical emission spectrometry and transmission electron microscopy.

    PubMed

    Kim, Namhoon; Kim, Changkyu; Jung, Soyoung; Park, Youngae; Lee, Youngju; Jo, Juyeon; Hong, Misun; Lee, Sangmi; Oh, Younghee; Jung, Kweon

    2018-06-18

    Food-grade titanium dioxide (TiO 2 ) is a common and widespread food additive in many processed foods, personal care products, and other industrial categories as it boosts the brightness and whiteness of colours. Although it is generally recognised as safe for humans, there is a growing interest in the health risks associated with its oral intake. This study quantified and identified TiO 2 nanoparticles present in confectionery foods, which are children's favourite foods, with inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM). A reliable digestion method using hot sulphuric acid and a digestion catalyst (K 2 SO 4 :CuSO 4  = 9:1) was suggested for titanium analysis. Validations of the experimental method were quite acceptable in terms of linearity, recoveries, detection limits, and quantification limits. Of all the 88 analysed foods, TiO 2 was detected in 19 products, all except three declared TiO 2 in their labelling. The mean TiO 2 content of candies, chewing gums, and chocolates were 0.36 mg g -1 , 0.04 mg g -1 , and 0.81 mg g -1 , respectively. Whitish particles isolated from the confectionery foods were confirmed as TiO 2 nanoparticles via TEM and energy dispersive X-ray spectroscopy (EDX), in which nanosized particles (<100 nm) were identified.

  7. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS.

    PubMed

    Candás-Zapico, S; Kutscher, D J; Montes-Bayón, M; Bettmer, J

    2018-04-01

    Titanium dioxide (TiO 2 ) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO 2 , better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope 47 Ti. Different cell gases like He, O 2 and NH 3 were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO 2 . The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the 47 Ti or 48 Ti reaction products using O 2 and NH 3 as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO 2 particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO 2 particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the

  8. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    PubMed

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  9. On-line preconcentration/determination of lead in Ilex paraguariensis samples (mate tea) using polyurethane foam as filter and USN-ICP-OES.

    PubMed

    Marchisio, P F; Sales, A; Cerutti, S; Marchevski, E; Martinez, L D

    2005-09-30

    The present paper proposes an on-line preconcentration procedure for lead determination in Ilex paraguariensis (St. Hilaire) samples by ultrasonic nebulization associated to inductively coupled plasma optical emission spectrometry (USN-ICP-OES). It is based on the precipitation of lead(II) ion on a minicolumn packed with polyurethane foam using 2-(5-bromo-2-pyridilazo)-5-diethylaminophenol (5-Br-PADAP) as precipitating reagent. The collected analyte precipitate was quantitatively eluted from the minicolumn with 20% (v/v) nitric acid. An enhancement factor of 225-fold was obtained (15 for USN and 15 for preconcentration). The detection limit (DL) value for the preconcentration of 10.0 ml of sample was 40.0 ng/l. The relative standard deviation (R.S.D.) was 3.0% for a Pb concentration of 1 microg/l, calculated from the peak heights obtained. The calibration graph using the preconcentration system for lead was linear with a correlation coefficient of 0.9997, at levels near the detection limits up to at least 100 microg/l. The preconcentration procedure was successfully applied to the determination of lead in mate tea samples.

  10. Comparison of ultrasonic and thermospray systems for high performance sample introduction to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Conver, Timothy S.; Koropchak, John A.

    1995-06-01

    This paper describes detailed work done in our lab to compare analytical figures of merit for pneumatic, ultrasonic and thermospray sample introduction (SI) systems with three different inductively coupled plasma-atomic emission spectrometry (ICP-AES) instruments. One instrument from Leeman Labs, Inc. has an air path echelle spectrometer and a 27 MHz ICP. For low dissolved solid samples with this instrument, we observed that the ultrasonic nebulizer (USN) and fused silica aperture thermospray (FSApT) both offered similar LOD improvements as compared to pneumatic nebulization (PN), 14 and 16 times, respectively. Average sensitivities compared to PN were better for the USN, by 58 times, compared to 39 times for the FSApT. For solutions containing high dissolved solids we observed that FSApT optimized at the same conditions as for low dissolved solids, whereas USN required changes in power and gas flows to maintain a stable discharge. These changes degraded the LODs for USN substantially as compared to those utilized for low dissolved solid solutions, limiting improvement compared to PN to an average factor of 4. In general, sensitivities for USN were degraded at these new conditions. When solutions with 3000 μg/g Ca were analyzed, LOD improvements were smaller for FSApT and USN, but FSApT showed an improvement over USN of 6.5 times. Sensitivities compared to solutions without high dissolved solids were degraded by 19% on average for FSApT, while those for USN were degraded by 26%. The SI systems were also tested with a Varian Instruments Liberty 220 having a vacuum path Czerny-Turner monochromator and a 40 MHz generator. The sensitivities with low dissolved solids solutions compared to PN were 20 times better for the USN and 39 times better for FSApT, and LODs for every element were better for FSApT. Better correlation between relative sensitivities and anticipated relative analyte mass fluxes for FSApT and USN was observed with the Varian instrument. LOD

  11. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    PubMed

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES.

    PubMed

    Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M

    2015-11-01

    A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dispersed particle extraction--a new procedure for trace element enrichment from natural aqueous samples with subsequent ICP-OES analysis.

    PubMed

    Bauer, Gerald; Neouze, Marie-Alexandra; Limbeck, Andreas

    2013-01-15

    A novel sample pre-treatment method for multi trace element enrichment from environmental waters prior to optical emission spectrometry analysis with inductively coupled plasma (ICP-OES) is proposed, based on dispersed particle extraction (DPE). This method is based on the use of silica nanoparticles functionalized with strong cation exchange ligands. After separation from the investigated sample solution, the nanoparticles used for the extraction are directly introduced in the ICP for measurement of the adsorbed target analytes. A prerequisite for the successful application of the developed slurry approach is the use of sorbent particles with a mean size of 500 nm instead of commercially available μm sized beads. The proposed method offers the known advantages of common bead-injection (BI) techniques, and further circumvents the elution step required in conventional solid phase extraction procedures. With the use of 14.4 mL sample and addition of ammonium acetate buffer and particle slurry limits of detection (LODs) from 0.03 μg L(-1) for Be to 0.48 μg L(-1) for Fe, with relative standard deviations ranging from 1.7% for Fe and 5.5% for Cr and an average enrichment factor of 10.4 could be achieved. By implementing this method the possibility to access sorbent materials with irreversible bonding mechanisms for sample pre-treatment is established, thus improvements in the selectivity of sample pre-treatment procedures can be achieved. The presented procedure was tested for accuracy with NIST standard reference material 1643e (fresh water) and was applied to drinking water samples from the vicinity of Vienna. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    PubMed

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  15. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay.

    PubMed

    Ko, Jung Aa; Lim, H B

    2016-09-28

    Metal-doped inorganic nanoparticles were synthesized for the multiplex detection of biomarkers by a sandwich-type inductively coupled plasma mass spectrometry (ICP-MS) immunoassay. The synthesized Cs-doped multicore magnetic nanoparticles (MMNPs) were used not only for magnetic extraction of targets but also for ratiometric measurement in ICP-MS. In addition, three different metal/dye-doped silica nanoparticles (SNPs) were synthesized as probes for multiplex detection: Y/RhBITC (rhodamine B isothiocyanate)-doped SNPs for CRP (cardiovascular disease), Cd/RhBITC-doped SNPs for AFP (tumor), and Au/5(6)-XRITC (X-rhodamine-5-(and-6)-isothiocyanate)-doped SNPs for NSE (heart disease). For quantification, the doped metals of SNPs were measured by ICP-MS and then the signal ratio to Cs of MMNPs was plotted with respect to the concentration of targets by a ratiometry. Limits of detection (LOD) of 0.35 ng/mL to 77 ng mL(-1) and recoveries of 83%-125% were obtained for serum samples spiked with the biomarkers. Since no sample treatment was necessary prior to the extraction, the proposed method provided short analysis time and convenience for the multiplex determination of biomarkers, which will be valuable for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome.

    PubMed

    Konz, Tobias; Migliavacca, Eugenia; Dayon, Loïc; Bowman, Gene; Oikonomidi, Aikaterini; Popp, Julius; Rezzi, Serge

    2017-05-05

    We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.

  17. A powerful tool for assessing distribution and fate of potentially toxic metals (PTMs) in soils: integration of laser ablation spectrometry (LA-ICP-MS) on thin sections with soil micromorphology and geochemistry.

    PubMed

    Scarciglia, Fabio; Barca, Donatella

    2017-04-01

    The dynamic behavior and inherent spatial heterogeneity, at different hierarchic levels, of the soil system often make the spatial distribution of potentially toxic metals (PTMs) quite complex and difficult to assess correctly. This work demonstrates that the application of laser ablation spectrometry (LA-ICP-MS) to soil thin sections constitutes an ancillary powerful tool to well-established analytical methods for tracing the behavior and fate of potential soil contaminants at the microsite level. It allowed to discriminate the contribution of PTMs in distinct soil sub-components, such as parent rock fragments, neoformed, clay-enriched or humified matrix, and specific pedogenetic features of illuvial origin (unstained or iron-stained clay coatings) even at very low contents. PTMs were analyzed in three soil profiles located in the Muravera area (Sardinia, Italy), where several, now abandoned mines were exploited. Recurrent trends of increase of many PTMs from rock to pedogenic matrix and to illuvial clay coatings, traced by LA-ICP-MS compositional data, revealed a pedogenetic control on metal fractionation and distribution, based on adsorption properties of clay minerals, iron oxyhydroxides or organic matter, and downprofile illuviation processes. The main PTMs patterns coupled with SEM-EDS analyses suggest that heavy metal-bearing mineral grains were sourced from the mine plants, in addition to the natural sedimentary input. The interplay between soil-forming processes and geomorphic dynamics significantly contributed to the PTMs spatial distribution detected in the different pedogenetic horizons and soil features.

  18. Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Ornatsky, Olga I; Baranov, Vladimir I; Bandura, Dmitry R; Tanner, Scott D; Dick, John

    2006-01-01

    Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells.

  19. Quantification issues of trace metal contaminants on silicon wafers by means of TOF-SIMS, ICP-MS, and TXRF

    NASA Astrophysics Data System (ADS)

    Rostam-Khani, P.; Hopstaken, M. J. P.; Vullings, P.; Noij, G.; O'Halloran, O.; Claassen, W.

    2004-06-01

    Measurement of surface metal contamination on silicon wafers is essential for yield enhancement in IC manufacturing. Vapor phase decomposition coupled with either inductively coupled plasma mass spectrometry (VPD-ICP-MS), or total reflection X-ray fluorescence (VPD-TXRF), TXRF and more recently time of flight secondary ion mass spectrometry (TOF-SIMS) are used to monitor surface metal contamination. These techniques complement each other in their respective strengths and weaknesses. For reliable and accurate quantification, so-called relative sensitivity factors (RSF) are required for TOF-SIMS analysis. For quantification purposes in VPD, the collection efficiency (CE) is important to ensure complete collection of contamination. A standard procedure has been developed that combines the determination of these RSFs as well as the collection efficiency using all the analytical techniques mentioned above. Therefore, sample wafers were intentionally contaminated and analyzed (by TOF-SIMS) directly after preparation. After VPD-ICP-MS, several scanned surfaces were analyzed again by TOF-SIMS. Comparing the intensities of the specific metals before and after the VPD-DC procedure on the scanned surface allows the determination of so-called removing efficiency (RE). In general, very good agreement was obtained comparing the four analytical techniques after updating the RSFs for TOF-SIMS. Progress has been achieved concerning the CE evaluation as well as determining the RSFs more precisely for TOF-SIMS.

  20. Considerations in As analysis and speciation

    USGS Publications Warehouse

    Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, Ronald C.; Taylor, Howard E.

    1998-01-01

    This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.

  1. Water analysis via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.

    2017-01-01

    Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.

  2. An environmentally-friendly, highly efficient, gas pressure-assisted sample introduction system for ICP-MS and its application to detection of cadmium and lead in human plasma.

    PubMed

    Cao, Yupin; Deng, Biyang; Yan, Lizhen; Huang, Hongli

    2017-05-15

    An environmentally friendly and highly efficient gas pressure-assisted sample introduction system (GPASIS) was developed for inductively-coupled plasma mass spectrometry. A GPASIS consisting of a gas-pressure control device, a customized nebulizer, and a custom-made spray chamber was fabricated. The advantages of this GPASIS derive from its high nebulization efficiencies, small sample volume requirements, low memory effects, good precision, and zero waste emission. A GPASIS can continuously, and stably, nebulize 10% NaCl solution for more than an hour without clogging. Sensitivity, detection limits, precision, long-term stability, double charge and oxide ion levels, nebulization efficiencies, and matrix effects of the sample introduction system were evaluated. Experimental results indicated that the performance of this GPASIS, was equivalent to, or better than, those obtained by conventional sample introduction systems. This GPASIS was successfully used to determine Cd and Pb by ICP-MS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  4. The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques.

    PubMed

    Jarzynska, Grazyna; Falandysz, Jerzy

    2011-01-01

    This research presents an example of an excellent applied study on analytical problems due to hazardous mercury determination in environmental materials and validity of published results on content of this element in wild growing mushrooms. The total mercury content has been analyzed in a several species of wild-grown mushrooms and some herbal origin certified reference materials, using two analytical methods. One method was commonly known and well validated the cold-vapour atomic absorption spectroscopy (CV-AAS) after a direct sample pyrolysis coupled to the gold wool trap, which was a reference method. A second method was a procedure that involved a final mercury measurement using the inductively-coupled plasma atomic emission spectroscopy (ICP-AES) at λ 194.163 nm, which was used by some authors to report on a high mercury content of a large sets of wild-grown mushrooms. We found that the method using the ICP-AES at λ 194.163 nm gave inaccurate and imprecise results. The results of this study imply that because of unsuitability of total mercury determination using the ICP-AES at λ 194.163 nm, the reports on great concentrations of this metal in a large sets of wild-grown mushrooms, when examined using this method, have to be studied with caution, since data are highly biased.

  5. Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry.

    PubMed

    Flórez, María R; Costas-Rodríguez, Marta; Grootaert, Charlotte; Van Camp, John; Vanhaecke, Frank

    2018-03-01

    Reactive oxygen species (ROS) are generated in biological processes involving electron transfer reactions and can act in a beneficial or deleterious way. When intracellular ROS levels exceed the cell's anti-oxidant capacity, oxidative stress occurs. In this work, Cu isotope fractionation was evaluated in HepG2 cells under oxidative stress conditions attained in various ways. HepG2 is a well-characterised human hepatoblastoma cell line adapted to grow under high oxidative stress conditions. During a pre-incubation stage, cells were exposed to a non-toxic concentration of Cu for 24 h. Subsequently, the medium was replaced and cells were exposed to one of three different external stressors: H 2 O 2 , tumour necrosis factor α (TNFα) or UV radiation. The isotopic composition of the intracellular Cu was determined by multi-collector ICP-mass spectrometry to evaluate the isotope fractionation accompanying Cu fluxes between cells and culture medium. For half of these setups, the pre-incubation solution also contained N-acetyl-cysteine (NAC) as an anti-oxidant to evaluate its protective effect against oxidative stress via its influence on the extent of Cu isotope fractionation. Oxidative stress caused the intracellular Cu isotopic composition to be heavier compared to that in untreated control cells. The H 2 O 2 and TNFα exposures rendered similar results, comparable to those obtained after mild UV exposure. The heaviest Cu isotopic composition was observed under the strongest oxidative conditions tested, i.e., when the cell surfaces were directly exposed to UV radiation without apical medium and in absence of NAC. NAC mitigated the extent of isotope fractionation in all cases.

  6. Direct determination of arsenic in steel by glow discharge optical emission spectrometry with argon-helium mixed gas.

    PubMed

    Wagatsuma, Kazuaki

    2003-02-01

    In glow discharge optical emission spectrometry, an argon-helium mixed gas plasma was investigated to improve the detection sensitivity of arsenic in steel samples. The emission line of arsenic was enhanced and the background intensity was simultaneously reduced when an Ar-He plasma was employed instead of an Ar plasma, which is effective for the sensitive determination of arsenic. The detection limits were calculated to be 0.009 mass% for a 700-V Ar plasma, 0.004 mass% for a 700-V Ar-He plasma, and 0.001 mass% for a 900-V Ar-He plasma.

  7. Application of isotope dilution inductively coupled plasma mass spectrometry to the analysis of marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, J.W.; Beauchemin, D.; Berman, S.S.

    1987-02-15

    Isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the determination of 11 trace elements (Cr, Ni, Zn, Sr, Mo, Cd, Sn, Sb, Tl, Pb, and U) in the marine sediment reference materials MESS-1 and BCSS-1. Accuracy and, especially, precision are better than those that can be easily achieved by other ICP-MS calibration strategies, as long as isotopic equilibration is achieved and the isotopes used for the ratio measurement are free of isobaric interferences by molecular species. The measurement of the isotope ratios on unspiked samples provides a sensitive diagnostic of such interferences.

  8. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  9. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  10. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  11. Fast and accurate determination of arsenobetaine in fish tissues using accelerated solvent extraction and HPLC-ICP-MS determination.

    PubMed

    Wahlen, Raimund

    2004-04-01

    A high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method has been developed for the fast and accurate analysis of arsenobetaine (AsB) in fish samples extracted by accelerated solvent extraction. The combined extraction and analysis approach is validated using certified reference materials for AsB in fish and during a European intercomparison exercise with a blind sample. Up to six species of arsenic (As) can be separated and quantitated in the extracts within a 10-min isocratic elution. The method is optimized so as to minimize time-consuming sample preparation steps and allow for automated extraction and analysis of large sample batches. A comparison of standard addition and external calibration show no significant difference in the results obtained, which indicates that the LC-ICP-MS method is not influenced by severe matrix effects. The extraction procedure can process up to 24 samples in an automated manner, yet the robustness of the developed HPLC-ICP-MS approach is highlighted by the capability to run more than 50 injections per sequence, which equates to a total run-time of more than 12 h. The method can therefore be used to rapidly and accurately assess the proportion of nontoxic AsB in fish samples with high total As content during toxicological screening studies.

  12. Mass Spectrometry Applications for Toxicology

    PubMed Central

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  13. Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and

  14. Examination of the Mass Transfer of Additive Elements in Barium Titanate Ceramics during Sintering Process by Laser Ablation ICP-MS.

    PubMed

    Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki

    2018-01-01

    The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.

  15. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  16. Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.

    PubMed

    Boaventura, G R; Barbosa, A C; East, G A

    1997-01-01

    A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.

  17. Advances in HPLC-ICP-MS interface techniques for metal speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, S.J.

    The relentless demand for lower detection limits is increasingly coupled to the requirement for elemental speciation. This is particularly true in environmental and clinical fields where total levels are often insufficient for mobility and toxicity studies. This demand for both qualitative and quantitative data on the individual species present in complex samples has led to the development of various interfaces to couple some form of chromatography, usually gas chromatography (GC) or high performance liquid chromatography (HPLC) to an element specific detector. Today inductively coupled plasma-mass spectrometry is often employed since it offers excellent detection limits, element specific information (including isotopicmore » data) and the potential for multi-element studies. Ms presentation will concentrate on HPLC couplings although the advantages and disadvantages of both GC and HPLC couplings to ICP-MS will be discussed. Particular attention will be given to the optimization of both the chromatography and detection systems. Details will be presented of several successful HPLC interface designs and ways of facilitating high levels of a range of organic solvents (e.g. methanol and THF) in the HPLC mobile phase will be highlighted. The advantages of using a sheath gas and practical ways of achieving this will also be discussed. Finally the use of isotope dilution analysis in conjunction with HPLC-ICP-MS will be outlined. In all cases the impact of using the most appropriate approach will be demonstrated using both environmental and clinical samples.« less

  18. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES).

    PubMed

    Thangavel, S; Dash, K; Dhavile, S M; Sahayam, A C

    2015-01-01

    A method has been developed for the determination of traces of arsenic, boron, bismuth, gallium, germanium, phosphorus, lead, antimony, selenium, silicon and tellurium in nickel matrix. The sample was dissolved in HClO4 (~ 150°C) and nickel was settled as crystalline nickelperchlorate [Ni(ClO4)2] on cooling. The mixture was ultrasonicated and after the separation of Ni(ClO4)2, analytes of interest were determined in the supernatant using ICP-OES. Similarly, it was also found that, after the dissolution of nickel in perchloric acid, when the solution temperature was maintained at ~ 100°C, long needle like crystals of nickel perchlorate were formed. The crystals were separated from the mixture and trace elements in the supernatant were determined using ICP-OES. In both methods the matrix removal was >99% and the recoveries of analytes were in the range 92-97%. The limits of detection for As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te were found to be 0.18, 0.21, 0.07, 0.06, 0.25, 0.11, 0.09, 0.10, 0.17, 0.20 and 0.07 μg g(-1) respectively. The procedure was applied for the analysis of a standard reference material nickel oxide (SRM 761, Nickel Oxide No.1, NBS, USA) and the values obtained are in close agreement with the certified values. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Environmental applications of single collector high resolution ICP-MS.

    PubMed

    Krachler, Michael

    2007-08-01

    The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.

  20. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  1. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  2. [Effect of the chelator Zn-DTPA on the excretion of lead in lead intoxication mice detected with ICP-MS].

    PubMed

    Li, Chen; Lu, Kai-zhi; Zhou, Qi; Wang, Qiong; Zeng, Yu-liang; Yin, Hong-jun; He, Xuan-hui; Tian, Ying; Dong, Jun-Xing

    2014-11-01

    To study the lead excretion effect of the chelator Zn-DTPA on the lead intoxication mice, inductively coupled plasma mass spectrometry (ICP-MS) was applied to detect the lead content of biological samples. The acute lead intoxication mice model was established by injecting lead acetate intraperitoneally with the dose of 1 mg. Zn-DTPA was administered intraperitoneally to mice once daily for five consecutive days 4 h after intoxication. Control group, model group, combination of Zn-DTPA and Ca-DTPA group were evaluated at the same time. The urine was collected every day. The mice were sacrificed in batches in the 2rd, 4th, 6th day. Biological samples including urine, whole blood, femur and brain were prepared and nitrated. Lead concentration was detected by ICP-MS. The result showed that Zn-DTPA could increase lead content in urine markedly and reduce lead content in blood, femur and brain.

  3. Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Ornatsky, Olga I.; Baranov, Vladimir I.; Bandura, Dmitry R.; Tanner, Scott D.; Dick, John

    2006-01-01

    Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells. PMID:23662035

  4. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method.

    PubMed

    Nicolás, Paula; Lassalle, Verónica L; Ferreira, María L

    2017-02-01

    The aim of this manuscript was to study the application of a new method of protein quantification in Candida antarctica lipase B commercial solutions. Error sources associated to the traditional Bradford technique were demonstrated. Eight biocatalysts based on C. antarctica lipase B (CALB) immobilized onto magnetite nanoparticles were used. Magnetite nanoparticles were coated with chitosan (CHIT) and modified with glutaraldehyde (GLUT) and aminopropyltriethoxysilane (APTS). Later, CALB was adsorbed on the modified support. The proposed novel protein quantification method included the determination of sulfur (from protein in CALB solution) by means of Atomic Emission by Inductive Coupling Plasma (AE-ICP). Four different protocols were applied combining AE-ICP and classical Bradford assays, besides Carbon, Hydrogen and Nitrogen (CHN) analysis. The calculated error in protein content using the "classic" Bradford method with bovine serum albumin as standard ranged from 400 to 1200% when protein in CALB solution was quantified. These errors were calculated considering as "true protein content values" the results of the amount of immobilized protein obtained with the improved method. The optimum quantification procedure involved the combination of Bradford method, ICP and CHN analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The potential of using laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS) in the forensic analysis of micro debris.

    PubMed

    Scadding, Cameron J; Watling, R John; Thomas, Allen G

    2005-08-15

    The majority of crimes result in the generation of some form of physical evidence, which is available for collection by crime scene investigators or police. However, this debris is often limited in amount as modern criminals become more aware of its potential value to forensic scientists. The requirement to obtain robust evidence from increasingly smaller sized samples has required refinement and modification of old analytical techniques and the development of new ones. This paper describes a new method for the analysis of oxy-acetylene debris, left behind at a crime scene, and the establishment of its co-provenance with single particles of equivalent debris found on the clothing of persons of interest (POI). The ability to rapidly determine and match the elemental distribution patterns of debris collected from crime scenes to those recovered from persons of interest is essential in ensuring successful prosecution. Traditionally, relatively large amounts of sample (up to several milligrams) have been required to obtain a reliable elemental fingerprint of this type of material [R.J. Walting , B.F. Lynch, D. Herring, J. Anal. At. Spectrom. 12 (1997) 195]. However, this quantity of material is unlikely to be recovered from a POI. This paper describes the development and application of laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS), as an analytical protocol, which can be applied more appropriately to the analysis of micro-debris than conventional quadrupole based mass spectrometry. The resulting data, for debris as small as 70mum in diameter, was unambiguously matched between a single spherule recovered from a POI and a spherule recovered from the scene of crime, in an analytical procedure taking less than 5min.

  6. Multielement trace determination in SiC powders: assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES.

    PubMed

    Matschat, Ralf; Hassler, Jürgen; Traub, Heike; Dette, Angelika

    2005-12-01

    The members of the committee NMP 264 "Chemical analysis of non-oxidic raw and basic materials" of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to "the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials" by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and

  7. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells

    PubMed Central

    Matoušek, Tomáš; Currier, Jenna M.; Trojánková, Nikola; Saunders, R. Jesse; Ishida, María C.; González-Horta, Carmen; Musil, Stanislav; Mester, Zoltán; Stýblo, Miroslav; Dědina, Jiří

    2013-01-01

    An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at −196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL−1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL−1 total As was performed. The concentrations of methylated As species in tens of pg mL−1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species. PMID:24014931

  8. [Determination of metal elements in PM2. 5 by ICP-OES with microwave digestion].

    PubMed

    Zhang, Liu-Yi; Fu, Chuan; Yang, Fu-Mo; Yang, Ji-Dong; Huang, Yi-Min; Zhang, Qiang; Wu, Bing-Yu

    2014-11-01

    In the present work, a method was developed for determining lead, zinc, copper, cadmium, znd chromium in PM2. 5 by inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis with microwave digestion and glass fibre filter collection of samples. The microwave digestion systems were investigated and the experimental conditions were optimized. The results show that (1) HNO3-H2O02 digestion system is more stable and complete than HNO3-HCl and HNO3-H2 SO4 digestion systems; (2) The most sensitive emission wave length of lead, zinc, copper, cadmium, and chromium are 220.353, 213.857, 327.393, 228.802, and 267.716 nm, respectively; (3) The highest signal-to-noise ratios were observed under the conditions: RF power of 1 300 W, peristaltic pump flow rate of 1.5 mL x min(-1), cooling gas flow rate of 15 L x min(-1), and carrier gas flow rate of 0.8 L x min(-1). In addition, the detection limit for these elements ranged between 2.02 x 10(-3) and 8.20 x 10(-3(μg x mL(-1), the relative standard deviations (RSD, n = 6) for the samples were in the range of 1.86%-2.82%, and the recovery for the elements determined was from 91.6% to 103.7%. The proposed method was used for determination of the above five elements in atmospheric fine particulate matter at Wanzhou Monitoring Site of Chongqing Institute of Green and Intelligent Technology. The results revealed that the atmospheric fine particulate matter at this monitoring site was not polluted by cadmium and chromium, lead was at the level of potential contamination, while zinc and copper were at the level of slight pollution.

  9. Interim Cryogenic Propulsion Stage (ICPS) Handover Signing

    NASA Image and Video Library

    2017-10-26

    Meeting in the Launch Control Center of NASA's Kennedy Space Center in Florida, officials of the agency's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turn over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS) to the center's Ground Systems Development and Operations (GSDO) directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.

  10. Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples

    NASA Astrophysics Data System (ADS)

    Betti, Maria; Aldave de las Heras, Laura

    2004-09-01

    Glow discharge (GD) spectrometry as applied to characterize nuclear samples as well as for the determination of radionuclides in environmental samples is reviewed. The use of instrumentation for direct current (d.c.) glow discharge mass spectrometry (GDMS) and radio frequency glow discharge optical emission spectrometry (rf GDOES), installed inside a glove-box for the handling of radioactive samples as well as the two installations and their analytical possibilities, is described in detail. The applications of GD techniques for the characterization of samples of nuclear concern both with respect to their major and trace elements, as well as to the matrix isotopic composition are presented. Procedures for quantitative determination of major, minor, and trace elements in conductive samples are reported. As for non-conductive samples three different approaches for their measurement can be followed. Namely, the use of rf sources, the mixing of the sample with a binder conducting host matrix, and the use of a secondary cathode. In the case of oxide-based samples, the employment of a tantalum secondary cathode, acting as an oxygen getter, reduces the availability of oxygen to form polyatomic species and to produce quenching. Considerations on the use of the relative sensitivity factors (RSFs) in different matrices are reported. The analytical capabilities of GDMS are compared with ICP-MS in terms of accuracy, precision, and detection limit for the determination of trace elements in uranium oxide specimens. As for the determination of isotopic composition, GDMS was found to be competitive with thermal ionisation mass spectrometry (TIMS) as well as for bulk determinations of major elements with titration methods. Applications of GDMS to the determination of radioisotopes in environmental samples, as well for depth profiling of trace elements in oxide layers, are discussed.

  11. ICPS Turnover GSDO Employee Event

    NASA Image and Video Library

    2017-11-07

    Mike Bolger, Ground Systems Development and Operations Program manager at NASA's Kennedy Space Center, speaks to guests during a ceremony in the high bay of the Space Station Processing Facility. The event marked the milestone of the Space Launch System rocket's Interim Cryogenic Propulsion Stage (ICPS) being turned over from NASA's Spacecraft/Payload Integration and Evolution organization to the spaceport's Ground Systems Development and Operations directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1.

  12. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ

  13. The lateritic profile of Balkouin, Burkina Faso: Geochemistry, mineralogy and genesis

    NASA Astrophysics Data System (ADS)

    Giorgis, Ilaria; Bonetto, Sabrina; Giustetto, Roberto; Lawane, Abdou; Pantet, Anne; Rossetti, Piergiorgio; Thomassin, Jean-Hugues; Vinai, Raffaele

    2014-02-01

    This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.

  14. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  15. Method optimization and quality assurance in speciation analysis using high performance liquid chromatography with detection by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Larsen, Erik H.

    1998-02-01

    Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for

  16. Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O

    2013-01-30

    We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ophthalmodynamometry for ICP prediction and pilot test on Mt. Everest.

    PubMed

    Querfurth, Henry W; Lieberman, Philip; Arms, Steve; Mundell, Steve; Bennett, Michael; van Horne, Craig

    2010-11-01

    A recent development in non-invasive techniques to predict intracranial pressure (ICP) termed venous ophthalmodynamometry (vODM) has made measurements in absolute units possible. However, there has been little progress to show utility in the clinic or field. One important application would be to predict changes in actual ICP during adaptive responses to physiologic stress such as hypoxia. A causal relationship between raised intracranial pressure and acute mountain sickness (AMS) is suspected. Several MRI studies report that modest physiologic increases in cerebral volume, from swelling, normally accompany subacute ascent to simulated high altitudes. 1) Validate and calibrate an advanced, portable vODM instrument on intensive patients with raised intracranial pressure and 2) make pilot, non-invasive ICP estimations of normal subjects at increasing altitudes. The vODM was calibrated against actual ICP in 12 neurosurgical patients, most affected with acute hydrocephalus and monitored using ventriculostomy/pressure transducers. The operator was blinded to the transducer read-out. A clinical field test was then conducted on a variable data set of 42 volunteer trekkers and climbers scaling Mt. Everest, Nepal. Mean ICPs were estimated at several altitudes on the ascent both across and within subjects. Portable vODM measurements increased directly and linearly with ICP resulting in good predictability (r = 0.85). We also found that estimated ICP increases normally with altitude (10 ± 3 mm Hg; sea level to 20 ± 2 mm Hg; 6553 m) and that AMS symptoms did not correlate with raised ICP. vODM technology has potential to reliably estimate absolute ICP and is portable. Physiologic increases in ICP and mild-mod AMS are separate responses to high altitude, possibly reflecting swelling and vasoactive instability, respectively.

  18. Determination of metallo-organic and particulate wear metals in lubricating oils associated with hybrid ceramic bearings by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, Robin Ann

    It is possible to increase both the performance and operating environment of jet engines by using hybrid ceramic bearings. Our laboratory is concerned with investigating lubricating fluids for wear metals associated with silicon nitride ball bearings and steel raceways. Silicon nitride is characterized by low weight, low thermal expansion, high strength, and corrosion resistance. These attributes result in longer engine lifetimes than when metallic ball bearings are used. Before the routine use of ceramic ball bearings can be realized, the wear mechanisms of the materials should be thoroughly understood. One important variable in determining wear degradation is the concentration of metal present in the lubricating oils used with the bearings. A complete method for analyzing used lubricating oils for wear metal content must accurately determine all metal forms present. Oil samples pose problems for routine analysis due to complex organic matrices. Nebulizing these types of samples into an Inductively Coupled Plasma - Mass Spectrometer introduces many problems including clogging of the sample cone with carbon and increasing interferences. In addition, other techniques such as Atomic Absorption Spectrometry and Atomic Emission Spectrometry are particle size dependent. They are unable to analyze particles greater than 10 mum in size. This dissertation describes a method of analyzing lubricating oils for both metallo-organic and particulate species by ICP-MS. Microwave digestion of the oil samples eliminates the need for elaborate sample introduction schemes as well as the use of a modified carrier gas. Al, Cr, Fe, Mg, Mo, Ni, Ti, and Y have been determined in both aqueous and organic media. Metallo-organic solutions of these metals were successfully digested, nebulized into the ICP, and the singly charged ions measured by mass spectrometry. Metal particulates in oil matrices have also been quantitatively determined by the above method. Linear analytical curves were

  19. Non-invasively estimated ICP pulse amplitude strongly correlates with outcome after TBI.

    PubMed

    Budohoski, Karol P; Schmidt, Bernhard; Smielewski, Peter; Kasprowicz, Magdalena; Plontke, Ronny; Pickard, John D; Klingelhöfer, Jurgen; Czosnyka, Marek

    2012-01-01

    An existing monitoring database of brain signal recordings in patients with head injury has been re-evaluated with regard to the accuracy of estimation of non-invasive ICP (nICP) and its components, with a particular interest in the implications for outcome after head injury. Middle cerebral artery blood flow velocity (FV), ICP and arterial blood pressure (ABP) were recorded. Non-invasive ICP (nICP) was calculated using a mathematical model. Other signals analysed included components of ICP (n" indicates non-invasive): ICP pulse amplitude (Amp, nAmp), amplitude of the respiratory component (Resp, nResp), amplitude of slow vasogenic waves of ICP (Slow, nSlow) and index of compensatory reserve (RAP, nRAP). Mean values of analysed signals were compared against each other and between patients who died and survived. The correlation between ICP and nICP was moderately strong, R = 0.51 (95% prediction interval [PI] 17 mm Hg). The components of nICP and ICP were also moderately correlated with each other: the strongest correlation was observed for Resp vs. nResp (r = 0.66), while weaker for Amp vs. nAmp (r = 0.41). Non-invasive pulse amplitude of ICP showed the strongest association with outcome, with the -difference between those who survived and those who died reaching a significance level of p < 0.000001. When compared between patients who died and who survived mean nAmp showed the greatest difference, suggesting its potential to predict mortality after TBI.

  20. LA-ICP-MS of magnetite: Methods and reference materials

    USGS Publications Warehouse

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  1. Application of SEC-ICP-MS for comparative analyses of metal-containing species in cancerous and healthy human thyroid samples.

    PubMed

    Boulyga, Sergei F; Loreti, Valeria; Bettmer, Jörg; Heumann, Klaus G

    2004-09-01

    Size exclusion chromatography (SEC) was coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for speciation study of trace metals in cancerous thyroid tissues in comparison to healthy thyroids aimed to estimation of changes in metalloprotein speciation in pathological tissue. The study showed a presence of species binding Cu, Zn, Cd and Pb in healthy thyroid tissue with a good reproducibility of chromatographic results, whereas the same species could not be detected in cancerous tissues. Thus, remarkable differences with respect to metal-binding species were revealed between healthy and pathological thyroid samples, pointing out a completely different distribution of trace metals in cancerous tissues. The metal-binding species could not be identified in the frame of this work because of a lack of appropriate standards. Nevertheless, the results obtained confirm the suitability of SEC-ICP-MS for monitoring of changes in trace metal distribution in cancerous tissue and will help to better understand the role of metal-containing species in thyroid pathology.

  2. Matrix effects in inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS,more » the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.« less

  3. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    PubMed Central

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859

  5. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  6. Evaluating the capabilities of aerosol-to-liquid particle extraction system (ALPXS)/ICP-MS for monitoring trace metals in indoor air.

    PubMed

    Jayawardene, Innocent; Rasmussen, Pat E; Chenier, Marc; Gardner, H David

    2014-09-01

    This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma-mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min(-1)), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods. Implications: This study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated

  7. Analysis of Rare Earth Elements in Geologic Samples using Inductively Coupled Plasma Mass Spectrometry; US DOE Topical Report - DOE/NETL-2016/1794

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, Tracy L.; Roth, Elliot A.; Tinker, Phillip

    2016-04-17

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to measure the concentrations of rare earth elements (REE) in certified standard reference materials including shale and coal. The instrument used in this study is a Perkin Elmer Nexion 300D ICP-MS. The goal of the study is to identify sample preparation and operating conditions that optimized recovery of each element of concern. Additionally, the precision and accuracy of the technique are summarized and the drawbacks and limitations of the method are outlined.

  8. ICP-OES and Micronucleus Test to Evaluate Heavy Metal Contamination in Commercially Available Brazilian Herbal Teas.

    PubMed

    Schunk, Priscila Francisca Tschaen; Kalil, Ieda Carneiro; Pimentel-Schmitt, Elisangela Flavia; Lenz, Dominik; de Andrade, Tadeu Uggere; Ribeiro, Juliano Souza; Endringer, Denise Coutinho

    2016-07-01

    Increased tea consumption in combination with intensive pesticide use is generating heavy metal contaminations amongst Brazilian tea consumers, causing health concerns. Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to quantify minerals and heavy metals such as aluminum, barium, cadmium, lead, cobalt, copper, chromium, tin, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc in Brazilian chamomile, lemongrass, fennel and yerba mate teas. Teas, purchased in local supermarkets, were prepared using infusion and acid digestion. Higher concentrations of Al were present in all samples. In the digested samples, the Al mean concentration was 2.41 μg g(-1) (sd = 0.72) for fennel and 33.42 μg g(-1) (sd = 17.18) for chamomile, whilst the sample C for chamomile tea presented the highest concentration with 51.62 μg g(-1) (sd = 9.17). The safety relation in decreasing order is fennel, lemongrass, chamomile and yerba mate. Chemometric analyses demonstrated a strong correlation between the elements Cd and Pb in the samples. Yerba mate had the highest amount of metal (100 mg kg(-1)), being the subject of a micronucleus test assay for cytotoxicity. The metals found in Yerba mate did not present cytotoxicity/mutagenicity using the micronucleus test. The inorganic contaminants in teas should have their impact carefully monitored.

  9. Platinum concentration in silicone breast implant material and capsular tissue by ICP-MS.

    PubMed

    Maharaj, S V M

    2004-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the concentration of platinum (Pt) in silicone breast implant gel (range, 0.26-48.90 microg g(-1) Pt; n=15), elastomer (range, 3.05-28.78 microg g(-1) Pt; n=7), double lumen (range, 5.79-125.27 microg g(-1) Pt; n=7), foam (range, 5.79-8.36 microg g(-1) Pt; n=2), and capsular tissue (range, 0.003-0.272 microg g(-1) Pt; n=15). The results show that very high levels of Pt are present in the encasing elastomer, double lumen, and foam envelope materials. Silicone breast implants can be a source of significant Pt exposure for individuals with these implants.

  10. Artificial neural networks can be effectively used to model changes of intracranial pressure (ICP) during spinal surgery using different non invasive ICP surrogate estimators.

    PubMed

    Watad, Abdulla; Bragazzi, Nicola L; Bacigaluppi, Susanna; Amital, Howard; Watad, Samaa; Sharif, Kassem; Bisharat, Bishara; Siri, Anna; Mahamid, Ala; Abu Ras, Hakim; Nasr, Ahmed; Bilotta, Federico; Robba, Chiara; Adawi, Mohammad

    2018-02-23

    Artificial Intelligence (AI) techniques play a major role in anesthesiology, even though their importance is often overlooked. In the extant literature, AI approaches, such as Artificial Neural Networks (ANNs), have been underutilized, mainly being used to model patient's consciousness state, to predict the precise amount of anesthetic gases, the level of analgesia, or the need of anesthesiological blocks, among others. In the field of neurosurgery, ANNs have been effectively applied to the diagnosis and prognosis of cerebral tumors, seizures, low back pain, and also to the monitoring of intracranial pressure (ICP). A MultiLayer Perceptron (MLP), which is a feedforward ANN, with hyperbolic tangent as activation function in the input/hidden layers, softmax as activation function in the output layer, and cross-entropy as error function, was used to model the impact of prone versus supine position and the use of positive end expiratory pressure (PEEP) on ICP in a sample of 30 patients undergoing spinal surgery. Different non invasive surrogate estimations of ICP have been used and compared: namely, mean optic nerve sheath diameter (ONSD), non invasive estimated cerebral perfusion pressure (NCPP), pulsatility index (PI), ICP derived from PI (ICP-PI), and flow velocity diastolic formula (FVDICP). ONSD proved to be a more robust surrogate estimation of ICP, with a predictive power of 75%, whilst the power of NCPP, ICP-PI, PI, and FVDICP were 60.5%, 54.8%, 53.1%, and 47.7%, respectively. Our MLP analysis confirmed our findings previously obtained with regression, correlation, multivariate Receiving Operator Curve (multi-ROC) analyses. ANNs can be successfully used to predict the effects of prone versus supine position and PEEP on ICP in patients undergoing spinal surgery using different non invasive surrogate estimators of ICP.

  11. RBS, SY-XRF, INAA and ICP-IDMS of antimony implanted in silicon - A multi-method approach to characterize and certify a reference material

    NASA Astrophysics Data System (ADS)

    Ecker, K. H.; Wätjen, U.; Berger, A.; Persson, L.; Pritzkow, W.; Radtke, M.; Riesemeier, H.

    2002-04-01

    A layer of Sb atoms, implanted with an energy of 400 keV and a nominal dose of 5×10 16 atoms/cm 2 into a high purity silicon wafer, was certified for its areal density (atoms/cm 2) using Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA) and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) and for its isotope ratio using INAA and ICP-IDMS. Excellent agreement between the results of the different independent methods was found. In the present work, the measurements of the homogeneity of the areal density of Sb, previously determined with RBS in spots having 1 mm diameter, are improved with synchrotron X-ray fluorescence analysis: Higher precision in even smaller sample spots allows to estimate a reduced inhomogeneity of the whole batch of samples of the order of only 0.4%. Thus the uncertainty of the certified value can further be reduced. Down to fractions of a chip with 0.3×0.4 mm 2 area, the areal density is now certified as (4.81±0.06)×10 16 Sb atoms/cm 2, where the expanded uncertainty 0.06 (coverage factor k=2) corresponds to only 1.2%. The relative merits of the different analytical methods are discussed.

  12. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF THE JOBIN-YVON MODEL 70 INDUCTIVELY COUPLED PLASMA ATOMIC ABSORPTION SPECTROMETER (BCO-L-7.1)

    EPA Science Inventory

    The purpose of this SOP is to detail the operation and maintenance of an Instruments, SA Inc., Jobin-Yvon Model 70 (JY-70) inductively coupled plasma atomic emissions spectrometry (ICP-AES). This procedure was followed to ensure consistent data retrieval during the Arizona NHEXA...

  13. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Christopher Hysjulien

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows thatmore » MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.« less

  14. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE PAGES

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; ...

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd (x)Sb 2 and T´-La 2CuOmore » 4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  15. Liquid chromatography coupled with inductively coupled plasma mass spectrometry in the pharmaceutical industry: selected examples.

    PubMed

    Marshall, Peter S; Leavens, Bill; Heudi, Olivier; Ramirez-Molina, Cesar

    2004-11-12

    Both LC and capillary LC (CapLC) have been successfully interfaced with inductively coupled plasma mass spectrometry (ICP-MS). Gradients of acetonitrile and aqueous based solvents have been employed to separate several compounds of pharmaceutical interest. This paper will describe four application areas in the pharmaceutical industry, and examples will be shown where CapLC, LC and gel electrophoresis via laser ablation have been coupled with ICP-MS. The four areas highlighted in this paper are: (1) the use of derivatisation reactions to "make the invisible visible". Methods involving derivatisations with copper and iron will be described that can be used for the analysis of amines and carboxylic acids by ICP-MS. (2) The profiling of metal ion content (in particular bromine) in biological samples such as human plasma, this study will focus on the metabolism of bromine-labelled peptides (e.g. substance P). (3) The analysis of materials derived from single, solid-phase beads used in combinatorial chemistry, and (4) also discussed will be our findings from investigations into the use of laser ablation ICP-MS on the determination of protein phosphorylation on electrophoresis gel blots.

  16. Use of ICP/MS with ultrasonic nebulizer for routine determination of uranium activity ratios in natural water

    USGS Publications Warehouse

    Kraemer, T.F.; Doughten, M.W.; Bullen, T.D.

    2002-01-01

    A method is described that allows precise determination of 234U/238U activity ratios (UAR) in most natural waters using commonly available inductively coupled plasma/mass spectrometry (ICP/MS) instrumentation and accessories. The precision achieved by this technique (??0.5% RSD, 1 sigma) is intermediate between thermal ionization mass spectrometry (??0.25% RSID, 1 sigma) and alpha particle spectrometry (??5% RSD, 1 sigma). It is precise and rapid enough to allow analysis of a large number of samples in a short period of time at low cost using standard, commercially available quadrupole instrumentation with ultrasonic nebulizer and desolvator accessories. UARs have been analyzed successfully in fresh to moderately saline waters with U concentrations of from less than 1 ??g/L to nearly 100 ??g/L. An example of the uses of these data is shown for a study of surface-water mixing in the North Platte River in western Nebraska. This rapid and easy technique should encourage the wider use of uranium isotopes in surface-water and groundwater investigations, both for qualitative (e.g. identifying sources of water) and quantitative (e.g. determining end-member mixing ratios purposes.

  17. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  18. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  19. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode

    PubMed Central

    Yang, Junqing; Zheng, Mei; Liu, Qiuju; Zhu, Meiling; Yang, Chushan; Zhang, Yan; Zhu, Zhiqiang

    2017-01-01

    Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS2 (the second tandem mass spectrometry) procedure was estimated to be at the level of 10 μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0–500 μg/L and 20–200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions. PMID:28954404

  20. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode.

    PubMed

    Yang, Junqing; Zheng, Mei; Liu, Qiuju; Yang, Meiling Zhu Chushan; Zhang, Yan; Zhu, Zhiqiang

    2017-09-26

    Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS² (the second tandem mass spectrometry) procedure was estimated to be at the level of 10μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0-500 μg/L and 20-200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions.

  1. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS.

    PubMed

    Toralles, Isis Gonçalves; Coelho, Gilberto Silva; Costa, Vanize Cadeira; Cruz, Sandra Meinen; Flores, Erico Marlon Moraes; Mesko, Marcia Foster

    2017-04-15

    A method for Br and I determination in whole egg powder and its fractions (egg white and yolk) was developed by combining microwave-induced combustion (MIC) and inductively coupled plasma mass spectrometry (ICP-MS). Using the MIC method, 350mg of whole egg powder and its fractions were efficiently digested using 50mmolL -1 NH 4 OH as an absorbing solution. The limits of detection for Br and I using the MIC method followed by ICP-MS determination were 0.039 and 0.015μgg -1 , respectively. Using the proposed method, agreements with the reference values between 97 and 104% for Br and I were obtained by analysis of reference material NIST 8435. Finally, it was possible to observe that Br concentration (4.59-5.29μgg -1 ) was higher than I (0.150-2.28μgg -1 ) for all the evaluated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    PubMed

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  4. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  5. Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES.

    PubMed

    Bakircioglu, Dilek; Kurtulus, Yasemin Bakircioglu; Yurtsever, Selcuk

    2013-06-01

    The content of elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in edible oils (sunflower, hazelnut, canola, corn and olive oils) from Turkey was determined using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic extraction, wet digestion, and extraction induced by emulsion breaking procedures (EIEB). In order to evaluate the best sample preparation procedure, EIEB procedure was compared by ultrasonic extraction and wet digestion procedures. The results in the samples (minimum-maximum in mgkg(-1)) were : 0.022-0.058, Cr 0.126-7.106, Cu 0.570-4.504, Fe 8.004-12.588, Mn 0.035-0.054, Ni 0.908-2.182, Pb 0.099-0.134 and Zn 2.206-8.982. The EIEB procedure was found to be fast, reliable, simple, and excellent in comparison with the other studied procedures. The recovery test was performed by spiking the samples with known amounts of the metals in the form of organometallic standards and applying the EIEB procedure. The recoveries were in the range of 96-109%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P

    2008-10-01

    Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.

  7. Development and validation of an ICP-OES method for quantitation of elemental impurities in tablets according to coming US pharmacopeia chapters.

    PubMed

    Støving, Celina; Jensen, Henrik; Gammelgaard, Bente; Stürup, Stefan

    2013-10-01

    May 1, 2014 the United States Pharmacopeia (USP) will implement two new chapters stating limit concentrations of elemental impurities in pharmaceuticals applying inductively coupled plasma methods. In the present work an inductively coupled plasma optical emission spectrometry (ICP-OES) method for quantitation of As, Cd, Cu, Cr, Fe, Hg, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru, V and Zn in tablets according to the new USP chapters was developed. Sample preparation was performed by microwave-assisted acid digestion using a mixture of 65% HNO3 and 37% HCl (3:1, v/v). Limits of detection and quantitation were at least a factor of ten below the USP limit concentrations showing that the ICP-OES technique is well suited for quantitation of elemental impurities. Excluding Os, spike recoveries in the range of 85.3-103.8% were obtained with relative standard deviations (%RSD) ranging from 1.3 to 3.2%. Due to memory effects the spike recovery and %RSD of Os were 161.5% and 13.7%, respectively, thus the method will need further development with respect to elimination of the memory effect of Os. The method was proven to be specific but with potential spectral interference for Ir, Os, Pb, Pt and Rh necessitating visual examination of the spectra. Hg memory effect was handled by using lower spike levels combined with rinsing with 0.1M HCl. The tablets had a content of Fe and Pt of 182.8 ± 18.1 and 2.8 ± 0.2 μg/g, respectively and did therefore not exceed the limit concentration defined by USP. It is suggested that the developed method is applicable to pharmaceutical products with a composition and maximal amount of daily intake (g drug product/day) similar to the tablets used in this work. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Determination of alkyllead compounds by HPLC/ICP using a glass-frit nebulizer ICP interface

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mona; Nisamaneepong, Wipawan; Haas, David L.; Caruso, Joseph A.

    The glass-frit nebulizer, by forming a very fine mist, has improved the ability of the ICP to accept the introduction of organic solvents with high evaporation rates. The reversed-phase chromatographic separation of TML and TEL, and their determination with glass frit nebulization ICP was accomplished with various mobile phases and columns. The separation of several trialkyllead salts also was studied on a strong cation exchange column, but these compounds were not determined with the glass frit nebulizer interface. Detection limits as low as 33 pg s -1 for TML and 100 pg s -1 for TEL and precision of 3.4% for TML and 6.9% relative standard deviation for TEL were obtained.

  9. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Assad S.; Gupta, Rajesh K.; Barnes, Ramon M.

    2000-06-01

    Injection of 10-20 ml/min of ammonia gas into an inductively coupled plasma-mass spectrometry (ICP-MS) spray chamber during boron determination eliminates the memory effect of a 1 μg/ml B solution within a 2-min washing time. Ammonia gas injection also reduces the boron blank by a factor of four and enhances the sensitivity by 33-90%. Boron detection limits are improved from 12 and 14 to 3 and 4 ng/ml, respectively, for two ICP-MS instruments. Trace boron concentrations in certified reference materials agree well using ammonia gas injection.

  10. Microfluidic high performance liquid chromatography-chip hyphenation to inductively coupled plasma-mass spectrometry.

    PubMed

    Bishop, David P; Blanes, Lucas; Wilson, Alexander B; Wilbanks, Thor; Killeen, Kevin; Grimm, Rudolf; Wenzel, Ross; Major, Derek; Macka, Mirek; Clarke, David; Schmid, Robin; Cole, Nerida; Doble, Philip A

    2017-05-12

    The Agilent Chip Cube Interface is a microfluidic chip-based technology originally designed for nanospray molecular mass spectrometry in which the sample enrichment, nano-column, tubing, connectors and spray tip were integrated into a single biocompatible chip. Here we describe the hyphenation of the Chip Cube Interface to ICP-MS via modification of the standard HPLC chip design and a new total consumption nebuliser suitable for flow rates as low as 300nLmin -1 . The potential of the instrument to eliminate common nanoLC - ICP-MS shortcomings such as leaks, blockages and band-broadening was demonstrated via analysis of cyanocobalamin in equine plasma. The method was linear over three orders of magnitude with an r 2 of 0.9999, the peak area repeatability was 1.9% (n=7), and the detection limit was 14ngmL -1 . This novel configuration of the Chip Cube Interface coupled to ICP-MS is a suitable platform for the analysis of biomolecules associated with trace metals and speciation applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  12. ICP MS selection of radiopure materials for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-01

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system

  13. Determination of 232Th in urine by ICP-MS for individual monitoring purposes.

    PubMed

    Baglan, N; Cossonnet, C; Ritt, J

    2001-07-01

    Thorium is naturally occurring in various ores used for industrial purposes and has numerous applications. This paper sets out to investigate urine analysis as a suitable monitoring approach for workers potentially exposed to thorium. Due to its biokinetic behavior and its low solubility, urinary concentrations are generally very low, requiring therefore high sensitivity analytical methods. An analytical procedure has been developed for detecting 232Th concentrations of below 1 mBq L(-1) quickly and easily. Due to the long half-life (1.41 x 10(10) y) of 232Th, the potential of a procedure based on urine sample dilution and ICP-MS (inductively coupled plasma-mass spectrometry) measurement was investigated first. Two dilution factors were chosen: 100, which is more suitable for long-term measurement trials, and 20, which increases sensitivity. It has been shown that a 100-fold dilution can be used to measure concentrations of below 1 mBq L(-1), whereas a 20-fold one can be used to reach concentrations of below 0.06 mBq L(-1). Then, on the basis of the limitation of the procedure based on urine dilution, the suitable field of application for the different procedures (100-fold and 20-fold dilution and also a chemical purification followed by an ICP-MS measurement) was determined in relation to monitoring objectives.

  14. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and (1)H NMR analysis.

    PubMed

    Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook

    2014-10-15

    ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  16. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  17. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  18. Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.

    PubMed

    Loreti, Valeria; Bettmer, Jörg

    2004-08-01

    The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.

  19. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    PubMed

    Solomon, Paige; Nelson, Jenny

    2018-03-01

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  20. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  1. Characterization of Silver Nanoparticles Internalized by Arabidopsis Plants Using Single Particle ICP-MS Analysis

    PubMed Central

    Bao, Dongping; Oh, Zhen Guo; Chen, Zhong

    2016-01-01

    Plants act as a crucial interface between humans and their environment. The wide use of nanoparticles (NPs) has raised great concerns about their potential impacts on crop health and food safety, leading to an emerging research theme about the interaction between plants and NPs. However, up to this day even the basic issues concerning the eventual fate and characteristics of NPs after internalization are not clearly delineated due to the lack of a well-established technique for the quantitative analysis of NPs in plant tissues. We endeavored to combine a quantitative approach for NP analysis in plant tissues with TEM to localize the NPs. After using an enzymatic digestion to release the NPs from plant matrices, single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) is employed to determine the size distribution of silver nanoparticles (Ag NPs) in tissues of the model plant Arabidopsis thaliana after exposure to 10 nm Ag NPs. Our results show that Macerozyme R-10 treatment can release Ag NPs from Arabidopsis plants without changing the size of Ag NPs. The characteristics of Ag NPs obtained by SP-ICP-MS in both roots and shoots are in agreement with our transmission electron micrographs, demonstrating that the combination of an enzymatic digestion procedure with SP-ICP-MS is a powerful technique for quantitative determination of NPs in plant tissues. Our data reveal that Ag NPs tend to accumulate predominantly in the apoplast of root tissues whereby a minor portion is transported to shoot tissues. Furthermore, the fact that the measured size distribution of Ag NPs in plant tissue is centered at around 20.70 nm, which is larger than the initial 12.84 nm NP diameter, strongly implies that many internalized Ag NPs do not exist as intact individual particles anymore but are aggregated and/or biotransformed in the plant instead. PMID:26870057

  2. Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP OES.

    PubMed

    Dos Anjos, Shirlei L; Alves, Jeferson C; Rocha Soares, Sarah A; Araujo, Rennan G O; de Oliveira, Olivia M C; Queiroz, Antonio F S; Ferreira, Sergio L C

    2018-02-01

    This work presents the optimization of a sample preparation procedure using microwave-assisted digestion for the determination of nickel and vanadium in crude oil employing inductively coupled plasma optical emission spectrometry (ICP OES). The optimization step was performed utilizing a two-level full factorial design involving the following factors: concentrated nitric acid and hydrogen peroxide volumes, and microwave-assisted digestion temperature. Nickel and vanadium concentrations were used as responses. Additionally, a multiple response based on the normalization of the concentrations by the highest values was built to establish a compromise condition between the two analytes. A Doehlert matrix optimized the instrumental conditions of the ICP OE spectrometer. In this design, the plasma robustness was used as chemometric response. The experiments were performed using a digested oil sample solution doped with magnesium(II) ions, as well as a standard magnesium solution. The optimized method allows for the determination of nickel and vanadium with quantification limits of 0.79 and 0.20μgg -1 , respectively, for a digested sample mass of 0.1g. The precision (expressed as relative standard deviations) was determined using five replicates of two oil samples and the results obtained were 1.63% and 3.67% for nickel and 0.42% and 4.64% for vanadium. Bismuth and yttrium were also tested as internal standards, and the results demonstrate that yttrium allows for a better precision for the method. The accuracy was confirmed by the analysis of the certified reference material trace element in fuel oil (CRM NIST 1634c). The proposed method was applied for the determination of nickel and vanadium in five crude oil samples from Brazilian Basins. The metal concentrations found varied from 7.30 to 33.21μgg -1 for nickel and from 0.63 to 19.42μgg -1 for vanadium. Copyright © 2017. Published by Elsevier B.V.

  3. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  4. Multi-Sensor Fused Interrogation of Brain to Determine ICP Level

    DTIC Science & Technology

    1997-08-01

    manifestations, but the decision is considerably more difficult for soldiers who are rendered immediately unconscious through blunt injury and concussion...is an example of swept sine excitation yielding low frequency resonance and attenuation data using head-down tilt to elevate ICP, and Figure 2 is an... excitation ) in an adult male excitation ) in female adult volunteer with ICP volunteer with ICP elevation induced through elevation induced through

  5. Quantification of Au Nanoparticle Biouptake and Distribution to Freshwater Algae Using Single Cell - ICP-MS.

    PubMed

    Merrifield, R C; Stephan, C; Lead, J R

    2018-02-20

    Quantifying metal and nanoparticle (NP) biouptake and distribution on an individual cellular basis has previously been impossible, given available techniques which provide qualitative data that are laborious to acquire and prone to artifacts. Quantifying metal and metal NP uptake and loss processes in environmental organisms will lead to mechanistic understanding of biouptake and improved understanding of potential hazards and risks of metals and NPs. In this work, we present a new technique, single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), which allows quantification of metal concentrations on an individual cell basis down to the attogram (ag) per cell level. We present data validating the novel method, along with the mass of metal per cell. Finally, we use SC-ICP-MS, with ancillary cell counting methods, to quantify the biouptake and strong sorption and distribution of both dissolved Au and Au NPs in a freshwater alga (Cyptomonas ovate). The data suggests differences between dissolved and NP uptake and loss. In the case of NPs, there was a dose and time dependent uptake, but individual cellular variations; at the highest realistic exposure conditions used in this study up to 40-50% of cells contained NPs, while 50-60% of cells did not.

  6. 40 CFR Table 2 to Subpart Llll of... - Emission Limits and Standards for New Multiple Hearth Sewage Sludge Incineration Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meters per run) Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use GFAAS or ICP/MS for the...-8. Use GFAAS or ICP/MS for the analytical finish. Fugitive emissions from ash handling Visible...

  7. 40 CFR Table 2 to Subpart Llll of... - Emission Limits and Standards for New Multiple Hearth Sewage Sludge Incineration Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meters per run) Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use GFAAS or ICP/MS for the...-8. Use GFAAS or ICP/MS for the analytical finish. Fugitive emissions from ash handling Visible...

  8. High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

    NASA Technical Reports Server (NTRS)

    Tang, Ming; McDonough, William F.; Arevalo, Ricardo, Jr.

    2014-01-01

    Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (greater than 100 millimeters) and line scanning mode. In addition: (1) ion yields decrease when using spot sizes above 100 millimeters; (2) (Eu/Eu*)(sub raw) (i.e. Europium anomaly) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(sub raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference

  9. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  10. Optimized laser-induced breakdown spectroscopy for determination of xenobiotic silver in monosodium glutamate and its verification using ICP-AES.

    PubMed

    Rehan, I; Gondal, M A; Rehan, K

    2018-04-20

    Laser-induced breakdown spectroscopy (LIBS) was applied as a potential tool for the determination of xenobiotic metal in monosodium glutamate (MSG). In order to achieve a high-sensitivity LIBS system required to determine trace amounts of metallic silver in MSG and to attain the best detection limit, the parameters used in our experiment (impact of focusing laser energy on the intensity of LIBS emission signals, the influence of focusing lens distance on the intensity of LIBS signals, and time responses of the plasma emissions) were optimized. The spectra of MSG were obtained in air using a suitable detector with an optical resolution of 0.06 nm, covering a spectral region from 220 to 720 nm. Along with the detection of xenobiotic silver, other elements such as Ca, Mg, S, and Na were also detected in MSG. To determine the concentration of xenobiotic silver in MSG, the calibration curve was plotted by preparing standard samples having different silver abundances in an MSG matrix. The LIBS results of each sample were cross-verified by analyzing with a standard analytical technique such as inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Both (LIBS and ICP-AES) results were in mutual agreement. The limit of detection of the LIBS setup was found to be 0.57 ppm for silver present in MSG samples.

  11. Fractionation of uranium isotopes in minerals screened by gamma spectrometry.

    NASA Astrophysics Data System (ADS)

    Geiger, Jeffrey L.; Baldwin, Austin M.; Blatchley, Charles C.

    2008-03-01

    At least two groups have reported finding shifts in the ratio of U-235/U-238 for sandstone, black shale, and other sedimentary samples using precision ICP-MS. These shifts were tentatively attributed to a recently predicted isotope effect based on nuclear volume that causes fractionation for U^IV-U^VI transitions. However, fractionation of high Z elements may be less likely an explanation than U-235 depletion induced by galactic cosmic ray neutrons. Isotope depletion in marine sediments could therefore be an indicator of changes in cosmic ray flux due to nearby supernovae, gamma-ray bursts, or longer term changes during the 62 million year cycle of the Sun above and below the galactic plane. We report using a less precise approach than ICP-MS, but one which can quickly screen samples to look for anomalies in isotope ratios, namely HPGe gamma ray spectrometry. Various levels of depletion were measured for uranium rich minerals, including brannerite, carnotite, and pitchblende, as well as coal and limestone samples.

  12. Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro.

    PubMed

    Đorđević, Neda O; Pejin, Boris; Novaković, Miroslav M; Stanković, Dalibor M; Mutić, Jelena J; Pajović, Snežana B; Tešević, Vele V

    2018-02-01

    The overall aim of this paper was to compare the multielement composition and antioxidant capacity of two Montenegrin Merlot wines obtained from specific vine clones (VCR1 and VCR 101) along with commercial Merlot wine throughout the consecutive vintages in 2010 and 2011. Elemental composition was analysed using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Additionally, antioxidant capacity was assessed by cyclic voltammetry. VCR 1 wine from 2011 stood out for its elemental composition. On the other hand, antioxidant capacity of VCR 101 wines was the highest one for the both vintages. According to the experimental data obtained, all three wines are good source of essential elements and products with a significant antioxidant activity and specific geographical origin.

  13. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  14. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  15. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  16. Application of chromatography and mass spectrometry to the characterization of cobalt, copper, manganese and molybdenum in Morinda citrifolia.

    PubMed

    Rybak, Justyna; Ruzik, Lena

    2013-03-15

    An analytical procedure was proposed to determine the manganese species and to study the fractionation of microelements such as copper, cobalt and molybdenum in Noni juice. Morinda citrifolia is known as a noni fruit, Indian mulberry, nunaakai, dog dumpling, mengkudu, beach mulberry, vomit fruit and cheese fruit. It is a tropical plant with a long tradition of medicinal use in Polynesia and tropical parts of eastern Asia and Australia. This article covers the determination of manganese species in Noni juice and established by fractionation by size exclusion chromatography inductively coupled plasma mass spectrometry (SEC ICP MS) and next characterization of species by electrospray ionization mass spectrometry (ESI MS). Also presented the fractionation analysis of copper, cobalt and molybdenum in Noni juice sample using SEC ICP MS - juice was treated with buffer and enzymatic extraction media and analyzed. For the evaluation of the amounts of the metal fractions distinguished, the ICP MS was used off-line prior to the determination of copper, cobalt, molybdenum and manganese concentrations in the juice. It was established that elements are present in the analyzed samples in different species and their concentration is μg mL(-1) and ng mL(-1) range in fruit. The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery test. For the information about the bioavailability of these elements, in vitro bioavailability investigation was used by SEC ICP MS technique. Two step digestion model simulating gastric (pepsin digestion) and intestinal (pancreatin digestion) juices. In Noni juice, manganese is complexed from flavonoids - rutin, from dye like anthraquinone (alizarin) and glycosides - asperulosidic acid (ESI MS - characterization). The study shows that copper and molybdenum contained in Noni juice are complexed by peptides, and cobalt by organic acids (which are 3.6% of juice). Molybdenum in

  17. [Standard addition determination of impurities in Na2CrO4 by ICP-AES].

    PubMed

    Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong

    2015-02-01

    Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.

  18. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    PubMed

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. Uncertainty Estimation for the Determination of Ni, Pb and Al in Natural Water Samples by SPE-ICP-OES

    NASA Astrophysics Data System (ADS)

    Ghorbani, A.; Farahani, M. Mahmoodi; Rabbani, M.; Aflaki, F.; Waqifhosain, Syed

    2008-01-01

    In this paper we propose uncertainty estimation for the analytical results we obtained from determination of Ni, Pb and Al by solidphase extraction and inductively coupled plasma optical emission spectrometry (SPE-ICP-OES). The procedure is based on the retention of analytes in the form of 8-hydroxyquinoline (8-HQ) complexes on a mini column of XAD-4 resin and subsequent elution with nitric acid. The influence of various analytical parameters including the amount of solid phase, pH, elution factors (concentration and volume of eluting solution), volume of sample solution, and amount of ligand on the extraction efficiency of analytes was investigated. To estimate the uncertainty of analytical result obtained, we propose assessing trueness by employing spiked sample. Two types of bias are calculated in the assessment of trueness: a proportional bias and a constant bias. We applied Nested design for calculating proportional bias and Youden method to calculate the constant bias. The results we obtained for proportional bias are calculated from spiked samples. In this case, the concentration found is plotted against the concentration added and the slop of standard addition curve is an estimate of the method recovery. Estimated method of average recovery in Karaj river water is: (1.004±0.0085) for Ni, (0.999±0.010) for Pb and (0.987±0.008) for Al.

  20. [Determination of high concentrations of rubidium chloride by ICP-OES].

    PubMed

    Zhong, Yuan; Sun, Bai; Li, Hai-jun; Wang, Tao; Li, Wu; Song, Peng-sheng

    2015-01-01

    The method of ICP-OES for the direct determination of high content of rubidium in rubidium chloride solutions was studied through mass dilution method and optimizing parameters of the instrument in the present paper. It can reduce the times of dilution and the error introduced by the dilution, and improve the accuracy of determination results of rubidium. Through analyzing the sensitivity of the three detection spectral lines for rubidium ion, linearly dependent coefficient and the relative errors of the determination results, the spectral line of Rb 780. 023 nm was chosen as the most suitable wavelength to measure the high content of rubidium in the rubidium chloride solutions. It was found that the instrument parameters of ICP-OES such as the atomizer flow, the pump speed and the high-frequency power are the major factors for the determination of rubidium ion in the rubidium chloride solutions. As we know instrument parameters of ICP-OES have an important influence on the atomization efficiency as well as the emissive power of the spectral lines of rubidium, they are considered as the significant factors for the determination of rubidium. The optimization parameters of the instrument were obtained by orthogonal experiments and further single factor experiment, which are 0. 60 L . min-1 of atomizer flow, 60 r . min-1 of pump speed, and 1 150 W of high-frequency power. The same experiments were repeated a week later with the optimization parameters of the instrument, and the relative errors of the determination results are less than 0. 5% when the concentration of rubidium chloride ranged from 0. 09% to 0. 18%. As the concentration of rubidium chloride is 0. 06%, the relative errors of the determination results are -1. 7%. The determination of lithium chloride and potassium chloride in the high concentration of the aqueous solutions was studied under the condition of similar instrument parameters. It was found by comparison that the determination results of lithium

  1. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-09-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  2. ICP-MS Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  3. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  4. Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS)

    NASA Astrophysics Data System (ADS)

    Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre

    2006-03-01

    High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.

  5. Methylmercury determination in seafood by photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry.

    PubMed

    Covaci, Eniko; Senila, Marin; Ponta, Michaela; Darvasi, Eugen; Petreus, Dorin; Frentiu, Maria; Frentiu, Tiberiu

    2017-08-01

    A non-chromatographic method based on double liquid-liquid extraction and measurements by UV photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry was developed and characterized for methylmercury determination in seafood. Samples were prepared following the procedure recommended in JRC Technical Report of European Commission formerly proposed for the determination of methylmercury in seafood by thermal decomposition atomic absorption spectrometry, namely confinement of Hg species in 47% HBr solution, extraction of CH 3 Hg + in toluene and back-extraction in 1% l-cysteine aqueous solution. Mercury cold vapor was generated by flow injection UV photo-reduction from CH 3 Hg + in 0.6molL -1 HCOOH, while quantification was performed against external Hg 2+ aqueous standards and measuring Hg 253.652nm emission using a low power/Ar consumption plasma microtorch (15W, 100mLmin -1 ) and a low resolution microspectrometer (Ocean Optics). The figures of merit and analytical capability were assessed by analyzing certified reference materials and test samples of fish fillet and discussed in relation with requirements for Hg determination in seafood in European legislation (Decisions 2007/333/EC and 2002/657/EC) as well as compared to performances achieved in thermal decomposition atomic absorption spectrometry. The limit of detection and quantification of 2µgkg -1 and 6µgkg -1 respectively, precision of 2.7-9.4% and accuracy of 99±8% of the proposed method for the determination of CH 3 Hg + fulfill the demands of European legislation for Hg quantification. The limit of detection and quantification were better than those in the used reference method or other non-/chromatographic methods taken for comparison. The analysis of certified reference materials and the Bland and Altman test performed on 12 test samples confirmed trueness of the proposed method and its reliability for the determination of traces of CH 3 Hg + with 95

  6. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice.

    PubMed

    Egger, Alexander E; Theiner, Sarah; Kornauth, Christoph; Heffeter, Petra; Berger, Walter; Keppler, Bernhard K; Hartinger, Christian G

    2014-09-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatially-resolved distribution of ruthenium and platinum in viscera (liver, kidney, spleen, and muscle) originating from mice treated with the investigational ruthenium-based antitumor compound KP1339 or cisplatin, a potent, but nephrotoxic clinically-approved platinum-based anticancer drug. Method development was based on homogenized Ru- and Pt-containing samples (22.0 and 0.257 μg g(-1), respectively). Averaging yielded satisfactory precision and accuracy for both concentrations (3-15% and 93-120%, respectively), however when considering only single data points, the highly concentrated Ru sample maintained satisfactory precision and accuracy, while the low concentrated Pt sample yielded low recoveries and precision, which could not be improved by use of internal standards ((115)In, (185)Re or (13)C). Matrix-matched standards were used for quantification in LA-ICP-MS which yielded comparable metal distributions, i.e., enrichment in the cortex of the kidney in comparison with the medulla, a homogenous distribution in the liver and the muscle and areas of enrichment in the spleen. Elemental distributions were assigned to histological structures exceeding 100 μm in size. The accuracy of a quantitative LA-ICP-MS imaging experiment was validated by an independent method using microwave-assisted digestion (MW) followed by direct infusion ICP-MS analysis.

  7. Solid phase extraction of gold(III) on attapulgite modified with triocarbohydrazide prior to its determination in environmental samples by ICP-OES.

    PubMed

    Zhang, Li; Li, Zhenhua; Hu, Zheng; Chang, Xijun

    2011-09-01

    The first study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(III) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES) has been reported. Experimental conditions for effective adsorption of trace levels of Au(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH 3, Au(III) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(III) could be completely eluted from the sorbent surface by 2.0mL 1.0molL(-1) of HCl+2% CS(NH(2))(2) solution. An enrichment factor of 150 was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(III) was found to be 66.7mgg(-1). The detection limit (3σ) of this method was 0.32μgL(-1) and the relative standard deviation (RSD) was 3.3% (n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(III) with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  9. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Wooden, Joe; Murphy, Fred; Williams, Ross W.

    2005-04-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ˜60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few μm deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems.

  10. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  11. Comparison of optimised germanium gamma spectrometry and multicollector inductively coupled plasma mass spectrometry for the determination of 134Cs, 137Cs and 154Eu single ratios in highly burnt UO 2

    NASA Astrophysics Data System (ADS)

    Caruso, S.; Günther-Leopold, I.; Murphy, M. F.; Jatuff, F.; Chawla, R.

    2008-05-01

    Non-destructive and destructive methods have been compared to validate their corresponding assessed accuracies in the measurement of 134Cs/137Cs and 154Eu/137Cs isotopic concentration ratios in four spent UO2 fuel samples with very high (52 and 71 GWd/t) and ultra-high (91 and 126 GWd/t) burnup values, and about 10 (in the first three samples) and 4 years (in the latter sample) cooling time. The non-destructive technique tested was high-resolution gamma spectrometry using a high-purity germanium detector (HPGe) and a special tomographic station for the handling of highly radioactive 400 mm spent fuel segments that included a tungsten collimator, lead filter (to enhance the signal to Compton background ratio and reduce the dead time) and paraffin wax (to reduce neutron damage). The non-destructive determination of these isotopic concentration ratios has been particularly challenging for these segments because of the need to properly derive non-Gaussian gamma-peak areas and subtract the background from perturbing capture gammas produced by the intrinsic high-intensity neutron emissions from the spent fuel. Additionally, the activity distribution within each pin was determined tomographically to correct appropriately for self-attenuation and geometrical effects. The ratios obtained non-destructively showed a 1σ statistical error in the range 1.9-2.9%. The destructive technique used was a high-performance liquid chromatographic separation system, combined online to a multicollector inductively coupled plasma mass spectrometer (HPLC-MC-ICP-MS), for the analysis of dissolved fuel solutions. During the mass spectrometric analyses, special care was taken in the optimisation of the chromatographic separation for Eu and the interfering element Gd, as also in the mathematical correction of the 154Gd background from the 154Eu signal. The ratios obtained destructively are considerably more precise (1σ statistical error in the range 0.4-0.8% for most of the samples, but up to

  12. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    PubMed

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol

  14. [The possibilities for determining the shooting distance by means of inductively coupled plasma optical emission spectrometry].

    PubMed

    Svetlolobov, D Yu; Luzanova, I S; Zorin, Yu V; Makarov, I Yu; Lorents, A S

    The objective of the present study was to evaluate the possibilities for determining the shooting distance for the MR-79-9 Makarych non-lethal pistol (diameter 9 mm, rubber bullet, shot energy 50 J) by means of inductively coupled plasma optical emission spectrometry. The experiments were carried under the conditions of a ballistic shooting range making the shots from a distance of 0 to 120 cm. The 15×15 cm pieces of muslin fabric and biomaterials (leather) were used as the targets. The morphological signs of the damages inflicted to the targets were evaluated either with the unassisted eye, a criminalistical magnifying glass or the SMT-4 binocular stereoscopic microscope (Germany). The shot products, the area and boundaries of their dispersion were determined in reflected IR and filtered UV rays. Inductively coupled plasma optical emission spectrometry was applied for the qualitative and quantitative analysis of various shot products from the entry hole zone with the contamination (wipedown) bands and contusion collars being 0.2-0.5 cm (group 1) and 2-3 cm (group 2) in width, with special reference to the identification of Ba, Cu, Cr, Fe, K, Ni, Pb, Sb, Sn and Zn. The results of the study give evidence that the detection of Ba, Pb, and Sb among the products of a shot fired from the MR-79-9 Makarych non-lethal pistol is of especially high informative value for determining the shooting distance whereas the detection of Cr, K, Sn and Ni is of a minimum value for this purpose.

  15. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  16. Trace Element Determination and Cardioprotection of Terminalia pallida Fruit Ethanolic Extract in Isoproterenol Induced Myocardial Infarcted Rats by ICP-MS.

    PubMed

    Althaf Hussain, Shaik; Kareem, Mohammed Abdul; Rasool, Shaik Nayab; Al Omar, Suliman Yousef; Saleh, Alwasel; Al-Fwuaires, Manal Abdulrahman; Daddam, Jayasimha Rayalu; Devi, Kodidhela Lakshmi

    2018-01-01

    The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.

  17. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  18. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-01-01

    The trace elements Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Ga, Hf, Hg, In, La, Mn, Mo, Ni, Pb, Pd, Rb, Rh, Ru, Sb, Se, Sn, Sr, Te, Th, Tl, U, V, W, Y and Zr were determined in 130 human blood samples from occupationally non-exposed volunteers living in the greater area of Bremen in northern Germany. The blood samples were collected in lithium heparin monovettes developed for trace metal determination and were analysed by inductively coupled plasma mass spectrometry (ICP-MS) with an octopole-based collision/reaction cell. For sample introduction into the ICP, the blood samples were diluted 1/10 (V/V) with a 0.1% Triton-X-100 and 0.5% (V/V) ammonia solution. The method validation of our developed routine method is described for all 37 elements and results about internal and external quality assurance are discussed. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews, including smoking habits, seafood consumption and the type of dental alloys in the teeth. Mean values, geometric mean values, ranges and selected percentiles of all elemental concentrations in human blood are presented, which helps toxicologists and clinical chemists planning research about exposition to metals and health effects caused by exposition to metals.

  19. LIBS coupled with ICP/OES for the spectral analysis of betel leaves

    NASA Astrophysics Data System (ADS)

    Rehan, I.; Rehan, K.; Sultana, S.; Khan, M. Z.; Muhammad, R.

    2018-05-01

    Laser-induced breakdown spectroscopy (LIBS) system was optimized and was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air. Pulsed Nd:YAG (1064 nm) in conjunction with a suitable detector (LIBS 2000+, Ocean Optics, Inc) having the optical resolution of 0.06 nm was used to record the emission spectra from 200 to 720 nm. Elements like Al, Ba, Ca, Cr, Cu, P, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn were found to be present in the samples. The abundances of observed elements were calculated through normalized calibration curve method, integrated intensity ratio method, and calibration free-LIBS approach. Quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium (LTE) and optically thin plasma. LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of inductively coupled plasma-optical emission spectroscopy (ICP/OES). Limit of detection (LOD) of the LIBS system was also estimated for heavy metals.

  20. Destructive versus non-destructive methods for geochemical analyses of ceramic artifacts: comparison of portable XRF and ICP-MS data on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain

    NASA Astrophysics Data System (ADS)

    Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.

    2013-04-01

    The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612

  1. Absolute measurements and certified reference material for iron isotopes using multiple-collector inductively coupled mass spectrometry.

    PubMed

    Zhou, Tao; Zhao, Motian; Wang, Jun; Lu, Hai

    2008-01-01

    Two enriched isotopes, 99.94 at.% 56Fe and 99.90 at.% 54Fe, were blended under gravimetric control to prepare ten synthetic isotope samples whose 56Fe isotope abundances ranged from 95% to 20%. For multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements typical polyatomic interferences were removed by using Ar and H2 as collision gas and operating the MC-ICP-MS system in soft mode. Thus high-precision measurements of the Fe isotope abundance ratios were accomplished. Based on the measurement of the synthetic isotope abundance ratios by MC-ICP-MS, the correction factor for mass discrimination was calculated and the results were in agreement with results from IRMM014. The precision of all ten correction factors was 0.044%, indicating a good linearity of the MC-ICP-MS method for different isotope abundance ratio values. An isotopic reference material was certified under the same conditions as the instrument was calibrated. The uncertainties of ten correction factors K were calculated and the final extended uncertainties of the isotopic certified Fe reference material were 5.8363(37) at.% 54Fe, 91.7621(51) at.% 56Fe, 2.1219(23) at.% 57Fe, and 0.2797(32) at.% 58Fe.

  2. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta

    2018-05-15

    Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  4. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Levelmore » Assay) of the LNGS underground lab using HPGe detectors.« less

  5. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, Marco, E-mail: marco.ferrante@lngs.infn.it; De Angelis, Francesco, E-mail: francesco.deangelis@univaq.it; Nisi, Stefano, E-mail: stefano.nisi@lngs.infn.it

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detectionmore » limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.« less

  6. [Analysis of Arsenic Compounds in Blood and Urine by HPLC-ICP-MS].

    PubMed

    Lin, L; Zhang, S J; Xu, W C; Luo, R X; Ma, D; Shen, M

    2018-02-01

    To establish an analysis method for the detection of 6 arsenic compounds [AsC, AsB, As(Ⅲ), DMA, MMA and As(V)] in blood and urine by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), and apply it to real cases. Triton was used to damage cells, and then EDTA·2Na·2H2O was used to complex arsenic compounds in cells, and sonication and protein deposition by acetonitrile were performed for sample pretreatment. With the mobile phase consisted of ammonium carbonate and ultrapure water, gradient elution was performed for obtaining the arsenic compounds in samples, which were analysed by ICP-MS with Hamilton PRP-X100 column. The limits of detection in blood were 1.66-10 ng/mL, while the lower limits of quantitation in blood ranged from 5 to 30 ng/mL. The limits of detection in urine were 0.5-10 ng/mL, while the lower limits of quantitation in urine were 5-30 ng/mL. The relative standard deviation of inter-day and intra-day precisions was less than 10%. This method had been successfully applied to 3 cases. This study has established an analysis method for detecting 6 common arsenic compounds in blood and urine, which can be used to detect the arsenic compounds in the blood and urine from arsenic poisoning cases as well as the patients under arsenic treatment. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  7. A provenance study of iron archaeological artefacts by Inductively Coupled Plasma-Mass Spectrometry multi-elemental analysis

    NASA Astrophysics Data System (ADS)

    Desaulty, Anne-Marie; Mariet, Clarisse; Dillmann, Philippe; Joron, Jean Louis; Fluzin, Philippe

    2008-11-01

    Raw materials and wastes (i.e. ore, slag and laitier) from ironmaking archaeological sites have been analyzed in order to understand the behavior of the trace elements in the ancient ironmaking processes and to find the significant-most elements to characterize an iron making region. The ICP-MS (Inductively Coupled Plasma Mass Spectrometry) appears to be an excellent technique for this type of studies. The comparison between the ICP-MS results obtained with the Standard Addition method and the INAA (Instrumental Neutron Activation Analyses) results proved that Sc, Co, (Ni), Rb, Cs, Ba, La, Ce, Sm, Eu, Yb, Hf, Th, U contents in the ores, slag and laitiers, and Co and Ni contents in the cast iron can be successfully determined by ICP-MS after wet acid digestion (low detection limits, good sensitivity and precision). By using significant trace element pairs (Yb/Ce, Ce/Th, La/Sc, U/Th, Nb/Y) present in the ores, laitiers and slag, it is possible to discriminate different French ironmaking regions as the Pays de Bray, Lorraine and Pays d'Ouche. These results open the way to further studies on the provenance of iron objects. The comparison between the ICP-MS results obtained with the Standard Calibration Curves method and the INAA results shows that matrices rich in iron, affect the ICP-MS analyses by suppressing the analytes signal. Further studies are necessary to improve understanding matrix effects.

  8. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Patrick Allen

    2005-12-17

    Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges

  9. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    USGS Publications Warehouse

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  10. Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES.

    PubMed

    Sooriyaarachchi, Melani; Gailer, Jürgen

    2010-08-28

    The iron chelation therapy drugs desferrioxamine B (DFO) and deferiprone (DFP) are used to treat iron overload patients, but not much is known about their adverse effects on other essential metals in vivo. After the addition of a clinically relevant dose of DFP or an equimolar dose of DFO to human plasma in vitro, the mixtures were analyzed by size exclusion chromatography (SEC) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES). Simultaneous detection of the emission lines of copper, iron and zinc allowed the visualization of changes that these drugs exerted at the metalloprotein level. After the addition of DFP, a <10 kDa novel Fe-peak was detected and identified as (DFP)(3)Fe, whereas DFO resulted in the elution of a much smaller amount of Fe in this elution range. In fact, DFP was approximately 8-times more efficient than DFO regarding the removal of Fe from plasma proteins. The addition of both iron chelators also resulted in the elution of a <10 kDa novel Zn-peak. DFP abstracted twice as much Zn from plasma proteins compared to DFO. The identification of one of these peaks as (DFP)(2)Zn establishes a feasible biomolecular basis for the etiology of Zn-deficiency in patients that undergo long-term treatment with these drugs. Our results demonstrate that the analysis of plasma by SEC-ICP-AES can simultaneously provide insight into the efficacy of chelation therapy drugs and their adverse health effects at the metalloprotein level. Thus, SEC-ICP-AES emerges as a useful analytical tool to visualize health-relevant bioinorganic chemistry-related reactions of medicinal drugs in blood plasma in vitro.

  11. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-03

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.

  12. ICP MS selection of radiopure materials for the GERDA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vacri, M. L., E-mail: divacrim@lngs.infn.it; Dipartimento di Scienze Fisiche e Chimiche, University of L’Aquila, via Vetoio, 67100 L’Aquila; Nisi, S., E-mail: nisi@lngs.infn.it

    2015-08-17

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designedmore » and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.« less

  13. Direct determination of platinum group elements and their distributions in geological and environmental samples at the ng g(-1) level using LA-ICP-IDMS.

    PubMed

    Boulyga, Sergei F; Heumann, Klaus G

    2005-10-01

    Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) was applied to the direct and simultaneous determination of the platinum group elements (PGEs) Pt, Pd, Ru, and Ir in geological and environmental samples. A special laser ablation system with high ablation rates was used, along with sector field ICP-MS. Special attention was paid to deriving the distributions of PGEs in the pulverized samples. IDMS could not be applied to the (mono-isotopic) Rh, but the similar ablation behavior of Ru and Rh allowed Rh to be simultaneously determined via relative sensitivity coefficients. The laser ablation process produces hardly any oxide ions (which usually cause interference in PGE analysis with liquid sample injection), so the ICP-MS can be run in its low mass resolution but high-sensitivity mode. The detection limits obtained for the geological samples were 0.16 ng g(-1), 0.14 ng g(-1), 0.08 ng g(-1), 0.01 ng g(-1) and 0.06 ng g(-1) for Ru, Rh, Pd, Ir and Pt, respectively. LA-ICP-IDMS was applied to different geological reference materials (TDB-1, WGB-1, UMT-1, WMG-1, SARM-7) and the road dust reference material BCR-723, which are only certified for some of the PGEs. Comparisons with certified values as well as with indicative values from the literature demonstrated the validity of the LA-ICP-IDMS method. The PGE concentrations in subsamples of the road dust reference material correspond to a normal distribution, whereas the distributions in the geological reference materials TDB-1, WGB-1, UMT-1, WMG-1, and SARM-7 are more complex. For example, in the case of Ru, a logarithmic normal distribution best fits the analyzed concentrations in TDB-1 subsamples, whereas a pronounced nugget effect was found for Pt in most geological samples.

  14. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin.

    PubMed

    Moraleja, Irene; Esteban-Fernández, Diego; Lázaro, Alberto; Humanes, Blanca; Neumann, Boris; Tejedor, Alberto; Luz Mena, M; Jakubowski, Norbert; Gómez-Gómez, M Milagros

    2016-03-01

    The study of the distribution of the cytostatic drugs cisplatin, carboplatin, and oxaliplatin along the kidney may help to understand their different nephrotoxic behavior. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows the acquisition of trace element images in biological tissues. However, results obtained are affected by several variations concerning the sample matrix and instrumental drifts. In this work, an internal standardization method based on printing an Ir-spiked ink onto the surface of the sample has been developed to evaluate the different distributions and accumulation levels of the aforementioned drugs along the kidney of a rat model. A conventional ink-jet printer was used to print fresh sagittal kidney tissue slices of 4 μm. A reproducible and homogenous deposition of the ink along the tissue was observed. The ink was partially absorbed on top of the tissue. Thus, this approach provides a pseudo-internal standardization, due to the fact that the ablation sample and internal standard take place subsequently and not simultaneously. A satisfactory normalization of LA-ICP-MS bioimages and therefore a reliable comparison of the kidney treated with different Pt-based drugs were achieved even for tissues analyzed on different days. Due to the complete ablation of the sample, the transport of the ablated internal standard and tissue to the inductively coupled plasma-mass spectrometry (ICP-MS) is practically taking place at the same time. Pt accumulation in the kidney was observed in accordance to the dosages administered for each drug. Although the accumulation rate of cisplatin and oxaliplatin is high in both cases, their Pt distributions differ. The strong nephrotoxicity observed for cisplatin and the absence of such side effect in the case of oxaliplatin could explain these distribution differences. The homogeneous distribution of oxaliplatin in the cortical and medullar areas could be related with its higher affinity for

  15. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi

    2011-01-01

    A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.

  16. Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICP-MS.

    PubMed

    Muramatsu, Y; Hamilton, T; Uchida, S; Tagami, K; Yoshida, S; Robison, W

    2001-10-20

    Nuclear weapons tests conducted by the United States in the Marshall Islands produced significant quantities of regional or tropospheric fallout contamination. Here we report on some preliminary inductively coupled plasma-mass spectrometry (ICP-MS) measurements of plutonium isolated from seven composite soil samples collected from Bikini, Enewetak and Rongelap Atolls in the northern Marshall Islands. These data show that 240Pu/239Pu isotopic signatures in surface soils from the Marshall Island vary significantly and could potentially be used to help quantify the range and extent of fallout deposition (and associated impacts) from specific weapons tests. 137Cs and 60Co were also determined on the same set of soil samples for comparative purposes.

  17. Use of elemental and molecular-mass spectrometry to assess the toxicological effects of inorganic mercury in the mouse Mus musculus.

    PubMed

    García-Sevillano, Miguel Angel; García-Barrera, Tamara; Navarro, Francisco; Gailer, Jürgen; Gómez-Ariza, José Luiz

    2014-09-01

    The biochemical response of mice (Mus musculus) to acute subcutaneous inorganic-mercury exposure was assessed over a 14-day period by analyzing cytosolic extracts of the liver, the kidneys, and blood plasma. Integrated metallomic and metabolomic approaches using elemental and molecular-mass spectrometry were used to obtain comprehensive insight into the toxicological effects of mercury regarding its distribution and possible perturbation of metabolic pathways. The metallomic approach involved the use of size-exclusion chromatography (SEC) coupled with multiaffinity chromatography inductively coupled plasma-mass spectrometry (ICP-MS) and isotopic-dilution analysis. The metabolomic approach involved the direct infusion of polar and lipophilic tissue extracts into a mass spectrometer (DIMS) in the positive and negative acquisition mode (ESI+and ESI-). The use of SEC-ICP-MS enabled us to detect changes in the metalloproteome in the liver and the kidneys during the exposure period, and revealed that interactions between Hg and endogenous Cu and Zn adversely affected the homeostasis of these essential metals. The detection of an Hg-Se detoxification product in mouse plasma substantiated the known interaction between Hg and Se in mammals. Use of DIMS in conjunction with partial-least-squares discriminant analysis (PLS-DA) uncovered time-dependent changes of endogenous metabolites over time, corroborated by histopathology investigation of specific mouse tissues. The perturbations of endogenous metabolic profiles were explained in terms of the adverse effect of mercury on energy metabolism (e.g. glycolysis, Krebs cycle), the degradation of membrane phospholipids (apoptosis), and increased levels of specific lipids in plasma. In summary, use of an SEC-ICP-MS-based metallomics approach in conjunction with molecular-mass-spectrometry-based metabolomics is revealed as a promising strategy to more comprehensively investigate the toxicological effects of harmful environmental

  18. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    PubMed

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Spatial distribution and historical trends of heavy metals in the sediments of petroleum producing regions of the Beibu Gulf, China.

    PubMed

    Yang, Jichao; Wang, Weiguo; Zhao, Mengwei; Chen, Bin; Dada, Olusegun A; Chu, Zhihui

    2015-02-15

    The concentrations of As, Sb, Hg, Pb, Cd, and Ba in the surface and core sediments of the oil and gas producing region of the Beibu Gulf were measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS), and the spatial distribution and historical trends of these elements are discussed. The results show that the concentrations of these elements are highest near the platforms. The results of Enrichment Factor (EF) and Potential Ecological Risk Index (PERI) also reveal significantly higher enrichment around the platforms, which imply that the offshore petroleum production was the cause of the unusual distribution and severe enrichment of these elements in the study area. The environment around the platforms was highly laden with toxic elements, thereby representing a very high ecological risk to the environment of the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  1. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellinger, Marco, E-mail: marco.wellinger@gmail.com; Ecole Polytechnique Federale de Lausanne; Wochele, Joerg

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. Themore » analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.« less

  2. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-02

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  3. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a ‘standard’ instrument setup.

    PubMed Central

    Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.

    2015-01-01

    Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050

  4. Comparison of ion chromatographic methods based on conductivity detection, post-column-reaction and on-line-coupling IC-ICP-MS for the determination of bromate.

    PubMed

    Schminke, G; Seubert, A

    2000-02-01

    An established method for the determination of the disinfection by-product bromate is ion chromatography (IC). This paper presents a comparison of three IC methods based on either conductivity detection (IC-CD), a post-column-reaction (IC-PCR-VIS) or the on-line-coupling with inductively coupled plasma mass spectrometry (IC-ICP-MS). Main characteristics of the methods such as method detection limits (MDL), time of analysis and sample pretreatment are compared and applicability for routine analysis is critically discussed. The most sensitive and rugged method is IC-ICP-MS, followed by IC-PCR-VIS. The photometric detection is subject to a minor interference in real world samples, presumably caused by carbonate. The lowest sensitivity is shown by the IC-CD method as slowest method compared, which, in addition, requires a sample pretreatment. The highest amount of information is delivered by IC-PCR-VIS, which allows the simultaneous determination of the seven standard anions and bromate.

  5. Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls.

    PubMed Central

    Schütz, A; Bergdahl, I A; Ekholm, A; Skerfving, S

    1996-01-01

    OBJECTIVES: To test a simple procedure for preparing samples for measurement of lead in blood plasma (P-Pb) and whole blood (B-Pb) by inductively coupled plasma mass spectrometry (ICP-MS), to measure P-Pb and B-Pb in lead workers and controls, and to evaluate any differences in the relation between B-Pb and P-Pb between people. METHODS: P-Pb and B-Pb were measured by ICP-MS in 43 male lead smelter workers and seven controls without occupational exposure to lead. For analysis, plasma and whole blood were diluted 1 in 4 and 1 in 9, respectively, with a diluted ammonia solution containing Triton-X 100 and EDTA. The samples were handled under routine laboratory conditions, without clean room facilities. RESULTS: P-Pb was measured with good precision (CV = 5%) even at concentrations present in the controls. Freeze storage of the samples had no effect on the results. The detection limit was 0.015 microgram/l. The P-Pb was 0.15 (range 0.1-0.3) microgram/l in controls and 1.2 (0.3-3.6) micrograms/l in lead workers, although the corresponding B-Pbs were 40 (24-59) micrograms/l and 281 (60-530) micrograms/l (1 microgram Pb/I = 4.8 nmol/l). B-Pb was closely associated with P-Pb (r = 0.90). The association was evidently non-linear; the ratio B-Pb/P-Pb decreased with increasing P-Pb. CONCLUSIONS: By means of ICP-MS and a simple dilution procedure, P-Pb may be measured accurately and with good precision down to concentrations present in controls. Contamination of blood at sampling and analysis is no major problem. With increasing P-Pb, the percentage of lead in plasma increases. In studies of lead toxicity, P-Pb should be considered as a complement to current indicators of lead exposure and risk. PMID:9038796

  6. ICP-MS measurement of natural radioactivity at LNGS

    NASA Astrophysics Data System (ADS)

    Nisi, S.; Copia, L.; Dafinei, I.; di Vacri, M. L.

    2017-10-01

    Rare events search experiments, like those dedicated to the direct evidence of dark matter or neutrinoless double beta decay, are among the most exciting challenges of modern physics. The sensitivity of such experiments is driven by the background, which depends substantially on the radiopurity of the materials used for the experimental apparatus. Cutting edge measurement techniques are needed for a fast, sensitive and efficient screening of these materials and the certification of their production. Trace element measurements of high sensitivity and quick execution are mandatory also in other fields like tracing the geographical origin of food, temporal and geographical assignment of cultural heritage or monitoring environmental radioactivity. This work is an overview of the inorganic mass spectrometry facility available at Gran Sasso National Laboratory (LNGS) for radiopure material screening and is especially focused on its ICP-MS instrumentation. Analytical methods developed to achieve lowest detection limits in different types of matrix, like metals, polymers, crystals and composite materials, are also indicated. Detection limits of 10-18gg-1 for 226Ra, 10-14gg-1 for U and Th and 10-12gg-1 for K are attained through dedicated operation conditions of the instrumentation. Details are given on the results obtained for different experiments ongoing or under construction at LNGS.

  7. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-10-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  8. Sodium Bicarbonate for Control of ICP: A Systematic Review.

    PubMed

    Zeiler, Frederick A; Sader, Nicholas; West, Michael; Gillman, Lawrence M

    2018-01-01

    Our goal was to perform a systematic review of the literature on the use of intravenous sodium bicarbonate for intracranial pressure (ICP) reduction in patients with neurologic illness. Data sources: articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to April 2015), reference lists of relevant articles, and gray literature were searched. 2 reviewers independently extracted data including population characteristics and treatment characteristics. The strength of evidence was adjudicated using both the Oxford and Grading of Recommendation Assessment Development and Education methodology. Our search strategy produced a total 559 citations. Three original articles were included in the review. There were 2 prospective studies, 1 randomized control trial and 1 single arm, and 1 retrospective case report.Across all studies there were a total of 19 patients studied, with 31 episodes of elevated ICP being treated. Twenty-one of those episodes were treated with sodium bicarbonate infusion, with the remaining 10 treated with hypertonic saline in a control model. All elevated ICP episodes treated with sodium bicarbonate solution demonstrated a significant drop in ICP, without an elevation of serum partial pressure of carbon dioxide. No significant complications were described. There currently exists Oxford level 4, Grading of Recommendation Assessment Development and Education D evidence to support an ICP reduction effect with intravenous sodium bicarbonate in TBI. No comments on its impact in other neuropathologic states, or on patient outcomes, can be made at this time.

  9. Elemental analysis of silicon based minerals by ultrasonic slurry sampling electrothermal vaporisation ICP-MS.

    PubMed

    Rodríguez, Pablo Fernández; Marchante-Gayón, Juan Manuel; Sanz-Medel, Alfredo

    2006-01-15

    Ultrasonic slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) was applied to the elemental analysis of silicate based minerals, such as talc or quartz, without any pre-treatment except the grinding of the sample. The electrothermal vaporisation device consists of a tungsten coil connected to a home-made power supply. The voltage program, carrier gas flow rate and sonication time were optimised in order to obtain the best sensitivity for elements determined. The relationship between the amount of sample in the slurry and the signal intensity was also evaluated. Unfortunately, in all cases, quantification had to be carried out by the standard additions method owing to the strong matrix interferences. The global precision of the proposed method was always better than 12%. The limits of detection, calculated as three times the standard deviation of the blank value divided by the slope of the calibration curve, were between 0.5 ng/g for As and 3.5 ng/g for Ba. The method was validated by comparing the concentrations found for Cu, Mn, Cr, V, Li, Pb, Sn, Mg, U, Ba, Sr, Zn, Sb, Rb and Ce using the proposed methodology with those obtained by conventional nebulisation ICP-MS after acid digestion of the samples in a microwave oven. The concentration range in the solid samples was between 0.2 microg/g for Cr and 60 microg/g for Ba. All results were statistically in agreement with those found by conventional nebulisation.

  10. A concise guide for the determination of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) by inductively coupled plasma mass spectrometry in environmental samples

    NASA Astrophysics Data System (ADS)

    Filella, Montserrat; Rodushkin, Ilia

    2018-03-01

    There is an increasing demand for analytical techniques able to measure so-called 'technology-critical elements', a set of chemical elements increasingly used in technological applications, in environmental matrices. Nowadays, inductively coupled plasma-mass spectrometry (ICP-MS) has become the technique of choice for measuring trace element concentrations. However, its application is often less straightforward than often assumed. The hints and drawbacks of ICP-MS application to the measurement of a set of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge and Te) is discussed here and concise guidelines given.

  11. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection.

    PubMed

    Flamini, Riccardo; Panighel, Annarita

    2006-01-01

    Controls in food industry are fundamental to protect the consumer health. For products of high quality, warranty of origin and identity is required and analytical control is very important to prevent frauds. In this article, the "state of art" of mass spectrometry in enological chemistry as a consumer safety contribute is reported. Gas chromatography-mass spectrometry (GC/MS) and liquid-chromatography-mass spectrometry (LC/MS) methods have been developed to determine pesticides, ethyl carbamate, and compounds from the yeast and bacterial metabolism in wine. The presence of pesticides in wine is mainly linked to the use of dicarboxyimide fungicides on vineyard shortly before the harvest to prevent the Botrytis cinerea attack of grape. Pesticide residues are regulated at maximum residue limits in grape of low ppm levels, but significantly lower levels in wine have to be detected, and mass spectrometry offers effective and sensitive methods. Moreover, mass spectrometry represent an advantageous alternative to the radioactive-source-containing electron capture detector commonly used in GC analysis of pesticides. Analysis of ochratoxin A (OTA) in wine by LC/MS and multiple mass spectrometry (MS/MS) permits to confirm the toxin presence without the use of expensive immunoaffinity columns, or time and solvent consuming sample derivatization procedures. Inductively coupled plasma-mass spectrometry (ICP/MS) is used to control heavy metals contamination in wine, and to verify the wine origin and authenticity. Isotopic ratio-mass spectrometry (IRMS) is applied to reveal wine watering and sugar additions, and to determine the product origin and traceability.

  12. A square-wave wavelength modulation system for automatic background correction in carbon furnace atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Bezur, L.; Marshall, J.; Ottaway, J. M.

    A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.

  13. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  14. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  15. Determination of trace-level haloacetic acids in drinking water by ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Yongjian; Mou, Shifen; Chen, Dengyun

    2004-06-11

    A new method for the determination of nine haloacetic acids (HAAs) with ion chromatography (IC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) was developed. With the very hydrophilic anion-exchange column and steep gradient of sodium hydroxide, the nine HAAs could be well separated in 15 min. After suppression with an ASRS suppressor that was introduced in between IC and ICP-MS, the background was much decreased, the interference caused by sodium ion present in eluent was removed, and the sensitivities of HAAs were greatly improved. The chlorinated and brominated HAAs could be detected as 35ClO and 79Br without interference of the matrix due to the elemental selective ICP-MS. The detection limits for mono-, di-, trichloroacetic acids were between 15.6 and 23.6 microg/l. For the other six bromine-containing HAAs, the detection limits were between 0.34 and 0.99 microg/l. With the pretreatment of OnGuard Ag cartridge to remove high concentration of chloride in sample, the developed method could be applied to the determination of HAAs in many drinking water matrices.

  16. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  17. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  18. Reduction of matrix effects in inductively coupled plasma mass spectrometry by flow injection with an unshielded torch.

    PubMed

    Gross, Cory T; McIntyre, Sally M; Houk, R S

    2009-06-15

    Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.

  19. Application of ICP-OES to the determination of barium in blood and urine in clinical and forensic analysis.

    PubMed

    Lech, Teresa

    2013-05-01

    Exposure to barium (Ba) mostly occurs in the workplace or from drinking water, but it may sometimes be due to accidental or intentional intoxication. This paper presents a reliable, sensitive method for the determination of Ba in blood and urine: inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion of samples. The overall procedure was checked using Seronorm Whole Blood L-2, Trace Elements Urine and spiked blood and urine samples (0.5-10 µg/mL of Ba). The accuracy of the whole procedure (relative error) was 4% (blood) and 7% (urine); the recovery was 76-104% (blood) and 85-101% (urine). The limits of detection and quantification (Ba λ = 455.403 nm) were 0.11 and 0.4 µg/L of Ba, respectively; precision (relative standard deviation) was below 6% at the level of 15 µg/L of Ba for blood. This method was applied to a case of the poisoning of a man who had been exposed at the workplace for over two years to powdered BaCO3, and who suffered from paralysis and heart disorders. The concentrations of Ba, in μg/L, were 160 (blood), 460 (serum) and 1,458 (urine) upon his admission to the hospital, and 6.1 (blood) and 4.9 (urine) after 11 months (reference values: 3.34 ± 2.20 µg/L of Ba for blood and 4.43 ± 4.60 µg/L of Ba for urine).

  20. A comparison of reliability of soil Cd determination by standard spectrometric methods

    PubMed Central

    McBride, M.B.

    2015-01-01

    Inductively coupled plasma emission spectrometry (ICP-OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP-OES and ICP-MS measurements of Cd in acid digests. ICP-OES using the emission at 226.5 nm generally unable to quantify soil Cd at low (near-background) levels, and gave unreliable values compared to ICP-MS. Using the line at 228.nm, a marked positive bias in Cd measurement (relative to the 226.5 nm measurement) was attributable to As interference even at soil As concentrations below 10 mg/kg. This spectral interference in ICP-OES was severe in As-contaminated orchard soils, giving a false value for soil total Cd near 2 mg kg−1 when soil As was 100–150 mg kg−1. In attempting to avoid these ICP emission-specific interferences, we evaluated a method to estimate total soil Cd using 1 M HNO3 extraction followed by determination of Cd by flame atomic absorption (FAA), either with or without pre-concentration of Cd using an Aliquat-heptanone extractant. The 1 M HNO3 extracted an average of 82% of total soil Cd. The FAA method had no significant interferences, and estimated the total Cd concentrations in all soils tested with acceptable accuracy. For Cd-contaminated soils, the Aliquat-heptanone pre-concentration step was not necessary, as FAA sensitivity was adequate for quantification of extractable soil Cd and reliable estimation of total soil Cd. PMID:22031569