Silicon macroporous arrays with high aspect ratio prepared by ICP etching
NASA Astrophysics Data System (ADS)
Wang, Guozheng; Yang, Bingchen; Wang, Ji; Yang, Jikai; Duanmu, Qingduo
2018-02-01
This paper reports on a macroporous silicon arrays with high aspect ratio, the pores of which are of 162, 205, 252, 276μm depths with 6, 10, 15 and 20 μm diameters respectively, prepared by Multiplex Inductively Coupled Plasma (ICP) etching. It was shown that there are very differences in process of high aspect ratio microstructures between the deep pores, a closed structure, and deep trenches, a open structure. The morphology and the aspect ratio dependent etching were analyzed and discussed. The macroporous silicon etched by ICP process yield an uneven, re-entrant, notched and ripples surface within the pores. The main factors effecting on the RIE lag of HARP etching are the passivation cycle time, the pressure of reactive chamber, and the platen power of ICP system.
A study of GaN-based LED structure etching using inductively coupled plasma
NASA Astrophysics Data System (ADS)
Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng
2011-02-01
GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).
Technique for etching monolayer and multilayer materials
Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert
2015-10-06
A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.
NASA Astrophysics Data System (ADS)
Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.
2004-05-01
A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .
NASA Astrophysics Data System (ADS)
Liu, L. F.; Chen, Y. Y.; Ye, Z. H.; Hu, X. N.; Ding, R. J.; He, L.
2018-03-01
Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and p-n junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ˜ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.
NASA Astrophysics Data System (ADS)
Singh, Rajwinder
Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.
Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases
NASA Astrophysics Data System (ADS)
Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei
2017-09-01
In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.
Capabilities of ICP-RIE cryogenic dry etching of silicon: review of exemplary microstructures
NASA Astrophysics Data System (ADS)
Sökmen, Ü.; Stranz, A.; Fündling, S.; Wehmann, H.-H.; Bandalo, V.; Bora, A.; Tornow, M.; Waag, A.; Peiner, E.
2009-10-01
Inductively coupled plasma (ICP) cryogenic dry etching was used to etch submicron pores, nano contact lines, submicron diameter pillars, thin and thick cantilevers, membrane structures and anisotropic deep structures with high aspect ratios in silicon for bio-nanoelectronics, optoelectronics and nano-micro electromechanical systems (NMEMS). The ICP cryogenic dry etching gives us the advantage of switching plasmas between etch rates of 13 nm min-1 and 4 µm min-1 for submicron pores and for membrane structures, respectively. A very thin photoresist mask can endure at -75 °C even during etching 70 µm deep for cantilevers and 300 µm deep for membrane structures. Coating the backsides of silicon membrane substrates with a thin photoresist film inhibited the lateral etching of cantilevers during their front release. Between -95 °C and -140 °C, we realized crystallographic-plane-dependent etching that creates facets only at the etch profile bottom. By varying the oxygen content and the process temperature, we achieved good control over the shape of the etched structures. The formation of black silicon during membrane etching down to 300 µm was delayed by reducing the oxygen content.
A review on plasma-etch-process induced damage of HgCdTe
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun
2018-05-01
Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao
2006-01-01
In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.
Uniformity studies of inductively coupled plasma etching in fabrication of HgCdTe detector arrays
NASA Astrophysics Data System (ADS)
Bommena, R.; Velicu, S.; Boieriu, P.; Lee, T. S.; Grein, C. H.; Tedjojuwono, K. K.
2007-04-01
Inductively coupled plasma (ICP) chemistry based on a mixture of CH 4, Ar, and H II was investigated for the purpose of delineating HgCdTe mesa structures and vias typically used in the fabrication of second and third generation infrared photo detector arrays. We report on ICP etching uniformity results and correlate them with plasma controlling parameters (gas flow rates, total chamber pressure, ICP power and RF power). The etching rate and surface morphology of In-doped MWIR and LWIR HgCdTe showed distinct dependences on the plasma chemistry, total pressure and RF power. Contact stylus profilometry and cross-section scanning electron microscopy (SEM) were used to characterize the anisotropy of the etched profiles obtained after various processes and a standard deviation of 0.06 μm was obtained for etch depth on 128 x 128 format array vias. The surface morphology and the uniformity of the etched surfaces were studied by plan view SEM. Atomic force microscopy was used to make precise assessments of surface roughness.
Dry etched SiO2 Mask for HgCdTe Etching Process
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.
Joo, Dong Hyuk; Leem, Jung Woo; Yu, Jae Su
2011-11-01
We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.
Chen, Hao; Zhang, Qi; Chou, Stephen Y
2015-02-27
Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.
Deep inductively coupled plasma etching of ELO-GaN grown with high fill factor
NASA Astrophysics Data System (ADS)
Gao, Haiyong; Lee, Jaesoong; Ni, Xianfeng; Leach, Jacob; Özgür, Ümit; Morkoç, Hadis
2011-02-01
The epitaxial lateral overgrowth (ELO) gallium nitride (GaN) was grown with high fill factor using metal organic chemical vapor deposition (MOCVD). The inductively coupled plasma (ICP) etching of ELO-GaN based on Cl2/Ar/SiCl4 gas mixture was performed. Surface properties of ELO-GaN subjected to ICP etching have been investigated and optimized etching condition in ELO-GaN with ICP etching is presented. Radiofrequency (RF) power and the flow rate of Cl2 gas were modified during the experiments. The window region, wing region and the edge region of ELO-GaN pattern present different etching characteristics. Different etching conditions were studied to get the minimized plasma-induced damage, relatively high etching rates, and excellent surface profiles. Etch depths of the etched ELO-GaN with smooth surface up to about 19 μm were achieved. The most suitable three-step etching condition is discussed with the assessment based on the morphology observation of the etched surface of ELO-GaN patterns.
The endpoint detection technique for deep submicrometer plasma etching
NASA Astrophysics Data System (ADS)
Wang, Wei; Du, Zhi-yun; Zeng, Yong; Lan, Zhong-went
2009-07-01
The availability of reliable optical sensor technology provides opportunities to better characterize and control plasma etching processes in real time, they could play a important role in endpoint detection, fault diagnostics and processes feedback control and so on. The optical emission spectroscopy (OES) method becomes deficient in the case of deep submicrometer gate etching. In the newly developed high density inductively coupled plasma (HD-ICP) etching system, Interferometry endpoint (IEP) is introduced to get the EPD. The IEP fringe count algorithm is investigated to predict the end point, and then its signal is used to control etching rate and to call end point with OES signal in over etching (OE) processes step. The experiment results show that IEP together with OES provide extra process control margin for advanced device with thinner gate oxide.
Deep anisotropic ICP plasma etching designed for high-volume MEMS manufacturing
NASA Astrophysics Data System (ADS)
Yu, Keven; Feldbaum, Michael; Pandhumsoporn, Tam; Gadgil, Prashant
1999-08-01
ICP plasma etching is gaining widespread acceptance as an enabling micromachining technology for advanced MEMS fabrication. Whereas this technology has shown a capability of delivering multiple novel applications for R and D, its acceptance by industry for high volume production has been limited. This acceptance into production will only occur when the plasma etching equipment with this technology offers the device performance, throughput, reliability, and uptime criteria required by a production facility. The design of the plasma etcher using this technology and the process capability it consequently delivers, has significant implications in making this a reality. Alcatel has been supplying such a technology to this MEMS industry for over 5 years and in the interim has evolved its product and process to make this technology production worthy. Alcatel's next generation etcher, the Alcatel 601E, offers multiple advantages to MEMS manufacturers in realizing their production goals.
ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors
NASA Astrophysics Data System (ADS)
Huang, Min; Chen, Jianxin; Xu, Jiajia; Wang, Fangfang; Xu, Zhicheng; He, Li
2018-05-01
In this work, we study and report the dry etching processes for InAs-based InAs/GaAsSb strain-free superlattice long wavelength infrared (LWIR) detectors. The proper etching parameters were first obtained through the parametric studies of Inductively Coupled Plasma (ICP) etching of both InAs and GaSb bulk materials in Cl2/N2 plasmas. Then an InAs-based InAs/GaAsSb superlattice LWIR detector with PπN structure was fabricated by using the optimized etching parameters. At 80 K, the detector exhibits a 100% cut-off wavelength of 12 μm and a responsivity of 1.5 A/W. Moreover, the dark current density of the device under a bias of -200 mV reaches 5.5 × 10-4 A/cm2, and the R0A is 15 Ω cm2. Our results pave the way towards InAs-based superlattice LWIR detectors with better performances.
Applications of MICP source for next-generation photomask process
NASA Astrophysics Data System (ADS)
Kwon, Hyuk-Joo; Chang, Byung-Soo; Choi, Boo-Yeon; Park, Kyung H.; Jeong, Soo-Hong
2000-07-01
As critical dimensions of photomask extends into submicron range, critical dimension uniformity, edge roughness, macro loading effect, and pattern slope become tighter than before. Fabrication of photomask relies on the ability to pattern features with anisotropic profile. To improve critical dimension uniformity, dry etcher is one of the solution and inductively coupled plasma (ICP) sources have become one of promising high density plasma sources for dry etcher. In this paper, we have utilized dry etcher system with multi-pole ICP source for Cr etch and MoSi etch and have investigated critical dimension uniformity, slope, and defects. We will present dry etch process data by process optimization of newly designed dry etcher system. The designed pattern area is 132 by 132 mm2 with 23 by 23 matrix test patterns. 3 (sigma) of critical dimension uniformity is below 12 nm at 0.8 - 3.0 micrometers . In most cases, we can obtain zero defect masks which is operated by face- down loading.
Simulation of SiO2 etching in an inductively coupled CF4 plasma
NASA Astrophysics Data System (ADS)
Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling
2017-02-01
Plasma etching technology is an indispensable processing method in the manufacturing process of semiconductor devices. Because of the high fluorine/carbon ratio of CF4, the CF4 gas is often used for etching SiO2. A commercial software ESI-CFD is used to simulate the process of plasma etching with an inductively coupled plasma model. For the simulation part, CFD-ACE is used to simulate the chamber, and CFD-TOPO is used to simulate the surface of the sample. The effects of chamber pressure, bias voltage and ICP power on the reactant particles were investigated, and the etching profiles of SiO2 were obtained. Simulation can be used to predict the effects of reaction conditions on the density, energy and angular distributions of reactant particles, which can play a good role in guiding the etching process.
Characteristics of n-GaN after ICP etching
NASA Astrophysics Data System (ADS)
Han, Yanjun; Xue, Song; Guo, Wenping; Hao, Zhi-Biao; Sun, Changzheng; Luo, Yi
2002-09-01
In this work, a systematic study on the plasma-induced damage on n-type GaN by inductively coupled plasma (ICP) etching is presented. After n-contact metal formation and annealing, electrical property is evaluated by the I-V characteristics. Room temperature photoluminescence (PL) measurement of etched GaN surfaces is performed to investigate the etching damage on the optical properties of n-type GaN. Investigation of the effect of additive gas RF chuck power on these characteristics has also been carried out. The better etching conditions have been obtained based on these results.
Etching and oxidation of InAs in planar inductively coupled plasma
NASA Astrophysics Data System (ADS)
Dultsev, F. N.; Kesler, V. G.
2009-10-01
The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH 4/H 2/Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30-150 and 50-300 W, respectively; gas pressure in the reactor was 3-10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching. A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.
NASA Astrophysics Data System (ADS)
Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.
2010-09-01
Silicon (Si) subwavelength grating (SWG) structures were fabricated on Si substrates by holographic lithography and subsequent inductively coupled plasma (ICP) etching process using SiCl4 with or without Ar addition for solar cell applications. To ensure a good nanosized pattern transfer into the underlying Si layer, the etch selectivity of Si over the photoresist mask is optimized by varying the etching parameters, thus improving antireflection characteristics. For antireflection analysis of Si SWG surfaces, the optical reflectivity is measured experimentally and it is also calculated theoretically by a rigorous coupled-wave analysis. The reflectance depends on the height, period, and shape of two-dimensional periodic Si subwavelength structures, correlated with ICP etching parameters. The optimized Si SWG structure exhibits a dramatic decrease in optical reflection of the Si surface over a wide angle of incident light ( θ i ), i.e. less than 5% at wavelengths of 300-1100 nm, leading to good wide-angle antireflection characteristics (i.e. solar-weighted reflection of 1.7-4.9% at θ i <50°) of Si solar cells.
2010-09-01
doped with Au, Hg, Cd, Be, or Ga); or (3) photoemissive such as metal silicides and negative electron affinity materials. Photoconductive and...plasma (ICP) etching and metallization as required by the design of the sensors at different levels of processing were carried out using either AZ...Second, after all the processing and metallization is completed, the sensor material (Hg1–xCdxTe) and the substrate (silicon) must be dry etched
NASA Astrophysics Data System (ADS)
Sun, Jason N.; Choi, Kwong-Kit; Olver, Kimberley A.; Fu, Richard X.
2017-05-01
Resonator-Quantum Well Infrared Photo detectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). Recently, we are exploring R-QWIPs for broadband long wavelength applications. To achieve the expected performance, two optimized inductively coupled plasma (ICP) etching processes (selective and non-selective) are developed. Our selective ICP etching process has a nearly infinite selectivity of etching GaAs over Ga1-xAlxAs. By using the etching processes, two format (1Kx1K and 40x40) detectors with 25 μm pixel pitch were fabricated successfully. In despite of a moderate doping of 0.5 × 1018 cm-3 and a thin active layer thickness of 0.6 or 1.3 μm, we achieved a quantum efficiency 35% and 37% for 8 quantum wells and 19 quantum wells respectively. The temperature at which photocurrent equals dark current is about 66 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 22 mK at 2 ms integration time and 60 K operating temperature. This good result thus exemplifies the advantages of R-QWIP.
NASA Astrophysics Data System (ADS)
Goodyear, Andy; Boettcher, Monika; Stolberg, Ines; Cooke, Mike
2015-03-01
Electron beam writing remains one of the reference pattern generation techniques, and plasma etching continues to underpin pattern transfer. We report a systematic study of the plasma etch resistance of several e-beam resists, both negative and positive as well as classical and Chemically Amplified Resists: HSQ[1,2] (Dow Corning), PMMA[3] (Allresist GmbH), AR-P6200 (Allresist GmbH), ZEP520 (Zeon Corporation), CAN028 (TOK), CAP164 (TOK), and an additional pCAR (non-disclosed provider). Their behaviour under plasma exposure to various nano-scale plasma etch chemistries was examined (SF6/C4F8 ICP silicon etch, CHF3/Ar RIE SiO2 etch, Cl2/O2 RIE and ICP chrome etch, and HBr ICP silicon etch). Samples of each resist type were etched simultaneously to provide a direct comparison of their etch resistance. Resist thicknesses (and hence resist erosion rates) were measured by spectroscopic ellipsometer in order to provide the highest accuracy for the resist comparison. Etch selectivities (substrate:mask etch rate ratio) are given, with recommendations for the optimum resist choice for each type of etch chemistry. Silicon etch profiles are also presented, along with the exposure and etch conditions to obtain the most vertical nano-scale pattern transfer. We identify one resist that gave an unusually high selectivity for chlorinated and brominated etches which could enable pattern transfer below 10nm without an additional hard mask. In this case the resist itself acts as a hard mask. We also highlight the differing effects of fluorine and bromine-based Silicon etch chemistries on resist profile evolution and hence etch fidelity.
Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses
NASA Astrophysics Data System (ADS)
Taylor, Courtney D.
Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples. SEM images also indicated isotropically-oriented surface structures on both types of lenses.
High rate dry etching of (BiSb)2Te3 film by CH4/H2-based plasma
NASA Astrophysics Data System (ADS)
Song, Junqiang; Shi, Xun; Chen, Lidong
2014-10-01
Etching characteristics of p-type (BiSb)2Te3 films were studied with CH4/H2/Ar gas mixture using an inductively coupled plasma (ICP)-reactive ion etching (RIE) system. The effects of gas mixing ratio, working pressure and gas flow rate on the etch rate and the surface morphology were investigated. The vertical etched profile with the etch rate of 600 nm/min was achieved at the optimized processing parameters. X-ray photoelectron spectroscopy (XPS) analysis revealed the non-uniform etching of (BiSb)2Te3 films due to disparate volatility of the etching products. Micro-masking effects caused by polymer deposition and Bi-rich residues resulted in roughly etched surfaces. Smooth surfaces can be obtained by optimizing the CH4/H2/Ar mixing ratio.
Characteristics of n-GaN After Cl2/Ar and Cl2/N2 Inductively Coupled Plasma Etching
NASA Astrophysics Data System (ADS)
Han, Yan-Jun; Xue, Song; Guo, Wen-Ping; Sun, Chang-Zheng; Hao, Zhi-Biao; Luo, Yi
2003-10-01
A systematic study on the effect of inductively coupled plasma (ICP) etching on n-type GaN is presented. The optical and electrical properties and surface stoichiometry of n-type GaN are evaluated using room-temperature photoluminescence (PL) and current-voltage (I-V) characteristic measurements, and X-ray photoelectron spectroscopy (XPS), respectively. Investigation of the effect of additive gas (N2 and Ar) and RF power on these characteristics has also been carried out. It is shown that the decrease in the O/Ga ratio after ICP etching can suppress the deterioration of the near-band-edge emission intensity. Furthermore, N vacancy (VN) with a shallow donor nature and Ga vacancy (VGa) with a deep acceptor nature are generated after ICP etching upon the addition of Ar and N2 to Cl2 plasma, respectively. Lower ohmic contact resistance could be obtained when VN or ion-bombardment-induced defect is dominant at the surface. Improved etching conditions have been obtained based on these results.
Environmentally benign semiconductor processing for dielectric etch
NASA Astrophysics Data System (ADS)
Liao, Marci Yi-Ting
Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi-k dielectric material, ZrO2, was studied. A novel cross-contamination sampling technique was developed, along with a mass transfer model.
NASA Astrophysics Data System (ADS)
Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.
2018-03-01
Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.
Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure
NASA Astrophysics Data System (ADS)
Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping
2014-09-01
GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.
NASA Astrophysics Data System (ADS)
Yin, Ruiyuan; Li, Yue; Sun, Yu; Wen, Cheng P.; Hao, Yilong; Wang, Maojun
2018-06-01
We report the effect of the gate recess process and the surface of as-etched GaN on the gate oxide quality and first reveal the correlation between border traps and exposed surface properties in normally-off Al2O3/GaN MOSFET. The inductively coupled plasma (ICP) dry etching gate recess with large damage presents a rough and active surface that is prone to form detrimental GaxO validated by atomic force microscopy and X-ray photoelectron spectroscopy. Lower drain current noise spectral density of the 1/f form and less dispersive ac transconductance are observed in GaN MOSFETs fabricated with oxygen assisted wet etching compared with devices based on ICP dry etching. One decade lower density of border traps is extracted in devices with wet etching according to the carrier number fluctuation model, which is consistent with the result from the ac transconductance method. Both methods show that the density of border traps is skewed towards the interface, indicating that GaxO is of higher trap density than the bulk gate oxide. GaxO located close to the interface is the major location of border traps. The damage-free oxidation assisted wet etching gate recess technique presents a relatively smooth and stable surface, resulting in lower border trap density, which would lead to better MOS channel quality and improved device reliability.
Overcoming Etch Challenges on a 6″ Hg1- x Cd x Te MBE on Si Wafer
NASA Astrophysics Data System (ADS)
Apte, Palash; Norton, Elyse; Robinson, Solomon
2017-10-01
The effect of increasing photoresist (PR) thickness on the inductively coupled plasma (ICP) dry etched characteristics of a 6″ (c.15 cm) molecular beam epitaxy Hg1- x Cd x Te/Si wafer is investigated. It is determined that the Hg1- x Cd x Te etch rate (ER) does not vary significantly with a change in the PR thickness. Also, the vertical ER of the PR is seen to be independent of the PR thickness, but the lateral ER is seen to reduce significantly with increased PR thickness. Indeed, very little reduction in the pixel mesa area post-dry etch is seen for the thicker PR. Consequently, the trench sidewall angle is also seen to vary as a function of the PR thickness. Since ICP is the more attractive choice for dry etching Hg1- x Cd x Te, this simple, cost-effective way to extend the capabilities of dry etching (larger mesa top area post-dry etch, ability to create tailor-made trench sidewall angles for optimal conformal passivation deposition, and potential for reduced dry etch damage) described here would allow for the fabrication of next generation infrared detectors with increased yield and reduced cost. Although similar results have been presented using the electron cyclotron resonance system to dry etch Hg1- x Cd x Te, to the best of our knowledge, this is the first time that such results have been presented using an ICP system.
Fluorine-Based DRIE of Fused Silica
NASA Technical Reports Server (NTRS)
Yee, Karl; Shcheglov, Kirill; Li, Jian; Choi, Daniel
2007-01-01
A process of deep reactive-ion etching (DRIE) using a fluorine-based gas mixture enhanced by induction-coupled plasma (ICP) has been demonstrated to be effective in forming high-aspect-ratio three-dimensional patterns in fused silica. The patterns are defined in part by an etch mask in the form of a thick, high-quality aluminum film. The process was developed to satisfy a need to fabricate high-aspect-ratio fused-silica resonators for vibratory microgyroscopes, and could be used to satisfy similar requirements for fabricating other fused-silica components.
NASA Astrophysics Data System (ADS)
Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji
2013-11-01
The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.
High precision AlGaAsSb ridge-waveguide etching by in situ reflectance monitored ICP-RIE
NASA Astrophysics Data System (ADS)
Tran, N. T.; Breivik, Magnus; Patra, S. K.; Fimland, Bjørn-Ove
2014-05-01
GaSb-based semiconductor diode lasers are promising candidates for light sources working in the mid-infrared wavelength region of 2-5 μm. Using edge emitting lasers with ridge-waveguide structure, light emission with good beam quality can be achieved. Fabrication of the ridge waveguide requires precise etch stop control for optimal laser performance. Simulation results are presented that show the effect of increased confinement in the waveguide when the etch depth is well-defined. In situ reflectance monitoring with a 675 nm-wavelength laser was used to determine the etch stop with high accuracy. Based on the simulations of laser reflectance from a proposed sample, the etching process can be controlled to provide an endpoint depth precision within +/- 10 nm.
NASA Astrophysics Data System (ADS)
Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi
1995-08-01
High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.
Highly controllable ICP etching of GaAs based materials for grating fabrication
NASA Astrophysics Data System (ADS)
Weibin, Qiu; Jiaxian, Wang
2012-02-01
Highly controllable ICP etching of GaAs based materials with SiCl4/Ar plasma is investigated. A slow etching rate of 13 nm/min was achieved with RF1 D 10 W, RF2 D 20 W and a high ratio of Ar to SiCl4 flow. First order gratings with 25 nm depth and 140 nm period were fabricated with the optimal parameters. AFM analysis indicated that the RMS roughness over a 10 × 10 μm2 area was 0.3 nm, which is smooth enough to regrow high quality materials for devices.
Exploration of suitable dry etch technologies for directed self-assembly
NASA Astrophysics Data System (ADS)
Yamashita, Fumiko; Nishimura, Eiichi; Yatsuda, Koichi; Mochiki, Hiromasa; Bannister, Julie
2012-03-01
Directed self-assembly (DSA) has shown the potential to replace traditional resist patterns and provide a lower cost alternative for sub-20-nm patterns. One of the possible roadblocks for DSA implementation is the ability to etch the polymers to produce quality masks for subsequent etch processes. We have studied the effects of RF frequency and etch chemistry for dry developing DSA patterns. The results of the study showed a capacitively-coupled plasma (CCP) reactor with very high frequency (VHF) had superior pattern development after the block co-polymer (BCP) etch. The VHF CCP demonstrated minimal BCP height loss and line edge roughness (LER)/line width roughness (LWR). The advantage of CCP over ICP is the low dissociation so the etch rate of BCP is maintained low enough for process control. Additionally, the advantage of VHF is the low electron energy with a tight ion energy distribution that enables removal of the polymethyl methacrylate (PMMA) with good selectivity to polystyrene (PS) and minimal LER/LWR. Etch chemistries were evaluated on the VHF CCP to determine ability to treat the BCPs to increase etch resistance and feature resolution. The right combination of RF source frequencies and etch chemistry can help overcome the challenges of using DSA patterns to create good etch results.
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices
Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong
2018-01-01
Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759
Process technologies of MPACVD planar waveguide devices and fiber attachment
NASA Astrophysics Data System (ADS)
Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.
1999-03-01
Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.
NASA Astrophysics Data System (ADS)
Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik
2016-06-01
The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.
Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchoule, Sophie, E-mail: sophie.bouchoule@lpn.cnrs.fr; Cambril, Edmond; Guilet, Stephane
2015-09-15
Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven.more » Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.« less
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin
2015-05-01
Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr
Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that themore » Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.« less
Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems
NASA Technical Reports Server (NTRS)
Cappelli, Mark A.
1999-01-01
In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.
Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles
2014-01-01
We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection. PMID:24484636
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.
2012-09-15
The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate biasmore » reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.« less
Cryo-Etched Black Silicon for Use as Optical Black
NASA Technical Reports Server (NTRS)
Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.
2011-01-01
Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.
Research Activities at Plasma Research Laboratory at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya
2000-01-01
In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.
NASA Astrophysics Data System (ADS)
Hoekstra, Robert J.; Kushner, Mark J.
1996-03-01
Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.
Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics
NASA Astrophysics Data System (ADS)
Lee, Hyo-Chang
2018-03-01
Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied fields to find novel control knob and optimizing processing conditions.
Analysis of GaN Damage Induced by Cl2/SiCl4/Ar Plasma
NASA Astrophysics Data System (ADS)
Minami, Masaki; Tomiya, Shigetaka; Ishikawa, Kenji; Matsumoto, Ryosuke; Chen, Shang; Fukasawa, Masanaga; Uesawa, Fumikatsu; Sekine, Makoto; Hori, Masaru; Tatsumi, Tetsuya
2011-08-01
GaN-based optical devices are fabricated using a GaN/InGaN/GaN sandwiched structure. The effect of radicals, ions, and UV light on the GaN optical properties during Cl2/SiCl4/Ar plasma etching was evaluated using photoluminescence (PL) analysis. The samples were exposed to plasma (radicals, ions, and UV light) using an inductively coupled plasma (ICP) etching system and a plasma ion beam apparatus that can separate the effects of UV and ions both with and without covering the SiO2 window on the surface. Etching damage in an InGaN single quantum well (SQW) was formed by exposing the sample to plasma. The damage, which decreases PL emission intensity, was generated not only by ion beam irradiation but also by UV light irradiation. PL intensity decreased when the thickness of the upper GaN layer was etched to less than 60 nm. In addition, simultaneous irradiation of UV light and ions slightly increased the degree of damage. There seems to be a synergistic effect between the UV light and the ions. For high-quality GaN-based optoelectronics and power devices, UV light must be controlled during etching processes in addition to the etching profile, selectivity, and ion bombardment damage.
Cl 2-based dry etching of the AlGaInN system in inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Cho, Hyun; Vartuli, C. B.; Abernathy, C. R.; Donovan, S. M.; Pearton, S. J.; Shul, R. J.; Han, J.
1998-12-01
Cl 2-Based inductively coupled plasmas with low additional d.c. self-biases (-100 V) produce convenient etch rates (500-1500 Å·min -1) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas (Ar, N 2, H 2), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl 2 in the discharge for all three mixtures and to have an increase (decrease) in etch rate with source power (pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.
Rapid recipe formulation for plasma etching of new materials
NASA Astrophysics Data System (ADS)
Chopra, Meghali; Zhang, Zizhuo; Ekerdt, John; Bonnecaze, Roger T.
2016-03-01
A fast and inexpensive scheme for etch rate prediction using flexible continuum models and Bayesian statistics is demonstrated. Bulk etch rates of MgO are predicted using a steady-state model with volume-averaged plasma parameters and classical Langmuir surface kinetics. Plasma particle and surface kinetics are modeled within a global plasma framework using single component Metropolis Hastings methods and limited data. The accuracy of these predictions is evaluated with synthetic and experimental etch rate data for magnesium oxide in an ICP-RIE system. This approach is compared and superior to factorial models generated from JMP, a software package frequently employed for recipe creation and optimization.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, J.; Wang, H.; Zhu, L.; Wu, W.
2017-06-01
Lower Ti/Al/Ni/Au Ohmic contact resistance on AlGaN/GaN with wider rapid thermal annealing (RTA) temperature window was achieved using recessed Ohmic contact structure based on self-terminating thermal oxidation assisted wet etching technique (STOAWET), in comparison with conventional Ohmic contacts. Even at lower temperature such as 650°C, recessed structure by STOAWET could still obtain Ohmic contact with contact resistance of 1.97Ω·mm, while conventional Ohmic structure mainly featured as Schottky contact. Actually, both Ohmic contact recess and mesa isolation processes could be accomplished by STOAWET in one process step and the process window of STOAWET is wide, simplifying AlGaN/GaN HEMT device process. Our experiment shows that the isolation leakage current by STOAWET is about one order of magnitude lower than that by inductivity coupled plasma (ICP) performed on the same wafer.
Effect of the addition of SF6 and N2 in inductively coupled SiCl4 plasma for GaN etching
NASA Astrophysics Data System (ADS)
Oubensaid, E. H.; Duluard, C. Y.; Pichon, L. E.; Pereira, J.; Boufnichel, M.; Lefaucheux, P.; Dussart, R.; Ranson, P.
2009-07-01
The GaN etching by SiCl4 plasma is considered in an ICP tool. By respecting some material limitations, it has been possible to etch the gallium nitride in pure SiCl4 plasma, with an etch rate of 19 nm min-1. This result is comparable to other reported results. Thereafter, the combination of SiCl4 with SF6 and N2 was tested in order to increase the etch rate. The addition of SF6 in the plasma has enabled us to reach an etch rate of 53 nm min-1. However, best results were obtained with the addition of N2, with an increase of the etch rate by a factor of 6. Mass spectrometry was also performed in order to determine the effects of the additional gases. The surface morphology of the GaN was also analysed by scanning electron microscope after etching.
Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model
NASA Astrophysics Data System (ADS)
Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji
2018-04-01
In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.
Tunable MOEMS Fabry-Perot interferometer for miniaturized spectral sensing in near-infrared
NASA Astrophysics Data System (ADS)
Rissanen, A.; Mannila, R.; Tuohiniemi, M.; Akujärvi, A.; Antila, J.
2014-03-01
This paper presents a novel MOEMS Fabry-Perot interferometer (FPI) process platform for the range of 800 - 1050 nm. Simulation results including design and optimization of device properties in terms of transmission peak width, tuning range and electrical properties are discussed. Process flow for the device fabrication is presented, with overall process integration and backend dicing steps resulting in successful fabrication yield. The mirrors of the FPI consist of LPCVD (low-pressure chemical vapor) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapor. Silicon substrate below the optical aperture is removed by inductively coupled plasma (ICP) etching to ensure transmission in the visible - near infra-red (NIR), which is below silicon transmission range. The characterized optical properties of the chips are compared to the simulated values. Achieved optical aperture diameter size enables utilization of the chips in both imaging as well as single-point spectral sensors.
Characteristics of pulsed dual frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Seo, Jin Seok; Kim, Kyoung Nam; Kim, Ki Seok; Kim, Tae Hyung; Yeom, Geun Young
2015-01-01
To control the plasma characteristics more efficiently, a dual antenna inductively coupled plasma (DF-ICP) source composed of a 12-turn inner antenna operated at 2 MHz and a 3-turn outer antenna at 13.56 MHz was pulsed. The effects of pulsing to each antenna on the change of plasma characteristics and SiO2 etch characteristics using Ar/C4F8 gas mixtures were investigated. When the duty percentage was decreased from continuous wave (CW) mode to 30% for the inner or outer ICP antenna, decrease of the average electron temperature was observed for the pulsing of each antenna. Increase of the CF2/F ratio was also observed with decreasing duty percentage of each antenna, indicating decreased dissociation of the C4F8 gas due to the decreased average electron temperature. When SiO2 etching was investigated as a function of pulse duty percentage, increase of the etch selectivity of SiO2 over amorphous carbon layer (ACL) was observed while decreasing the SiO2 etch rate. The increase of etch selectivity was related to the change of gas dissociation characteristics, as observed by the decrease of average electron temperature and consequent increase of the CF2/F ratio. The decrease of the SiO2 etch rate could be compensated for by using the rf power compensated mode, that is, by maintaining the same time-average rf power during pulsing, instead of using the conventional pulsing mode. Through use of the power compensated mode, increased etch selectivity of SiO2/ACL similar to the conventional pulsing mode could be observed without significant decrease of the SiO2 etch rate. Finally, by using the rf power compensated mode while pulsing rf powers to both antennas, the plasma uniformity over the 300 mm diameter substrate could be improved from 7% for the CW conditions to about around 3.3% with the duty percentage of 30%.
High density plasma etching of magnetic devices
NASA Astrophysics Data System (ADS)
Jung, Kee Bum
Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3-rich to achieve the highest etch rates. Several different mask materials were investigated, including photoresist, thermal oxide and deposited oxide. Photoresist etches very rapidly in CO/NH 3 and use of a hard mask is necessary to achieve pattern transfer. Due to its physically dominated nature, the CO/NH3 chemistry appears suited to shallow etch depth (≤0.5mum) applications, but mask erosion leads to sloped feature sidewalls for deeper features.
2014-01-01
Aerosol deposition- (AD) derived barium titanate (BTO) micropatterns are etched via SF6/O2/Ar plasmas using inductively coupled plasma (ICP) etching technology. The reaction mechanisms of the sulfur hexafluoride on BTO thin films and the effects of annealing treatment are verified through X-ray photoelectron spectroscopy (XPS) analysis, which confirms the accumulation of reaction products on the etched surface due to the low volatility of the reaction products, such as Ba and Ti fluorides, and these residues could be completely removed by the post-annealing treatment. The exact peak positions and chemicals shifts of Ba 3d, Ti 2p, O 1 s, and F 1 s are deduced by fitting the XPS narrow-scan spectra on as-deposited, etched, and post-annealed BTO surfaces. Compared to the as-deposited BTOs, the etched Ba 3d 5/2 , Ba 3d 3/2 , Ti 2p 3/2 , Ti 2p 1/2 , and O 1 s peaks shift towards higher binding energy regions by amounts of 0.55, 0.45, 0.4, 0.35, and 0.85 eV, respectively. A comparison of the as-deposited film with the post-annealed film after etching revealed that there are no significant differences in the fitted XPS narrow-scan spectra except for the slight chemical shift in the O 1 s peak due to the oxygen vacancy compensation in O2-excessive atmosphere. It is inferred that the electrical properties of the etched BTO film can be restored by post-annealing treatment after the etching process. Moreover, the relative permittivity and loss tangent of the post-annealed BTO thin films are remarkably improved by 232% and 2,695%, respectively. PMID:25249824
NASA Astrophysics Data System (ADS)
Park, Sahnggi; Kim, Kap-Joong; Kim, Duk-Jun; Kim, Gyungock
2009-02-01
Third order ring resonators are designed and their resonance frequency deviations are analyzed experimentally by processing them with E-beam lithography and ICP etching in a CMOS nano-Fabrication laboratory. We developed a reliable method to identify and reduce experimentally the degree of deviation of each ring resonance frequency before completion of the fabrication process. The identified deviations can be minimized by the way to be presented in this paper. It is expected that this method will provide a significant clue to make a high order multi-channel ring resonators.
Micro-Fabricated Perforated Polymer Devices for Long-Term Drug Delivery
2011-02-24
conventional manufacturing methods. We have used a biocompatible polymer ( polyimide ) to serve as a reservoir and photolithographically produced microholes for...RIE with ICP source was used to etch holes on polyimide surface. Biocompatible materials Ti, SiO2 and SiNx were studied as mask materials. Ti film...used to fabricate micro holes on the surface of polyimide tubes. Several materials have been used to form the etching mask, including titanium film
Fabrication of vertical nanowire resonators for aerosol exposure assessment
NASA Astrophysics Data System (ADS)
Merzsch, Stephan; Wasisto, Hutomo Suryo; Stranz, Andrej; Hinze, Peter; Weimann, Thomas; Peiner, Erwin; Waag, Andreas
2013-05-01
Vertical silicon nanowire (SiNW) resonators are designed and fabricated in order to assess exposure to aerosol nanoparticles (NPs). To realize SiNW arrays, nanolithography and inductively coupled plasma (ICP) deep reactive ion etching (DRIE) at cryogenic temperature are utilized in a top-down fabrication of SiNW arrays which have high aspect ratios (i.e., up to 34). For nanolithography process, a resist film thickness of 350 nm is applied in a vacuum contact mode to serve as a mask. A pattern including various diameters and distances for creating pillars is used (i.e., 400 nm up to 5 μm). In dry etching process, the etch rate is set high of 1.5 μm/min to avoid underetching. The etch profiles of Si wires can be controlled aiming to have either perpendicularly, negatively or positively profiled sidewalls by adjusting the etching parameters (e.g., temperature and oxygen content). Moreover, to further miniaturize the wire, multiple sacrificial thermal oxidations and subsequent oxide stripping are used yielding SiNW arrays of 650 nm in diameter and 40 μm in length. In the resonant frequency test, a piezoelectric shear actuator is integrated with the SiNWs inside a scanning electron microscope (SEM) chamber. The observation of the SiNW deflections are performed and viewed from the topside of the SiNWs to reduce the measurement redundancy. Having a high deflection of ~10 μm during its resonant frequency of 452 kHz and a low mass of 31 pg, the proposed SiNW is potential for assisting the development of a portable aerosol resonant sensor.
2009-01-30
Fig. 7. ECV data for CH4/H2/Ar/Cl2/BCl3 and Cl2/ SiCl4 /Ar plasma etching. Ni < 1010/cm2. Subsequently, it was exposed to RIE...etching in either a CH4/H2/Ar/Cl2/BCl3 or a Cl2/ SiCl4 /Ar gas mixture which have been used to fabricate nanoposts for the IQB structures (see next...Argon +BCl3 as well as Inductive Coupled Plasma (ICP) etching using SiCl4 . Using both methods we were able to obtain 30-40 nm-diameter nanopoles on
Wei, Tongbo; Kong, Qingfeng; Wang, Junxi; Li, Jing; Zeng, Yiping; Wang, Guohong; Li, Jinmin; Liao, Yuanxun; Yi, Futing
2011-01-17
InGaN-based light emitting diodes (LEDs) with a top nano-roughened p-GaN surface are fabricated using self-assembled CsCl nano-islands as etch masks. Following formation of hemispherical GaN nano-island arrays, electroluminescence (EL) spectra of roughened LEDs display an obvious redshift due to partial compression release in quantum wells through Inductively Coupled Plasma (ICP) etching. At a 350-mA current, the enhancement of light output power of LEDs subjected to ICP treatment with durations of 50, 150 and 250 sec compared with conventional LED have been determined to be 9.2, 70.6, and 42.3%, respectively. Additionally, the extraction enhancement factor can be further improved by increasing the size of CsCl nano-island. The economic and rapid method puts forward great potential for high performance lighting devices.
Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha
2012-07-01
A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.
NASA Astrophysics Data System (ADS)
Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.
2015-01-01
To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.
2009-05-01
voltage (I-V) characteristics of several infrared LEDs, including a type-II W-well laser grown by Molecular Beam Epitaxy at Naval Research Laboratory...Injection Cavity (OPIC) lasers includes >4 um emission from a broadband laser and the measurement of spatial and temporal beam profiles. From August 2006...argon) at 15 mTorr, 400W ICP, and 70W RIE power, with an etch rate of 300 nm/min. Epitaxial ZnO layers were plasma etched using BCl3/SF0gas mixtures
2014-01-01
In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821
Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration
Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.; ...
2017-08-18
We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less
Deterministic Placement of Quantum-Size Controlled Quantum Dots for Seamless Top-Down Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Arthur J.; Anderson, P. Duke; Koleske, Daniel D.
We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individualmore » QDs directly confirm nonclassical, antibunching behavior. Lastly, our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.« less
NASA Astrophysics Data System (ADS)
Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C
2009-03-01
An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The downside of needing liquid nitrogen to perform cryogenic etching can be improved by using a new approach in which both the pulsed and mixed modes are combined into the so-called puffed mode. Alternatively, the use of tetra-ethyl-ortho-silicate (TEOS) as a silicon oxide precursor is proposed to enable sufficient inhibiting strength and improved profile control up to room temperature. Pulsed-mode processing, the second important aspect, is commonly performed in a cycle using two separate steps: etch and deposition. Sometimes, a three-step cycle is adopted using a separate step to clean the bottom of etching features. This study highlights an issue, known by the authors but not discussed before in the literature: the need for proper synchronization between gas and bias pulses to explore the benefit of three steps. The transport of gas from the mass flow controller towards the wafer takes time, whereas the application of bias to the wafer is relatively instantaneous. This delay causes a problem with respect to synchronization when decreasing the step time towards a value close to the gas residence time. It is proposed to upgrade the software with a delay time module for the bias pulses to be in pace with the gas pulses. If properly designed, the delay module makes it possible to switch on the bias exactly during the arrival of the gas for the bottom removal step and so it will minimize the ionic impact because now etch and deposition steps can be performed virtually without bias. This will increase the mask etch selectivity and lower the heat impact significantly. Moreover, the extra bottom removal step can be performed at (also synchronized!) low pressure and therefore opens a window for improved aspect ratios. The temperature control of the wafer, a third aspect of this study, at a higher etch rate and longer etch time, needs critical attention, because it drastically limits the DRIE performance. It is stressed that the exothermic reaction (high silicon loading) and ionic impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might raise the wafer temperature uncontrollably, and they show the weakness of the helium backside technique using mechanical clamping. Electrostatic clamping, an alternative technique, should minimize this problem because it is less susceptible to heat transfer when its thermal resistance and the gap of the helium backside cavity are minimized; however, it is not a subject of the current study. Because oxygen-growth-based etch processes (due to their ultra thin inhibiting layer) rely more heavily on a constant wafer temperature than fluorocarbon-based processes, oxygen etches are more affected by temperature fluctuations and drifts during the etching. The fourth outcome of this review is a phenomenological model, which explains and predicts many features with respect to loading, flow and pressure behaviour in DRIE equipment including a diffusion zone. The model is a reshape of the flow model constructed by Mogab, who studied the loading effect in plasma etching. Despite the downside of needing a cryostat, it is shown that—when selecting proper conditions—a cryogenic two-step pulsed mode can be used as a successful technique to achieve high speed and selective plasma etching with an etch rate around 25 µm min-1 (<1% silicon load) with nearly vertical walls and resist etch selectivity beyond 1000. With the model in hand, it can be predicted that the etch rate can be doubled (50 µm min-1 at an efficiency of 33% for the fluorine generation from the SF6 feed gas) by minimizing the time the free radicals need to pass the diffusion zone. It is anticipated that this residence time can be reduced sufficiently by a proper inductive coupled plasma (ICP) source design (e.g. plasma shower head and concentrator). In order to preserve the correct profile at such high etch rates, the pressure during the bottom removal step should be minimized and, therefore, the synchronized three-step pulsed mode is believed to be essential to reach such high etch rates with sufficient profile control. In order to improve the etch rate even further, the ICP power should be enhanced; the upgrading of the turbopump seems not yet to be relevant because the throttle valve in the current study had to be used to restrict the turbo efficiency. In order to have a versatile list of state-of-the-art references, it has been decided to arrange it in subjects. The categories concerning plasma physics and applications are, for example, books, reviews, general topics, fluorine-based plasmas, plasma mixtures with oxygen at room temperature, wafer heat transfer and high aspect ratio trench (HART) etching. For readers 'new' to this field, it is advisable to study at least one (but rather more than one) of the reviews concerning plasma as found in the first 30 references. In many cases, a paper can be classified into more than one category. In such cases, the paper is directed to the subject most suited for the discussion of the current review. For example, many papers on heat transfer also treat cryogenic conditions and all the references dealing with highly anisotropic behaviour have been directed to the category HARTs. Additional pointers could get around this problem but have the disadvantage of creating a kind of written spaghetti. I hope that the adapted organization structure will help to have a quick look at and understanding of current developments in high aspect ratio plasma etching. Enjoy reading... Henri Jansen 18 June 2008
Simulating industrial plasma reactors - A fresh perspective
NASA Astrophysics Data System (ADS)
Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash
2016-09-01
A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.
NASA Astrophysics Data System (ADS)
Fanara, Carlo; Shore, Paul; Nicholls, John R.; Lyford, Nicholas; Sommer, Phil; Fiske, Peter
2006-06-01
The next generation of 30-100 metre diameter extremely large telescopes (ELTs) requires large numbers of hexagonal primary mirror segments. As part of the Basic Technology programme run jointly by UCL and Cranfield University, a reactive atomic plasma technology (RAP(tm)) emerged from the US Lawrence Livermore National Laboratory (LLNL), is employed for the finishing of these surfaces. Results are presented on this novel etching technology. The Inductively Coupled Plasma (ICP) operated at atmospheric pressure using argon, activates the chemical species injected through its centre and promotes the fluorine-based chemical reactions at the surface. Process assessment trials on Ultra Low Expansion (ULE(tm)) plates, previously ground at high material removal rates, have been conducted. The quality of the surfaces produced on these samples using the RAP process are discussed. Substantial volumetric material removal rates of up to 0.446(21) mm 3/s at the highest process speed (1,200 mm/min) were found to be possible without pre-heating the substrate. The influences of power transfer, process speed and gas concentration on the removal rates have been determined. The suitability of the RAP process for revealing and removing sub-surface damage induced by high removal rate grinding is discussed. The results on SiC samples are reported elsewhere in this conference.
NASA Astrophysics Data System (ADS)
Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing
2018-06-01
The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernathy, C.R.; Hobson, W.S.; Hong, J.
1998-11-04
Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunctionmore » bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.« less
NASA Astrophysics Data System (ADS)
Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2011-10-01
A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.
A novel fabrication method for suspended high-aspect-ratio microstructures
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng
2005-11-01
Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).
A study of increasing radical density and etch rate using remote plasma generator system
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook
2013-09-01
To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.
A Transport Model for Non-Local Heating of Electrons in ICP Reactors
NASA Technical Reports Server (NTRS)
Chang, C. H.; Bose, Deepak; Arnold, James O. (Technical Monitor)
1998-01-01
A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements.
Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2001-01-01
Etching of semiconductor materials is reliant on plasma properties. Quantities such as ion and neutral fluxes, both in magnitude and in direction, are often determined by reactor geometry (height, radius, position of the coils, etc.) In order to obtain accurate etching profiles, one must also model the plasma as a whole to obtain local fluxes and distributions. We have developed a set of three models that simulates C12 plasmas for etching of silicon, ion and neutral trajectories in the plasma, and feature profile evolution. We have found that the location of the peak in the ion densities in the reactor plays a major role in determining etching uniformity across the wafer. For a stove top coil inductively coupled plasma (ICP), the ion density is peaked at the top of the reactor. This leads to nearly uniform neutral and ion fluxes across the wafer. A side coil configuration causes the ion density to peak near the sidewalls. Ion fluxes are thus greater toward the wall's and decrease toward the center. In addition, the ions bombard the wafer at a slight angle. This angle is sufficient to cause slanted profiles, which is highly undesirable.
Comparative evaluation of e-beam sensitive chemically amplified resists for mask making
NASA Astrophysics Data System (ADS)
Irmscher, Mathias; Beyer, Dirk; Butschke, Joerg; Constantine, Chris; Hoffmann, Thomas; Koepernik, Corinna; Krauss, Christian; Leibold, Bernd; Letzkus, Florian; Mueller, Dietmar; Springer, Reinhard; Voehringer, Peter
2002-07-01
Positive tone chemically amplified resists CAP209, EP012M (TOK), KRS-XE (JSR) and FEP171 (Fuji) were evaluated for mask making. The investigations were performed on an advanced tool set comprising of a Steag coater ASR5000, Steag developer ASP5000, 50kV e-beam writer Leica SB350, UNAXIS MASK ETCHER III , STS ICP silicon etcher and a CD-SEM KLA8100. We investigated and compared resolution, sensitivity, resist slope, dark field loss, CD-uniformity, line edge roughness, and etch resistance of the evaluated resists. Furthermore, the influence of post coating delay, post exposure delay and other process parameters on the resist performance was determined.
Effect of AZO deposition on antireflective property of Si subwavelength grating structures
NASA Astrophysics Data System (ADS)
Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.
2011-12-01
We investigate the effect of the aluminum-doped zinc oxide (AZO) deposition on the fabricated Si SWG structure on its antireflection characteristics for solar cell applications. The Si SWGs with the two-dimensional periodic nanostructure are fabricated by using holographic lithography and subsequent ICP etching process in SiCl4 plasma. For the antireflection analysis of AZO thin-film on the Si SWG structure, the optical reflectivity is measured experimentally. The maxima reflectance and its oscillation of the structure are significantly decreased on average than those of AZO thin-film on Si substrate over a wide wavelength range of 300-1100 nm, indicating average reflectance less than 4.5% with the maxima of <10%.
MEMS-based thermally-actuated image stabilizer for cellular phone camera
NASA Astrophysics Data System (ADS)
Lin, Chun-Ying; Chiou, Jin-Chern
2012-11-01
This work develops an image stabilizer (IS) that is fabricated using micro-electro-mechanical system (MEMS) technology and is designed to counteract the vibrations when human using cellular phone cameras. The proposed IS has dimensions of 8.8 × 8.8 × 0.3 mm3 and is strong enough to suspend an image sensor. The processes that is utilized to fabricate the IS includes inductive coupled plasma (ICP) processes, reactive ion etching (RIE) processes and the flip-chip bonding method. The IS is designed to enable the electrical signals from the suspended image sensor to be successfully emitted out using signal output beams, and the maximum actuating distance of the stage exceeds 24.835 µm when the driving current is 155 mA. Depending on integration of MEMS device and designed controller, the proposed IS can decrease the hand tremor by 72.5%.
Sung, Ho-Kun; Qiang, Tian; Yao, Zhao; Li, Yang; Wu, Qun; Lee, Hee-Kwan; Park, Bum-Doo; Lim, Woong-Sun; Park, Kyung-Ho; Wang, Cong
2017-06-20
This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF 6 with additive O 2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl 3 + N 2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl 2 + O 2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl 2 and 3.6 sccm O 2 . These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.
NASA Astrophysics Data System (ADS)
Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok
2018-01-01
Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.
NASA Astrophysics Data System (ADS)
Gatilova, Lina; Bouchoule, Sophie; Patriarche, Gilles; Guilet, Stephane
2011-08-01
We discuss the possibility of obtaining high-aspect-ratio etching of InP materials in Cl2- and HBr-based inductively coupled plasmas (ICP) with the addition of Si-containing gases (SiH4 or SiCl4). A vertical and smooth etching profile is demonstrated in SiCl4/H2 plasma. The effect of adding of a small amount of SiH4 to a previously optimised Cl2/H2 chemistry is presented, and new SiH4/Cl2 and SiH4/HBr chemistries are proposed. Ex-situ energy-dispersive X-ray spectroscopy coupled to transmission electron microscopy (EDX-TEM) is used to analyze the composition of the thin passivation layer deposited on the etched sidewalls. We show that it consists of a Si-rich silicon oxide (Si/O˜1) in Cl2/H2/SiH4 chemistry, and is changed to nano-crystalline (nc-) Si in SiH4/Cl2 chemistry depending on the SiH4 percentage. Moreover, we show that deep anisotropic etching of InP independent of the electrode coverplate material can be obtained via a SiOx passivation mechanism with the addition of Si-containing gases.
A transport model for non-local heating of electrons in ICP reactors
NASA Astrophysics Data System (ADS)
Chang, C. H.; Bose, Deepak
1998-10-01
A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements [Collison et al. JVST-A 16(1),1998].
NASA Astrophysics Data System (ADS)
Fiebrandt, Marcel; Oberberg, Moritz; Awakowicz, Peter
2017-07-01
The results of a Multipole Resonance Probe (MRP) are compared to a Langmuir probe in measuring the electron density in Ar, H2, N2, and O2 mixtures. The MRP was designed for measurements in industry processes, i.e., coating or etching. To evaluate a possible influence on the MRP measurement due to molecular gases, different plasmas with increasing molecular gas content in a double inductively coupled plasma at 5 Pa and 10 Pa at 500 W are used. The determined electron densities from the MRP and the Langmuir probe slightly differ in H2 and N2 diluted argon plasmas, but diverge significantly with oxygen. In pure molecular gas plasmas, electron densities measured with the MRP are always higher than those measured with the Langmuir Probe, in particular, in oxygen containing mixtures. The differences can be attributed to etching of the tungsten wire in the Ar:O2 mixtures and rf distortion in the pure molecular discharges. The influence of a non-Maxwellian electron energy distribution function, negative ions or secondary electron emission seems to be of no or only minor importance.
NASA Technical Reports Server (NTRS)
Bollinger, D.
1983-01-01
The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.
Dissolution of uranophane: An AFM, XPS, SEM and ICP study
NASA Astrophysics Data System (ADS)
Schindler, Michael; Freund, Michael; Hawthorne, Frank C.; Burns, Peter C.; Maurice, Patricia A.
2009-05-01
Dissolution experiments on single crystals of uranophane and uranophane-β, Ca(H 2O) 5[(UO 2)(SiO 3(OH)] 2, from the Shinkolobwe mine of the Democratic Republic of Congo, were done in an aqueous HCl solution of pH 3.5 for 3 h, in HCl solutions of pH 2 for 5, 10 and 30 min, and in Pb 2+-, Ba-, Sr-, Ca- and Mg-HCl solutions of pH 2 for 30 min. The basal surfaces of the treated uranophane crystals were examined using atomic-force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Solutions after dissolution experiments on single crystals and synthetic powders were analysed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectroscopy (ICP-MS). The morphology of the observed etch pits (measured by AFM) were compared to the morphology, predicted on the basis of the bond-valence deficiency of polyhedron chains along the edges of the basal surface. Etch pits form in HCl solutions of pH 2. Their decrease in depth with the duration of the dissolution experiment is explained with the stepwave dissolution model, which describes the lowering of the surrounding area of an etch pit with continuous waves of steps emanated from the etch pit into the rest of the crystal surface. Hillocks form in an HCl solution of pH 3.5, and the chemical composition of the surface (as indicated by XPS) shows that these hillocks are the result of the precipitation of a uranyl-hydroxy-hydrate phase. Well-orientated hillocks form on the surface of uranophane in a SrCl 2-HCl solution of pH 2. They are part of an aged silica coating of composition Si 2O 2(OH) 4(H 2O) n. An amorphous layer forms on the surface of uranophane in a MgCl 2-HCl solution of pH 2, which has a composition and structure similar to silicic acid. Small crystallites of uranyl-hydroxy-hydrate phases form on the surface of uranophane after treatment in Pb(NO 3) 2-HCl and BaCl 2-HCl solutions of pH 2. Dissolution experiments on synthetic uranophane powders show that in the early stage of the experiments, the dissolution rate of uranophane increase in the sequence Pb(NO 3) 2-HCl < BaCl 2-HCl < CaCl 2-HCl < HCl < SrCl 2-HCl < MgCl 2-HCl, indicating that the dissolution of uranophane is more enhanced in solutions containing divalent cations of small ionic radii and high Lewis acidity (Mg, MgCl +).
Predictive Modeling in Plasma Reactor and Process Design
NASA Technical Reports Server (NTRS)
Hash, D. B.; Bose, D.; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)
1997-01-01
Research continues toward the improvement and increased understanding of high-density plasma tools. Such reactor systems are lauded for their independent control of ion flux and energy enabling high etch rates with low ion damage and for their improved ion velocity anisotropy resulting from thin collisionless sheaths and low neutral pressures. Still, with the transition to 300 mm processing, achieving etch uniformity and high etch rates concurrently may be a formidable task for such large diameter wafers for which computational modeling can play an important role in successful reactor and process design. The inductively coupled plasma (ICP) reactor is the focus of the present investigation. The present work attempts to understand the fundamental physical phenomena of such systems through computational modeling. Simulations will be presented using both computational fluid dynamics (CFD) techniques and the direct simulation Monte Carlo (DSMC) method for argon and chlorine discharges. ICP reactors generally operate at pressures on the order of 1 to 10 mTorr. At such low pressures, rarefaction can be significant to the degree that the constitutive relations used in typical CFD techniques become invalid and a particle simulation must be employed. This work will assess the extent to which CFD can be applied and evaluate the degree to which accuracy is lost in prediction of the phenomenon of interest; i.e., etch rate. If the CFD approach is found reasonably accurate and bench-marked with DSMC and experimental results, it has the potential to serve as a design tool due to the rapid time relative to DSMC. The continuum CFD simulation solves the governing equations for plasma flow using a finite difference technique with an implicit Gauss-Seidel Line Relaxation method for time marching toward a converged solution. The equation set consists of mass conservation for each species, separate energy equations for the electrons and heavy species, and momentum equations for the gas. The sheath is modeled by imposing the Bohm velocity to the ions near the walls. The DSMC method simulates each constituent of the gas as a separate species which would be analogous in CFD to employing separate species mass, momentum, and energy equations. All particles including electrons are moved and allowed to collide with one another with the stipulation that the electrons remain tied to the ions consistent with the concept of ambipolar diffusion. The velocities of the electrons are allowed to be modified during collisions and are not confined to a Maxwellian distribution. These benefits come at a price in terms of computational time and memory. The DSMC and CFD are made as consistent as possible by using similar chemistry and power deposition models. Although the comparison of CFD and DSMC is interesting, the main goal of this work is the increased understanding of high-density plasma flowfields that can then direct improvements in both techniques. This work is unique in the level of the physical models employed in both the DSMC and CFD for high-density plasma reactor applications. For example, the electrons are simulated in the present DSMC work which has not been done before for low temperature plasma processing problems. In the CFD approach, for the first time, the charged particle transport (discharge physics) has been self-consistently coupled to the gas flow and heat transfer.
Simple fabrication of antireflective silicon subwavelength structure with self-cleaning properties.
Kim, Bo-Soon; Ju, Won-Ki; Lee, Min-Woo; Lee, Cheon; Lee, Seung-Gol; Beom-Hoan, O
2013-05-01
A subwavelength structure (SWS) was formed via a simple chemical wet etching using a gold (Au) catalyst. Single nano-sized Au particles were fabricated by metallic self-aggregation. The deposition and thermal annealing of the thin metallic film were carried out. Thermal annealing of a thin metallic film enables the creation of metal nano particles by isolating them from each other by means of the self-aggregation of the metal. After annealing, the samples were soaked in an aqueous etching solution of hydrofluoric acid and hydrogen peroxide. When silicon (Si) was etched for 2 minutes using the Au nano particles, the reflectance was decreased almost 0% over the entire wavelength range from 300 to 1300 nm due to its deep and steeply double tapered structure. When given varying incident angle degrees from 30 degrees to 60 degrees, the reflectance was also maintained at less than 3%. Following this, the etched silicon was treated with a plasma-polymerized fluorocarbon (PPFC) film of about 5 nm using an ICP reactor for surface modification. The result of this surface treatment, the contact angle increased significantly from 27.5 degrees to 139.3 degrees. The surface modification was successful and maintained almost 0% reflectance because of the thin film deposition.
Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching
NASA Astrophysics Data System (ADS)
Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng
2017-02-01
In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.
Modelling Of Chlorine Inductive Discharges
NASA Astrophysics Data System (ADS)
Chabert P.; Despiau-Pujo, E.
2010-07-01
III-V compounds such as GaAs, InP or GaN-based materials are increasingly important for their use in optoelectronic applications, especially in the telecommunications and light detection industries. Photonic devices including lasers, photodetectors or LEDs, require reliable etching processes characterized by high etch rate, profile control and low damage. Although many problems remain to be understood, inductively coupled discharges seem to be promising to etch such materials, using Cl2/Ar, Cl2/N2 and Cl2/H2 gas chemistries. Inductively coupled plasma (ICP) sources meet most of the requirements for efficient plasma processing such as high etch rates, high ion densities and low controllable ion energies. However, the presence of a negative ion population in the plasma alters the positive ion flux, reduces the electron density, changes the electron temperature, modifies the spatial structure of the discharge and can cause unstable operation. Several experimental studies and numerical simulation results have been published on inductively coupled Cl2/Ar plasmas but relatively few systematic comparisons of model predictions and experimental data have been reported in given reactor geometries under a wide range of op- erating conditions. Validation of numerical predictions is essential for chemically complex plasma processing and there is a need to benchmark the models with as many measurements as possible. In this paper, comparisons of 2D fluid simulations with experimental measurements of Ar/Cl2 plasmas in a low pressure ICP reactor are reported (Corr et al. 2008). The electron density, negative ion fraction and Cl atom density are investigated for various conditions of Ar/Cl2 ratio, gas pressure and applied RF power in H mode. Simulations show that the wall recombination coefficient of Cl atom (?) is a key parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for ? = 0.02, which is much lower than the value predicted for stainless steel walls (? = 0.6). This is consistent with reactor wall contaminations classi- cally observed in such discharges. The plasma electronegativity decreases with RF power and increases with Cl2 content. At high pressure, the power absorption and distribution of charged particles become more localized below the quartz window. Although the experi- mental trends are well reproduced by the model, the calculated charged particle densities are systematically overestimated by a factor of 3-5. The reasons for this discrepancy are discussed in the paper. Experimental studies have also shown that low-pressure inductive discharges operating with electronegative gases are subject to instabilities near the transition between capacitive (E) and inductive (H) modes. A global model, consisting of two particle balance equations and one energy balance equation, has been previously proposed to describe the instability mechanism in SF6/ArSF6 (Lieberman et al. 1999). This model, which agrees qualitatively well with experimental observations, leaves significant quantitative differences. In this work, this global model is revisited with Cl2 as the feedstock gas (Despiau-Pujo and Chabert 2009). An alternative treatment of the inductive power deposition is evaluated and chlorine chemistry is included. Old and new models are systematically compared. The alternative inductive coupling description slightly modifies the results. The effect of gas chemistry is even more pronounced. The instability window is smaller in pressure and larger in absorbed power, the frequency is higher and the amplitudes of oscillations are reduced. The feedstock gas is weakly dissociated (~16%) and Cl2+ is the dominant positive ion, which is consistent with the moderate electron density during the instability cycle.
NASA Astrophysics Data System (ADS)
Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.
2010-06-01
We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.
Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio
2018-04-27
Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.
Low-damage direct patterning of silicon oxide mask by mechanical processing
2014-01-01
To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891
NASA Astrophysics Data System (ADS)
Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih
2017-01-01
We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin
2013-05-01
The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).
Process margin enhancement for 0.25-μm metal etch process
NASA Astrophysics Data System (ADS)
Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey
2000-06-01
This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.
Biofunctionalized silicon nitride platform for sensing applications.
Hoi, Hiofan; Rezaie, Salva S; Gong, Lu; Sen, Payel; Zeng, Hongbo; Montemagno, Carlo; Gupta, Manisha
2018-04-15
Silicon nitride (SiN x ) based biosensors have the potential to converge on the technological achievements of semiconductor microfabrication and biotechnology. Development of biofunctionalized SiN x surface and its integration with other devices will allow us to integrate the biosensing capability with probe control, data acquisition and data processing. Here we use the hydrogen plasma generated by inductively coupled plasma-reactive ion etching (ICP-RIE) technique to produce amino-functionality on the surface of SiN x which can then be readily used for biomolecule immobilization. ICP-RIE produces high-density hydrogen ions/radicals at low energy, which produces high-density amino group on the SiN x surface within a short duration of time and with minimal surface damage. In this work, we have demonstrated selective amination of SiN x surface as compared to Si surface. The as-activated SiN x surface can be readily biofunctionalized with both protein and oligonucleotide through covalent immobilization. N-5-azido-2-nitrobenzoyloxysuccinimide, a photoactivable amino reactive bifunctional crosslinker, was used and greater than 90% surface coverage was achieved for protein immobilization. In addition, ssDNA immobilization and hybridization with its complemented strand was shown. Thus, we demonstrate a uniform, reliable, fast and economical technique for creating biofunctionalized SiN x surface that can be used for developing compact high-sensitivity biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling of low pressure plasma sources for microelectronics fabrication
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid
2017-10-01
Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E × B drift.
Introduction of pre-etch deposition techniques in EUV patterning
NASA Astrophysics Data System (ADS)
Xiang, Xun; Beique, Genevieve; Sun, Lei; Labonte, Andre; Labelle, Catherine; Nagabhirava, Bhaskar; Friddle, Phil; Schmitz, Stefan; Goss, Michael; Metzler, Dominik; Arnold, John
2018-04-01
The thin nature of EUV (Extreme Ultraviolet) resist has posed significant challenges for etch processes. In particular, EUV patterning combined with conventional etch approaches suffers from loss of pattern fidelity in the form of line breaks. A typical conventional etch approach prevents the etch process from having sufficient resist margin to control the trench CD (Critical Dimension), minimize the LWR (Line Width Roughness), LER (Line Edge Roughness) and reduce the T2T (Tip-to-Tip). Pre-etch deposition increases the resist budget by adding additional material to the resist layer, thus enabling the etch process to explore a wider set of process parameters to achieve better pattern fidelity. Preliminary tests with pre-etch deposition resulted in blocked isolated trenches. In order to mitigate these effects, a cyclic deposition and etch technique is proposed. With optimization of deposition and etch cycle time as well as total number of cycles, it is possible to open the underlying layers with a beneficial over etch and simultaneously keep the isolated trenches open. This study compares the impact of no pre-etch deposition, one time deposition and cyclic deposition/etch techniques on 4 aspects: resist budget, isolated trench open, LWR/LER and T2T.
NASA Technical Reports Server (NTRS)
Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)
1998-01-01
The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.
Single-crystal silicon trench etching for fabrication of highly integrated circuits
NASA Astrophysics Data System (ADS)
Engelhardt, Manfred
1991-03-01
The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Beheim, Glenn M.
2006-01-01
High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.
Analysis of InP-based single photon avalanche diodes based on a single recess-etching process
NASA Astrophysics Data System (ADS)
Lee, Kiwon
2018-04-01
Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.
Guiding gate-etch process development using 3D surface reaction modeling for 7nm and beyond
NASA Astrophysics Data System (ADS)
Dunn, Derren; Sporre, John R.; Deshpande, Vaibhav; Oulmane, Mohamed; Gull, Ronald; Ventzek, Peter; Ranjan, Alok
2017-03-01
Increasingly, advanced process nodes such as 7nm (N7) are fundamentally 3D and require stringent control of critical dimensions over high aspect ratio features. Process integration in these nodes requires a deep understanding of complex physical mechanisms to control critical dimensions from lithography through final etch. Polysilicon gate etch processes are critical steps in several device architectures for advanced nodes that rely on self-aligned patterning approaches to gate definition. These processes are required to meet several key metrics: (a) vertical etch profiles over high aspect ratios; (b) clean gate sidewalls free of etch process residue; (c) minimal erosion of liner oxide films protecting key architectural elements such as fins; and (e) residue free corners at gate interfaces with critical device elements. In this study, we explore how hybrid modeling approaches can be used to model a multi-step finFET polysilicon gate etch process. Initial parts of the patterning process through hardmask assembly are modeled using process emulation. Important aspects of gate definition are then modeled using a particle Monte Carlo (PMC) feature scale model that incorporates surface chemical reactions.1 When necessary, species and energy flux inputs to the PMC model are derived from simulations of the etch chamber. The modeled polysilicon gate etch process consists of several steps including a hard mask breakthrough step (BT), main feature etch steps (ME), and over-etch steps (OE) that control gate profiles at the gate fin interface. An additional constraint on this etch flow is that fin spacer oxides are left intact after final profile tuning steps. A natural optimization required from these processes is to maximize vertical gate profiles while minimizing erosion of fin spacer films.2
Comparative study of resist stabilization techniques for metal etch processing
NASA Astrophysics Data System (ADS)
Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.
1999-06-01
This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2013-10-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2012-03-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine
2016-01-15
The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S.
2014-08-04
Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ionsmore » implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.« less
Metal-assisted etch combined with regularizing etch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Joanne; Miller, Jeff; Jura, Michael
In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performingmore » a chemical etch which results in regularized openings in the silicon substrate.« less
Dry etching technologies for reflective multilayer
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori
2012-11-01
We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.
A Study on Ohmic Contact to Dry-Etched p-GaN
NASA Astrophysics Data System (ADS)
Hu, Cheng-Yu; Ao, Jin-Ping; Okada, Masaya; Ohno, Yasuo
Low-power dry-etching process has been adopted to study the influence of dry-etching on Ohmic contact to p-GaN. When the surface layer of as-grown p-GaN was removed by low-power SiCl4/Cl2-etching, no Ohmic contact can be formed on the low-power dry-etched p-GaN. The same dry-etching process was also applied on n-GaN to understand the influence of the low-power dry-etching process. By capacitance-voltage (C-V) measurement, the Schottky barrier heights (SBHs) of p-GaN and n-GaN were measured. By comparing the change of measured SBHs on p-GaN and n-GaN, it was suggested that etching damage is not the only reason responsible for the degraded Ohmic contacts to dry-etched p-GaN and for Ohmic contact formatin, the original surface layer of as-grown p-GaN have some special properties, which were removed by dry-etching process. To partially recover the original surface of as-grown p-GaN, high temperature annealing (1000°C 30s) was tried on the SiCl4/Cl2-etched p-GaN and Ohmic contact was obtained.
Dry etching technologies for the advanced binary film
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio
2011-11-01
ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.
Porous silicon formation during Au-catalyzed etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav
2014-04-28
The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition frommore » the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.« less
Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching
Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng
2017-01-01
In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement. PMID:28772521
NASA Technical Reports Server (NTRS)
Seabaugh, A. C.; Mattauch, R., J.
1983-01-01
In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.
Radicals are required for thiol etching of gold particles
Dreier, Timothy A.
2016-01-01
Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294
Dry etch challenges for CD shrinkage in memory process
NASA Astrophysics Data System (ADS)
Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji
2015-03-01
Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, M.; Lang, N.; Röpcke, J.
2015-01-19
Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less
Laser-driven fusion etching process
Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.
1987-08-25
The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.
Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist
NASA Astrophysics Data System (ADS)
Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho
2002-07-01
Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.
NASA Astrophysics Data System (ADS)
Li, Hailiang; Ye, Tianchun; Shi, Lina; Xie, Changqing
2017-12-01
We present a facile and effective approach for fabricating high aspect ratio, dense and vertical silicon nanopillar arrays, using a combination of metal etching following electron-beam lithography and Au metal assisted chemical etching (MacEtch). Ti/Au nanostructures used as catalysts in MacEtch are formed by single layer resist-based electron-beam exposure followed by ion beam etching. The effects of MacEtch process parameters, including half period, etching time, the concentrations of H2O2 and HF, etching temperature and drying method are systematically investigated. Especially, we demonstrate an enhancement of etching quality by employing cold MacEtch process, and an enhancement in preventing the collapse of high aspect ratio nanostructures by employing low surface tension rinse liquid and natural evaporation in the drying stage. Using an optimized MacEtch process, vertical silicon nanopillar arrays with a period of 250 nm and aspect ratio up to 160:1 are realized. Our results should be instructive for exploring the achievable aspect ratio limit in silicon nanostructures and may find potential applications in photovoltaic devices, thermoelectric devices and x-ray diffractive optics.
Radicals Are Required for Thiol Etching of Gold Particles.
Dreier, Timothy A; Ackerson, Christopher J
2015-08-03
Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trends in Dielectric Etch for Microelectronics Processing
NASA Astrophysics Data System (ADS)
Hudson, Eric A.
2003-10-01
Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.
Scalloping minimization in deep Si etching on Unaxis DSE tools
NASA Astrophysics Data System (ADS)
Lai, Shouliang; Johnson, Dave J.; Westerman, Russ J.; Nolan, John J.; Purser, David; Devre, Mike
2003-01-01
Sidewall smoothness is often a critical requirement for many MEMS devices, such as microfludic devices, chemical, biological and optical transducers, while fast silicon etch rate is another. For such applications, the time division multiplex (TDM) etch processes, so-called "Bosch" processes are widely employed. However, in the conventional TDM processes, rough sidewalls result due to scallop formation. To date, the amplitude of the scalloping has been directly linked to the silicon etch rate. At Unaxis USA Inc., we have developed a proprietary fast gas switching technique that is effective for scalloping minimization in deep silicon etching processes. In this technique, process cycle times can be reduced from several seconds to as little as a fraction of second. Scallop amplitudes can be reduced with shorter process cycles. More importantly, as the scallop amplitude is progressively reduced, the silicon etch rate can be maintained relatively constant at high values. An optimized experiment has shown that at etch rate in excess of 7 μm/min, scallops with length of 116 nm and depth of 35 nm were obtained. The fast gas switching approach offers an ideal manufacturing solution for MEMS applications where extremely smooth sidewall and fast etch rate are crucial.
Etching Behavior of Aluminum Alloy Extrusions
NASA Astrophysics Data System (ADS)
Zhu, Hanliang
2014-11-01
The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.
NASA Astrophysics Data System (ADS)
George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.
2006-03-01
It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.
Laser-driven fusion etching process
Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.
1989-01-01
The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
Selective dry etching of silicon containing anti-reflective coating
NASA Astrophysics Data System (ADS)
Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok
2018-03-01
Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2018-02-01
Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.
3D memory: etch is the new litho
NASA Astrophysics Data System (ADS)
Petti, Christopher
2018-03-01
This paper discusses the process challenges and limitations for 3D NAND processes, focusing on vertical 3D architectures. The effect of deep memory hole etches on die cost is calculated, with die cost showing a minimum at a given number of layers because of aspect-ratio dependent etch effects. Techniques to mitigate these etch effects are summarized, as are other etch issues, such as bowing and twisting. Metal replacement gate processes and their challenges are also described. Lastly, future directions of vertical 3D NAND technologies are explored.
Development and Research on the Mechanism of Novel Mist Etching Method for Oxide Thin Films
NASA Astrophysics Data System (ADS)
Kawaharamura, Toshiyuki; Hirao, Takashi
2012-03-01
A novel etching process with etchant mist was developed and applied to oxide thin films such as zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and indium tin oxide (ITO). By using this process, it was shown that precise control of the etching characteristics is possible with a reasonable etching rate, for example, in the range of 10-100 nm/min, and a fine pattern of high accuracy can also be realized, even though this is usually very difficult by conventional wet etching processes, for ZnO and ZnMgO. The mist etching process was found to be similarly and successfully applied to ITO. The mechanism of mist etching has been studied by examining the etching temperature dependence of pattern accuracy, and it was shown that the mechanism was different from that of conventional liquid-phase spray etching. It was ascertained that fine pattern etching was attained using mist droplets completely (or partly) gasified by the heat applied to the substrate. This technique was applied to the fabrication of a ZnO thin-film transistor (TFT) with a ZnO active channel length of 4 µm. The electrical properties of the TFT were found to be excellent with fine uniformity over the entire 4-in. wafer.
Making Porous Luminescent Regions In Silicon Wafers
NASA Technical Reports Server (NTRS)
Fathauer, Robert W.; Jones, Eric W.
1994-01-01
Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).
NASA Astrophysics Data System (ADS)
Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter
2017-04-01
Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.
NASA Astrophysics Data System (ADS)
Karecki, Simon; Chatterjee, Ritwik; Pruette, Laura; Reif, Rafael; Sparks, Terry; Beu, Laurie; Vartanian, Victor
2000-07-01
In this work, a combination of two hydrofluorocarbon compounds, pentafluoroethane (FC-125, C2HF5) and 1,1-difluoroethane (FC-152a, CF2H-CH3), was evaluated as a potential replacement for perfluorocompounds in dielectric etch applications. A high aspect ratio oxide via etch was used as the test vehicle for this study, which was conducted in a commercial inductively coupled high density plasma etch tool. Both process and emissions data were collected and compared to those provided by a process utilizing a standard perfluorinated etch chemistry (C2F6). Global warming (CF4, C2F6, CHF3) and hygroscopic gas (HF, SiF4) emissions were characterized using Fourier transform infrared (FTIR) spectroscopy. FC-125/FC-152a was found to produce significant reductions in global warming emissions, on the order of 68 to 76% relative to the reference process. Although etch stopping, caused by a high degree of polymer deposition inside the etched features, was observed, process data otherwise appeared promising for an initial study, with good resist selectivity and etch rates being achieved.
Submicron patterned metal hole etching
McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey
2000-01-01
A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.
Etch bias inversion during EUV mask ARC etch
NASA Astrophysics Data System (ADS)
Lajn, Alexander; Rolff, Haiko; Wistrom, Richard
2017-07-01
The introduction of EUV lithography to high volume manufacturing is now within reach for 7nm technology node and beyond (1), at least for some steps. The scheduling is in transition from long to mid-term. Thus, all contributors need to focus their efforts on the production requirements. For the photo mask industry, these requirements include the control of defectivity, CD performance and lifetime of their masks. The mask CD performance including CD uniformity, CD targeting, and CD linearity/ resolution, is predominantly determined by the photo resist performance and by the litho and etch processes. State-of-the-art chemically amplified resists exhibit an asymmetric resolution for directly and indirectly written features, which usually results in a similarly asymmetric resolution performance on the mask. This resolution gap may reach as high as multiple tens of nanometers on the mask level in dependence of the chosen processes. Depending on the printing requirements of the wafer process, a reduction or even an increase of this gap may be required. A potential way of tuning via the etch process, is to control the lateral CD contribution during etch. Aside from process tuning knobs like pressure, RF powers and gases, which usually also affect CD linearity and CD uniformity, the simplest knob is the etch time itself. An increased over etch time results in an increased CD contribution in the normal case. , We found that the etch CD contribution of ARC layer etch on EUV photo masks is reduced by longer over etch times. Moreover, this effect can be demonstrated to be present for different etch chambers and photo resists.
The research on conformal acid etching process of glass ceramic
NASA Astrophysics Data System (ADS)
Wang, Kepeng; Guo, Peiji
2014-08-01
A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.
Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.
2018-04-01
Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.
Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.
Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han
2016-10-01
The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.
Process for Smoothing an Si Substrate after Etching of SiO2
NASA Technical Reports Server (NTRS)
Turner, Tasha; Wu, Chi
2003-01-01
A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas flowing at 75 to 125 stdcm3/min, power between 44 and 55 W, and pressure between 50 and 100 mtorr (between 6.7 and 13.3 Pa).
Effects of wet etch processing on laser-induced damage of fused silica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.
1998-12-22
Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less
Graphene nanoribbons: Relevance of etching process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.
2015-05-14
Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less
NASA Astrophysics Data System (ADS)
Tinck, S.; Boullart, W.; Bogaerts, A.
2011-08-01
In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki
2017-06-01
The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.
NASA Astrophysics Data System (ADS)
Li, Kun-Dar; Miao, Jin-Ru
2018-02-01
To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.
Deep Etching Process Developed for the Fabrication of Silicon Carbide Microsystems
NASA Technical Reports Server (NTRS)
Beheim, Glenn M.
2000-01-01
Silicon carbide (SiC), because of its superior electrical and mechanical properties at elevated temperatures, is a nearly ideal material for the microminiature sensors and actuators that are used in harsh environments where temperatures may reach 600 C or greater. Deep etching using plasma methods is one of the key processes used to fabricate silicon microsystems for more benign environments, but SiC has proven to be a more difficult material to etch, and etch depths in SiC have been limited to several micrometers. Recently, the Sensors and Electronics Technology Branch at the NASA Glenn Research Center at Lewis Field developed a plasma etching process that was shown to be capable of etching SiC to a depth of 60 mm. Deep etching of SiC is achieved by inductive coupling of radiofrequency electrical energy to a sulfur hexafluoride (SF6) plasma to direct a high flux of energetic ions and reactive fluorine atoms to the SiC surface. The plasma etch is performed at a low pressure, 5 mtorr, which together with a high gas throughput, provides for rapid removal of the gaseous etch products. The lateral topology of the SiC microstructure is defined by a thin film of etch-resistant material, such as indium-tin-oxide, which is patterned using conventional photolithographic processes. Ions from the plasma bombard the exposed SiC surfaces and supply the energy needed to initiate a reaction between SiC and atomic fluorine. In the absence of ion bombardment, no reaction occurs, so surfaces perpendicular to the wafer surface (the etch sidewalls) are etched slowly, yielding the desired vertical sidewalls.
In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics
NASA Astrophysics Data System (ADS)
Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.
2014-07-01
Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.
Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.
Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao
2016-04-10
HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6 W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.
Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications
M. N, M. Nuzaihan; Hashim, U.; Md Arshad, M. K.; Ruslinda, A. Rahim; Rahman, S. F. A.; Fathil, M. F. M.; Ismail, Mohd. H.
2016-01-01
A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications. PMID:27022732
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanova, M. A.; Zyryanov, S. M.; Faculty of Physics, Moscow State University, MSU, Moscow
Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtualmore » IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization in the sheath on the origin and intensity of low-energy peaks in IED is discussed compared to ion charge-exchange collisions. Obviously, the extrapolation of the “virtual IED sensor” approach to higher pressures requires developing some other sheath models, taking into account both ion and electron collisions and probably including even a model of the whole plasma volume instead of plasma sheath one.« less
Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures
NASA Astrophysics Data System (ADS)
Dunaev, A. V.; Murin, D. B.
2018-04-01
Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.
Method for anisotropic etching in the manufacture of semiconductor devices
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)
1993-01-01
Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.
Method for anisotropic etching in the manufacture of semiconductor devices
Koontz, Steven L.; Cross, Jon B.
1993-01-01
Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.
NASA Astrophysics Data System (ADS)
Welch, Kevin; Leonard, Jerry; Jones, Richard D.
2010-08-01
Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.
Plasma processing of superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Upadhyay, Janardan
The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.
Fabrication of a novel quartz micromachined gyroscope
NASA Astrophysics Data System (ADS)
Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong
2015-04-01
A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.
Numerical analysis of effects of ion-neutral collision processes on RF ICP discharge
NASA Astrophysics Data System (ADS)
Nishida, K.; Mattei, S.; Lettry, J.; Hatayama, A.
2018-01-01
The discharge process of a radiofrequency (RF) inductively coupled plasma (ICP) has been modeled by an ElectroMagnetic Particle-in-Cell Monte Carlo Collision method (EM PIC-MCC). Although the simulation had been performed by our previous model to investigate the discharge mode transition of the RF ICP from a kinetic point of view, the model neglected the collision processes of ions (H+ and H2+) with neutral particles. In this study, the RF ICP discharge process has been investigated by the latest version of the model which takes the ion-neutral collision processes into account. The basic characteristics of the discharge mode transition provided by the previous model have been verified by the comparison between the previous and present results. As for the H-mode discharge regime, on the other hand, the ion-neutral collisions play an important role in evaluating the growth of the plasma. Also, the effect of the ion-neutral collisions on the kinetic feature of the plasma has been investigated, which has highlighted the importance of kinetic perspective for modeling the RF ICP discharge.
Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken
2011-10-01
Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.
NASA Astrophysics Data System (ADS)
Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan
2015-12-01
Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-07-01
Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c
New Deep Reactive Ion Etching Process Developed for the Microfabrication of Silicon Carbide
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Beheim, Glenn M.
2005-01-01
Silicon carbide (SiC) is a promising material for harsh environment sensors and electronics because it can enable such devices to withstand high temperatures and corrosive environments. Microfabrication techniques have been studied extensively in an effort to obtain the same flexibility of machining SiC that is possible for the fabrication of silicon devices. Bulk micromachining using deep reactive ion etching (DRIE) is attractive because it allows the fabrication of microstructures with high aspect ratios (etch depth divided by lateral feature size) in single-crystal or polycrystalline wafers. Previously, the Sensors and Electronics Branch of the NASA Glenn Research Center developed a DRIE process for SiC using the etchant gases sulfur hexafluoride (SF6) and argon (Ar). This process provides an adequate etch rate of 0.2 m/min and yields a smooth surface at the etch bottom. However, the etch sidewalls are rougher than desired, as shown in the preceding photomicrograph. Furthermore, the resulting structures have sides that slope inwards, rather than being precisely vertical. A new DRIE process for SiC was developed at Glenn that produces smooth, vertical sidewalls, while maintaining an adequately high etch rate.
Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process
Ruby, Douglas S.; Schubert, William K.; Gee, James M.
1999-01-01
A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.
Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process
Ruby, D.S.; Schubert, W.K.; Gee, J.M.
1999-02-16
A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
2009-01-01
We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS) on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP) ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR) coatings and SWS and a 0.8% improvement in efficiency has been seen. PMID:20596409
Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod
2015-01-01
Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120
Metal ion transport quantified by ICP-MS in intact cells
Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.
2016-01-01
The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181
Metal ion transport quantified by ICP-MS in intact cells.
Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A
2016-02-03
The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.
Modeling of block copolymer dry etching for directed self-assembly lithography
NASA Astrophysics Data System (ADS)
Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas
2018-03-01
Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.
Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.
Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong
2013-01-01
We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.
NASA Astrophysics Data System (ADS)
Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho
2013-09-01
Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.
Valentijn, Pim P; Ruwaard, Dirk; Vrijhoef, Hubertus J M; de Bont, Antoinette; Arends, Rosa Y; Bruijnzeels, Marc A
2015-10-09
Collaborative partnerships are considered an essential strategy for integrating local disjointed health and social services. Currently, little evidence is available on how integrated care arrangements between professionals and organisations are achieved through the evolution of collaboration processes over time. The first aim was to develop a typology of integrated care projects (ICPs) based on the final degree of integration as perceived by multiple stakeholders. The second aim was to study how types of integration differ in changes of collaboration processes over time and final perceived effectiveness. A longitudinal mixed-methods study design based on two data sources (surveys and interviews) was used to identify the perceived degree of integration and patterns in collaboration among 42 ICPs in primary care in The Netherlands. We used cluster analysis to identify distinct subgroups of ICPs based on the final perceived degree of integration from a professional, organisational and system perspective. With the use of ANOVAs, the subgroups were contrasted based on: 1) changes in collaboration processes over time (shared ambition, interests and mutual gains, relationship dynamics, organisational dynamics and process management) and 2) final perceived effectiveness (i.e. rated success) at the professional, organisational and system levels. The ICPs were classified into three subgroups with: 'United Integration Perspectives (UIP)', 'Disunited Integration Perspectives (DIP)' and 'Professional-oriented Integration Perspectives (PIP)'. ICPs within the UIP subgroup made the strongest increase in trust-based (mutual gains and relationship dynamics) as well as control-based (organisational dynamics and process management) collaboration processes and had the highest overall effectiveness rates. On the other hand, ICPs with the DIP subgroup decreased on collaboration processes and had the lowest overall effectiveness rates. ICPs within the PIP subgroup increased in control-based collaboration processes (organisational dynamics and process management) and had the highest effectiveness rates at the professional level. The differences across the three subgroups in terms of the development of collaboration processes and the final perceived effectiveness provide evidence that united stakeholders' perspectives are achieved through a constructive collaboration process over time. Disunited perspectives at the professional, organisation and system levels can be aligned by both trust-based and control-based collaboration processes.
CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.
Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O
2013-02-20
The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Young-Hyun; Seo, Kyoung-Sun; Cho, Young-Ho; Lee, Sang-Shin; Song, Ki-Chang; Bu, Jong-Uk
2004-12-01
We present an silicon-on-insulator (SOI) optical microswitch, composed of silicon waveguides and electrostatically actuated gold-coated silicon micromirrors integrated with laser diode (LD) receivers and photo diode (PD) transmitters. For a low switching voltage, we modify the conventional curved electrode microactuator into a new microactuator with touch-down beams. We fabricate the waveguides and the actuated micromirror using the inductively coupled plasma (ICP) etching process of SOI wafers. The fabricated microswitch operates at the switching voltage of 31.7 ± 4 V with the resonant frequency of 6.89 kHz. Compared to the conventional microactuator, the touch-down beam microactuator achieves 77.4% reduction of the switching voltage. We observe the single mode wave propagation through the silicon waveguide with the measured micromirror loss of 4.18 ± 0.25 dB. We discuss a feasible method to achieve the switching voltage lower than 10 V by reducing the residual stress in the insulation layers of touch-down beams to the level of 30 MPa. We also analyze the major source of micromirror loss, thereby presenting design guidelines for low-loss micromirror switches.
NASA Astrophysics Data System (ADS)
Iliadis, Agisilaos A.; Christou, Aristos
2003-07-01
The design, fabrication and performance of low threshold selectively oxidized infrared vertical cavity surface emitting lasers (VCSELs) for operation at 0.89μm and 1.55μm wavelengths using optimized graded Bragg mirrors, is reported. The devices are based on III-V ternary (AlGaAs/GaAs) and quaternary (AlInGaAs/GaInAsP/InP) graded semiconductor alloys and quantum wells and are grown by Molecular Beam Epitaxy. The VCSEL arrays are processed using inductively coupled plasma (ICP) etching with BCl3 gas mixtures to achieve vertical walls and small geometries, and the fabrication of the devices proceeds by using conventional Ohmic contacts (Ti-Pt-Au and Ni-Au-Ge-Ni) and indium tin oxide (ITO) transparent contacts. The theoretical investigation of the optical properties of the quaternary compound semiconductor alloys allows us to select the optimum materials for highly reflective Bragg mirrors with less periods. The simulation of the designed VCSEL performance has been carried out by evaluation of the important laser characteristics such as threshold gain, threshold current density and external quantum efficiency.
EUV process establishment through litho and etch for N7 node
NASA Astrophysics Data System (ADS)
Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming
2016-03-01
Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.
Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes
Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.
2017-01-01
This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683
Low damage dry etch for III-nitride light emitters
NASA Astrophysics Data System (ADS)
Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.
2015-08-01
We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.
Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...
2015-01-28
We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less
Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.
Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E
2008-06-25
Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang
2010-10-01
Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.
NASA Astrophysics Data System (ADS)
Matsui, Miyako; Kuwahara, Kenichi
2018-06-01
A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.
Photo-assisted etching of silicon in chlorine- and bromine-containing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Weiye; Sridhar, Shyam; Liu, Lei
2014-05-28
Cl{sub 2}, Br{sub 2}, HBr, Br{sub 2}/Cl{sub 2}, and HBr/Cl{sub 2} feed gases diluted in Ar (50%–50% by volume) were used to study etching of p-type Si(100) in a rf inductively coupled, Faraday-shielded plasma, with a focus on the photo-assisted etching component. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br{sub 2}/Ar and HBr/Cl{sub 2}/Ar plasmas having the lowest and highest sub-threshold etching rates, respectively. Sub-threshold etching rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) andmore » Ar emission intensity (7504 Å). Etching rates measured under MgF{sub 2}, quartz, and opaque windows showed that sub-threshold etching is due to photon-stimulated processes on the surface, with vacuum ultraviolet photons being much more effective than longer wavelengths. Scanning electron and atomic force microscopy revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. Photo-assisted etching in Cl{sub 2}/Ar plasmas resulted in the formation of 4-sided pyramidal features with bases that formed an angle of 45° with respect to 〈110〉 cleavage planes, suggesting that photo-assisted etching can be sensitive to crystal orientation.« less
Flynn, Shauna P; Bogan, Justin; Lundy, Ross; Khalafalla, Khalafalla E; Shaw, Matthew; Rodriguez, Brian J; Swift, Paul; Daniels, Stephen; O'Connor, Robert; Hughes, Greg; Kelleher, Susan M
2018-08-31
Self-assembling block copolymer (BCP) patterns are one of the main contenders for the fabrication of nanopattern templates in next generation lithography technology. Transforming these templates to hard mark materials is key for pattern transfer and in some cases, involves selectively removing one block from the nanopattern. For poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), a high χ BCP system which could be potentially incorporated into semiconductor nanofabrication, this selective removal is predominantly done by a wet etch/activation process. Conversely, this process has numerous disadvantages including lack of control and high generation of waste leading to high cost. For these reasons, our motivation was to move away from the wet etch process and optimise a dry etch which would overcome the limitations associated with the activation process. The work presented herein shows the development of a selective plasma etch process for the removal of P4VP cores from PS-b-P4VP nanopatterned film. Results have shown that a nitrogen reactive ion etch plasma has a selectivity for P4VP of 2.2:1 and suggest that the position of the nitrogen in the aromatic ring of P4VP plays a key role in this selectivity. In situ plasma etching and x-ray photoelectron spectrometry measurements were made without breaking vacuum, confirming that the nitrogen plasma has selectivity for removal of P4VP over PS.
1986-05-01
METHYL NETHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM A THESIS Presented to the Faculty of The University of Texas Graduate School of...were cast utilizing the manufacturer’s directions for investment, burnout , and casting. Two groups of metal specimens were prepared: 20 for...STRENGTHS OF POLY (METHYL METHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM JOHN EDWARD ZURASKY, M.S. The University of Texas Graduate School
High rate dry etching of InGaZnO by BCl3/O2 plasma
NASA Astrophysics Data System (ADS)
Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol
2011-08-01
This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.
Sequential infiltration synthesis for enhancing multiple-patterning lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.
ICPS Turnover GSDO Employee Event
2017-11-07
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a ceremony is underway marking the agency's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turning over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS), to the center's Ground Systems Development and Operations (GSDO) Directorate. The ICPS is seen on the left in its shipping container and is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.
NASA Astrophysics Data System (ADS)
Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.
2017-08-01
During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.
Isotropic plasma etching of Ge Si and SiN x films
Henry, Michael David; Douglas, Erica Ann
2016-08-31
This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF 3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiN x are described with etch rate reductions achieved by adjusting plasma chemistry with O 2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiN x etch rates while retarding Ge etching.
A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics
NASA Astrophysics Data System (ADS)
Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.
2017-03-01
Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.
Chemical etching and organometallic chemical vapor deposition on varied geometries of GaAs
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.
1989-01-01
Results of micron-spaced geometries produced by wet chemical etching and subsequent OMCVD growth on various GaAs surfaces are presented. The polar lattice increases the complexity of the process. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher-order planes produced by the hex groove etching.
Alternating SiCl4/O2 passivation steps with SF6 etch steps for silicon deep etching
NASA Astrophysics Data System (ADS)
Duluard, C. Y.; Ranson, P.; Pichon, L. E.; Pereira, J.; Oubensaid, E. H.; Lefaucheux, P.; Puech, M.; Dussart, R.
2011-06-01
Deep etching of silicon has been investigated in an inductively coupled plasma etch reactor using short SiCl4/O2 plasma steps to passivate the sidewalls of the etched structures. A study was first carried out to define the appropriate parameters to create, at a substrate temperature of -20 °C, a passivation layer by SiCl4/O2 plasma that resists lateral chemical etching in SF6 plasma. The most efficient passivation layer was obtained for a SiCl4/O2 gas flow ratio of 2:1, a pressure of 1 Pa and a source power of 1000 W. Ex situ analyses on a film deposited with these parameters show that it is very rich in oxygen. Silicon etching processes that alternate SF6 plasma etch steps with SiCl4/O2 plasma passivation steps were then developed. Preliminary tests in pulsed-mode conditions have enabled etch rates greater than 2 µm min-1 with selectivities higher than 220. These results show that it is possible to develop a silicon deep etching process at substrate temperatures around -20 °C that uses low SiCl4 and O2 gas flows instead of conventional fluorocarbon gases for sidewall protection.
Anisotropic etching of silicon in solutions containing tensioactive compounds
NASA Astrophysics Data System (ADS)
Zubel, Irena
2016-12-01
The results of investigations concerning anisotropic etching in 3M KOH and 25% TMAH solutions modified by tensioactive compounds such as alcohols, diols and a typical surfactant Triton X100 have been compared. Etching anisotropy was assessed on the basis of etch rates ratio V(110)/V(100). It was stated that the relation between surface tension of the solutions and etch rates of particular planes depend not only on the kind of surfactant but also on the kind of etching solution (KOH, TMAH). It points out an important role of TMA+ ions in the etching process, probably in the process of forming an adsorption layer, consisting of the molecules of tensioactive compounds on Si surface, which decides about etch rate. We have observed that this phenomenon occurs only at high concentration of TMA+ ions (25% TMAH). Reduction of TMAH concentration changes the properties of surfactant containing TMAH solutions. From all investigated solutions, the solutions that assured developing of (110) plane inclined at the angle of 45° to (100) substrate were selected. Such planes can be used as micromirrors in MOEMS structures. The solutions provide the etch rate ratio V(110)/V(100)<0.7, thus they were selected from hydroxide solutions containing surfactants. A simple way for etch rate anisotropy V(110)/V(100) assessment based on microscopic images etched structures has been proposed.
Deterministic Nanopatterning of Diamond Using Electron Beams.
Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos
2018-03-27
Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.
Vapor etching of nuclear tracks in dielectric materials
Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.
2000-01-01
A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.
NASA Technical Reports Server (NTRS)
Kane, R. D.; Petrovic, J. J.; Ebert, L. J.
1975-01-01
Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.
An investigation of supercritical-CO2 copper electroplating parameters for application in TSV chips
NASA Astrophysics Data System (ADS)
Chuang, Ho-Chiao; Lai, Wei-Hong; Sanchez, Jorge
2015-01-01
This study uses supercritical electroplating for the filling of through silicon vias (TSVs) in chips. The present study utilizes the inductively coupled plasma reactive ion etching (ICP RIE) process technique to etch the TSVs and discusses different supercritical-CO2 electroplating parameters, such as the supercritical pressure, the electroplating current density’s effect on the TSV Cu pillar filling time, the I-V curve, the electrical resistance and the hermeticity. In addition, the results for all the tests mentioned above have been compared to results from traditional electroplating techniques. For the testing, we will first discuss the hermeticity of the TSV Cu pillars, using a helium leaking test apparatus to assess the vacuum sealing of the fabricated TSV Cu pillars. In addition, this study also conducts tests for the electrical properties, which include the measurement of the electrical resistance of the TSV at both ends in the horizontal direction, followed by the passing of a high current (10 A, due to probe limitations) to check if the TSV can withstand it without burnout. Finally, the TSV is cut in half in cross-section to observe the filling of Cu pillars by the supercritical electroplating and check for voids. The important characteristic of this study is the use of the supercritical electroplating process without the addition of any surfactants to aid the filling of the TSVs, but by taking advantage of the high permeability and low surface tension of supercritical fluids to achieve our goal. The results of this investigation point to a supercritical pressure of 2000 psi and a current density of 3 A dm-2 giving off the best electroplating filling and hermeticity, while also being able to withstand a high current of 10 A, with a relatively short electroplating time of 3 h (when compared to our own traditional dc electroplating).
Military Department Requirements for Currently Procured Wholesale Inventories for Consumable Items
1991-06-28
The Military Departments have 13 major inventory control points (ICP’s) that provide logistics support to military customers to maximize the...Military Departments’ ICP’s managed approximately 1.1 million consumable line items for which wholesale inventories valued at $13.1 billion were held. In...August 1989, the ICP’s were in the process of procuring approximately $3.5 billion of stock for 77,650 consumable line items. The procurement process at
NASA Astrophysics Data System (ADS)
Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru
2012-07-01
The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.
A novel methodology for litho-to-etch pattern fidelity correction for SADP process
NASA Astrophysics Data System (ADS)
Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng
2017-03-01
For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.
Demonstration of an N7 integrated fab process for metal oxide EUV photoresist
NASA Astrophysics Data System (ADS)
De Simone, Danilo; Mao, Ming; Kocsis, Michael; De Schepper, Peter; Lazzarino, Frederic; Vandenberghe, Geert; Stowers, Jason; Meyers, Stephen; Clark, Benjamin L.; Grenville, Andrew; Luong, Vinh; Yamashita, Fumiko; Parnell, Doni
2016-03-01
Inpria has developed a directly patternable metal oxide hard-mask as a robust, high-resolution photoresist for EUV lithography. In this paper we demonstrate the full integration of a baseline Inpria resist into an imec N7 BEOL block mask process module. We examine in detail both the lithography and etch patterning results. By leveraging the high differential etch resistance of metal oxide photoresists, we explore opportunities for process simplification and cost reduction. We review the imaging results from the imec N7 block mask patterns and its process windows as well as routes to maximize the process latitude, underlayer integration, etch transfer, cross sections, etch equipment integration from cross metal contamination standpoint and selective resist strip process. Finally, initial results from a higher sensitivity Inpria resist are also reported. A dose to size of 19 mJ/cm2 was achieved to print pillars as small as 21nm.
Heterogeneous processes in CF4/O2 plasmas probed using laser-induced fluorescence of CF2
NASA Astrophysics Data System (ADS)
Hansen, S. G.; Luckman, G.; Nieman, George C.; Colson, Steven D.
1990-09-01
Laser-induced fluorescence of CF2 is used to monitor heterogeneous processes in ≊300 mTorr CF4/O2 plasmas. CF2 is rapidly removed at fluorinated copper and silver surfaces in 13.56-MHz rf discharges as judged by a distinct dip in its spatial distribution. These metals, when employed as etch masks, are known to accelerate plasma etching of silicon, and the present results suggest catalytic dehalogenation of CF2 is involved in this process. In contrast, aluminum and silicon dioxide exhibit negligible reactivity with CF2, which suggests that aluminum masks will not appreciably accelerate silicon etching and that ground state CF2 does not efficiently etch silicon dioxide. Measurement of CF2 decay in a pulsed discharge coupled with direct laser sputtering of metal into the gas phase indicates the interaction between CF2 and the active metals is purely heterogeneous. Aluminum does, however, exhibit homogeneous reactivity with CF2. Redistribution of active metal by plasma sputtering readily occurs; silicon etch rates may also be enhanced by the metal's presence on the silicon surface. Polymers contribute CF2 to the plasma as they etch. The observation of an induction period suggests fluorination of the polymer surface is the first step in its degradation. Polymeric etch masks can therefore depress the silicon etch rate by removal of F atoms, the primary etchants.
Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching.
Jin, Chenning; Yu, Bingjun; Xiao, Chen; Chen, Lei; Qian, Linmao
2016-12-01
Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is found that the height of the hillock produced by selective etching increases with the etching temperature before the collapse of the hillock. The temperature-dependent selective etching rate can be fitted well by the Arrhenius equation. The etching at higher temperature can cause rougher silicon surface with a little lower elastic modulus and hardness. The contact angle of the etched silicon surface decreases with the etching temperature. It is also noted that no obvious contamination can be detected on silicon surface after etching at different temperatures. As a result, the optimized condition for the selective etching was addressed. The present study provides a new insight into the control and application of friction-induced selective nanofabrication.
NASA Astrophysics Data System (ADS)
de Buttet, Côme; Prevost, Emilie; Campo, Alain; Garnier, Philippe; Zoll, Stephane; Vallier, Laurent; Cunge, Gilles; Maury, Patrick; Massin, Thomas; Chhun, Sonarith
2017-03-01
Today the IC manufacturing faces lots of problematics linked to the continuous down scaling of printed structures. Some of those issues are related to wet processing, which are often used in the IC manufacturing flow for wafer cleaning, material etching and surface preparation. In the current work we summarize the limitations for the next nodes of wet processing such as metallic contaminations, wafer charging, corrosion and pattern collapse. As a replacement, we promoted the isotropic chemical dry etching (CDE) which is supposed to fix all the above drawbacks. Etching steps of SI3N4 layers were evaluated in order to prove the interest of such technique.
Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2
NASA Technical Reports Server (NTRS)
Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam
1990-01-01
This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.
NASA Astrophysics Data System (ADS)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.
2017-02-01
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C4F8 and CHF3) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO2 and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF3 has a lower FC deposition yield for both SiO2 and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F8. The thickness of deposited FC layers using CHF3 is found to be greater for Si than for SiO2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.
NASA Astrophysics Data System (ADS)
Frankiewicz, Christophe; Zoueshtiagh, Farzam; Talbi, Abdelkrim; Streque, Jérémy; Pernod, Philippe; Merlen, Alain
2014-11-01
A fluorine-based reactive ion etching (RIE) process has been applied on a new family of silicone elastomers named ‘Silastic S’ for the first time. Excellent mechanical properties are the principal advantage of this elastomer. The main objective of this study was (i) to develop a new process with an electrodeposited thin Nickel (Ni) layer as a mask to obtain a more precise pattern transfer for deep etching (ii) to investigate the etch rates and the etch profiles obtained under various plasma conditions (gas mixture ratios and pressure). The resulting process exhibits etch rates that range from 20 µm h-1 to 40 µm h-1. The process was optimized to obtain anisotropic profiles of the edges. Finally, it is shown that (iii) the wetting contact angle could be easily modified with this process from 103° to 162°, with a hysteresis that ranges from 2° to 140°. The process is, at present, the only reported solution to reproduce the ‘petal effect’ (high contact angle hysteresis value) on a highly flexible substrate. A possibility to control the contact angle hysteresis from the ‘petal effect’ to the ‘lotus effect’ (low contact angle hysteresis value) has been investigated to allow a precise control on the required energy to pin or unpin the contact line of water droplets. This opens multiple possibilities to exploit this elastomer in many microfluidics applications.
Semiconductor structure and recess formation etch technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less
Wide angle near-field optical probes by reverse tube etching.
Patanè, S; Cefalì, E; Arena, A; Gucciardi, P G; Allegrini, M
2006-04-01
We present a simple modification of the tube etching process for the fabrication of fiber probes for near-field optical microscopy. It increases the taper angle of the probe by a factor of two. The novelty is that the fiber is immersed in hydrofluoric acid and chemically etched in an upside-down geometry. The tip formation occurs inside the micrometer tube cavity formed by the polymeric jacket. By applying this approach, called reverse tube etching, to multimode fibers with 200/250 microm core/cladding diameter, we have fabricated tapered regions featuring high surface smoothness and average cone angles of approximately 30 degrees . A simple model based on the crucial role of the gravity in removing the etching products, explains the tip formation process.
Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution
NASA Astrophysics Data System (ADS)
Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong
2016-01-01
KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.
Silicon nanowire photodetectors made by metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Xu, Ying; Ni, Chuan; Sarangan, Andrew
2016-09-01
Silicon nanowires have unique optical effects, and have potential applications in photodetectors. They can exhibit simple optical effects such as anti-reflection, but can also produce quantum confined effects. In this work, we have fabricated silicon photodetectors, and then post-processed them by etching nanowires on the incident surface. These nanowires were produced by a wet-chemical etching process known as the metal-assisted-chemical etching, abbreviated as MACE. N-type silicon substrates were doped by thermal diffusion from a solid ceramic source, followed by etching, patterning and contact metallization. The detectors were first tested for functionality and optical performance. The nanowires were then made by depositing an ultra-thin film of gold below its percolation thickness to produce an interconnected porous film. This was then used as a template to etch high aspect ratio nanowires into the face of the detectors with a HF:H2O2 mixture.
Effects of hard mask etch on final topography of advanced phase shift masks
NASA Astrophysics Data System (ADS)
Hortenbach, Olga; Rolff, Haiko; Lajn, Alexander; Baessler, Martin
2017-07-01
Continuous shrinking of the semiconductor device dimensions demands steady improvements of the lithographic resolution on wafer level. These requirements challenge the photomask industry to further improve the mask quality in all relevant printing characteristics. In this paper topography of the Phase Shift Masks (PSM) was investigated. Effects of hard mask etch on phase shift uniformity and mask absorber profile were studied. Design of experiments method (DoE) was used for the process optimization, whereas gas composition, bias power of the hard mask main etch and bias power of the over-etch were varied. In addition, influence of the over-etch time was examined at the end of the experiment. Absorber depth uniformity, sidewall angle (SWA), reactive ion etch lag (RIE lag) and through pitch (TP) dependence were analyzed. Measurements were performed by means of Atomic-force microscopy (AFM) using critical dimension (CD) mode with a boot-shaped tip. Scanning electron microscope (SEM) cross-section images were prepared to verify the profile quality. Finally CD analysis was performed to confirm the optimal etch conditions. Significant dependence of the absorber SWA on hard mask (HM) etch conditions was observed revealing an improvement potential for the mask absorber profile. It was found that hard mask etch can leave a depth footprint in the absorber layer. Thus, the etch depth uniformity of hard mask etch is crucial for achieving a uniform phase shift over the active mask area. The optimized hard mask etch process results in significantly improved mask topography without deterioration of tight CD specifications.
Copper-assisted, anti-reflection etching of silicon surfaces
Toor, Fatima; Branz, Howard
2014-08-26
A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.
Process for etching mixed metal oxides
Ashby, Carol I. H.; Ginley, David S.
1994-01-01
An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.
Introducing etch kernels for efficient pattern sampling and etch bias prediction
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2018-01-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.
Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components
NASA Technical Reports Server (NTRS)
Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)
2016-01-01
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
ICPS Removal from Shipping Container
2017-03-09
Inside the United Launch Alliance (ULA) Horizontal Integration Facility at Cape Canaveral Air Force Station in Florida, a crane lifts the shipping container cover away from the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System rocket, followed by the ICPS bring removed and placed on a work stand for processing. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. The ICPS arrived from the ULA facility in Decatur, Alabama. The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.
NASA Astrophysics Data System (ADS)
Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.
2010-02-01
In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.
The effect of reactive ion etch (RIE) process conditions on ReRAM device performance
NASA Astrophysics Data System (ADS)
Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.
2017-09-01
The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.
Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces
NASA Technical Reports Server (NTRS)
Sovey, J. S.
1978-01-01
Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.
Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method
NASA Astrophysics Data System (ADS)
Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul
2011-06-01
Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b
Studies and testing of antireflective (AR) coatings for soda-lime glass
NASA Technical Reports Server (NTRS)
Pastirik, E. M.; Sparks, T. G.; Coleman, M. G.
1978-01-01
Processes for producing antireflection films on glass are concentrated in three areas: acid etching of glass, plasma etching of glass, and acid development of sodium silicate films on glass. The best transmission was achieved through the acid etching technique, while the most durable films were produced from development of sodium silicate films. Control of the acid etching technique is presently inadequate for production implementation. While films having excellent antireflective properties were fabricated by plasma etching techniques, all were water soluble.
Process for etching mixed metal oxides
Ashby, C.I.H.; Ginley, D.S.
1994-10-18
An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.
Plasma processing of large curved surfaces for superconducting rf cavity modification
Upadhyay, J.; Im, Do; Popović, S.; ...
2014-12-15
In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less
Chemical etching for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1981-01-01
Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
NASA Astrophysics Data System (ADS)
Lee, Sungkyu
2001-08-01
Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.
Chen, Wei; Liu, Yaoping; Yang, Lixia; Wu, Juntao; Chen, Quansheng; Zhao, Yan; Wang, Yan; Du, Xiaolong
2018-02-21
The so called inverted pyramid arrays, outperforming conventional upright pyramid textures, have been successfully achieved by one-step Cu assisted chemical etching (CACE) for light reflection minimization in silicon solar cells. Due to the lower reduction potential of Cu 2+ /Cu and different electronic properties of different Si planes, the etching of Si substrate shows orientation-dependent. Different from the upright pyramid obtained by alkaline solutions, the formation of inverted pyramid results from the coexistence of anisotropic etching and localized etching process. The obtained structure is bounded by Si {111} planes which have the lowest etching rate, no matter what orientation of Si substrate is. The Si etching rate and (100)/(111) etching ratio are quantitatively analyzed. The different behaviors of anisotropic etching of Si by alkaline and Cu based acid etchant have been systematically investigated.
Method of fabricating vertically aligned group III-V nanowires
Wang, George T; Li, Qiming
2014-11-25
A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.
NASA Astrophysics Data System (ADS)
Che, L.; Halvorsen, E.; Chen, X.
2011-10-01
The existence of insoluble residues as intermediate products produced during the wet etching process is the main quality-reducing and structure-patterning issue for lead zirconate titanate (PZT) thin films. A one-step wet etching process using the solutions of buffered HF (BHF) and HNO3 acid was developed for patterning PZT thin films for microelectomechanical system (MEMS) applications. PZT thin films with 1 µm thickness were prepared on the Pt/Ti/SiO2/Si substrate by the sol-gel process for compatibility with Si micromachining. Various compositions of the etchant were investigated and the patterns were examined to optimize the etching process. The optimal result is demonstrated by a high etch rate (3.3 µm min-1) and low undercutting (1.1: 1). The patterned PZT thin film exhibits a remnant polarization of 24 µC cm-2, a coercive field of 53 kV cm-1, a leakage current density of 4.7 × 10-8 A cm-2 at 320 kV cm-1 and a dielectric constant of 1100 at 1 KHz.
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2016-09-08
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
Controlled core removal from a D-shaped optical fiber.
Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory
2003-12-20
The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.
Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy
NASA Astrophysics Data System (ADS)
Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.
2015-11-01
Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).
Anisotropic Etching Using Reactive Cluster Beams
NASA Astrophysics Data System (ADS)
Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro
2010-12-01
The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.
NASA Astrophysics Data System (ADS)
Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.
2013-10-01
A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.
NASA Astrophysics Data System (ADS)
Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo
2004-05-01
The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .
PCB Fault Detection Using Image Processing
NASA Astrophysics Data System (ADS)
Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.
2017-08-01
The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images
NASA Astrophysics Data System (ADS)
Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong
2017-07-01
In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.
Dehzangi, Arash; Larki, Farhad; Hutagalung, Sabar D.; Goodarz Naseri, Mahmood; Majlis, Burhanuddin Y.; Navasery, Manizheh; Hamid, Norihan Abdul; Noor, Mimiwaty Mohd
2013-01-01
In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (1015 cm−3) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity. PMID:23776479
Method and system for optical figuring by imagewise heating of a solvent
Rushford, Michael C.
2005-08-30
A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.
Method of plasma etching Ga-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2012-12-25
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.
A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation
NASA Astrophysics Data System (ADS)
Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.
2012-12-01
Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.
Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hu; Muraki, Yu; Karahashi, Kazuhiro
2015-07-15
Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +}more » or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.« less
Localized etching of polymer films using an atmospheric pressure air microplasma jet
NASA Astrophysics Data System (ADS)
Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng
2015-01-01
A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min-1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ.
Fundamental techniques for resolution enhancement of average subsampled images
NASA Astrophysics Data System (ADS)
Shen, Day-Fann; Chiu, Chui-Wen
2012-07-01
Although single image resolution enhancement, otherwise known as super-resolution, is widely regarded as an ill-posed inverse problem, we re-examine the fundamental relationship between a high-resolution (HR) image acquisition module and its low-resolution (LR) counterpart. Analysis shows that partial HR information is attenuated but still exists, in its LR version, through the fundamental averaging-and-subsampling process. As a result, we propose a modified Laplacian filter (MLF) and an intensity correction process (ICP) as the pre and post process, respectively, with an interpolation algorithm to partially restore the attenuated information in a super-resolution (SR) enhanced image image. Experiments show that the proposed MLF and ICP provide significant and consistent quality improvements on all 10 test images with three well known interpolation methods including bilinear, bi-cubic, and the SR graphical user interface program provided by Ecole Polytechnique Federale de Lausanne. The proposed MLF and ICP are simple in implementation and generally applicable to all average-subsampled LR images. MLF and ICP, separately or together, can be integrated into most interpolation methods that attempt to restore the original HR contents. Finally, the idea of MLF and ICP can also be applied for average, subsampled one-dimensional signal.
NASA Astrophysics Data System (ADS)
Grishin, Yu M.; Miao, Long
2017-05-01
Numerical simulations of heat and evaporation processes of quartz particles in Ar radio frequency inductively coupled plasma (ICP) are investigated. The quartz particles are supplied by the carrier gas into the ICP within gas-cooling. It is shown that with the increase of amplitude of discharge current above critical value there is a toroidal vortex in the ICP torch at the first coil. The conditions for the formation of vortex and the parameters of the vortex tube have been evaluated and determined. The influence of vortex, discharge current, coil numbers and feed rate of carrier gas on the evaporation efficiency of quartz particles have been demonstrated. It was found that the optimal discharge current is close to the critical value when the quartz particles with initial sizes up to 130 μm can be fully vaporized in the ICP torch with thermal power of 10kW. The heat and evaporation processes of quartz particles in the ICP torch have significant importance for the study of one-step plasma chemical reaction method directly producing silicon from silicide (SiO2) in the argon-hydrogen plasma.
A Reactive-Ion Etch for Patterning Piezoelectric Thin Film
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wild, Larry
2003-01-01
Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article, several experiments on RIE in BCl3 and Cl2 (and sometimes Ar) had demonstrated the 10:1 selectivity ratio, and further experiments to enhance understanding and obtain further guidance for optimizing process conditions were planned.
Liu, Jia-Ming; Jiao, Li; Lin, Li-Ping; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong; Jiang, Shu-Lian
2013-12-15
A label-free non-aggregation colorimetric sensor has been designed for the detection of Cu(2+), based on Cu(2+) catalyzing etching of gold nanorods (AuNRs) along longitudinal axis induced by dissolve oxygen in the presence of S2O3(2-), which caused the aspect ratio (length/width) of AuNRs to decrease and the color of the solution to distinctly change. The linear range and the detection limit (LD, calculated by 10 Sb/k, n=11) of this sensor were 0.080-4.8 µM Cu(2+) and 0.22 µM Cu(2+), respectively. This sensor has been utilized to detect Cu(2+) in tap water and human serum samples with the results agreeing well with those of inductively coupled plasma-mass spectroscopy (ICP-MS), showing its remarkable practicality. In order to prove the possibility of catalyzing AuNRs non-aggregation colorimetric sensor for the detection of Cu(2+), the morphological structures of AuNRs were characterized by high resolution transmission electron microscopy (HRTEM) and the sensing mechanism of colorimetric sensor for the detection of Cu(2+) was also discussed. © 2013 Elsevier B.V. All rights reserved.
Development of a standardized, citywide process for managing smart-pump drug libraries.
Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James
2018-06-15
Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
New type of dummy layout pattern to control ILD etch rate
NASA Astrophysics Data System (ADS)
Pohland, Oliver; Spieker, Julie; Huang, Chih-Ta; Govindaswamy, Srikanth; Balasinski, Artur
2007-12-01
Adding dummy features (waffles) to drawn geometries of the circuit layout is a common practice to improve its manufacturability. As an example, local dummy pattern improves MOSFET line and space CD control by adjusting short range optical proximity and reducing the aggressiveness of its correction features (OPC) to widen the lithography process window. Another application of dummy pattern (waffles) is to globally equalize layout pattern density, to reduce long-range inter-layer dielectric (ILD) thickness variations after the CMP process and improve contact resistance uniformity over the die area. In this work, we discuss a novel type of dummy pattern with a mid-range interaction distance, to control the ILD composition driven by its deposition and etch process. This composition is reflected on sidewall spacers and depends on the topography of the underlying poly pattern. During contact etch, it impacts the etch rate of the ILD. As a result, the deposited W filling the damascene etched self-aligned trench contacts in the ILD may electrically short to the underlying gates in the areas of isolated poly. To mitigate the dependence of the ILD composition on poly pattern distribution, we proposed a special dummy feature generation with the interaction range defined by the ILD deposition and etch process. This helped equalize mid-range poly pattern density without disabling the routing capability with damascene trench contacts in the periphery which would have increased the layout footprint.
NASA Astrophysics Data System (ADS)
Kyoung, Sinsu; Jung, Eun-Sik; Sung, Man Young
2017-07-01
Although trench gate and super-junction technology have micro-trench problems when applied to the SiC process due to the material characteristics. In this paper, area effects are analyzed from the test element group with various patterns and optical proximity correction (OPC) methods are proposed and analyzed to reduce micro-trenches in the SiC trench etching process. First, the loading effects were analyzed from pattern samples with various trench widths (Wt). From experiments, the area must limited under a proper size for a uniform etching profile and reduced micro-trenches because a wider area accelerates the etch rate. Second, the area effects were more severely unbalanced at corner patterns because the corner pattern necessarily has an in-corner and out-corner that have different etching areas to each other. We can balance areas using OPC patterns to overcome this. Experiments with OPC represented improved micro-trench profile from when comparing differences of trench depth (Δdt) at out corner and in corner. As a result, the area effects can be used to improve the trench profile with optimized etching process conditions. Therefore, the trench gate and super-junction pillar of the SiC power MOSFET can have an improved uniform profile without micro-trenches using proper design and OPC.[Figure not available: see fulltext.
Pattern sampling for etch model calibration
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2017-06-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.
Photonic jet μ-etching: from static to dynamic process
NASA Astrophysics Data System (ADS)
Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.
2017-05-01
Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.
NASA Astrophysics Data System (ADS)
Naruse, Makoto; Yatsui, Takashi; Nomura, Wataru; Kawazoe, Tadashi; Aida, Masaki; Ohtsu, Motoichi
2013-02-01
Dressed-photon-phonon (DPP) etching is a disruptive technology in planarizing material surfaces because it completely eliminates mechanical contact processes. However, adequate metrics for evaluating the surface roughness and the underlying physical mechanisms are still not well understood. Here, we propose a two-dimensional hierarchical surface roughness measure, inspired by the Allan variance, that represents the effectiveness of DPP etching while conserving the original two-dimensional surface topology. Also, we build a simple physical model of DPP etching that agrees well with the experimental observations, which clearly shows the involvement of the intrinsic hierarchical properties of dressed photons, or optical near-fields, in the surface processing.
NASA Technical Reports Server (NTRS)
Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.
2003-01-01
The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.
Zhang, Ting; Guo, Yueshuai; Guo, Xuejiang; Zhou, Tao; Chen, Daozhen; Xiang, Jingying; Zhou, Zuomin
2013-01-01
Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the third trimester and associated with increased risks in fetal complications. Currently, the exact cause of this disease is unknown. In this study we aim to investigate the potential proteins in placenta, which may participate in the molecular mechanisms of ICP-related fetal complications using iTRAQ-based proteomics approach. The iTRAQ analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to separate differentially expressed placental proteins from 4 pregnant women with ICP and 4 healthy pregnant women. Bioinformatics analysis was used to find the relative processes that these differentially expressed proteins were involved in. Three apoptosis related proteins ERp29, PRDX6 and MPO that resulted from iTRAQ-based proteomics were further verified in placenta by Western blotting and immunohistochemistry. Placental apoptosis was also detected by TUNEL assay. Proteomics results showed there were 38 differentially expressed proteins from pregnant women with ICP and healthy pregnant women, 29 were upregulated and 9 were downregulated in placenta from pregnant women with ICP. Bioinformatics analysis showed most of the identified proteins was functionally related to specific cell processes, including apoptosis, oxidative stress, lipid metabolism. The expression levels of ERp29, PRDX6 and MPO were consistent with the proteomics data. The apoptosis index in placenta from ICP patients was significantly increased. This preliminary work provides a better understanding of the proteomic alterations of placenta from pregnant women with ICP and may provide us some new insights into the pathophysiology and potential novel treatment targets for ICP.
Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J
2007-01-01
Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.
Ion-beam nanopatterning: experimental results with chemically-assisted beam
NASA Astrophysics Data System (ADS)
Pochon, Sebastien C. R.
2018-03-01
The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.
The development of a method of producing etch resistant wax patterns on solar cells
NASA Technical Reports Server (NTRS)
Pastirik, E.
1980-01-01
A potentially attractive technique for wax masking of solar cells prior to etching processes was studied. This technique made use of a reuseable wax composition which was applied to the solar cell in patterned form by means of a letterpress printing method. After standard wet etching was performed, wax removal by means of hot water was investigated. Application of the letterpress wax printing process to silicon was met with a number of difficulties. The most serious shortcoming of the process was its inability to produce consistently well-defined printed patterns on the hard silicon cell surface.
A plasmaless, photochemical etch process for porous organosilicate glass films
NASA Astrophysics Data System (ADS)
Ryan, E. Todd; Molis, Steven E.
2017-12-01
A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.
Scanning electron microscopy evaluation of the effect of etching agents on human enamel surface.
Zanet, Caio G; Arana-Chavez, Victor E; Fava, Marcelo
2006-01-01
Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.
NASA Astrophysics Data System (ADS)
Zuzel, G.; Wójcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.
2012-06-01
Removal and deposition efficiencies of the long-lived 222Rn daughters during etching from and onto surfaces of standard and high purity germanium were investigated. The standard etching procedure of Canberra-France used during production of high purity n-type germanium diodes was applied to germanium discs, which have been exposed earlier to a strong radon source for deposition of its progenies. An uncontaminated sample was etched in a solution containing 210Pb, 210Bi and 210Po. All isotopes were measured before and after etching with appropriate detectors. In contrast to copper and stainless steel, they were removed from germanium very efficiently. However, the reverse process was also observed. Considerable amounts of radioactive lead, bismuth and polonium isotopes present initially in the artificially polluted etchant were transferred to the clean high purity surface during processing of the sample.
Process For Patterning Dispenser-Cathode Surfaces
NASA Technical Reports Server (NTRS)
Garner, Charles E.; Deininger, William D.
1989-01-01
Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.
A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program
2012-10-29
promise for high-aspect and deep etching into fused silica. This process capability is important for a DARPA project called the Navigation-Grade...on fused silica samples that appear to allow 2 to 1 aspect ratios in fused silica with a depth of etch of around 125 microns – a dramatic result in a...very hard to etch material such as fused silica! After receiving approval from DARPA, the MEMS Exchange purchased a previously- owned Ulvac etcher
Design and grayscale fabrication of beamfanners in a silicon substrate
NASA Astrophysics Data System (ADS)
Ellis, Arthur Cecil
2001-11-01
This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.
NASA Astrophysics Data System (ADS)
Stafford, Luc
Advances in electronics and photonics critically depend upon plasma-based materials processing either for transferring small lithographic patterns into underlying materials (plasma etching) or for the growth of high-quality films. This thesis deals with the etching mechanisms of materials using high-density plasmas. The general objective of this work is to provide an original framework for the plasma-material interaction involved in the etching of advanced materials by putting the emphasis on complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. Based on a synthesis of the descriptions proposed by different authors to explain the etching characteristics of simple materials in noble and halogenated plasma mixtures, we propose comprehensive rate models for physical and chemical plasma etching processes. These models have been successfully validated using experimental data published in literature for Si, Pt, W, SiO2 and ZnO. As an example, we have been able to adequately describe the simultaneous dependence of the etch rate on ion and reactive neutral fluxes and on the ion energy. From an exhaustive experimental investigation of the plasma and etching properties, we have also demonstrated that the validity of the proposed models can be extended to complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. We also reported for the first time physical aspects involved in plasma etching such as the influence of the film microstructural properties on the sputter-etch rate and the influence of the positive ion composition on the ion-assisted desorption dynamics. Finally, we have used our deep investigation of the etching mechanisms of STO films and the resulting excellent control of the etch rate to fabricate a ridge waveguide for photonic device applications. Keywords: plasma etching, sputtering, adsorption and desorption dynamics, high-density plasmas, plasma diagnostics, advanced materials, photonic applications.
Fabrication of 3D surface structures using grayscale lithography
NASA Astrophysics Data System (ADS)
Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.
2014-03-01
The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.
NASA Astrophysics Data System (ADS)
Brcka, Jozef
2016-07-01
A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of this work is to incorporate the technological, computational, dimensional scaling, and reaction chemistry aspects of the plasma under one computational framework. The 3D simulation is utilized to geometrically scale up the reactive plasma that is produced by multiple ICP sources.
Advanced Simulation Technology to Design Etching Process on CMOS Devices
NASA Astrophysics Data System (ADS)
Kuboi, Nobuyuki
2015-09-01
Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.
NASA Astrophysics Data System (ADS)
Geng, Xuewen; Duan, Barrett K.; Grismer, Dane A.; Zhao, Liancheng; Bohn, Paul W.
2013-06-01
Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal-semiconductor interface.
Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei
2017-04-01
Mercury cadmium telluride is the standard material to fabricate high-performance infrared focal plane array (FPA) detectors. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA detectors. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg1-xCdxTe (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale infrared FPAs.
NASA Astrophysics Data System (ADS)
Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui
2017-10-01
Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.
ICPS Turnover GSDO Employee Event
2017-11-07
Kennedy Space Center Associate Director Kelvin Manning, right, speaks with a guest during a ceremony marking NASA's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turning over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS) to the center's Ground Systems Development and Operations (GSDO) Directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.
Interim Cryogenic Propulsion Stage (ICPS) Handover Signing
2017-10-26
Meeting in the Launch Control Center of NASA's Kennedy Space Center in Florida, officials of the agency's Spacecraft/Payload Integration and Evolution (SPIE) organization formally turn over processing of the Space Launch System (SLS) rocket's Interim Cryogenic Propulsion Stage (ICPS) to the center's Ground Systems Development and Operations (GSDO) directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1. With the Orion attached, the ICPS sits atop the SLS rocket and will provide the spacecraft with the additional thrust needed to travel tens of thousands of miles beyond the Moon.
MITLL Silicon Integrated Photonics Process: Design Guide
2015-07-31
Silicon Integrated Photonics Process Comprehensive Design Guide 16 Deep Etch for Fiber Coupling (DEEP_ETCH...facets for fiber coupling. Standard design layers for each process are defined in Section 3, but other options can be made available. Notes on...a silicon thinning process that can create very low loss waveguides (and which better suppresses back scatter and, therefore, resonance splitting in
Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo
2018-01-01
The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571
Ion beam sputtering of fluoropolymers
NASA Technical Reports Server (NTRS)
Sovey, J. S.
1978-01-01
Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.
More vertical etch profile using a Faraday cage in plasma etching
NASA Astrophysics Data System (ADS)
Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup
1999-05-01
Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon
2010-01-01
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less
Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics
NASA Astrophysics Data System (ADS)
Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo
2016-08-01
The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.
Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics
Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo
2016-01-01
The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188
Laser micromachining of optical devices
NASA Astrophysics Data System (ADS)
Kopitkovas, Giedrius; Lippert, Thomas; David, Christian; Sulcas, Rokas; Hobley, Jonathan; Wokaun, Alexander J.; Gobrecht, Jens
2004-10-01
The combination of a gray tone phase mask with a laser assisted wet etching process was applied to fabricate complex microstructures in UV transparent dielectric materials. This one-step method allows the generation of arrays of plano-convex and Fresnel micro-lenses using a conventional XeCl excimer laser and an absorbing liquid, which is in contact with the UV transparent material. An array of plano-convex micro-lenses was tested as beam homogenizer for a high power XeCl excimer and ps Nd:YAG laser. The roughness of the etched features varies from several μm to 10 nm, depending on the laser fluence and concentration of the dye in the organic liquid. The etching process can be divided into several etching mechanisms which vary with laser fluence.
Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips.
Lambelet, P; Sayah, A; Pfeffer, M; Philipona, C; Marquis-Weible, F
1998-11-01
An improved method for producing fiber tips for scanning near-field optical microscopy is presented. The improvement consists of chemically etching quartz optical fibers through their acrylate jacket. This new method is compared with the previous one in which bare fibers were etched. With the new process the meniscus formed by the acid along the fiber does not move during etching, leading to a much smoother surface of the tip cone. Subsequent metallization is thus improved, resulting in better coverage of the tip with an aluminum opaque layer. Our results show that leakage can be avoided along the cone, and light transmission through the tip is spatially limited to an optical aperture of a 100-nm dimension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi
2015-11-15
The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness,more » etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching showed that the Si fin (source/drain region) was directly damaged by high energy hydrogen and had local variations in the damage distribution, which may lead to a shift in the threshold voltage and the off-state leakage current. Therefore, side-wall etching and ion implantation processes must be carefully designed by considering the Si damage distribution to achieve low damage and high transistor performance for complementary metal–oxide–semiconductor devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Hong, Hyun Seon
Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered usingmore » various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater, copper nanopowder was synthesized. • Solution chemistry of ITO etching wastewater is addressed. • A techno-economical feasible, environment friendly and occupational safe process. • Brings back the material to production stream and address the circular economy. • A cradle to cradle technology management lowers the futuristic carbon economy.« less
Monitoring of Intracranial Pressure in Patients with Traumatic Brain Injury
Hawthorne, Christopher; Piper, Ian
2014-01-01
Since Monro published his observations on the nature of the contents of the intracranial space in 1783, there has been investigation of the unique relationship between the contents of the skull and the intracranial pressure (ICP). This is particularly true following traumatic brain injury (TBI), where it is clear that elevated ICP due to the underlying pathological processes is associated with a poorer clinical outcome. Consequently, there is considerable interest in monitoring and manipulating ICP in patients with TBI. The two techniques most commonly used in clinical practice to monitor ICP are via an intraventricular or intraparenchymal catheter with a microtransducer system. Both of these techniques are invasive and are thus associated with complications such as hemorrhage and infection. For this reason, significant research effort has been directed toward development of a non-invasive method to measure ICP. The principle aims of ICP monitoring in TBI are to allow early detection of secondary hemorrhage and to guide therapies that limit intracranial hypertension (ICH) and optimize cerebral perfusion. However, information from the ICP value and the ICP waveform can also be used to assess the intracranial volume–pressure relationship, estimate cerebrovascular pressure reactivity, and attempt to forecast future episodes of ICH. PMID:25076934
Antrobus, Robin; Boutell, Chris
2008-10-01
The Herpes simplex virus type-1 (HSV-1) regulatory protein ICP0, a RING-finger E3 ubiquitin ligase, stimulates the onset of viral lytic replication and the reactivation of quiescent viral genomes from latency. Like many ubiquitin ligases ICP0 induces its own ubiquitination, a process that can lead to its proteasome-dependent degradation. ICP0 counteracts this activity by recruiting the cellular ubiquitin-specific protease USP7/HAUSP. Here we show that ICP0 can also interact with a previously unidentified isoform of USP7 (termed here USP7(beta)). This isoform is not a predominantly ubiquitinated, SUMO-modified, or phosphorylated species of USP7 but is constitutively expressed in a number of different cell types. Like USP7, USP7(beta) binds specifically to an electrophilic ubiquitin probe, indicating that it contains an accessible catalytic core with potential ubiquitin-protease activity. The interaction formed between ICP0 and USP7(beta) requires ICP0 to have an intact USP7-binding domain and results in its susceptibility to ICP0-mediated degradation during HSV-1 infection.
Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J
2011-11-01
Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.
Smart Pixels for Optical Processing and Communications: Design, Models, Fabrication and Test
1998-06-01
11.3 Mobility-Lifetime Product 115 11.4 P-IforVCSEL 116 Chapter 12: Developing a Reliable Etch 12.1 Etch Rates and Selectivity for Citric Acid 126...eGa0.4As etch-stop layer beneath the GaAs buffer. The gate recess was performed with a timed citric acid / hydrogen peroxide wet etch. The conducting...alkalinity. The wet etchant tested in this effort was a citric acid / hydrogen peroxide mixture,8 due to its availability, ease of preparation
CDU improvement technology of etching pattern using photo lithography
NASA Astrophysics Data System (ADS)
Tadokoro, Masahide; Shinozuka, Shinichi; Jyousaka, Megumi; Ogata, Kunie; Morimoto, Tamotsu; Konishi, Yoshitaka
2008-03-01
Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving Resist Pattern CDU is to control post-exposure bake (PEB) temperature. When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. Resist Pattern CDU improvement contributes to Etching Pattern CDU improvement to a certain degree. To further improve Etching Pattern CDU, etcher-specific CD variation needs to be controlled. In this evaluation, 1. We verified whether etcher-specific CD variation can be controlled and consequently Etching Pattern CDU can be further improved by controlling resist patterns through PEB control. 2. Verifying whether Etching Pattern CDU improvement through has any effect on the reduction in wiring resistance variation. The evaluation procedure is as follows.1. Wafers with base film of Doped Poly-Si (D-Poly) were prepared. 2. Resist patterns were created on them. 3. To determine etcher-specific characteristics, the first etching was performed, and after cleaning off the resist and BARC, CD of etched D-Poly was measured. 4. Using the obtained within-wafer CD distribution of the etching patterns, within-wafer temperature distribution in the PEB process was modified. 5. Resist patterns were created again, followed by the second etching and cleaning, which was followed by CD measurement. We used Optical CD Measurement (OCD) for measurement of resist patterns and etching patterns as OCD is minimally affected by Line Edge Roughness (LER). As a result, 1. We confirmed the effect of Resist Pattern CD control through PEB control on the reduction in etcher-specific CD variation and the improvement in Etching Pattern CDU. 2. The improvement in Etching Pattern CDU has an effect on the reduction in wiring resistance variation. The method for Etching Pattern CDU improvement through PEB control reduces within-wafer variation of MOS transistor's gate length. Therefore, with this method, we can expect to observe uniform within-wafer MOS transistor characteristics.
Li, Lester; Breedveld, Victor; Hess, Dennis W
2012-09-26
In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.
Bernhardt, A.F.; Contolini, R.J.
1993-10-26
In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.
Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon
2015-02-15
A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less
Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.
Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza
2008-07-01
The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.
Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał
2016-06-01
The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.
Electrochemical formation of field emitters
Bernhardt, Anthony F.
1999-01-01
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.
Sequential infiltration synthesis for advanced lithography
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing
2015-03-17
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann
2018-03-01
Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.
NASA Astrophysics Data System (ADS)
Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu
2018-01-01
In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.
Hafnium Oxide Film Etching Using Hydrogen Chloride Gas
NASA Astrophysics Data System (ADS)
Habuka, Hitoshi; Yamaji, Masahiko; Kobori, Yoshitsugu; Horii, Sadayoshi; Kunii, Yasuo
2009-12-01
Hydrogen chloride gas removes the hafnium oxide film formed by atomic layer deposition at the etch rate of about 1 nm/min. A 100 nm-thick hafnium oxide film was perfectly etched off at 1173 K for 60 min by 100% hydrogen chloride gas at 100 sccm. A weight decrease in the hafnium oxide film was observed at temperatures higher than ca. 600 K, which corresponds to the sublimation point of hafnium tetrachloride. The etching by-product is considered to be hafnium tetrachloride. The etching technique developed in this study is expected to be applicable to various processes, such as the cleaning of a hafnium oxide film deposition reactor.
Microbially mediated barite dissolution in anoxic brines
Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren S.; Renock, Devon
2017-01-01
Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic and high ionic strength solutions. Additionally, the increase in rate occurs without direct microbe-mineral contact suggesting that metabolites secreted by the bacteria may be responsible for promotion of dissolution. The findings of this study have implications for understanding barium cycling in marine/hypersaline environments, release of barium (and associated radium) from waste solids generated from energy and mining industries, as well as potential for developing new anti-scaling chemicals.
Physics and chemistry of complex oxide etching and redeposition control
NASA Astrophysics Data System (ADS)
Margot, Joëlle
2012-10-01
Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.
Use of KRS-XE positive chemically amplified resist for optical mask manufacturing
NASA Astrophysics Data System (ADS)
Ashe, Brian; Deverich, Christina; Rabidoux, Paul A.; Peck, Barbara; Petrillo, Karen E.; Angelopoulos, Marie; Huang, Wu-Song; Moreau, Wayne M.; Medeiros, David R.
2002-03-01
The traditional mask making process uses chain scission-type resists such as PBS, poly(butene-1-sulfone), and ZEP, poly(methyl a-chloroacrylate-co-a-methylstyrene) for making masks with dimensions greater than 180nm. PBS resist requires a wet etch process to produce patterns in chrome. ZEP was employed for dry etch processing to meet the requirements of shrinking dimensions, optical proximity corrections and phase shift masks. However, ZEP offers low contrast, marginal etch resistance, organic solvent development, and concerns regarding resist heating with its high dose requirements1. Chemically Amplified Resist (CAR) systems are a very good choice for dimensions less than 180nm because of their high sensitivity and contrast, high resolution, dry etch resistance, aqueous development, and process latitude2. KRS-XE was developed as a high contrast CA resist based on ketal protecting groups that eliminate the need for post exposure bake (PEB). This resist can be used for a variety of electron beam exposures, and improves the capability to fabricate masks for devices smaller than 180nm. Many factors influence the performance of resists in mask making such as post apply bake, exposure dose, resist develop, and post exposure bake. These items will be discussed as well as the use of reactive ion etching (RIE) selectivity and pattern transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.
2016-05-15
Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less
Silicon vertical microstructure fabrication by catalytic etching
NASA Astrophysics Data System (ADS)
Huang, Mao-Jung; Yang, Chii-Rong; Chang, Chun-Ming; Chu, Nien-Nan; Shiao, Ming-Hua
2012-08-01
This study presents an effective, simple and inexpensive process for forming micro-scale vertical structures on a (1 0 0) silicon wafer. Several modified etchants and micro-patterns including rectangular, snake-like, circular and comb patterns were employed to determine the optimum etching process. We found that an etchant solution consisting of 4.6 M hydrofluoric acid, 0.44 M hydrogen peroxide and isopropyl alcohol produces microstructures at an etching rate of 0.47 µm min-1 and surface roughness of 17.4 nm. All the patterns were transferred faithfully to the silicon substrate.
Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin
2015-03-14
Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.
Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers
Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...
2016-12-07
Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less
Feature Profile Evolution of SiO2 Trenches In Fluorocarbon Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arunachalam, Valli; Rauf, Shahid; Coronell, Dan; Carroll, Carol W. (Technical Monitor)
1999-01-01
Etching of silicon microstructures for semiconductor manufacturing in chlorine plasmas has been well characterized. The etching proceeds in a two-part process, where the chlorine neutrals passivate the Si surface and then the ions etch away SiClx. However, etching in more complicated gas mixtures and materials, such as etching of SiO2 in Ar/C4F8, requires knowledge of the ion and neutral distribution functions as a function of angle and velocity, in addition to modeling the gas surface reactions. In order to address these needs, we have developed and integrated a suite of models to simulate the etching process from the plasma reactor level to the feature profile evolution level. This arrangement allows for a better understanding, control, and prediction of the influence of equipment level process parameters on feature profile evolution. We are currently using the HPEM (Hybrid Plasma Equipment Model) and PCMCM (Plasma Chemistry Monte Carlo Model) to generate plasma properties and ion and neutral distribution functions for argon/fluorocarbon discharges in a GEC Reference Cell. These quantities are then input to the feature scale model, Simulation of Profile Evolution by Level Sets (SPELS). A surface chemistry model is used to determine the interaction of the incoming species with the substrate material and simulate the evolution of the trench profile. The impact of change of gas pressure and inductive power on the relative flux of CFx and F to the wafer, the etch and polymerization rates, and feature profiles will be examined. Comparisons to experimental profiles will also be presented.
Determination of etching parameters for pulsed XeF2 etching of silicon using chamber pressure data
NASA Astrophysics Data System (ADS)
Sarkar, Dipta; Baboly, M. G.; Elahi, M. M.; Abbas, K.; Butner, J.; Piñon, D.; Ward, T. L.; Hieber, Tyler; Schuberth, Austin; Leseman, Z. C.
2018-04-01
A technique is presented for determination of the depletion of the etchant, etched depth, and instantaneous etch rate for Si etching with XeF2 in a pulsed etching system in real time. The only experimental data required is the pressure data collected temporally. Coupling the pressure data with the knowledge of the chemical reactions allows for the determination of the etching parameters of interest. Using this technique, it is revealed that pulsed etching processes are nonlinear, with the initial etch rate being the highest and monotonically decreasing as the etchant is depleted. With the pulsed etching system introduced in this paper, the highest instantaneous etch rate of silicon was recorded to be 19.5 µm min-1 for an initial pressure of 1.2 Torr for XeF2. Additionally, the same data is used to determine the rate constant for the reaction of XeF2 with Si; the reaction is determined to be second order in nature. The effect of varying the exposed surface area of Si as well as the effect that pressure has on the instantaneous etch rate as a function of time is shown applying the same technique. As a proof of concept, an AlN resonator is released using XeF2 pulses to remove a sacrificial poly-Si layer.
Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch
NASA Astrophysics Data System (ADS)
Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun
2004-05-01
Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.
Hydraulic Evolution of Karst Microfracture
NASA Astrophysics Data System (ADS)
Windom, L. M.; Dragila, M. I.; Weisbrod, N.
2017-12-01
Karst terrain comprises an astounding 25% of our planet's potable water resources, yet the evolution of these systems from micro-fracture to open channel is poorly understood. Focusing on the unsaturated portion of an evolving karst system, we present a conceptual model for the hydraulic evolution of micro-fractures into larger conduits. Tensional micro-fractures (< 1mm thick) under unsaturated conditions may be eroded by water flowing either as seepage films or as capillary rivulets. In addition to general erosion, the narrow width of capillary rivulets may etch the beginning of preferential paths within the tensional micro-fractures that will lead to tubular channels. Both fluid mechanisms, seepage and rivulets, were tested in the laboratory, and data of the resulting geochemical erosion rates are presented in the form of calcium dissolution rates measured by inductively coupled plasma atomic emission spectroscopy (ICP-OES).
Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47.
Ahn, K; Meyer, T H; Uebel, S; Sempé, P; Djaballah, H; Yang, Y; Peterson, P A; Früh, K; Tampé, R
1996-01-01
The immediate early protein ICP47 of herpes simplex virus (HSV) inhibits the transporter for antigen processing (TAP)-mediated translocation of antigen-derived peptides across the endoplasmic reticulum (ER) membrane. This interference prevents assembly of peptides with class I MHC molecules in the ER and ultimately recognition of HSV-infected cells by cytotoxic T-lymphocytes, potentially leading to immune evasion of the virus. Here, we demonstrate that recombinant, purified ICP47 containing a hexahistidine tag inhibits peptide import into microsomes of insect cells expressing human TAP, whereas inhibition of peptide transport by murine TAP was much less effective. This finding indicates an intrinsic species-specificity of ICP47 and suggests that no additional proteins interacting specifically with either ICP47 or TAP are required for inhibition of peptide transport. Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP. By contrast, peptide binding was completely blocked by ICP47 as shown both by photoaffinity crosslinking of peptides to TAP and peptide binding to microsomes from TAP-transfected insect cells. Competition experiments indicated that ICP47 binds to human TAP with a higher affinity (50 nM) than peptides whereas the affinity to murine TAP was 100-fold lower. Our data suggest that ICP47 prevents peptides from being translocated by blocking their binding to the substrate-binding site of TAP. Images PMID:8670825
Zheng, Yi; Gu, Haidong
2015-04-01
Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a key regulator in both lytic and latent infections. In lytic infection, an important early event is the colocalization of ICP0 to nuclear domain 10 (ND10), the discrete nuclear bodies that impose restrictions on viral expression. ICP0 contains an E3 ubiquitin ligase that degrades promyelocytic leukemia protein (PML) and Sp100, two major components of ND10, and disperses ND10 to alleviate repression. We previously reported that the association between ICP0 and ND10 is a dynamic process that includes three steps: adhesion, fusion, and retention. ICP0 residues 245 to 474, defined as ND10 entry signal (ND10-ES), is a region required for the fusion step. Without ND10-ES, ICP0 adheres at the ND10 surface but fails to enter. In the present study, we focus on characterizing ND10-ES. Here we report the following. (i) Fusion of ICP0 with ND10 relies on specific sequences located within ND10-ES. Replacement of ND10-ES by the corresponding region from ORF61 of varicella-zoster virus did not rescue ND10 fusion. (ii) Three tandem ND10 fusion segments (ND10-FS1, ND10-FS2, and ND10-FS3), encompassing 200 amino acids within ND10-ES, redundantly facilitate fusion. Each of the three segments is sufficient to independently drive the fusion process, but none of the segments by themselves are necessary for ND10 fusion. Only when all three segments are deleted is fusion blocked. (iii) The SUMO interaction motif located within ND10-FS2 is not required for ND10 fusion but is required for the complete degradation of PML, suggesting that PML degradation and ND10 fusion are regulated by different molecular mechanisms. ND10 nuclear bodies are part of the cell-intrinsic antiviral defenses that restrict viral gene expression upon virus infection. As a countermeasure, infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) localizes to ND10s, degrades the ND10 organizer, and disperses ND10 components in order to alleviate repression. We studied the ICP0-ND10 association to delineate elements important for this dynamic interaction and to understand its role in viral replication and host defense. In this work, we show that ICP0 contains three redundant segments to ensure an effective mergence of ICP0 with ND10 nuclear bodies. This is the first study to systematically investigate ICP0 elements that are important for ICP0-ND10 fusion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Brandt, Adam R
2008-10-01
Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.
Structure of the transporter associated with antigen processing trapped by herpes simplex virus
Oldham, Michael L; Grigorieff, Nikolaus; Chen, Jue
2016-01-01
The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process. DOI: http://dx.doi.org/10.7554/eLife.21829.001 PMID:27935481
Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; ...
2014-10-22
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less
Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication
Ashby, C.I.H.; Myers, D.R.; Vook, F.L.
1988-06-16
An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.
Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication
Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.
1989-01-01
An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.
NASA Astrophysics Data System (ADS)
Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.
2014-02-01
The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.
Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J
2014-02-07
The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.
Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.
2016-01-01
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342
Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei
2016-01-01
A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type <100> silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559
Microstructural characterization of aluminum alloys using Weck's reagent, part I: Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Li, E-mail: gao.l.ab@m.titech.ac.jp; Harada, Yohei, E-mail: harada.y.ah@m.titech.ac.jp; Kumai, Shinji, E-mail: kumai.s.aa@m.titech.ac.jp
This paper focuses on the applications of a color etchant for aluminum alloys named Weck's reagent. The Al phase shows different colors from location to location after being etched by Weck's reagent. It is proved that Weck's reagent is very sensitive to the micro-segregations of Ti, Si and Mg in Al alloys so that characterization of the micro-segregations can be qualitatively realized which is usually done by electronic probe techniques. With the help of this characterization method, we are able to evaluate solid fractions for the semi-solid processed Al alloy with a better accuracy by excluding the Al grain growthmore » during water quenching. To understand this reagent better, the color change during etching is investigated by applying different etching times at room temperature (25 °C). Among those results, 12 s shows the best color contrast after etching. Finally, we repeat the 12 second etching for four times through repeating a polishing–etching process. The result exhibits that Weck's reagent has a satisfying re-producibility with stable color and color distribution for the four times etching result. The second part of this study covers the coloring mechanism of Weck's reagent by characterizing the etched surface via various characterization methods. - Highlights: • The applications of Weck's reagent for Al alloys are introduced in detail. • Detailed relationship between micro-segregations in Al phase and the color difference revealed by Weck's reagent are studied. • Etching time has a strong influence on the color revealed by Weck's reagent. • Besides micro-segregation, grain boundaries can also be visualized by Weck's reagent, which was proved by EBSD analysis.« less
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2008-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Method of producing an integral resonator sensor and case
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)
2005-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Etching nano-holes in silicon carbide using catalytic platinum nano-particles
NASA Astrophysics Data System (ADS)
Moyen, E.; Wulfhekel, W.; Lee, W.; Leycuras, A.; Nielsch, K.; Gösele, U.; Hanbücken, M.
2006-09-01
The catalytic reaction of platinum during a hydrogen etching process has been used to perform controlled vertical nanopatterning of silicon carbide substrates. A first set of experiments was performed with platinum powder randomly distributed on the SiC surface. Subsequent hydrogen etching in a hot wall reactor caused local atomic hydrogen production at the catalyst resulting in local SiC etching and hole formation. Secondly, a highly regular and monosized distribution of Pt was obtained by sputter deposition of Pt through an Au membrane serving as a contact mask. After the lift-off of the mask, the hydrogen etching revealed the onset of well-controlled vertical patterned holes on the SiC surface.
Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh
A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.
Deschamps, Thibaut; Kalamvoki, Maria
2017-05-01
Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. Copyright © 2017 American Society for Microbiology.
Deschamps, Thibaut
2017-01-01
ABSTRACT Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2′3′-cyclic GAMP (2′3′-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets hostile host proteins for degradation with its E3 ligase activity, and it disrupts repressor complexes via protein-protein interaction to enable viral gene transcription. Therefore, the ΔICP0 HSV-1 virus is defective for growth in most cells, except the human osteosarcoma cell lines U2OS and Saos-2. We found that both cell lines that support ΔICP0 virus infection have defects in the STING DNA-sensing pathway, which partially accounts for the rescue of the ΔICP0 virus growth. Restoration of STING expression in these cells rescued innate immunity and suppressed ΔICP0 virus infection. This study underscores the importance of STING in the control of HSV-1. PMID:28179534
Electrochemical formation of field emitters
Bernhardt, A.F.
1999-03-16
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.
Sequential infiltration synthesis for advanced lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned usingmore » photolithography, electron-beam lithography or a block copolymer self-assembly process.« less
Improvement in etching rate for epilayer lift-off with surfactant
NASA Astrophysics Data System (ADS)
Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng
2013-03-01
In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.
Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.
Kong, Lingyu; Song, Yi; Kim, Jeong Dong; Yu, Lan; Wasserman, Daniel; Chim, Wai Kin; Chiam, Sing Yang; Li, Xiuling
2017-10-24
Producing densely packed high aspect ratio In 0.53 Ga 0.47 As nanostructures without surface damage is critical for beyond Si-CMOS nanoelectronic and optoelectronic devices. However, conventional dry etching methods are known to produce irreversible damage to III-V compound semiconductors because of the inherent high-energy ion-driven process. In this work, we demonstrate the realization of ordered, uniform, array-based In 0.53 Ga 0.47 As pillars with diameters as small as 200 nm using the damage-free metal-assisted chemical etching (MacEtch) technology combined with the post-MacEtch digital etching smoothing. The etching mechanism of In x Ga 1-x As is explored through the characterization of pillar morphology and porosity as a function of etching condition and indium composition. The etching behavior of In 0.53 Ga 0.47 As, in contrast to higher bandgap semiconductors (e.g., Si or GaAs), can be interpreted by a Schottky barrier height model that dictates the etching mechanism constantly in the mass transport limited regime because of the low barrier height. A broader impact of this work relates to the complete elimination of surface roughness or porosity related defects, which can be prevalent byproducts of MacEtch, by post-MacEtch digital etching. Side-by-side comparison of the midgap interface state density and flat-band capacitance hysteresis of both the unprocessed planar and MacEtched pillar In 0.53 Ga 0.47 As metal-oxide-semiconductor capacitors further confirms that the surface of the resultant pillars is as smooth and defect-free as before etching. MacEtch combined with digital etching offers a simple, room-temperature, and low-cost method for the formation of high-quality In 0.53 Ga 0.47 As nanostructures that will potentially enable large-volume production of In 0.53 Ga 0.47 As-based devices including three-dimensional transistors and high-efficiency infrared photodetectors.
Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations.
Stehle, Yijing Y; Sang, Xiahan; Unocic, Raymond R; Voylov, Dmitry; Jackson, Roderick K; Smirnov, Sergei; Vlassiouk, Ivan
2017-12-13
Chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes in hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.
NASA Astrophysics Data System (ADS)
Zheng, Chenju; Lv, Jiajiang; Zhou, Shengjun; Liu, Sheng
2017-04-01
For improvement of the light extraction efficiency of GaN-based lateral light-emitting diodes (LEDs), a p-GaN surface was textured through a low-temperature (850 °C) p-GaN growth process. However, the p-GaN texturing process caused luster inconsistency between the n-pad and the p-pad due to the roughness difference between the indium-tin oxide (ITO) and the n-GaN beneath the pads, which decreased the image recognition rate and accuracy during the wire bonding process for LED packaging. Therefore, an under-etching process was proposed to improve the luster consistency between the p-pad and the n-pad of GaN-based LEDs with a naturally textured p-GaN surface. The under-etching process decreased the roughness of the exposed n-GaN surface from 109 nm to 73.1 nm, which was similar to the roughness (74.8 nm) of the ITO surface. Optical microscopy showed that LEDs with a naturally textured p-GaN surface exhibited excellent luster consistency between the n-pad and the p-pad after the proposed under-etching process had been applied. Further analysis indicated that the LEDs with a naturally textured p-GaN surface showed no degradation of optical or the electrical performance after the proposed under-etching process had been applied. At a 20-mA injection current, the light output power of a LED with naturally a textured p-GaN surface was 8.7% higher than that of a LED with a smooth p-GaN surface.
Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments
NASA Astrophysics Data System (ADS)
Luna, Lunet E.; Tadjer, Marko J.; Anderson, Travis J.; Imhoff, Eugene A.; Hobart, Karl D.; Kub, Fritz J.
2017-10-01
Cycles of inductively coupled SF6/O2 plasma with low (9%) and high (90%) oxygen content etch segments are used to produce up to 46.6 µm-deep trenches with 5.5 µm-wide openings in single-crystalline 4H-SiC substrates. The low oxygen content segment serves to etch deep in SiC whereas the high oxygen content segment serves to etch SiC at a slower rate, targeting carbon-rich residues on the surface as the combination of carbon-rich and fluorinated residues impact sidewall profile. The cycles work in concert to etch past 30 µm at an etch rate of ~0.26 µm min-1 near room temperature, while maintaining close to vertical sidewalls, high aspect ratio, and high mask selectivity. In addition, power ramps during the low oxygen content segment is used to produce a 1:1 ratio of mask opening to trench bottom width. The effect of process parameters such as cycle time and backside substrate cooling on etch depth and micromasking of the electroplated nickel etch mask are investigated.
Collaborative Platform for DFM
2007-12-20
generation litho hotspot checkers have also been implemented in automated hotspot fixers that can automatically fix designs by making small changes...processing side (ex. new CMP models, etch models, litho models) and on the circuit side (ex. Process aware circuit analysis or yield optimization...Since final gate CD is a function of not only litho , but Post Exposure Bake, ashing, and etch, the processing module can be augmented with more
Cardinale, Gregory F.
2000-01-01
A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.
Effect of an aggressive medium on discontinuous deformation of aluminum-magnesium alloy AlMg6
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Denisov, A. A.; Zolotov, A. E.; Kochegarov, S. S.
2017-01-01
It is experimentally shown that the molecular (chemical) process of surface etching of deformed aluminum-magnesium alloy AlMg6 causes the development of a macroscopic plastic strain step with an amplitude of a few percent. Using numerical simulation of the polycrystalline solid etching process, it is shown that the corrosion front morphology varies during etching from Euclid (flat) to fractal (rough). The results obtained show the key role of the surface state on the development of macroscopic mechanical instability of a material exhibiting the Portevin-Le Chatelier effect.
NASA Technical Reports Server (NTRS)
Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya
2016-01-01
The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.
Ion track etching revisited: II. Electronic properties of aged tracks in polymers
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.
2018-02-01
We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.
2016-01-01
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398
Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.
Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo
2014-05-01
The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metamaterial and Metastructural Architectures for Novel C4ISR Devices and Sensors
2015-03-01
2.7 The SEM pictures of the fabricated metastructure cage waveguide a) before and b) after the thermal oxidization and HF etching process ..10 Fig...of the hollow core. (Bottom) The SiO2 shell in the core was removed by buffered high-frequency etch...28 Fig. 3.9 SEM images of the waveguides after etching in CR-9 and buffered oxide etchant
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki
2008-03-01
The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.
Wafer-Level Membrane-Transfer Process for Fabricating MEMS
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wiberg, Dean
2003-01-01
A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.
ICPS Turnover GSDO Employee Event
2017-11-07
Mike Bolger, Ground Systems Development and Operations Program manager at NASA's Kennedy Space Center, speaks to guests during a ceremony in the high bay of the Space Station Processing Facility. The event marked the milestone of the Space Launch System rocket's Interim Cryogenic Propulsion Stage (ICPS) being turned over from NASA's Spacecraft/Payload Integration and Evolution organization to the spaceport's Ground Systems Development and Operations directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1.
NASA Astrophysics Data System (ADS)
Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu
2013-01-01
Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.
Barium-strontium-titanate etching characteristics in chlorinated discharges
NASA Astrophysics Data System (ADS)
Stafford, Luc; Margot, Joëlle; Langlois, Olivier; Chaker, Mohamed
2003-07-01
The etching characteristics of barium-strontium-titanate (BST) were investigated using a high-density plasma sustained by surface waves at 190 MHz in Ar/Cl2 gas mixtures. The etch rate was examined as a function of both the total gas pressure and the Cl2 fraction in Ar/Cl2 using a wafer temperature of 10 °C. The results were correlated to positive ion density and plasma composition obtained from Langmuir probes and mass spectrometry. The BST etch rate was found to increase linearly with the positive ion density and to decrease with increasing chlorine atom concentration. This result indicates that for the temperature conditions used, the interaction between chlorine and BST yields compounds having a volatility that is lower than the original material. As a consequence, the contribution of neutral atomic Cl atoms to the etch mechanism is detrimental, thereby reducing the etch rate. As the wafer temperature increases, the role of chemistry in the etching process is enhanced.
Etching Selectivity of Cr, Fe and Ni Masks on Si & SiO2 Wafers
NASA Astrophysics Data System (ADS)
Garcia, Jorge; Lowndes, Douglas H.
2000-10-01
During this Summer 2000 I joined the Semiconductors and Thin Films group led by Dr. Douglas H. Lowndes at Oak Ridge National Laboratory’s Solid State Division. Our objective was to evaluate the selectivity that Trifluoromethane (CHF3), and Sulfur Hexafluoride (SF6) plasmas have for Si, SiO2 wafers and the Ni, Cr, and Fe masks; being this etching selectivity the ratio of the etching rates of the plasmas for each of the materials. We made use of Silicon and Silicon Dioxide-coated wafers that have Fe, Cr or Ni masks. In the semiconductor field, metal layers are often used as masks to protect layers underneath during processing steps; when these wafers are taken to the dry etching process, both the wafer and the mask layers’ thickness are reduced.
Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma
NASA Astrophysics Data System (ADS)
Hönl, Simon; Hahn, Herwig; Baumgartner, Yannick; Czornomaz, Lukas; Seidler, Paul
2018-05-01
We present an inductively coupled-plasma reactive-ion etching process that simultaneously provides both a high etch rate and unprecedented selectivity for gallium phosphide (GaP) in the presence of aluminum gallium phosphide (AlxGa1–xP). Utilizing mixtures of silicon tetrachloride (SiCl4) and sulfur hexafluoride (SF6), selectivities exceeding 2700:1 are achieved at GaP etch rates above 3000 nm min‑1. A design of experiments has been employed to investigate the influence of the inductively coupled-plasma power, the chamber pressure, the DC bias and the ratio of SiCl4 to SF6. The process enables the use of thin AlxGa1–xP stop layers even at aluminum contents of a few percent.
NASA Astrophysics Data System (ADS)
Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu
2017-01-01
This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.
Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk
2012-01-01
This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041
Selective Plasma Etching of Polymeric Substrates for Advanced Applications
Puliyalil, Harinarayanan; Cvelbar, Uroš
2016-01-01
In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238
NASA Astrophysics Data System (ADS)
Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration
2013-03-01
Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2015-11-11
The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less
NASA Astrophysics Data System (ADS)
Mailfert, Julien; Van de Kerkhove, Jeroen; De Bisschop, Peter; De Meyer, Kristin
2014-03-01
A Metal1-layer (M1) patterning study is conducted on 20nm node (N20) for random-logic applications. We quantified the printability performance on our test vehicle for N20, corresponding to Poly/M1 pitches of 90/64nm, and with a selected minimum M1 gap size of 70nm. The Metal1 layer is patterned with 193nm immersion lithography (193i) using Negative Tone Developer (NTD) resist, and a double-patterning Litho-Etch-Litho-Etch (LELE) process. Our study is based on Logic test blocks that we OPCed with a combination of calibrated models for litho and for etch. We report the Overlapping Process Window (OPW), based on a selection of test structures measured after-etch. We find that most of the OPW limiting structures are EOL (End-of-Line) configurations. Further analysis of these individual OPW limiters will reveal that they belong to different types, such as Resist 3D (R3D) and Mask 3D (M3D) sensitive structures, limiters related to OPC (Optical Proximity Corrections) options such as assist placement, or the choice of CD metrics and tolerances for calculation of the process windows itself. To guide this investigation, we will consider a `reference OPC' case to be compared with other solutions. In addition, rigorous simulations and OPC verifications will complete the after-etch measurements to help us to validate our experimental findings.
Biophysical influence of isocarbophos on bovine serum albumin: Spectroscopic probing
NASA Astrophysics Data System (ADS)
Zhang, Hua-xin; Zhou, Ying; Liu, E.
Isocarbophos (ICP) is a phosphorous pesticide with high toxicity. It has been detected in several kinds of food and therefore can enter human body. In this paper, spectroscopic approaches including three-dimensional fluorescence (3D-FL) spectroscopy, UV-visible absorption spectroscopy and circular dichroism (CD) spectroscopy were employed to explore the binding of ICP to bovine serum albumin (BSA) at simulated physiological conditions. It was found that the fluorescence quenching of BSA was caused by the formation of ICP-BSA complex at ground state and belonged to static quenching mechanism. The binding constants, the number of binding sites, enthalpy change (ΔHθ), Gibbs free energy change (ΔGθ) and entropy change (ΔSθ) were calculated at four different temperatures according to Scatchard model and thermodynamic equations. To identify the binding location, fluorescence probe techniques were used. The results showed that warfarin, an acknowledged site marker for BSA, could be partially replaced by ICP when ICP was added to warfarin-BSA systems, which demonstrated that ICP primarily bound on Sudlow's site I in domain IIA of BSA molecule. The distance r (3.06 nm) between donor (Trp-212) and acceptor (ICP) was obtained based on Förster's non-radiation fluorescence resonance energy transfer (FRET) theory. Furthermore, the CD spectral results indicated that the secondary structure of BSA was changed in presence of ICP. The study is helpful to evaluating the toxicology of ICP and understanding its effects on the function of protein during the blood transportation process.
[Study on Strain Detection with Si Based on Bicyclic Cascade Optical Microring Resonator].
Tang, Jun; Lei, Long-hai; Zhang, Wei; Zhang, Tian-en; Xue, Chen-yang; Zhang, Wen-dong; Liu, Jun
2016-03-01
Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong
2017-12-01
A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.
Morales, Alfredo M.; Gonzales, Marcela
2004-06-15
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Epoxy bond and stop etch fabrication method
Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.
2000-01-01
A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.
AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers
NASA Astrophysics Data System (ADS)
Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji
2011-09-01
We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.
Consideration of VT5 etch-based OPC modeling
NASA Astrophysics Data System (ADS)
Lim, ChinTeong; Temchenko, Vlad; Kaiser, Dieter; Meusel, Ingo; Schmidt, Sebastian; Schneider, Jens; Niehoff, Martin
2008-03-01
Including etch-based empirical data during OPC model calibration is a desired yet controversial decision for OPC modeling, especially for process with a large litho to etch biasing. While many OPC software tools are capable of providing this functionality nowadays; yet few were implemented in manufacturing due to various risks considerations such as compromises in resist and optical effects prediction, etch model accuracy or even runtime concern. Conventional method of applying rule-based alongside resist model is popular but requires a lot of lengthy code generation to provide a leaner OPC input. This work discusses risk factors and their considerations, together with introduction of techniques used within Mentor Calibre VT5 etch-based modeling at sub 90nm technology node. Various strategies are discussed with the aim of better handling of large etch bias offset without adding complexity into final OPC package. Finally, results were presented to assess the advantages and limitations of the final method chosen.
Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa
2017-04-01
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hung, Man Yui; Wright, David John; Blacklock, Jeanette; Needle, Richard John
2017-01-01
Introduction A high nurse-vacancy rate combined with high numbers of applications for junior pharmacist roles resulted in Colchester Hospital University National Health System Foundation Trust trial employing junior pharmacists into traditional nursing posts with the aim of integrating pharmacists into the ward team and enhancing local medicines optimization. The aim of the evaluation was to describe the implementation process and practice of the integrated care pharmacists (ICPs) in order to inform future innovations of a similar nature. Methods Four band 6 ward-based ICPs were employed on two wards funded within current ward staffing expenditure. With ethical committee approval, interviews were undertaken with the ICPs and focus groups with ward nurses, senior ward nurses and members of the medical team. Data were analyzed thematically to identify service benefits, barriers and enablers. Routine ward performance data were obtained from the two ICP wards and two wards selected as comparators. Appropriate statistical tests were performed to identify differences in performance. Results Four ICPs were interviewed, and focus groups were undertaken with three junior nurses, four senior nurses and three medical practitioners. Service enablers were continuous ward time, undertaking drug administration, positive feedback and use of effective communication methods. Barriers were planning, funding model, career development, and interprofessional working and social isolation. ICPs were believed to save nurse time and improve medicines safety. The proportion of patients receiving medicine reconciliation within 24 hours increased significantly in the ICP wards. All ICPs had resigned from their role within 12 months. Discussion It was believed that by locating pharmacists on the ward full time and allowing them to undertake medicines administration and medicines reconciliation, the nursing time would be saved and medicines safety improved. There was however significant learning to be derived from the implementation process, which may enable similar future models to be introduced more successfully. PMID:29354565
Hung, Man Yui; Wright, David John; Blacklock, Jeanette; Needle, Richard John
2017-01-01
A high nurse-vacancy rate combined with high numbers of applications for junior pharmacist roles resulted in Colchester Hospital University National Health System Foundation Trust trial employing junior pharmacists into traditional nursing posts with the aim of integrating pharmacists into the ward team and enhancing local medicines optimization. The aim of the evaluation was to describe the implementation process and practice of the integrated care pharmacists (ICPs) in order to inform future innovations of a similar nature. Four band 6 ward-based ICPs were employed on two wards funded within current ward staffing expenditure. With ethical committee approval, interviews were undertaken with the ICPs and focus groups with ward nurses, senior ward nurses and members of the medical team. Data were analyzed thematically to identify service benefits, barriers and enablers. Routine ward performance data were obtained from the two ICP wards and two wards selected as comparators. Appropriate statistical tests were performed to identify differences in performance. Four ICPs were interviewed, and focus groups were undertaken with three junior nurses, four senior nurses and three medical practitioners. Service enablers were continuous ward time, undertaking drug administration, positive feedback and use of effective communication methods. Barriers were planning, funding model, career development, and interprofessional working and social isolation. ICPs were believed to save nurse time and improve medicines safety. The proportion of patients receiving medicine reconciliation within 24 hours increased significantly in the ICP wards. All ICPs had resigned from their role within 12 months. It was believed that by locating pharmacists on the ward full time and allowing them to undertake medicines administration and medicines reconciliation, the nursing time would be saved and medicines safety improved. There was however significant learning to be derived from the implementation process, which may enable similar future models to be introduced more successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu
Angstrom-level plasma etching precision is required for semiconductor manufacturing of sub-10 nm critical dimension features. Atomic layer etching (ALE), achieved by a series of self-limited cycles, can precisely control etching depths by limiting the amount of chemical reactant available at the surface. Recently, SiO{sub 2} ALE has been achieved by deposition of a thin (several Angstroms) reactive fluorocarbon (FC) layer on the material surface using controlled FC precursor flow and subsequent low energy Ar{sup +} ion bombardment in a cyclic fashion. Low energy ion bombardment is used to remove the FC layer along with a limited amount of SiO{sub 2} frommore » the surface. In the present article, the authors describe controlled etching of Si{sub 3}N{sub 4} and SiO{sub 2} layers of one to several Angstroms using this cyclic ALE approach. Si{sub 3}N{sub 4} etching and etching selectivity of SiO{sub 2} over Si{sub 3}N{sub 4} were studied and evaluated with regard to the dependence on maximum ion energy, etching step length (ESL), FC surface coverage, and precursor selection. Surface chemistries of Si{sub 3}N{sub 4} were investigated by x-ray photoelectron spectroscopy (XPS) after vacuum transfer at each stage of the ALE process. Since Si{sub 3}N{sub 4} has a lower physical sputtering energy threshold than SiO{sub 2}, Si{sub 3}N{sub 4} physical sputtering can take place after removal of chemical etchant at the end of each cycle for relatively high ion energies. Si{sub 3}N{sub 4} to SiO{sub 2} ALE etching selectivity was observed for these FC depleted conditions. By optimization of the ALE process parameters, e.g., low ion energies, short ESLs, and/or high FC film deposition per cycle, highly selective SiO{sub 2} to Si{sub 3}N{sub 4} etching can be achieved for FC accumulation conditions, where FC can be selectively accumulated on Si{sub 3}N{sub 4} surfaces. This highly selective etching is explained by a lower carbon consumption of Si{sub 3}N{sub 4} as compared to SiO{sub 2}. The comparison of C{sub 4}F{sub 8} and CHF{sub 3} only showed a difference in etching selectivity for FC depleted conditions. For FC accumulation conditions, precursor chemistry has a weak impact on etching selectivity. Surface chemistry analysis shows that surface fluorination and FC reduction take place during a single ALE cycle for FC depleted conditions. A fluorine rich carbon layer was observed on the Si{sub 3}N{sub 4} surface after ALE processes for which FC accumulation takes place. The angle resolved-XPS thickness calculations confirmed the results of the ellipsometry measurements in all cases.« less
NASA Astrophysics Data System (ADS)
Kubis, Michael; Wise, Rich; Reijnen, Liesbeth; Viatkina, Katja; Jaenen, Patrick; Luca, Melisa; Mernier, Guillaume; Chahine, Charlotte; Hellin, David; Kam, Benjamin; Sobieski, Daniel; Vertommen, Johan; Mulkens, Jan; Dusa, Mircea; Dixit, Girish; Shamma, Nader; Leray, Philippe
2016-03-01
With shrinking design rules, the overall patterning requirements are getting aggressively tighter. For the 7-nm node and below, allowable CD uniformity variations are entering the Angstrom region (ref [1]). Optimizing inter- and intra-field CD uniformity of the final pattern requires a holistic tuning of all process steps. In previous work, CD control with either litho cluster or etch tool corrections has been discussed. Today, we present a holistic CD control approach, combining the correction capability of the etch tool with the correction capability of the exposure tool. The study is done on 10-nm logic node wafers, processed with a test vehicle stack patterning sequence. We include wafer-to-wafer and lot-to-lot variation and apply optical scatterometry to characterize the fingerprints. Making use of all available correction capabilities (lithography and etch), we investigated single application of exposure tool corrections and of etch tool corrections as well as combinations of both to reach the lowest CD uniformity. Results of the final pattern uniformity based on single and combined corrections are shown. We conclude on the application of this holistic lithography and etch optimization to 7nm High-Volume manufacturing, paving the way to ultimate within-wafer CD uniformity control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu
2016-07-15
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less
Park, Hamin; Shin, Gwang Hyuk; Lee, Khang June; Choi, Sung-Yool
2018-05-29
Hexagonal boron nitride (h-BN) is considered an ideal template for electronics based on two-dimensional (2D) materials, owing to its unique properties as a dielectric film. Most studies involving h-BN and its application to electronics have focused on its synthesis using techniques such as chemical vapor deposition, the electrical analysis of its surface state, and the evaluation of its performance. Meanwhile, processing techniques including etching methods have not been widely studied despite their necessity for device fabrication processes. In this study, we propose the atomic-scale etching of h-BN for integration into devices based on 2D materials, using Ar plasma at room temperature. A controllable etching rate, less than 1 nm min-1, was achieved and the low reactivity of the Ar plasma enabled the atomic-scale etching of h-BN down to a monolayer in this top-down approach. Based on the h-BN etching technique for achieving electrical contact with the underlying molybdenum disulfide (MoS2) layer of an h-BN/MoS2 heterostructure, a top-gate MoS2 field-effect transistor (FET) with h-BN gate dielectric was fabricated and characterized by high electrical performance based on the on/off current ratio and carrier mobility.
Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.
Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S
2018-08-17
This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.
Simulations of Control Schemes for Inductively Coupled Plasma Sources
NASA Astrophysics Data System (ADS)
Ventzek, P. L. G.; Oda, A.; Shon, J. W.; Vitello, P.
1997-10-01
Process control issues are becoming increasingly important in plasma etching. Numerical experiments are an excellent test-bench for evaluating a proposed control system. Models are generally reliable enough to provide information about controller robustness, fitness of diagnostics. We will present results from a two dimensional plasma transport code with a multi-species plasma chemstry obtained from a global model. [1-2] We will show a correlation of external etch parameters (e.g. input power) with internal plasma parameters (e.g. species fluxes) which in turn are correlated with etch results (etch rate, uniformity, and selectivity) either by comparison to experiment or by using a phenomenological etch model. After process characterization, a control scheme can be evaluated since the relationship between the variable to be controlled (e.g. uniformity) is related to the measurable variable (e.g. a density) and external parameter (e.g. coil current). We will present an evaluation using the HBr-Cl2 system as an example. [1] E. Meeks and J. W. Shon, IEEE Trans. on Plasma Sci., 23, 539, 1995. [2] P. Vitello, et al., IEEE Trans. on Plasma Sci., 24, 123, 1996.
Prediction of silicon oxynitride plasma etching using a generalized regression neural network
NASA Astrophysics Data System (ADS)
Kim, Byungwhan; Lee, Byung Teak
2005-08-01
A prediction model of silicon oxynitride (SiON) etching was constructed using a neural network. Model prediction performance was improved by means of genetic algorithm. The etching was conducted in a C2F6 inductively coupled plasma. A 24 full factorial experiment was employed to systematically characterize parameter effects on SiON etching. The process parameters include radio frequency source power, bias power, pressure, and C2F6 flow rate. To test the appropriateness of the trained model, additional 16 experiments were conducted. For comparison, four types of statistical regression models were built. Compared to the best regression model, the optimized neural network model demonstrated an improvement of about 52%. The optimized model was used to infer etch mechanisms as a function of parameters. The pressure effect was noticeably large only as relatively large ion bombardment was maintained in the process chamber. Ion-bombardment-activated polymer deposition played the most significant role in interpreting the complex effect of bias power or C2F6 flow rate. Moreover, [CF2] was expected to be the predominant precursor to polymer deposition.
Principles and applications of laser-induced liquid-phase jet-chemical etching
NASA Astrophysics Data System (ADS)
Stephen, Andreas; Metev, Simeon; Vollertsen, Frank
2003-11-01
In this treatment method laser radiation, which is guided from a coaxially expanding liquid jet-stream, locally initiates a thermochemical etching reaction on a metal surface, which leads to selective material removal at high resolution and quality of the treated surface as well as low thermal influence on the workpiece. Electrochemical investigations were performed under focused laser irradiation using a cw-Nd:YAG laser with a maximum power of 15 W and a simultaneous impact of the liquid jet-stream consisting of phosphoric acid with a maximum flow rate of 20 m/s. The time resolved measurements of the electrical potential difference against an electrochemical reference electrode were correlated with the specific processing parameters and corresponding etch rates to identify processing conditions for temporally stable and enhanced chemical etching reactions. Applications of laser-induced liquid-phase jet-chemical etching in the field of sensor technology, micromechanics and micrmoulding technology are presented. This includes the microstructuring of thin film systems, cutting of foils of shape memory alloys or the generation of structures with defined shape in bulk material.
Etching of Silicon in HBr Plasmas for High Aspect Ratio Features
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Meyyappan, M.; Mathad, G. S.; Ranade, R.
2002-01-01
Etching in semiconductor processing typically involves using halides because of the relatively fast rates. Bromine containing plasmas can generate high aspect ratio trenches, desirable for DRAM and MEMS applications, with relatively straight sidewalk We present scanning electron microscope images for silicon-etched trenches in a HBr plasma. Using a feature profile simulation, we show that the removal yield parameter, or number of neutrals removed per incident ion due to all processes (sputtering, spontaneous desorption, etc.), dictates the profile shape. We find that the profile becomes pinched off when the removal yield is a constant, with a maximum aspect ratio (AR) of about 5 to 1 (depth to height). When the removal yield decreases with increasing ion angle, the etch rate increases at the comers and the trench bottom broadens. The profiles have ARs of over 9:1 for yields that vary with ion angle. To match the experimentally observed etched time of 250 s for an AR of 9:1 with a trench width of 0.135 microns, we find that the neutral flux must be 3.336 x 10(exp 17)sq cm/s.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der
2014-08-11
Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm²/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der
2014-01-01
Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm2/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased. PMID:28788159
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2005-03-01
This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.
Rashotte, Judy; Varpio, Lara; Day, Kathy; Kuziemsky, Craig; Parush, Avi; Elliott-Miller, Pat; King, James W; Roffey, Tyson
2016-09-01
Members of the healthcare team must access and share patient information to coordinate interprofessional collaborative practice (ICP). Although some evidence suggests that electronic health records (EHRs) contribute to in-team communication breakdowns, EHRs are still widely hailed as tools that support ICP. If EHRs are expected to promote ICP, researchers must be able to longitudinally study the impact of EHRs on ICP across communication types, users, and physical locations. This paper presents a data collection and analysis tool, named the Map of the Clinical Interprofessional Communication Spaces (MCICS), which supports examining how EHRs impact ICP over time, and across communication types, users, and physical locations. The tool's development evolved during a large prospective longitudinal study conducted at a Canadian pediatric academic tertiary-care hospital. This two-phased study [i.e., pre-implementation (phase 1) and post implementation (phase 2)] of an EHR employed a constructivist grounded theory approach and triangulated data collection strategies (i.e., non-participant observations, interviews, think-alouds, and document analysis). The MCICS was created through a five-step process: (i) preliminary structural development based on the use of the paper-based chart (phase 1); (ii) confirmatory review and modification process (phase 1); (iii) ongoing data collection and analysis facilitated by the map (phase 1); (iv) data collection and modification of map based on impact of EHR (phase 2); and (v) confirmatory review and modification process (phase 2). Creating and using the MCICS enabled our research team to locate, observe, and analyze the impact of the EHR on ICP, (a) across oral, electronic, and paper communications, (b) through a patient's passage across different units in the hospital, (c) across the duration of the patient's stay in hospital, and (d) across multiple healthcare providers. By using the MCICS, we captured a comprehensive, detailed picture of the clinical milieu in which the EHR was implemented, and of the intended and unintended consequences of the EHR's deployment. The map supported our observations and analysis of ICP communication spaces, and of the role of the patient chart in these spaces. If EHRs are expected to help resolve ICP challenges, it is important that researchers be able to longitudinally assess the impact of EHRs on ICP across multiple modes of communication, users, and physical locations. Mapping the clinical communication spaces can help EHR designers, clinicians, educators and researchers understand these spaces, appreciate their complexity, and navigate their way towards effective use of EHRs as means for supporting ICP. We propose that the MCICS can be used "as is" in other academic tertiary-care pediatric hospitals, and can be tailored for use in other healthcare institutions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stehle, Yijing Y.; Sang, Xiahan; Unocic, Raymond R.
Here, chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes inmore » hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.« less
Qualitative modeling of silica plasma etching using neural network
NASA Astrophysics Data System (ADS)
Kim, Byungwhan; Kwon, Kwang Ho
2003-01-01
An etching of silica thin film is qualitatively modeled by using a neural network. The process was characterized by a 23 full factorial experiment plus one center point, in which the experimental factors and ranges include 100-800 W radio-frequency source power, 100-400 W bias power and gas flow rate ratio CHF3/CF4. The gas flow rate ratio varied from 0.2 to 5.0. The backpropagation neural network (BPNN) was trained on nine experiments and tested on six experiments, not pertaining to the original training data. The prediction ability of the BPNN was optimized as a function of the training parameters. Prediction errors are 180 Å/min and 1.33, for the etch rate and anisotropy models, respectively. Physical etch mechanisms were estimated from the three-dimensional plots generated from the optimized models. Predicted response surfaces were consistent with experimentally measured etch data. The dc bias was correlated to the etch responses to evaluate its contribution. Both the source power (plasma density) and bias power (ion directionality) strongly affected the etch rate. The source power was the most influential factor for the etch rate. A conflicting effect between the source and bias powers was noticed with respect to the anisotropy. The dc bias played an important role in understanding or separating physical etch mechanisms.
Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations
Stehle, Yijing Y.; Sang, Xiahan; Unocic, Raymond R.; ...
2017-11-14
Here, chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes inmore » hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.« less
Poca, M; Sahuquillo, J
2001-01-01
The study of cerebrospinal fluid (CSF) dynamics is central to the diagnosis of adult chronic hydrocephalus (ACH). At present, many neurology and neurosurgery departments use one or more tests to guide diagnosis of this syndrome and to predict patient response to shunting. In specialised centres, the study of CSF dynamics is combined with continuous intracranial pressure (ICP) monitoring. Determination of several variables of CSF dynamics and definitions of qualitative and quantitative characteristics of ICP can be used to establish whether the hydrocephalus is active, compensated or arrested. CSF dynamics and ICP monitoring can also be used to check the correct functioning of the shunt and can be of use in the clinical management of patients with pseudotumor cerebri. Moreover, ICP monitoring is used to guide the treatment of several acute neurological processes. The aim of this review is to describe the fundamentals of CSF dynamics studies and the bases of continuous ICP monitoring. The advantages and disadvantages of several hydrodynamic tests that can be performed by lumbar puncture, as well as the normal and abnormal characteristics of an ICP recording, are discussed.
Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.
Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry
2015-12-09
We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.
Turkin, A M; Oshorov, A V; Pogosbekyan, E L; Smirnov, A S; Dmitrieva, A S
Noninvasive techniques to evaluate intracranial pressure (ICP) are important for everyday practice in intensive care and neurosurgery departments. CT data can be used to evaluate the optic nerve sheath diameter (ONSD) and, indirectly, the ICP value. The ONSD value is an additional criterion in deciding on invasive monitoring of ICP. To analyze a correlation between CT-based ONSD and the results of invasive measurements of ICP in patients with severe traumatic brain injury. The study evaluated 41 patients with severe traumatic brain injury within the first 48 h after injury. Invasive monitoring of ICP (Codman & Shurtlett, MA, USA) was performed during 7±1.7 days. ONSD was measured using axial CT scans (CereTom, Neurologica Danvers, MA, USA) with a slice thickness of 2.5 mm. The ONSD value was measured at a distance of 3 mm from the posterior eyeball contour. The patients were allocated in a group with normal ICP (10 patients) and a group with high ICP (31 patients). ONSD served as an ICP classifier. The data were processed using ROC analysis. According to the CT data, the optimal threshold ONSD value was 6.35 mm in patients in the acute TBI period. The sensitivity was 0.93 (95% СI 0.84-1.00), the specificity was 0.80 (95% СI 0.50-1.00), and AUC was 0.87 (95% СI 0.69-1.00). We found a correlation between the CT-based ONSD and the median ICP (R=0.32, p<0.05). An ONSD value of 6.35 mm and more is one of the signs of previous or existing ICP.
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-01-01
Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.
RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks
NASA Astrophysics Data System (ADS)
Hogg, Chip; Majetich, Sara A.; Bain, James A.
2009-03-01
Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.
Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu
2017-12-01
This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.
High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire
NASA Technical Reports Server (NTRS)
Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.
1997-01-01
A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.
Evolution and characteristics of GaN nanowires produced via maskless reactive ion etching.
Haab, Anna; Mikulics, Martin; Sutter, Eli; Jin, Jiehong; Stoica, Toma; Kardynal, Beata; Rieger, Torsten; Grützmacher, Detlev; Hardtdegen, Hilde
2014-06-27
The formation of nanowires (NWs) by reactive ion etching (RIE) of maskless GaN layers was investigated. The morphological, structural and optical characteristics of the NWs were studied and compared to those of the layer they evolve from. It is shown that the NWs are the result of a defect selective etching process. The evolution of density and length with etching time is discussed. Densely packed NWs with a length of more than 1 μm and a diameter of ∼60 nm were obtained by RIE of a ∼2.5 μm thick GaN layer. The NWs are predominantly free of threading dislocations and show an improvement of optical properties compared to their layer counterpart. The production of NWs via a top down process on non-masked group III-nitride layers is assessed to be very promising for photovoltaic applications.
Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4
NASA Astrophysics Data System (ADS)
Qi, S. L.; Chen, Z. Z.; Fang, H.; Sun, Y. J.; Sang, L. W.; Yang, X. L.; Zhao, L. B.; Tian, P. F.; Deng, J. J.; Tao, Y. B.; Yu, T. J.; Qin, Z. X.; Zhang, G. Y.
2009-08-01
Hot phosphor acid (H3PO4) etching is presented to form a roughened surface with dodecagonal pyramids on laser lift-off N face GaN grown by metalorganic chemical vapor deposition. A detailed analysis of time evolution of surface morphology is described as a function of etching temperature. The activation energy of the H3PO4 etching process is 1.25 eV, indicating the process is reaction-limited scheme. And it is found that the oblique angle between the facets and the base plane increases as the temperature increases. Thermodynamics and kinetics related factors of the formation mechanism of the dodecagonal pyramid are also discussed. The light output power of a vertical injection light-emitting-diode (LED) with proper roughened surface shows about 2.5 fold increase compared with that of LED without roughened surface.
NASA Astrophysics Data System (ADS)
Nolde, J. A.; Jackson, E. M.; Bennett, M. F.; Affouda, C. A.; Cleveland, E. R.; Canedy, C. L.; Vurgaftman, I.; Jernigan, G. G.; Meyer, J. R.; Aifer, E. H.
2017-07-01
Longwave infrared detectors using p-type absorbers composed of InAs-rich type-II superlattices (T2SLs) nearly always suffer from high surface currents due to carrier inversion on the etched sidewalls. Here, we demonstrate reticulated shallow etch mesa isolation (RSEMI): a structural method of reducing surface currents in longwave single-band and midwave/longwave dual-band detectors with p-type T2SL absorbers. By introducing a lateral shoulder to increase the separation between the n+ cathode and the inverted absorber surface, a substantial barrier to surface electron flow is formed. We demonstrate experimentally that the RSEMI process results in lower surface current, lower net dark current, much weaker dependence of the current on bias, and higher uniformity compared to mesas processed with a single deep etch. For the structure used, a shoulder width of 2 μm is sufficient to block surface currents.
NASA Astrophysics Data System (ADS)
Shao, Jinhai; Deng, Jianan; Lu, W.; Chen, Yifang
2017-07-01
A process to fabricate T-shaped gates with the footprint scaling down to 10 nm using a double patterning procedure is reported. One of the keys in this process is to separate the definition of the footprint from that for the gate-head so that the proximity effect originated from electron forward scattering in the resist is significantly minimized, enabling us to achieve as narrow as 10-nm foot width. Furthermore, in contrast to the reported technique for 10-nm T-shaped profile in resist, this process utilizes a metallic film with a nanoslit as an etch mask to form a well-defined 10-nm-wide foot in a SiNx layer by reactive ion etch. Such a double patterning process has demonstrated enhanced reliability. The detailed process is comprehensively described, and its advantages and limitations are discussed. Nanofabrication of InP-based high-electron-mobility transistors using the developed process for 10- to 20-nm T-shaped gates is currently under the way.
High-uniformity centimeter-wide Si etching method for MEMS devices with large opening elements
NASA Astrophysics Data System (ADS)
Okamoto, Yuki; Tohyama, Yukiya; Inagaki, Shunsuke; Takiguchi, Mikio; Ono, Tomoki; Lebrasseur, Eric; Mita, Yoshio
2018-04-01
We propose a compensated mesh pattern filling method to achieve highly uniform wafer depth etching (over hundreds of microns) with a large-area opening (over centimeter). The mesh opening diameter is gradually changed between the center and the edge of a large etching area. Using such a design, the etching depth distribution depending on sidewall distance (known as the local loading effect) inversely compensates for the over-centimeter-scale etching depth distribution, known as the global or within-die(chip)-scale loading effect. Only a single DRIE with test structure patterns provides a micro-electromechanical systems (MEMS) designer with the etched depth dependence on the mesh opening size as well as on the distance from the chip edge, and the designer only has to set the opening size so as to obtain a uniform etching depth over the entire chip. This method is useful when process optimization cannot be performed, such as in the cases of using standard conditions for a foundry service and of short turn-around-time prototyping. To demonstrate, a large MEMS mirror that needed over 1 cm2 of backside etching was successfully fabricated using as-is-provided DRIE conditions.
Characterization and modeling of low energy ion-induced damage in III-V semiconductors
NASA Astrophysics Data System (ADS)
Chen, Ching-Hui
1997-11-01
Low energy ion-induced damage (sub-keV) created during dry etching processes can extend quite deeply into materials. A systematic study on the deep penetration of dry etch-induced damage is necessary to improve device performance and helpful in further understanding the nature of defect propagation in semiconductors. In this study, a phenomenological model of dry etching damage that includes both effects of ion channeling and defect diffusion has been developed. It underscores that in addition to ion channeling, enhanced defect diffusion also plays an important role in establishing the damage profile. Further, the enhanced diffusion of dry etch- induced damage was experimentally observed for the first time by investigating the influences of concurrent above- bandgap laser illumination and low energy Ar+ ion bombardment on the damage profiles of GaAs/AlGaAs and InP-GaAs/InP heterostructures. The results indicate that non-radiative recombination of electron and hole pairs at defect sites is responsible for the observed radiation enhanced diffusion. DLTS measurements are also employed to characterize the nature of the enhanced diffusion in n-GaAs and reveal that a major component of the ion- induced defects is associated with primary point defects. Using the better understanding of the damage propagation in dry etched materials, a thin layer of low temperature grown GaAs (~200A) was utilized to stop defect propagation during dry etching process. This approach has been successfully applied to reduce ion damage that would occur during the formation of a dry-etch gate recess of a high electron mobility transistor. Finally, some future experiments are proposed and conceptually described, which would further clarify some of the many outstanding issues in the understanding and mitigation of etch- induced damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young
2014-08-15
In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources duemore » to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.« less
Influence of Si wafer thinning processes on (sub)surface defects
NASA Astrophysics Data System (ADS)
Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira
2017-05-01
Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.
Laser ablation ICP-MS applications using the timescales of geologic and biologic processes
NASA Astrophysics Data System (ADS)
Ridley, W. I.
2003-04-01
Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is to correlate trace element variations with changes in environmental variables. Such studies are proving informative in climate change and habitat management. Again, such variations have been quantified with the availability of appropriate organic, carbonate and phosphate calibration standards.
High density circuit technology, part 3
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.
Application of cyclic fluorocarbon/argon discharges to device patterning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik, E-mail: dmetzler@umd.edu; Uppireddi, Kishore; Bruce, Robert L.
2016-01-15
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
Application of cyclic fluorocarbon/argon discharges to device patterning
Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...
2015-11-13
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
A deep etching mechanism for trench-bridging silicon nanowires
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.
2016-03-01
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554
A deep etching mechanism for trench-bridging silicon nanowires.
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem
2016-03-04
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
Rushford, Michael C.
2002-01-01
An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.
Etch challenges for DSA implementation in CMOS via patterning
NASA Astrophysics Data System (ADS)
Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.
2014-03-01
This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.
Imaging of Intracranial Pressure Disorders.
Holbrook, John; Saindane, Amit M
2017-03-01
Intracranial pressure (ICP) is the pressure inside the bony calvarium and can be affected by a variety of processes, such as intracranial masses and edema, obstruction or leakage of cerebrospinal fluid, and obstruction of venous outflow. This review focuses on the imaging of 2 important but less well understood ICP disorders: idiopathic intracranial hypertension and spontaneous intracranial hypotension. Both of these ICP disorders have salient imaging findings that are important to recognize to help prevent their misdiagnosis from other common neurological disorders. Copyright © 2017 by the Congress of Neurological Surgeons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereasmore » EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.« less
Biophysical influence of isocarbophos on bovine serum albumin: spectroscopic probing.
Zhang, Hua-xin; Zhou, Ying; Liu, E
2012-06-15
Isocarbophos (ICP) is a phosphorous pesticide with high toxicity. It has been detected in several kinds of food and therefore can enter human body. In this paper, spectroscopic approaches including three-dimensional fluorescence (3D-FL) spectroscopy, UV-visible absorption spectroscopy and circular dichroism (CD) spectroscopy were employed to explore the binding of ICP to bovine serum albumin (BSA) at simulated physiological conditions. It was found that the fluorescence quenching of BSA was caused by the formation of ICP-BSA complex at ground state and belonged to static quenching mechanism. The binding constants, the number of binding sites, enthalpy change (ΔH(θ)), Gibbs free energy change (ΔG(θ)) and entropy change (ΔS(θ)) were calculated at four different temperatures according to Scatchard model and thermodynamic equations. To identify the binding location, fluorescence probe techniques were used. The results showed that warfarin, an acknowledged site marker for BSA, could be partially replaced by ICP when ICP was added to warfarin-BSA systems, which demonstrated that ICP primarily bound on Sudlow's site I in domain IIA of BSA molecule. The distance r (3.06 nm) between donor (Trp-212) and acceptor (ICP) was obtained based on Förster's non-radiation fluorescence resonance energy transfer (FRET) theory. Furthermore, the CD spectral results indicated that the secondary structure of BSA was changed in presence of ICP. The study is helpful to evaluating the toxicology of ICP and understanding its effects on the function of protein during the blood transportation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Plasma etching of polymers like SU8 and BCB
NASA Astrophysics Data System (ADS)
Mischke, Helge; Gruetzner, Gabi; Shaw, Mark
2003-01-01
Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.
Restoration of obliterated engraved marks on steel surfaces by chemical etching reagent.
Song, Qingfang
2015-05-01
Chemical etching technique is widely used for restoration of obliterated engraved marks on steel surface in the field of public security. The consumed thickness of steel surface during restoration process is considered as a major criterion for evaluating the efficiency of the chemical etching reagent. The thinner the consumed thickness, the higher the restoration efficiency. According to chemical principles, maintaining the continuous oxidative capabilities of etching reagents and increasing the kinetic rate difference of the reaction between the engraved and non-engraved area with the chemical etching reagent can effectively reduce the consumed steel thickness. The study employed steel surface from the engine case of motorcycle and the car frame of automobile. The chemical etching reagents are composed of nitric acid as the oxidizer, hydrofluoric acid as the coordination agent and mixed with glacial acetic acid or acetone as the solvents. Based on the performance evaluation of three different etching reagents, the one composed of HNO3, HF and acetone gave the best result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Yaozong; Zhou, Yu; Gao, Hongwei; Dai, Shujun; He, Junlei; Feng, Meixin; Sun, Qian; Zhang, Jijun; Zhao, Yanfei; DingSun, An; Yang, Hui
2017-10-01
Etching of GaN/AlGaN heterostructure by O-containing inductively coupled Cl2/N2 plasma with a low-energy ion bombardment can be self-terminated at the surface of the AlGaN layer. The estimated etching rates of GaN and AlGaN were 42 and 0.6 nm/min, respectively, giving a selective etching ratio of 70:1. To study the mechanism of the etching self-termination, detailed characterization and analyses were carried out, including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It was found that in the presence of oxygen, the top surface of the AlGaN layer was converted into a thin film of (Al,Ga)Ox with a high bonding energy, which effectively prevented the underlying atoms from a further etching, resulting in a nearly self-terminated etching. This technique enables a uniform and reproducible fabrication process for enhancement-mode high electron mobility transistors with a p-GaN gate.
Intermediate Cognitive Phenotypes in Bipolar Disorder
Langenecker, Scott A.; Saunders, Erika F.H.; Kade, Allison M.; Ransom, Michael T.; McInnis, Melvin G.
2013-01-01
Background Intermediate cognitive phenotypes (ICPs) are measurable and quantifiable states that may be objectively assessed in a standardized method, and can be integrated into association studies, including genetic, biochemical, clinical, and imaging based correlates. The present study used neuropsychological measures as ICPs, with factor scores in executive functioning, attention, memory, fine motor function, and emotion processing, similar to prior work in schizophrenia. Methods Healthy control subjects (HC, n=34) and euthymic (E, n=66), depressed (D, n=43), or hypomanic/mixed (HM, n=13) patients with bipolar disorder (BD) were assessed with neuropsychological tests. These were from eight domains consistent with previous literature; auditory memory, visual memory, processing speed with interference resolution, verbal fluency and processing speed, conceptual reasoning and set-shifting, inhibitory control, emotion processing, and fine motor dexterity. Results Of the eight factor scores, the HC group outperformed the E group in three (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity), the D group in seven (all except Inhibitory Control), and the HM group in four (Inhibitory Control, Processing Speed with Interference Resolution, Fine Motor Dexterity, and Auditory Memory). Limitations The HM group was relatively small, thus effects of this phase of illness may have been underestimated. Effects of medication could not be fully controlled without a randomized, double-blind, placebo-controlled study. Conclusions Use of the factor scores can assist in determining ICPs for BD and related disorders, and may provide more specific targets for development of new treatments. We highlight strong ICPs (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity) for further study, consistent with the existing literature. PMID:19800130
Developing quartz wafer mold manufacturing process for patterned media
NASA Astrophysics Data System (ADS)
Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa
2009-04-01
Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.
A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask
Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po
2010-01-01
An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors. PMID:22315561
Laser etching of polymer masked leadframes
NASA Astrophysics Data System (ADS)
Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.
1997-02-01
A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.
A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask.
Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po
2010-01-01
An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO(2) nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO(2) chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.
Ultralong time response of magnetic fluid based on fiber-optic evanescent field.
Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Xu, Jian; Jiang, Yajun; Wang, Meirong
2016-07-20
The ultralong time (a few hours) response properties of magnetic fluid using etched optical fiber are visualized and investigated experimentally. The operating structure is made by injecting magnetic fluid into a capillary tube that contains etched single-mode fiber. An interesting extreme asymmetry is observed, in which the transmitted light intensity after the etched optical fiber cannot reach the final steady value when the external magnetic field is turned on (referred to as the falling process), while it can reach the stable state quickly once the magnetic field is turned off (referred to as the rising process). The relationship between the response times/loss rates of the transmitted light and the strength of the applied magnetic field is obtained. The physical mechanisms of two different processes are discussed qualitatively.
Stand-off transmission lines and method for making same
Tuckerman, David B.
1991-01-01
Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress.
NASA Astrophysics Data System (ADS)
Guo, Xiaowei; Chen, Mingyong; Zhu, Jianhua; Ma, Yanqin; Du, Jinglei; Guo, Yongkang; Du, Chunlei
2006-01-01
A novel method for the fabrication of continuous micro-optical components is presented in this paper. It employs a computer controlled digital-micromirror-device(DMD TM) as a switchable projection mask and silver-halide sensitized gelatin (SHSG) as recording material. By etching SHSG with enzyme solution, the micro-optical components with relief modulation can be generated through special processing procedures. The principles of etching SHSG with enzyme and theoretical analysis for deep etching are also discussed in detail, and the detailed quantitative experiments on the processing procedures are conducted to determine optimum technique parameters. A good linear relationship within a depth range of 4μm was experimentally obtained between exposure dose and relief depth. At last, the microlensarray with 256.8μm radius and 2.572μm depth was achieved. This method is simple, cheap and the aberration in processing procedures can be corrected in the step of designing mask, so it is a practical method to fabricate good continuous profile for low-volume production.
Synthesis and characterization of porous silicon gas sensors
NASA Astrophysics Data System (ADS)
abbas, Roaa A.; Alwan, Alwan M.; Abdulhamied, Zainab T.
2018-05-01
In this work, photo-electrochemical etching process of n-type Silicon of resistivity(10 Ω.cm) and (100) orientation, using two illumination sources IR and violet wavelength in HF acid have been used to produce PSi gas detection device. The fabrication process was carried out at a fixed etching current density of 25mA/cm2 and at different etching time (5, 10, 15 and 20) min and (8, 16, 24, and 30) min. Two configurations of gas sensor configuration planer and sandwich have been made and investigated. The morphological properties have been studied using SEM,the FTIR measurement show that the (Si-Hx) and (Si-O-Si) absorption peak were increases with increasing etching time,and Photoluminescence properties of PSi layer show decrease in the peak of PL peak toward the violet shift. The gas detection process is made on the CO2 gas at different operating temperature and fixed gas concentration. In the planner structure, the gas sensing was measured through, the change in the resistance readout as a function to the exposure time, while for sandwich structure J-V characteristic have been made to determine the sensitivity.
Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface
NASA Astrophysics Data System (ADS)
Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung
2018-04-01
We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.
Optical properties of micromachined polysilicon reflective surfaces with etching holes
NASA Astrophysics Data System (ADS)
Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.
1998-08-01
MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.
GaN MOSFET with Boron Trichloride-Based Dry Recess Process
NASA Astrophysics Data System (ADS)
Jiang, Y.; Wang, Q. P.; Tamai, K.; Miyashita, T.; Motoyama, S.; Wang, D. J.; Ao, J. P.; Ohno, Y.
2013-06-01
The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl3) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl4) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess achieved a high maximum electron mobility of 141.5 cm2V-1s-1 and a low interface state density.
Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces
NASA Astrophysics Data System (ADS)
Tellier, C. R.
1990-03-01
Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.
Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da
A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shapemore » can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.« less
Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power.
Cho, Eunwoo; Kang, Yoonmook; Kim, Donghwan; Kim, Jihyun
2016-05-16
We demonstrated a flexible CdS/CdTe thin film solar cell with high specific power of approximately 254 W/kg. A flexible and ultra-light weight CdS/CdTe cell treated with pre-NP etch process exhibited high conversion efficiency of 13.56% in superstrate configuration. Morphological, structural and optical changes of CdS/CdTe thin films were characterized when pre-NP etch step was incorporated to the conventional post-deposition process. Improvement of photovoltaic parameters can be attributed to the removal of the oxide and the formation of Te-rich layer, which benefit the activation process. Pre-NP etched cell maintained their flexibility and performance under the repeated tensile strain of 0.13%. Our method can pave a way for manufacturing flexible CdS/CdTe thin film solar cells with high specific power for mobile and aerospace applications.
NASA Astrophysics Data System (ADS)
Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan
2018-03-01
Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.
NASA Technical Reports Server (NTRS)
Prokopuk, Nicholas (Inventor); Son, Kyung-Ah (Inventor)
2008-01-01
Methods of fabricating nano-gap electrode structures in array configurations, and the structures so produced. The fabrication method involves depositing first and second pluralities of electrodes comprising nanowires using processes such as lithography, deposition of metals, lift-off processes, and chemical etching that can be performed using conventional processing tools applicable to electronic materials processing. The gap spacing in the nano-gap electrode array is defined by the thickness of a sacrificial spacer layer that is deposited between the first and second pluralities of electrodes. The sacrificial spacer layer is removed by etching, thereby leaving a structure in which the distance between pairs of electrodes is substantially equal to the thickness of the sacrificial spacer layer. Electrode arrays with gaps measured in units of nanometers are produced. In one embodiment, the first and second pluralities of electrodes are aligned in mutually orthogonal orientations.
NASA Astrophysics Data System (ADS)
Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou
2018-03-01
It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up to 7KW. The wafer surface is coated with Yttrium oxide film which allows Silicon Etch chemistry. At Fab-8, we carried investigations in 14 nm FEOL critical etch process which has direct impact on yield, using SensorArray EtchTemp-SE wafer, we measured ESC temperature profile across multiple chambers, for both plasma on and plasma off, promising results achieved on chamber temperature signature identification, guideline for chamber to chamber matching improvement. Correlation between wafer mean temperature and determining criticality-process parameters of recess depth and CD is observed. Furthermore, detail zonal temperature/profile correlation is investigated to identify individual correlation in each chuck zone, and provided unique process knobs corresponding to each chunk. Meanwhile, passive ESC Chuck DOE was done to modulate wafer temperature at different zones, and Sensor Array wafer measurements verified temperature responding well with the ESC set point. Correlation R2 = 0.9979 for outer ring and R2 = 0.9981 for Mid Outer ring is observed, as shown in . Experiments planning to modulate edge zone ESC temperature to tune profile within-wafer uniformity and prove gain in edge yield enhancement and to improve edge yield is underway.
Kunuku, Srinivasu; Sankaran, Kamatchi Jothiramalingam; Tsai, Cheng-Yen; Chang, Wen-Hao; Tai, Nyan-Hwa; Leou, Keh-Chyang; Lin, I-Nan
2013-08-14
We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N2-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp(2)-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian
The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less
Method and apparatus for coating thin foil with a boron coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Jeffrey L.
An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less
Measurement of the Electron Density and the Attachment Rate Coefficient in Silane/Helium Discharges.
1986-09-01
materials -- in this case hydrogenated amorphous silicon . One of the biggest problems in such a task is the fact that the discharge creates complex radicals...electron density is enhanced -- even on a time-averaged basis, and the silicon deposition rate is also increased. The physical process for the density...etching and deposition of semiconductor materials. Plasma etching (also known as dry etching) Of silicon using flourine bearing gases has made it possible
Plasmaless cleaning process of silicon surface using chlorine trifluoride
NASA Astrophysics Data System (ADS)
Saito, Yoji; Yamaoka, Osamu; Yoshida, Akira
1990-03-01
Plasmaless etching using ClF3 gas around room temperature has been investigated for the silicon substrates with the various thicknesses of native oxide. The native oxide can be removed with ClF3 gas. A specular surface is obtained by ultraviolet light irradiation which remarkably accelerates the removal of the native oxide without changing the etch rate of silicon. The etched surface is analyzed with Auger electron measurement, indicating the existence of Cl atoms on it.
Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching
NASA Astrophysics Data System (ADS)
Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li
2016-10-01
HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.
Self-assembly of silicon nanowires studied by advanced transmission electron microscopy
Agati, Marta; Amiard, Guillaume; Borgne, Vincent Le; Castrucci, Paola; Dolbec, Richard; De Crescenzi, Maurizio; El Khakani, My Alì
2017-01-01
Scanning transmission electron microscopy (STEM) was successfully applied to the analysis of silicon nanowires (SiNWs) that were self-assembled during an inductively coupled plasma (ICP) process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm) were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX) spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS) mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs. PMID:28326234
2015-03-26
THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS
Inductive plasmas for plasma processing
NASA Astrophysics Data System (ADS)
Keller, John H.
1996-05-01
With the need for high plasma density and low pressure in single wafer etching tools, a number of inductive etching systems have been and are being developed for commercial sale. This paper reviews some of the history of low-pressure inductive plasmas, gives features of inductive plasmas, limitations, corrections and presents uses for plasma processing. The theory for the skin depth, rf coil impedance and efficiency is also discussed.
Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke
2007-11-01
High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.
Reactive ion etching of indium-tin oxide films by CCl4-based Inductivity Coupled Plasma
NASA Astrophysics Data System (ADS)
Juneja, Sucheta; Poletayev, Sergey D.; Fomchenkov, Sergey; Khonina, Svetlana N.; Skidanov, Roman V.; Kazanskiy, Nikolay L.
2016-08-01
Indium tin oxide (ITO) films have been a subject of extensive studies in fabrication of micro-electronic devices for opto-electronic applications ranging from anti-reflection coatings to transparent contacts in photovoltaic devices. In this paper, a new and effective way of reactive ion etching of a conducting indium-tin oxide (ITO) film with Carbon tetrachloride (CCl4) has been investigated. CCl4 plasma containing an addition of gases mixture of dissociated argon and oxygen were used. Oxygen is added to increase the etchant percentage whereas argon was used for stabilization of plasma. The etching characteristics obtained with these gaseous mixtures were explained based on plasma etch chemistry and etching regime of ITO films. An etch rate as high as ∼20 nm/min can be achieved with a controlled process parameter such as power density, total flow rate, composition of reactive gases gas and pressure. Our Investigation represents some of the extensive work in this area.
Resistance of dichromated gelatin as photoresist
NASA Astrophysics Data System (ADS)
Lin, Pang; Yan, Yingbai; Jin, Guofan; Wu, Minxian
1999-09-01
Based on the photographic chemistry, chemically hardening method was selected to enhance the anti-etch capability of gelatin. With the consideration of hardener and permeating processing, formaldehyde is the most ideal option due to the smallest molecule size and covalent cross-link with gelatin. After hardened in formaldehyde, the resistance of the gelatin was obtained by etched in 1% HF solution. The result showed that anti-etch capability of the gelatin layer increased with tanning time, but the increasing rate reduced gradually and tended to saturation. Based on the experimental results, dissolving-flaking hypothesis for chemically hardening gelatin was presented. Sol-gel coatings were etched with 1% HF solution. Compared with the etching rate of gelatin layer, it showed that gelatin could be used as resist to fabricate optical elements in sol-gel coating. With the cleaving-etch method and hardening of dichromated gelatin (DCG), DCG was used as a photoresist for fabricating sol-gel optical elements. As an application, a sol-gel random phase plate was fabricated.
Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong
2013-08-23
Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.J.; Warner, J.A.; LeBarron, N.
Processes that use energetic ions for large substrates require that the time-averaged erosion effects from the ion flux be uniform across the surface. A numerical model has been developed to determine this flux and its effects on surface etching of a silica/photoresist combination. The geometry of the source and substrate is very similar to a typical deposition geometry with single or planetary substrate rotation. The model was used to tune an inert ion-etching process that used single or multiple Kaufman sources to less than 3% uniformity over a 30-cm aperture after etching 8 {micro}m of material. The same model canmore » be used to predict uniformity for ion-assisted deposition (IAD).« less
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2002-12-01
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.
Microleakage of self-etching sealant on noncontaminated and saliva-contaminated enamel.
2011-01-01
The purpose of this study was to compare the microleakage of a self-etching sealant with a traditional phosphoric acid-etched sealant under noncontaminated and saliva-contaminated conditions. Fifty-two sound extracted human molars were randomly divided into 4 groups (N=13). Teeth in Groups 1 and 2 were cleaned with pumice, etched with phosphoric acid, rinsed, coated with a drying agent, placed with sealants (UltraSeal XT Plus), and light cured. Teeth in Groups 3 and 4 were cleaned with a proprietary flour pumice and rinsed prior to being sealed with a self-etching sealant (Enamel Loc). Teeth in Groups 2 and 4 were contaminated with saliva and thoroughly air-dried prior to the sealant placement. All teeth were subjected to a thermocycling process, stained with silver nitrate, and sectioned, and images of the sealant on the occlusal surface were recorded. Microleakage distance was measured in millimeters and subjected to a 2-way analysis of variance. Significantly larger microleakage distances were found for the self-etching sealant vs the traditional sealant (P<.001). Saliva contamination did not significantly affect the microleakage distance (P<.17). Under the conditions used in this in vitro study, the self-etching sealant, regardless of contamination condition, had extensive microleakage distances vs. little microleakage in the traditional phosphoric acid-etched sealant.
Seebeck Coefficient of Thermocouples from Nickel-Coated Carbon Fibers: Theory and Experiment.
Hardianto, Hardianto; De Mey, Gilbert; Ciesielska-Wrόbel, Izabela; Hertleer, Carla; Van Langenhove, Lieva
2018-05-30
Thermocouples made of etched and non-etched nickel-coated carbon yarn (NiCCY) were investigated. Theoretic Seebeck coefficients were compared to experimental results from measurements of generated electric voltage by these thermocouples. The etching process for making thermocouples was performed by immersion of NiCCY in the solution containing a mixture of hydrochloric acid (HCl) (37% of concentration), and hydrogen peroxide (H₂O₂) in three different concentrations-3%, 6%, and 10%. Thirty minutes of etching to remove Ni from NiCCY was followed by washing and drying. Next, the ability to generate electrical voltage by the thermocouples (being a junction of the etched and the non-etched NiCCY) was measured in different ranges of temperatures, both a cold junction (291.15⁻293.15 K) and a hot junction (293.15⁻325.15 K). A formula predicting the Seebeck coefficient of this thermocouple was elaborated, taking into consideration resistance values of the tested samples. It was proven that there is a good agreement between the theoretical and experimental data, especially for the yarns etched with 6% and 10% peroxide (both were mixed with HCl). The electrical resistance of non-fully etched nickel remaining on the carbon fiber surface ( R 1 ) can have a significant effect on the thermocouples' characteristics.
Wafer hotspot prevention using etch aware OPC correction
NASA Astrophysics Data System (ADS)
Hamouda, Ayman; Power, Dave; Salama, Mohamed; Chen, Ao
2016-03-01
As technology development advances into deep-sub-wavelength nodes, multiple patterning is becoming more essential to achieve the technology shrink requirements. Recently, Optical Proximity Correction (OPC) technology has proposed simultaneous correction of multiple mask-patterns to enable multiple patterning awareness during OPC correction. This is essential to prevent inter-layer hot-spots during the final pattern transfer. In state-of-art literature, multi-layer awareness is achieved using simultaneous resist-contour simulations to predict and correct for hot-spots during mask generation. However, this approach assumes a uniform etch shrink response for all patterns independent of their proximity, which isn't sufficient for the full prevention of inter-exposure hot-spot, for example different color space violations post etch or via coverage/enclosure post etch. In this paper, we explain the need to include the etch component during multiple patterning OPC. We also introduce a novel approach for Etch-aware simultaneous Multiple-patterning OPC, where we calibrate and verify a lumped model that includes the combined resist and etch responses. Adding this extra simulation condition during OPC is suitable for full chip processing from a computation intensity point of view. Also, using this model during OPC to predict and correct inter-exposures hot-spots is similar to previously proposed multiple-patterning OPC, yet our proposed approach more accurately corrects post-etch defects too.
Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy
Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...
Perforated semiconductor neutron detectors for battery operated portable modules
NASA Astrophysics Data System (ADS)
McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy
2007-09-01
Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.
NASA Astrophysics Data System (ADS)
Zhang, Yonghui; Wei, Tongbo; Wang, Junxi; Fan, Chao; Chen, Yu; Hu, Qiang; Li, Jinmin
2014-05-01
In this study, the periodic SiO2 nanosphere nanopatterned sapphire substrate (SiO2-NPSS) was made using self-assembled SiO2 nanosphere monolayer template and inductively coupled plasma (ICP) etching. And the self-assembled SiO2 nanosphere monolayer was directly embedded into the GaN/sapphire interface by nanoscale epitaxial lateral overgrowth (NELOG). For comparison, a common nanopatterned sapphire substrate (C-NPSS) was also made through dry etching with the SiO2 nanospheres used as the mask. Compared with LEDs grown on C-NPSS and flat sapphire substrate (FSS), the external quantum efficiency of LEDs with SiO2 nanopheres (SiO2-NPSS) was increased by 30.7% and 81.9% under a driving current 350 mA. The SiO2-NPSS not only improved the crystalline quality of GaN but also enhanced the light extraction efficiency (LEE) of LED. And the SiO2-NPSS LED also showed more light in vertical direction and more uniform light distribution. By finite-difference time-domain (FDTD) simulation, we confirmed that more light could be reflected from the GaN/SiO2 interface than the GaN/sapphire interface because the refractive index of SiO2 was lower than that of sapphire. Therefore, LED grown on the SiO2-NPSS showed superior light extraction efficiency compared to that on C-NPSS.
Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas
2014-05-01
Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected examples on combining isotopic systems for the study of ecosystem processes on different spatial scales will underpin the great opportunities substantiated by the field of analytical ecogeochemistry. Moreover, recent developments in plasma mass spectrometry and the application of new isotopic systems require sound metrological approaches in order to prevent scientific conclusions drawn from analytical artifacts.
Patterning of Indium Tin Oxide Films
NASA Technical Reports Server (NTRS)
Immer, Christopher
2008-01-01
A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.
Consideration of correlativity between litho and etching shape
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka
2012-03-01
We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.
Stand-off transmission lines and method for making same
Tuckerman, D.B.
1991-05-21
Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress. 16 figures.
Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to
2017-07-26
Packed inside its canister, the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket arrives at the low bay entrance of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to
2017-07-26
Packed inside its canister, the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) Transport from DOC to
2017-07-26
Packed inside its canister, the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is moved into the low bay entrance of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Recovery of Mo/Si multilayer coated optical substrates
Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.
1997-12-16
Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.
Recovery of Mo/Si multilayer coated optical substrates
Baker, S.L.; Vernon, S.P.; Stearns, D.G.
1997-12-16
Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon
The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.
Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA
2006-03-07
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Xiao, Xiaoyin; Lu, Ping; Fischer, Arthur J.; ...
2015-11-18
Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In 2O 3 and/or Ga 2O 3) form which interfere with quantum dot formation. Furthermore, at pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.
Kawoos, Usmah; McCarron, Richard M.; Chavko, Mikulas
2017-01-01
Blast-induced traumatic brain injury is associated with acute and possibly chronic elevation of intracranial pressure (ICP). The outcome after TBI is dependent on the progression of complex processes which are mediated by oxidative stress. So far, no effective pharmacological protection against TBI exists. In this study, rats were exposed to a single or repetitive blast overpressure (BOP) at moderate intensities of 72 or 110 kPa in a compressed air-driven shock tube. The degree and duration of the increase in ICP were proportional to the intensity and frequency of the blast exposure(s). In most cases, a single dose of antioxidant N-acetylcysteine amide (NACA) (500 mg/kg) administered intravenously 2 h after exposure to BOP significantly attenuated blast-induced increase in ICP. A single dose of NACA was not effective in improving the outcome in the group of animals that were subjected to repetitive blast exposures at 110 kPa on the same day. In this group, two treatments with NACA at 2 and 4 h post-BOP exposure resulted in significant attenuation of elevated ICP. Treatment with NACA prior to BOP exposure completely prevented the elevation of ICP. The findings indicate that oxidative stress plays an important role in blast-induced elevated ICP as treatment with NACA-ameliorated ICP increase, which is frequently related to poor functional recovery after TBI. PMID:28634463
Morphologies of Solid Surfaces Produced Far from Equilibrium
1991-03-10
common to all these applications is that thc surface preparation processes used are far from chemical equilibrium. Many of the processes involve an...energetic ion beam, plasma or gas that is used to modify a surface, either by etching or depositing material. The electrical, optical and mechanical...growth, a number of continuum models have been used in the materials science literature, in particular in the context of electron-beam etching of
Plasma-deposited amorphous silicon carbide films for micromachined fluidic channels
NASA Astrophysics Data System (ADS)
Wuu, Dong-Sing; Horng, Ray-Hua; Chan, Chia-Chi; Lee, Yih-Shing
1999-04-01
The stress properties of the a-SiC:H films on Si by plasma-enhanced chemical vapor deposition (PECVD) are investigated. It is found that the stability of the a-SiC:H films relates to Si-H bonds breaking and changes the stress toward tensile. No evident reduction in the content of Si-H bonds after thermal cycles was found in the carbon-rich samples. Moreover, a new method to fabricate microchannels by through-hole etching with subsequent planarization is proposed. The process is based on etching out the deep grooves through a perforated a-SiC:H membrane, where poly-Si is used as a sacrificial layer to define the channel structure, followed by PECVD sealing the SiC:H membrane. In order to improve the etching performance, the agitated KOH etch is performed at low temperatures (<50°C). The process technology is demonstrated on the fabrication of microfluidic channels with the low-stress (<0.1 GPa) a-SiC:H membranes.
Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001)
2014-01-01
Nanoholes with a depth in the range of tens of nanometers can be formed on GaAs(001) surfaces at a temperature of 500°C by local etching after Ga droplet formation. In this work, we demonstrate that the local etching or nanodrilling process starts when the Ga droplets are exposed to arsenic. The essential role of arsenic in nanohole formation is demonstrated sequentially, from the initial Ga droplets to the final stage consisting of nanoholes surrounded by ringlike structures at the surface and Ga droplets consumed. The kinetics of local etching depends on the arsenic flux intensity, while the ringlike structures are basically the same as those formed underneath the droplets in the absence of arsenic. These structures show motifs with well-defined crystalline facets that correspond to those expected from surface energy minimization. These experimental results are qualitatively analyzed for a better understanding of the nanohole formation underlying processes. PMID:24994962
Lithography-free glass surface modification by self-masking during dry etching
NASA Astrophysics Data System (ADS)
Hein, Eric; Fox, Dennis; Fouckhardt, Henning
2011-01-01
Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.
Reduced Noise UV Enhancement of Etch Rates for Nuclear Tracks in CR-39
NASA Astrophysics Data System (ADS)
Sheets, Rebecca; Clarkson, David; Ume, Rubab; Regan, Sean; Sangster, Craig; Padalino, Stephen; McLean, James
2016-10-01
The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C for 6 hours, producing micron-scale signal pits at the nuclear track sites. Using CR-39 irradiated with 5.4 MeV alpha particles and 1.0 MeV protons, we show that exposing the CR-39 to high intensity UV light before etching, with wavelengths between 240 nm and 350 nm, speeds the etch process. Elevated temperatures during UV exposure amplifies this effect, with etch rates up to 50% greater than unprocessed conditions. CR-39 pieces exposed to UV light and heat can also exhibit heightened levels of etch-induced noise (surface features not caused by nuclear particles). By illuminating the CR-39 from the side opposite to the tracks, a similar level of etch enhancement was obtained with little to no noise. The effective wavelength range is reduced, due to strong attenuation of shorter wavelengths. Funded in part by a LLE contract through the DOE.
Imaging resin infiltration into non-cavitated carious lesions by optical coherence tomography.
Schneider, Hartmut; Park, Kyung-Jin; Rueger, Claudia; Ziebolz, Dirk; Krause, Felix; Haak, Rainer
2017-05-01
Visualisation of the etching process and resin penetration at white spot carious lesions by spectral domain optical coherence tomography (SD-OCT). The non-cavitated carious lesions (ICDAS code 2) of four visually preselected extracted human molars and premolars were verified as enamel lesions by micro computed tomography (μCT). One region of interest (ROI) per tooth was marked by two drill-holes in occlusal-cervical direction. The lesions were imaged by SD-OCT. Lesions were infiltrated (Icon, DMG) according to the manufacturer's instructions. During each treatment step and after light curing of the infiltrant, the ROIs were imaged again by SD-OCT. Teeth were sectioned through the ROIs and section layers were imaged by scanning electron microscopy in order to compare with the OCT images. The image sequences for etching and infiltration were viewed in time lapse. During the etching process, numerous bubbles formed on the lesion surface. Using OCT, the process of resin penetration into the carious lesion body became visible. The early enamel carious lesion was completely infiltrated by the resin whereas infiltration of the advanced enamel carious lesion was incomplete and inhomogeneous. Resin infiltration can be increased by optimizing the etching process. Optical coherence tomography provides information about the process and degree of resin infiltration. Active acid application before resin infiltration is recommendable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Co-optimization of lithographic and patterning processes for improved EPE performance
NASA Astrophysics Data System (ADS)
Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane
2017-03-01
Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.
NASA Astrophysics Data System (ADS)
Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul
2014-11-01
We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Fan, Xiaoli; Chen, Jiajia; He, Siyu; Yi, Zao; Ye, Xin; Yi, Yougen
2018-05-01
A silicon substrate with micro-pyramid structure (black silicon) is prepared by wet chemical etching and then subjected to reactive ion etching (RIE) in the mixed gas condition of SF6, CHF3 and He. We systematically study the impacts of flow rates of SF6, CHF3 and He, the etching pressure and the etching time on the surface morphology and reflectivity through various characterizations. Meanwhile, we explore and obtain the optimal combination of parameters for the preparation of composite structure that match the RIE process based on the basis of micro-pyramid silicon substrate. The composite sample prepared under the optimum parameters exhibits excellent anti-reflective performance, hydrophobic, self-cleaning and anti-corrosive properties. Based on the above characteristics, the composite micro/nano structure can be applied to solar cells, photodetectors, LEDs, outdoor devices and other important fields.
High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.
Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng
2018-02-16
In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.
Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.
2013-06-11
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM
2014-01-07
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
NASA Technical Reports Server (NTRS)
Benton, E. V.; Gruhn, T. A.; Andrus, C. H.
1973-01-01
Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.
Lowering the environmental impact of high-kappa/ metal gate stack surface preparation processes
NASA Astrophysics Data System (ADS)
Zamani, Davoud
ABSTRACT Hafnium based oxides and silicates are promising high-κ dielectrics to replace SiO2 as gate material for state-of-the-art semiconductor devices. However, integrating these new high-κ materials into the existing complementary metal-oxide semiconductor (CMOS) process remains a challenge. One particular area of concern is the use of large amounts of HF during wet etching of hafnium based oxides and silicates. The patterning of thin films of these materials is accomplished by wet etching in HF solutions. The use of HF allows dissolution of hafnium as an anionic fluoride complex. Etch selectivity with respect to SiO2 is achieved by appropriately diluting the solutions and using slightly elevated temperatures. From an ESH point of view, it would be beneficial to develop methods which would lower the use of HF. The first objective of this study is to find new chemistries and developments of new wet etch methods to reduce fluoride consumption during wet etching of hafnium based high-κ materials. Another related issue with major environmental impact is the usage of large amounts of rinsing water for removal of HF in post-etch cleaning step. Both of these require a better understanding of the HF interaction with the high-κ surface during the etching, cleaning, and rinsing processes. During the rinse, the cleaning chemical is removed from the wafers. Ensuring optimal resource usage and cycle time during the rinse requires a sound understanding and quantitative description of the transport effects that dominate the removal rate of the cleaning chemicals from the surfaces. Multiple processes, such as desorption and re-adsorption, diffusion, migration and convection, all factor into the removal rate of the cleaning chemical during the rinse. Any of these processes can be the removal rate limiting process, the bottleneck of the rinse. In fact, the process limiting the removal rate generally changes as the rinse progresses, offering the opportunity to save resources. The second objective of this study is to develop new rinse methods to reduce water and energy usage during rinsing and cleaning of hafnium based high-κ materials in single wafer-cleaning tools. It is necessary to have a metrology method which can study the effect of all process parameters that affect the rinsing by knowing surface concentration of contaminants in patterned hafnium based oxides and silicate wafers. This has been achieved by the introduction of a metrology method at The University of Arizona which monitors the transport of contaminant concentrations inside micro- and nano- structures. This is the only metrology which will be able to provide surface concentration of contaminants inside hafnium based oxides and silicate micro-structures while the rinsing process is taking place. The goal of this research is to study the effect of various process parameters on rinsing of patterned hafnium based oxides and silicate wafers, and modify a metrology method for end point detection.
Effects of silicon nanowire morphology on optical properties and hybrid solar cell performance
NASA Astrophysics Data System (ADS)
Syu, Hong-Jhang; Shiu, Shu-Chia; Hung, Yung-Jr; Lee, San-Liang; Lin, Ching-Fuh
2012-10-01
Silicon nanowire (SiNW) arrays are widespread applied on hybrid photovoltaic devices because SiNW arrays can substitute the pyramid texture and anti-reflection coating due to its strong light trapping. Also, SiNWs can be prepared through a cost-efficient process of metal-assisted chemical etching. However, though longer SiNW arrays have lower reflectance, the top of long SiNWs aggregate together to make junction synthesis difficult for SiNW/organic hybrid solar cell. To control and analyze the effect of SiNW array morphology on hybrid solar cells, here we change the metal deposition condition for metal-assisted chemical etching to obtain different SiNW array morphologies. The experiment was separated to two groups, by depositing metal, say, Ag, before etching (BE) or during etching (DE). For group BE, Ag was deposited on n-type Si (n-Si) wafers by thermal evaporation; then etched by H2O2 and HF. For group DE, n-Si was etched by Ag+ and HF directly. Ag was deposited on n-Si during etching process. Afterwards, residual Ag and SiO2 were removed by HNO3 and buffered HF, successively; then Ti and Ag were evaporated on the bottom of Si to be a cathode. Finally, SiNWs were stuck on the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) that was spincoated on the ITO coated glass to form SiNW/organic heterojunction. The results show that group BE has reflectance lower than that in group DE in solar spectrum. However, group BE has smaller power conversion efficiency (PCE) of 8.65% and short-circuit current density (Jsc) of 24.94 mA/cm2 than group DE of PCE of 9.47% and Jsc of 26.81 mA/cm2.
Choi, Siwon; Kim, Bumjoo; Han, Jongyoon
2017-06-13
Conventional water treatment process is composed of multiple stages, including desalination (salt removal) and pre/post-treatment of desalination to remove particles, chemicals, and other potential foulants for desalination. In this work, we developed a microfluidic proof-of-concept for a single device water treatment system, which removes both salt ions and non-salt contaminants. Our system combines electrocoagulation (EC), a versatile contaminant removal process, and ion concentration polarization (ICP) desalination, which is an electromembrane desalination process. We demonstrated a continuous EC-ICP operation that removed >95% of suspended solids and reduced the salinity from brackish range (20 mM NaCl) to a potable level (<8.6 mM NaCl). We also demonstrated that our system is flexible in terms of the type and concentration of contaminants it can handle. Combining two different electrochemical processes into a single system, we can reduce unnecessary voltage drop by having a shared anode, and achieve both seamless integration and energy efficient operation. Our system will find applications as a small-scale water treatment system, if properly scaled up in the future.
Predicting synergy in atomic layer etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanarik, Keren J.; Tan, Samantha; Yang, Wenbing
2017-03-27
Atomic layer etching (ALE) is a multistep process used today in manufacturing for removing ultrathin layers of material. In this article, the authors report on ALE of Si, Ge, C, W, GaN, and SiO 2 using a directional (anisotropic) plasma-enhanced approach. The authors analyze these systems by defining an “ALE synergy” parameter which quantifies the degree to which a process approaches the ideal ALE regime. This parameter is inspired by the ion-neutral synergy concept introduced in the 1979 paper by Coburn and Winters. ALE synergy is related to the energetics of underlying surface interactions and is understood in terms ofmore » energy criteria for the energy barriers involved in the reactions. Synergistic behavior is observed for all of the systems studied, with each exhibiting behavior unique to the reactant–material combination. By systematically studying atomic layer etching of a group of materials, the authors show that ALE synergy scales with the surface binding energy of the bulk material. This insight explains why some materials are more or less amenable to the directional ALE approach. Furthermore, they conclude that ALE is both simpler to understand than conventional plasma etch processing and is applicable to metals, semiconductors, and dielectrics.« less
NASA Astrophysics Data System (ADS)
Dong, Siyu; Xie, Lingyun; He, Tao; Jiao, Hongfei; Bao, Ganghua; Zhang, Jinlong; Wang, Zhanshan; Cheng, Xinbin
2017-09-01
For the sol-gel method, it is still challenging to achieve excellent spectral performance when preparing antireflection (AR) coating by this way. The difficulty lies in controlling the film thickness accurately. To correct the thickness error of sol-gel coating, a hybrid approach that combined conventional sol-gel process with ion-beam etching technology was proposed in this work. The etching rate was carefully adjusted and calibrated to a relatively low value for removing the redundant material. Using atomic force microscope (AFM), it has been demonstrated that film surface morphology will not be changed in this process. After correcting the thickness error, an AR coating working at 1064 nm was prepared with transmittance higher than 99.5%.
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
In this paper, synthesis of the hydrothermal based etching process of niobium oxide (Nb2O5) films and their reflectance properties are presented. The concentration of etching agent, which is ammonium fluoride (NH4F) in the hydrothermal solution as well as the grain size and the annealing condition have significantly affected the reflectance properties of Nb2O5 films. Films that synthesized in 1.65M of NH4F solution showed the lowest percentage of reflectance value of 3.22% at 222 nm. The obtained reflectance results have shown that this kind of Nb2O5 films is very suitable for anti-reflective coating layer and UV sensor application.