Sample records for icrf antenna plug

  1. Assessment of a field-aligned ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Brunner, D.; Ennever, P.

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore themore » underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest

  2. Modeling of the EAST ICRF antenna with ICANT Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Chengming; Zhao Yanping; Colas, L.

    2007-09-28

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  3. Modeling of the EAST ICRF antenna with ICANT Code

    NASA Astrophysics Data System (ADS)

    Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.

    2007-09-01

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  4. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  5. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie

    2017-10-01

    A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  6. ICRF operation with improved antennas in ASDEX Upgrade with W wall

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Balden, M.; Bilato, R.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Giannone, L.; Kallenbach, A.; Maier, H.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; Tsujii, N.; Zeus, F.; Zohm, H.; the ASDEX Upgrade Team

    2013-09-01

    Experiments with boron-coated side limiters of two antennas operated together in 2012 showed that the side limiters are responsible for more than half of the increased W content in the plasma. Together with the contribution from the other limiter tiles, not replaced in 2012, the limiters account for at least two thirds of the W content. A modified test two-strap ion cyclotron range of frequency (ICRF) antennas in ASDEX Upgrade with broad limiters and narrow straps has shown an improved operation with full W wall in 2011/2012 campaigns with up to a 40% lower rise of W concentration allowing more stable operation at low deuterium gas injection rate. Limiter spectroscopy measurements indicate up to a 40% reduction of the rise of the W sputtering yield during ICRF power, measured under the assumption of negligible influence of geometry variations and reflections on the measurements. The boron limiters on two antennas together with the improved broad-limiter antenna allowed a successful ICRF operation in 2012. As a part of long-term strategy of antenna design development, two three-strap antennas with phase and power balance control for reduction of E‖ are planned for installation in the future.

  7. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; ASDEX Upgrade Team

    2009-06-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5×1021 s) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90° can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  8. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less

  9. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Colas, L.; Mayoral, M.-L.; Beaumont, B.; Bibet, Ph.; Brémond, S.; Kazarian, F.; Mailloux, J.; Noterdaeme, J.-M.; Efda-Jet Contributors

    2003-12-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced E×B convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum.

  10. Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl. V.; Braun, F.; Dux, R.; Herrmann, A.; Giannone, L.; Kallenbach, A.; Krivska, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, T.; Rohde, V.; Schweinzer, J.; Sips, A.; Zammuto, I.; ASDEX Upgrade Team

    2010-03-01

    The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall. The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna. An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles. In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma-antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap-box distance, e.g. by increasing the

  11. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  12. IShTAR ICRF antenna field characterization in vacuum and plasma by using probe diagnostic

    NASA Astrophysics Data System (ADS)

    Usoltceva, Mariia; Ochoukov, Roman; D'Inca, Rodolphe; Jacquot, Jonathan; Crombé, Kristel; Kostic, Ana; Heuraux, Stéphane; Faudot, Eric; Noterdaeme, Jean-Marie

    2017-10-01

    RF sheath physics is one of the key topics relevant for improvements of ICRF heating systems, which are present on nearly all modern magnetic fusion machines. This paper introduces developement and validation of a new approach to understanding general RF sheath physics. The presumed reason of enhanced plasma-antenna interactions, parallel electric field, is not measured directly, but proposed to be obtained from simulations in COMSOL Multiphysics® Modeling Software. Measurements of RF magnetic field components with B-dot probes are done on a linear device IShTAR (Ion cyclotron Sheath Test ARrangement) and then compared to simulations. Good resulting accordance is suggested to be the criterion for trustworthiness of parallel electric field estimation as a component of electromagnetic field in modeling. A comparison between simulation and experiment for one magnetic field component in vacuum has demonstrated a close match. An additional complication to this ICRF antenna field characterization study is imposed by the helicon antenna which is used as a plasma ignition tool in the test arrangement. The plasma case, in contrast to the vacuum case, must be approached carefully, since the overlapping of ICRF antenna and helicon antenna fields occurs. Distinguishing of the two fields is done by an analysis of correlation between measurements with both antennas together and with each one separately.

  13. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less

  14. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less

  15. ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.

    2011-08-01

    Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources.Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna.Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.

  16. ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources. Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna. Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.

  17. Theory and Practice in ICRF Antennas for Long Pulse Operation

    NASA Astrophysics Data System (ADS)

    Colas, L.; Faudot, E.; Brémond, S.; Heuraux, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Tore Supra Team

    2005-09-01

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20s×8MW and 60s×4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC E×B0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  18. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    NASA Astrophysics Data System (ADS)

    Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.

    2005-08-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.

  19. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    NASA Astrophysics Data System (ADS)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne < 1018 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  20. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  1. Theory and Practice in ICRF Antennas for Long Pulse Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colas, L.; Bremond, S.; Mitteau, R.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot patternmore » was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.« less

  2. Characterization and Mitigation of ICRF Antenna - Plasma Edge Interaction

    NASA Astrophysics Data System (ADS)

    Hong, Rongjie; Tynan, George; Wukitch, Steve; Lin, Yijun; Terry, Jim; Chilenski, M.; Golfinopoulos, T.; Hubbard, A.; Mumgaard, R. T.; Perkins, R.; Reinke, M. L.; Alcator C-Mod Team

    2017-10-01

    Recent experiments reveal that RF-induced potentials (VRF) in the SOL and impurity source at the antenna can be reduced to background levels via optimizing the power ratio between the inner and outer current straps, Pcent /Pout . Experiments indicate the antenna impurity source reduction for the field aligned antenna is due to geometrical alignment rather than electrical symmetry. Additional experiments performed without an optimized Pcent /Pout showed that VRF and the associated convection cells do not influence the impurity penetration or core impurity confinement. These results suggest the core impurity contamination associated with ICRF heating is dominated by an increased impurity source rather than a change in impurity transport. Further, the convective cell strength was expected to scale inversely with B-field. The observed poloidal velocity (measure of convective cell strength), however, decreased less than expected. In addition, the measured maximum VRF increased and penetrated farther into the SOL at higher B-field and plasma current. Results also suggest VRF is strongly influenced by the SOL plasma parameters rather than by RF parameters. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and DE-SC 0010720.

  3. TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2006-07-01

    The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA

  4. Recent ICRF coupling experiments on EAST

    NASA Astrophysics Data System (ADS)

    Yuqing, YANG; Xinjun, ZHANG; Yanping, ZHAO; Chengming, QIN; Yan, CHENG; Yuzhou, MAO; Hua, YANG; Jianhua, WANG; Shuai, YUAN; Lei, WANG; Songqing, JU; Gen, CHEN; Xu, DENG; Kai, ZHANG; Baonian, WAN; Jiangang, LI; Yuntao, SONG; Xianzu, GONG; Jinping, QIAN; Tao, ZHANG

    2018-04-01

    Recent ion cyclotron resonance frequency (ICRF) coupling experiments for optimizing ICRF heating in high power discharge were performed on EAST. The coupling experiments were focus on antenna phasing and gas puffing, which were performed separately on two ports of the ion cyclotron resonance heating (ICRH) system of EAST. The antenna phasing was performed on the I-port antenna, which consists of four toroidally spaced radiating straps operating in multiple phasing cases; the coupling performance was better under low wave number | {k}\\parallel | (ranging from 4.5 to 6.5). By fuelling the plasma from gas injectors, placed as uniformly spaced array from top to bottom at each side limiter of the B-port antenna, which works in dipole phasing, the coupling resistance of the B-port antenna increased obviously. Furthermore, the coupling resistance of the I-port antenna was insensitive to a smaller rate of gas puffing but when the gas injection rate was more than a certain value (>1021s‑1), a sharp increase in the coupling resistance of the I-port antenna occurred, which was mainly caused by the toroidal asymmetric boundary density arising from gas puffing. A more specific analysis is given in the paper.

  5. A folded waveguide ICRF antenna for PBX-M and TFTR

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.

    1996-02-01

    The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.

  6. Initial operation of high power ICRF system for long pulse in EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less

  7. ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor

    NASA Astrophysics Data System (ADS)

    Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun

    2017-10-01

    Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.

  8. High-power and steady-state operation of ICRF heating in the large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less

  9. Interaction of ICRF Fields with the Plasma Boundary in AUG and JET and Guidelines for Antenna Optimization

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Bilato, R.; Braun, F.; Colas, L.; Dux, R.; Van Eester, D.; Giannone, L.; Goniche, M.; Herrmann, A.; Jacquet, P.; Kallenbach, A.; Krivska, A.; Lerche, E.; Mayoral, M.-L.; Milanesio, D.; Monakhov, I.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.

    2009-11-01

    W sputtering during ICRF on ASDEX Upgrade (AUG) and temperature rise on JET A2 antenna septa are considered in connection with plasma conditions at the antenna plasma facing components and E‖ near-fields. Large antenna-plasma clearance, high gas puff and low light impurity content are favorable to reduce W sputtering in AUG. The spatial distribution of spectroscopically measured effective W sputtering yields clearly points to the existence of strong E‖ fields at the antenna box ("feeder fields") which dominate over the fields in front of the antenna straps. The picture of E‖ fields, obtained by HFSS code, corroborates the dominant role of E‖ at the antenna box on the formation of sheath-driving RF voltages for AUG. Large antenna-plasma clearance and low gas puff are favorable to reduce septum temperature of JET A2 antennas. Assuming a linear relation between the septum temperature and the sheath driving RF voltage calculated by HFSS, the changes of the temperature with dipole phasing (00ππ, 0ππ0 or 0π0π) are well described by the related changes of the RF voltages. Similarly to the AUG antenna, the strongest E‖ are found at the limiters of the JET A2 antenna for all used dipole phasings and at the septum for the phasings different from 0π0π. A simple general rule can be used to minimize E‖ at the antenna: image currents can be allowed only at the surfaces which do not intersect magnetic field lines at large angles of incidence. Possible antenna modifications generally rely either on a reduction of the image currents, on their short-circuiting by introducing additional conducting surfaces or on imposing the E‖ = 0 boundary condition. On the example of AUG antenna, possible options to minimize the sheath driving voltages are presented.

  10. Design, performance, and grounding aspects of the International Thermonuclear Experimental Reactor ion cyclotron range of frequencies antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durodié, F., E-mail: frederic.durodie@rma.ac.be; Dumortier, P.; Vrancken, M.

    2014-06-15

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV andmore » limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and

  11. Measurement of ICRF wave propagation using a microwave reflectometer with fast antenna switching on GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Sekine, R.; Kubota, Y.; Shima, Y.; Kohagura, J.; Yoshikawa, M.; Sakamoto, M.; Nakashima, Y.

    2017-12-01

    Slow Alfvén wave in ion cyclotron range of frequency (ICRF) is a powerful tool to heat ions confined in a mirror field. In spite of its efficient heating effect that has been attained in the central cell of GAMMA 10, there are still unknown characteristics concerning boundary condition, transient variation of heating effect, exact picture of cyclotron damping, and so on. To study these characteristics in detail, a multi-point measurement of the waves inside the hot plasma has been recently developed by using a microwave reflectometer. In addition to a radial profile measurement that is available by a usual reflectometer, an axial measurement has been achieved by arraying transmitting and receiving horn antennas in the axial direction, which are repeatedly switched in time during a discharge with PIN diode switches. Another transmitting and receiving horn antenna pair was newly added to the system and probing at five cross sections was achieved in a single discharge with time resolution of about 1 ms at each antenna pair position. With the upgraded reflectometer system, axial and radial distributions of wave-induced fluctuations and those temporal behavior were clearly observed, offering valuable data on wave physics in a hot mirror plasma.

  12. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    NASA Astrophysics Data System (ADS)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  13. ICRF Mode Conversion Flow Drive Experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Reinke, M. L.; Rice, J. E.; Wukitch, S. J.; Granetz, R.; Greenwald, M.; Hubbard, A. E.; Marmar, E. S.; Podpaly, Y. A.; Porkolab, M.; Tsujii, N.; Wolfe, S.

    2011-12-01

    We have carried out a detailed study of the dependence of ICRF mode conversion flow drive (MCFD) on plasma and RF parameters. The flow drive efficiency is found to depend strongly on the 3He concentration in D(3He) plasmas, a key parameter separating the ICRF minority heating regime and mode conversion regime. At +90 ° antenna phasing (waves in the co-Ip direction) and dipole phasing, the driven flow is in the co-Ip direction, and the change of the rotation velocity increases with both PRF and Ip, and scales unfavorably vs. plasma density and antenna frequency. When MCFD is applied to I-mode plasmas, the plasma rotation increases until the onset of MHD modes triggered by large sawtooth crashes. Very high performance I-mode plasmas with HITER98,y2˜1.4 and Te0˜8 keV have been obtained in these experiments.

  14. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    NASA Astrophysics Data System (ADS)

    Gallart, Dani; Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; Krawczyk, Natalia; King, Damian; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H) at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ˜7.0 MW in D-T.

  15. Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi

    2017-10-01

    The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.

  16. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  17. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are

  18. 3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2016-10-01

    Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.

  19. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out

  20. ICRF heating in a straight, helically symmetric stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, E.F.; Weitzner, H.; Batchelor, D.B.

    1987-07-01

    Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating at fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in the theoretical basis for such heating. In this paper, global solutions for the ICRF wave fields in a helically symmetric, straight stellarator are calculated in the cold plasma limit. The component of the wave electric field parallel to B-vector is assumed zero. Helical symmetry allows Fourier decomposition in the longitudinal (z) direction. The two remaining partial differential equations in tau and phi identical to THETA - hz (h is the helical pitch) are solved by finite differencing.more » Energy absorption and antenna impedance are calculated from an ad hoc collision model. Results for parameters typical of the L-2 and Advanced Toroidal Facility (ATF) stellarators show that direct resonant absorption of the fundamental ion cyclotron resonance occurs mainly near the plasma edge. The magnitude of the absorption is about half that for minority heating at the two-ion hybrid resonance.« less

  1. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-01

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a `test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude φ0 (normalized to a characteristic length for transverse transport and to the local temperature). A `peaking factor' is built from the DC peak potential normalized to φ0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the `peaking factor' for ITER will be presented for a given configuration.

  2. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially amore » Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.« less

  3. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  4. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2015-12-01

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod's field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.

  5. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, whichmore » could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.« less

  6. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G., E-mail: tgjenkins@txcorp.com; Smithe, David N., E-mail: smithe@txcorp.com

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scansmore » over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.« less

  7. Aspects of ICRF-3

    NASA Astrophysics Data System (ADS)

    Ma, Chopo; MacMillan, Daniel; Le Bail, Karine; Gordon, David

    2016-12-01

    The Second Realization of the International Celestial Reference Frame (ICRF2) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations coordinated by the IVS and various precursor networks. Since 2009 the data set has been significantly broadened, especially by observations in the southern hemisphere. While the new southern data have ameliorated the north/south imbalance of observations, they appear to produce a systematic zonal declination change in the catalog positions. Over the 35 years of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.

  8. Considerations for ICRF-3

    NASA Astrophysics Data System (ADS)

    Ma, Chopo; MacMillan, Daniel; Gordon, David

    2015-08-01

    The Second Realization of the International Celestial Reference Frame (ICRF) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations now coordinated by the International VLBI Service for Geodesy and Astrometry (IVS) and analyzed according to the Conventions of the International Earth Rotation and Reference Systems Service (IERS). Since 2009 the data set has been significantly broadened, especially by observations in the Southern Hemisphere, and modeling of astronomical, geophysical and tropospheric effects has progressed. The new southern data appear to cause a systematic zonal declination change in the catalog positions. Over the three decades of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.

  9. ORNL diagnostic and modeling development for LAPD ICRF experiments

    NASA Astrophysics Data System (ADS)

    Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.

    2017-10-01

    PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).

  10. Towards a Future ICRF Realization

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, D.; MacMillan, D.; Petrov, L.; Smith, David E. (Technical Monitor)

    2001-01-01

    The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the southern hemisphere. Positions of new sources have been determined, including approx.1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and reidentification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.

  11. Towards a Future ICRF Realization

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel; Petrov, Leonid

    2002-01-01

    The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the Southern Hemisphere. Positions of new sources have been determined, including approximately 1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and re-identification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.

  12. ICRF-187 in clinical oncology.

    PubMed

    Poster, D S; Penta, J S; Bruno, S; Macdonald, J S

    1981-01-01

    Although the mechanism of action of ICRF-159 and 187 has not been clearly defined, it is evident from both preclinical and early clinical studies that these compounds are of interest. There are three distinct characteristics of these ICRF compounds that deserve careful clinical evaluation. First, these drugs are apparently alkylating agents with modest, predictable and noncumulative bone marrow toxicity that makes them good potential candidates for combination chemotherapy regimens. The second characteristic that should be investigated is the suggestion that combination of ICRF-187 with an anthracycline may ameliorate the cardiac toxicity of the latter. The third factor in the preclinical evaluation of the bis-diketopiperazines that may have clinical application is the evidence that suggests that these drugs have an antimetastatic effect.

  13. Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2004-01-01

    Since the ICRF was generated in 1995, VLBI modeling and estimation, data quality: source position stability analysis, and supporting observational programs have improved markedly. There are developing and potential applications in the areas of space navigation Earth orientation monitoring and optical astrometry from space that would benefit from a refined ICRF with enhanced accuracy, stability and spatial distribution. The convergence of analysis, focused observations, and astrometric needs should drive the production of a new realization in the next few years.

  14. Plasma-Surface Interactions and RF Antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, D. N.; Beckwith, K.; Davidson, B. D.; Kruger, S. E.; Pankin, A. Y.; Roark, C. M.

    2015-11-01

    Implementation of recently developed finite-difference time-domain (FDTD) modeling techniques on high-performance computing platforms allows RF power flow, and antenna near- and far-field behavior, to be studied in realistic experimental ion-cyclotron resonance heating scenarios at previously inaccessible levels of resolution. We present results and 3D animations of high-performance (10k-100k core) FDTD simulations of Alcator C-Mod's field-aligned ICRF antenna on the Titan supercomputer, considering (a) the physics of slow wave excitation in the immediate vicinity of the antenna hardware and in the scrape-off layer for various edge densities, and (b) sputtering and impurity production, as driven by self-consistent sheath potentials at antenna surfaces. Related research efforts in low-temperature plasma modeling, including the use of proper orthogonal decomposition methods for PIC/fluid modeling and the development of plasma chemistry tools (e.g. a robust and flexible reaction database, principal path reduction analysis capabilities, and improved visualization options), will also be summarized. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501 and ALCC/OLCF.

  15. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    NASA Astrophysics Data System (ADS)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  16. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  17. Toward the ICRF3: Astrometric Comparison of the USNO 2016A VLBI Solution with ICRF2 and Gaia DR1

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Johnson, Megan C.; Fey, Alan; Makarov, Valeri V.; Dorland, Bryan N.

    2018-06-01

    The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO toward the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in this paper is to assess U16A’s astrometry. A comparison with ICRF2 shows statistically significant offsets of size 0.1 mas between the two solutions. While Gaia DR1 positions are not precise enough to resolve these offsets, they are found to be significantly closer to U16A than ICRF2. In particular, the trend for typically larger errors for southern sources in VLBI solutions is decreased in U16A. Overall, the VLBI-Gaia offsets are reduced by 21%. The U16A list includes 718 sources not previously included in ICRF2. Twenty of those new sources have statistically significant radio-optical offsets. In two-thirds of the cases, these offsets can be explained from PanSTARRS images.

  18. Uses of the ICRF and implications for future VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2006-01-01

    Since its inception on 1 Jan 1998, the fundamental ICRF has been set by the VLBI positions of 212 "defining" extragalactic radio sources. In all there are approx.3000 sources with usefully accurate (< few mas) positions consistent with the ICRF. The uses of the ICRF include fundamental astrometry, monitoring of Earth orientation, and spacecraft navigation. For fundamental astrometry, stability and accuracy are most important, and realizations at different frequencies must be in proper registration. However, there is no preferred frequency, and the GAIA mission has the potential for an optical ICRF with 500,000 objects at the 50 microarcsec level some time after the planned 2011 launch. The radio ICRF should be properly prepared for a transition to assure long term stability and consistency. Earth orientation monitoring requires objects attached to the solid Earth, and VLBI will continue to be the fundamental technique. For this purpose it is essential that the new VLBI stations contemplated in the VLBI20l0 report be capable of observing a sufficiently large and well-distributed set of stable sources, and identifying these sources is an on-going effort. Spacecraft navigation by differential VLBI is planned using the Ka-band telemetry signal, and work has begun towards an ICRF realization suitable for this purpose. The balancing of different needs related to the VLBI ICRF will be discussed.

  19. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    NASA Astrophysics Data System (ADS)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  20. The Second International Celestial Reference Frame (ICRF2)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2010-01-01

    The ICRF2 catalog was constructed by the IERS/IVS Working Group with oversight by the IAU Working Group. Derived using data from August 1979 through March 2009, it is a great improvement over the original ICRF with 3414 extragalactic radio source positions, a noise floor of 40 microarcsec, and axis stability of 10 microarcsec. Significant refinements were made in the selection of defining sources, modeling, and the integration of CRF, TRF, and EOP. The adoption of the ICRF2 was approved by the IAU in Resolution B3 at the XXVII IAU General Assembly and became effective 1 January 2010.

  1. VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Bockmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2016-01-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).

  2. Bulk ion heating with ICRF waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantsinen, M. J., E-mail: mervi.mantsinen@bsc.es; Barcelona Supercomputing Center, Barcelona; Bilato, R.

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR andmore » is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.« less

  3. High field side launch of RF waves: A new approach to reactor actuators

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.

    2015-12-01

    Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡c k∥/ω >√{1 -ωpi 2/ω2+ωpe 2/ωce 2 }+ωp e/|ωc e| ) and the condition for strong electron Landau damping (n∥˜√{30 /Te } with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering

  4. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    NASA Astrophysics Data System (ADS)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  5. Influence of ICRF heating on the stability of TAEs

    NASA Astrophysics Data System (ADS)

    Sears, J.; Burke, W.; Parker, R. R.; Snipes, J. A.; Wolfe, S.

    2007-11-01

    Unstable toroidicity-induced Alfv'en eigenmodes (TAEs) can appear spontaneously due to resonant interaction with fast particles such as fusion alphas, raising concern that TAEs may threaten ITER performance. This work investigates the progression of stable TAE damping rates toward instability during a scan of ICRF heating power up to 3.1 MW. Stable eigenmodes are identified in Alcator C-Mod by the Active MHD diagnostic. Unstable TAEs are observed to appear spontaneously in C-Mod limited L-mode plasmas at sufficient tail energies generated by >3 MW of ICRF heating. However preliminary analysis of experiments with moderate ICRF heating power show that TAE stability may not simply degrade with overall fast particle content. There are hints that the stability of some TAEs may be enhanced in the presence of fast particle distribution tails. Furthermore, the radial profile of the energetic particle distribution relative to the safety factor profile affects the ICRF power influence on TAE stability.

  6. The IAU Division A Working Group on the Third Realization of the ICRF: Background, Goals, Plans

    NASA Astrophysics Data System (ADS)

    Gaume, Ralph

    2015-08-01

    The XXVIII General Assembly of the IAU (Beijing, 2012) established the Division A Working Group on the Third Realization of the International Celestial Reference Frame (ICRF). The adopted charter of the ICRF3 Working Group includes a commitment to report on the implementation and execution plans for ICRF3 during the XXIX General Assembly of the IAU along with a targeted completion and presentation of ICRF3 in 2018 to the XXX General Assembly for adoption. This talk will discuss the background, purpose, and overall implementation plan for ICRF3, and motivate the concept, currently under consideration by the ICRF3 Working Group, that future realizations of the ICRF be based on multi-frequency astrometric data, starting with ICRF3.

  7. The Position/Structure Stability of Four ICRF2 Sources

    NASA Technical Reports Server (NTRS)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan; Boboltz, Dave; Oyama, Tomoaki; Honma, Mareki

    2010-01-01

    Four compact radio sources in the International Celestial Reference Frame (ICRF2) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6-GHz, and with VERA at 23-GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF2. Conclusions are: (1) 43-GHz VLBI high-resolution observations are often needed to determine the location of the radio core. (2) Over the observing period, the relative positions among the four radio cores were constant to 0.02 mas, suggesting that once the true radio core is identified, it remains stationary in the sky to this accuracy. (3) The emission in 0556+238, one of the four sources investigated and one of the 295 ICRF2 defining sources, was dominated by a strong component near the core and moved 0.1 mas during the year. (4) Comparison of the VLBA images at 43, 23, and 8.6-GHz with the ICRF2 positions suggests that the 8-GHz structure is often dominated by a bright non-core component. The measured ICRF2 position can be displaced more than 0.5 mas from the radio core and partake in the motion of the bright jet component.

  8. Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.

    2016-10-01

    A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  9. Potential Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    The analysis and data used for the ICRF represented the state of the art in global, extragalactic, X/S band microwave astrometry in 1995. The same general analysis method was used to extend the ICRF with subsequent VLBI data in a manner consistent with the original catalog. Since 1995 there have been considerable advances in the geodetic/astrometric VLBI data set and in the analysis that would significantly improve the systematic errors, stability, and density of the next realization of the ICRS when the decision is made to take this step. In particular, data acquired since 1990, including extensive use of the VLBA, are of higher quality and astrometric utility because of changes in instrumentation, schedule design, and networks as well as specifically astrometric intent. The IVS (International VLBI Service for Geodesy and Astrometry) continues to devote a portion of its observing capability to systematic extension of the astrometric data set. Sufficient data distribution exists to select a better set of defining sources. Improvements in troposphere modeling will minimize known systematic astrometric errors while accurate modeling and estimation of station effects from loading and nonlinear motions will permit the reintegration of the celestial reference frame, terrestrial reference frame and Earth orientation parameters though a single VLBI solution. The differences between the current ICRF and the potential next realization will be described.

  10. IVS Observation of ICRF2-Gaia Transfer Sources

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-03-01

    The second realization of the International Celestial Reference Frame (ICRF2), which is the current fundamental celestial reference frame adopted by the International Astronomical Union, is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency’s Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ∼500,000 Quasi Stellar Objects in the optical domain an average of 70 times each during the five years of the mission. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d’Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. We describe our successful effort to implement such a program and report on the results. Most observations of the ICRF2-Gaia transfer sources now occur automatically as part of the IVS source monitoring program, while a subset of 37 sources requires special attention. Beginning in 2013, we scheduled 25 VLBI sessions devoted in whole or in part to measuring these 37 sources. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Of the sources, 87 met their observing target of 12 successful sessions per year. The position uncertainties of all of the ICRF2-Gaia transfer sources have improved since the start of this observing program. For a subset of 24 sources whose positions were very poorly known, the uncertainty

  11. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  12. THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan

    2011-03-15

    Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less

  13. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less

  14. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  15. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  16. The interaction of the near-field plasma with antennas used in magnetic fusion research

    NASA Astrophysics Data System (ADS)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  17. TOPICA/TORIC integration for self-consistent antenna and plasma analysis

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Milanesio, Daniele; Kyrytsya, Volodymyr; Vecchi, Giuseppe; Bonoli, Paul T.; Wright, John C.

    2006-10-01

    TOPICA [1] is a numerical suite conceived for prediction and analysis of plasma-facing antennas. It can handle real-life 3D antenna geometries (with housing, Faraday screen, etc.) as well as a realistic plasma model, including measured density and temperature profiles. TORIC [2] solves the finite Larmor radius wave equations in the ICRF regime in arbitrary axisymmetric toroidal plasmas. Due to the approach followed in developing TOPICA (i.e. the formal splitting of the problem in the vacuum region around the antenna and the plasma region inside the toroidal chamber), the code lends itself to handle toroidal plasmas, provided TORIC is run independently to yield the plasma surface admittance tensorsY (m,m',n). The latter enter directly into the integral equations solved by TOPICA, thus allowing a far more accurate plasma description that accounts for curvature effects. TOPICA outputs comprise, among others, the EM fields in front of the plasma: these can in turn be input to TORIC, in order to self-consistently determine the EM field propagation in the plasma. In this work, we report on the theory underlying the TOPICA/TORIC integration and the ongoing evolution of the two codes. [1] V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476 [2] M. Brambilla, Plasma Phys. Contr. Fusion (1999) 41 1

  18. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoukov, R.; Bobkov, V.; Faugel, H.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performedmore » on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under

  19. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  20. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.

  1. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  2. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  3. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    NASA Astrophysics Data System (ADS)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium-deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5-10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  4. Research on ultrasonic excitation for the removal of drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng

    2017-05-01

    Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2005-01-01

    The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.

  6. VizieR Online Data Catalog: Radio fluxes of 195 ICRF2-Gaia transfer sources (Le Bail+, 2016)

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-07-01

    The second realization of the International Celestial Reference Frame (ICRF2) is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency's Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ~500000 Quasi Stellar Objects in the optical domain. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d'Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Table1 lists the 195 ICRF2-Gaia transfer sources. Beginning in 2003 June, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of "under-observed" sources. In 2013 March, we added all 195 ICRF2-Gaia transfer sources to the IVS source monitoring program with an observation target of 12 successful sessions per year. (1 data file).

  7. Long-Term Variations of the EOP and ICRF2

    NASA Technical Reports Server (NTRS)

    Zharov, Vladimir; Sazhin, Mikhail; Sementsov, Valerian; Sazhina, Olga

    2010-01-01

    We analyzed the time series of the coordinates of the ICRF radio sources. We show that part of the radio sources, including the defining sources, shows a significant apparent motion. The stability of the celestial reference frame is provided by a no-net-rotation condition applied to the defining sources. In our case this condition leads to a rotation of the frame axes with time. We calculated the effect of this rotation on the Earth orientation parameters (EOP). In order to improve the stability of the celestial reference frame we suggest a new method for the selection of the defining sources. The method consists of two criteria: the first one we call cosmological and the second one kinematical. It is shown that a subset of the ICRF sources selected according to cosmological criteria provides the most stable reference frame for the next decade.

  8. From core to coax: extending core RF modelling to include SOL, Antenna, and PFC

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Syun'ichi

    2017-10-01

    A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.

  9. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, M.P.; Bell, R.; Budny, R.V.

    1998-07-01

    This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less

  10. Allowing for Slow Evolution of Background Plasma in the 3D FDTD Plasma, Sheath, and Antenna Model

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas; King, Jake

    2015-11-01

    We are working to include a slow-time evolution capability for what has previously been the static background plasma parameters, in the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas. A key aspect of this is SOL-density time-evolution driven by ponderomotive rarefaction from the strong fields in the vicinity of the antenna. We demonstrate and benchmark a Scalar Ponderomotive Potential method, based on local field amplitudes, which is included in the 3D simulation. And present a more advanced Tensor Ponderomotive Potential approach, which we hope to employ in the future, which should improve the physical fidelity in the highly anisotropic environment of the SOL. Finally, we demonstrate and benchmark slow time (non-linear) evolution of the RF sheath, and include realistic collisional effects from the neutral gas. Support from US DOE Grants DE-FC02-08ER54953, DE-FG02-09ER55006.

  11. High Voltage Test-Stand Research Done on ICRF Antenna Elements of the High-Harmonic Fast-Wave System of NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J.; Ahn, J.W.; Bortolon, A.

    The twelve-strap high-harmonic fast-wave (HHFW) antenna on NSTX has exhibited a high-voltage standoff around 25 kV during previous experimental campaigns; this standoff needs to be improved for increased power coupling. During the recent NSTX-U upgrade period, a test-stand was set up with two antenna straps along with Faraday screens for testing purposes. Using a diagnostic suite consisting of a fast camera, a residual gas analyzer, a pressure gage, high-voltage probes, and an infrared camera, several interesting discoveries were made, leading to possible improvements of the antenna RF voltage operation level. First, arcing was observed outside the Faraday shields towards themore » low-voltage ("grounded") end of the straps (faraday shield box ends); this arcing was successfully eliminated by installing an additional grounding point between the Faraday shield box and the vessel wall. Second, considerable outgassing was observed during the RF pulse and the amount of outgassing was found to decrease with increasing RF power, possibly indicative of multipacting. Finally, infrared camera measurements of heating on the Faraday shield assembly suggest that the return currents on the Faraday shield box are highly localized at the box sides and possibly account for the pressure increase observed. Computations of these RF currents using Microwave Studio show qualitative agreement with the heated regions. New grounding points between the antenna box and the vessel have been implemented in NSTX-U, where future tests will be done to determine if the high-voltage standoff has improved. Further antenna improvements will be sought through future experiments on the test stand.« less

  12. Arc detection for the ICRF system on ITER

    NASA Astrophysics Data System (ADS)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  13. Northern Hemisphere observations of ICRF sources on the USNO stellar catalogue frame

    NASA Astrophysics Data System (ADS)

    Fienga, A.; Andrei, A. H.

    2004-06-01

    The most recent USNO stellar catalogue, the USNO B1.0 (Monet et al. \\cite{Monet03}), provides positions for 1 042 618 261 objects, with a published astrometric accuracy of 200 mas and five-band magnitudes with a 0.3 mag accuracy. Its completeness is believed to be up to magnitude 21th in V-band. Such a catalogue would be a very good tool for astrometric reduction. This work investigates the accuracy of the USNO B1.0 link to ICRF and give an estimation of its internal and external accuracies by comparison with different catalogues, and by computation of ICRF sources using USNO B1.0 star positions.

  14. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Hanson, G R; Wilgen, J B; Lau, C; Lin, Y; Wallace, G M; Wukitch, S J

    2008-10-01

    A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

  15. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    PubMed

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.

  16. Linking Deep Astrometric Standards to the ICRF

    NASA Astrophysics Data System (ADS)

    Frey, S.; Platais, I.; Fey, A. L.

    2007-07-01

    The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.

  17. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  18. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Pursimo, T.

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less

  19. Clearance of a Mucus Plug

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Zheng, Ying; Grotberg, James B.

    2008-11-01

    Mucus plugging may occur in pulmonary airways in asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. How to clear the mucus plug is essential and of fundamental importance. Mucus is known to have a yield stress and a mucus plug behaves like a solid plug when the applied stresses are below its yield stress τy. When the local stresses reaches τy, the plug starts to move and can be cleared out of the lung. It is then of great importance to examine how the mucus plug deforms and what is the minimum pressure required to initiate its movement. The present study used the finite element method (FEM) to study the stress distribution and deformation of a solid mucus plug under different pressure loads using ANSYS software. The maximum shear stress is found to occur near the rear transition region of the plug, which can lead to local yielding and flow. The critical pressure increases linearly with the plug length and asymptotes when the plug length is larger than the half channel width. Experimentally a mucus simulant is used to study the process of plug deformation and critical pressure difference required for the plug to propagate. Consistently, the fracture is observed to start at the rear transition region where the plug core connects the films. However, the critical pressure is observed to be dependent on not only the plug length but also the interfacial shape.

  20. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  1. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an

  2. ICRF wall conditioning at TEXTOR-94 in the presence of a 2.25 T magnetic field

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Lyssoivan, A.; Freisinger, M.; Koch, R.; van Oost, G.; Weschenfelder, F.; Winter, J.; Textor-Icrh-Team

    1997-02-01

    To investigate alternative conditioning concepts for future fusion devices with permanent magnetic fields, plasmas produced by the coupling of ICRF power to He and gas mixtures of Helium + silane, have been analyzed in the presence of a 2.25 T toroidal magnetic field at TEXTOR-94. Their qualification for wall conditioning has been investigated for different He-pressures, PHe (1 × 10 -3 < PHe ( Pa) < 1 × 10 -1) and ICRF power, PICRF (100 < PICRF ( kW) < 800). Electron densities n e averaged along different radial lines of sight across the vacuum vessel from the top to the bottom have been obtained in the range 5 × 10 10 < ne ( cm-3) < 3 × 10 12. To study quantitatively the efficiency of hydrogen desorption from the first wall at different ICRF plasma conditions in a reproducible way, the first wall was presaturated by RG-glow discharges in H 2. The amount and the evolution of the H 2 desorption from rf discharge to rf discharge was determined by ion gauge measurements combined with mass spectrometry. To demonstrate the capability of the new method for plasma assisted thin film deposition, different amounts of silane (<50%) were added to the He gas. During the ICRF pulses, the silane molecules were dissociated in the plasma and the Si atoms stick to the wall. A good balance of the amount of Si disappearing from the gas phase and that measured by post mortem surface analyses of collector probes at the wall position was found.

  3. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST

    NASA Astrophysics Data System (ADS)

    Urbanczyk, Guillaume; Zhang, Xinjun; Qin, Chengming; Zhao, Yanping; Zhang, Tao; Zhang, Ling; Li, Jiangang; Yuan, Shuai; Chen, Liang; Zhang, Heng; Zhang, Jiahui; Wang, Jianhua; Yang, Xiuda; Qian, Jinping

    2017-10-01

    Waves in the Ion Cyclotron (ICRF) and Lower Hybrid (LH) Range of Frequencies are efficient techniques respectively to heat the plasma and drive current. Main difficulties come from a trade-off between good RF coupling and acceptable level of impurities release. The mutual influence of both systems makes such equilibrium often hard to reach [1]. In order to investigate those interactions based on Scrape-Off Layer (SOL) plasma parameters, a new reciprocating probe was designed allying a three tips Langmuir probe with an emissive wire. The emissive filament provides a precise measure of plasma potential [2], which can be used to calibrate Langmuir probe's results. This paper reports on experimental results obtained on EAST, where there are two ICRF antennas and two LH launchers. Among others diagnostics, the new reciprocating probe enabled to evidence the deleterious influence of ICRF power on LHWs coupling in L-mode plasmas. In areas connected with an active ICRF antenna, SOL potentials increase while densities tend to decrease, respectively enhancing impurities release and deteriorating LHWs coupling. This phenomenon has mostly been attributed to RF sheath; the one that forms on top of Plasma Facing Components (PFCs) and causes ExB density convections [3]. From those experiments it seems ICRF has a strong influence on magnetically connected areas, both in the near field - influencing ICRF waves coupling - and in farther locations such as in front of LH grills. Moreover, influence of ICRF on LH system was observed both in L and H modes. Those results are consistent with RF sheath rectification process. Concerning the influence of LHWs on ICRF coupling, nothing was observed in L-mode. Besides during H-mode experiments, LHWs have been identified as having a mitigating effect on ELMs [4], which on average lowers the pedestal, increasing edge densities to the profit of ICRF waves coupling.

  4. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  5. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  6. Mode conversion in three ion species ICRF heating scenario

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  7. Playing with Plug-ins

    ERIC Educational Resources Information Center

    Thompson, Douglas E.

    2013-01-01

    In today's complex music software packages, many features can remain unexplored and unused. Software plug-ins--available in most every music software package, yet easily overlooked in the software's basic operations--are one such feature. In this article, I introduce readers to plug-ins and offer tips for purchasing plug-ins I have…

  8. Static Gas-Charging Plug

    NASA Technical Reports Server (NTRS)

    Indoe, William

    2012-01-01

    A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.

  9. Aspergillus fumigatus colonization of punctal plugs.

    PubMed

    Tabbara, Khalid F

    2007-01-01

    Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.

  10. Temporary plugging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, H.N.; Melton, L.L.

    1966-01-04

    A temporary plugging agent, fracturing fluid and/or channel sealing agent is introduced into a selected area of a formation. The water-gelled fluid agent contains sodium borate, sodium tetraborate, and borax. It also contains a chemical breaker such as benzotrichloride, benzylidene chloride, or benzyl chloride. The water-gelled fluid consists essentially of water and from about 1-3% by weight of water of a finely powdered water-soluble gum of the galactomannan class. The borate compound is included in an amount of about 10% by weight of the gum to delay the reaction with the gel and to form a rubbery jelly-like mass withmore » it. The fluid composition has a delaying solidifying action and after a given interval of time it forms a plug. After a predetermined time, acid is produced upon the hydrolysis of the breaker in the plug and removes the plug from the area.« less

  11. Radio antennas

    NASA Astrophysics Data System (ADS)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  12. Broadband standard dipole antenna for antenna calibration

    NASA Astrophysics Data System (ADS)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  13. Bellows sealed plug valve

    DOEpatents

    Dukas, Jr., Stephen J.

    1990-01-01

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  14. Optical antenna gain. I - Transmitting antennas

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  15. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  16. Fail-Safe Pressure Plug

    NASA Technical Reports Server (NTRS)

    Svejkovsky, Paul A.

    1993-01-01

    Protective plug resists slowly built-up pressure or automatically releases itself if pressure rises suddenly. Seals out moisture at pressures ranging from 50 micrometers of mercury to 200 pounds per square inch. Designed to seal throat of 38 Reaction Control Thrusters on Space Shuttle protecting internal components from corrosion. Plug conforms to contour of nozzle throat, where O-ring forms pressure seal. After plug inserted, cover attached by use of cover-fitting assembly. Modified versions useful in protecting engines, pumps, reaction vessels, and other industrial equipment during shipment and maintenance.

  17. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  18. Friction pull plug welding: dual chamfered plate hole

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.

  19. Hot cell shield plug extraction apparatus

    DOEpatents

    Knapp, Philip A.; Manhart, Larry K.

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  20. Initial Study of Friction Pull Plug Welding

    NASA Technical Reports Server (NTRS)

    Rich, Brian S.

    1999-01-01

    Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.

  1. Progress on ion cyclotron range of frequencies heating physics and technology in support of the International Tokamak Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bonoli, P. T.

    2015-02-01

    Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored.

  2. [Evidence of lacrimal plugs via high resolution ultrasound].

    PubMed

    Tost, Frank H W; Darman, Jacques

    2003-07-01

    The practical value of high-frequency ultrasound (transducer frequency of 20 MHz) for studying lacrimal plugs positioned into canaliculi was proved. Twelve patients with twenty intracanalicular plugs and two punctum plugs were examined via high-frequency B-scan ultrasonography using 20 MHz transducer (model I3 Sacramento, USA). Detection and localisation of the intracanalicular plugs was made by a 20 MHz sector scanner. The ultrasound examinations were performed 1 - 24 month after the placement of lacrimal plugs. After patient's head positioning, the high-frequency ultrasound investigation was done via immersion fluid (2 % methylcellulose). All patients with dry eye treated by lacrimal plug implant showed echographic structure in the lacrimal canaliculus. In transversal echograms it was possible to image both canaliculi together when the lids were half-closed. Contrary to the normal state, it was not necessary to inject viscous fluid into the canaliculus. High-resolution ultrasound was able to differentiate the normal canaliculus from the findings after plug placement. The echograms can vary from one plug type to another. Highly reflective structures were found after the placement of silicone intracanalicular plugs, e. g. HERRICK-Plug. In contrast, the ultrasonic image taken through acrylic polymer intracanalicular plugs showed homogeneous small reflective inner structure, e. g. SMART-Plug. However, smooth and flat acoustic interface between acrylic polymer plug and the lacrimal canaliculus produced strong echoes. 20 MHz ultrasound seems to be well suited for the detection and localisation of intracanalicular plugs. By use of 20 MHz ultrasound scans it is possible to get high-quality images of the intracanalicular plug and around lacrimal canaliculus. Compared with UBM, the depth of penetration is much higher with negligible resolution. On the whole, we believe that 20 MHz ultrasound can become a useful tool for evaluating the placement of intracanalicular plugs

  3. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of themore » thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.« less

  4. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  5. A Complete Bank of Optical Images of the ICRF QSOs

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Taris, Francois; Anton, Sonia; Bourda, Geraldine; Damljanovic, Goran; Souchay, Jean; Vieira Martins, Roberto; Pursimo, Tapio; Barache, Christophe; Nepomuceno da Silva Neto, Dario; Fernandes Coelho, Bruno David

    2015-08-01

    We have been developing a systematic effort to collect good quality images of the optical counterpart of ICRF sources, in particular for those that have been regularly radio surveyed either for future implementation at high frequencies and/or those that will be the link sources between the ICRF and the Gaia CRF. Observations have been taken at the LNA/Brazil, CASLEO/Argentina, NOT/Spain, LFOA/Austria, Rozhen/Bulgária, and ASV/Serbia. In complement images were collected from the SDSS. As a step to implement such image data bank and make it publicly available through the IERS service we present its description, that comprises for each source the number of measurements, filter, pixel scale, size of field, and seeing at each observation. The photometry analysis is centered on the morphology, since there remain still cases in which the host galaxy is overwhelming, and many cases in which the host asks for a non-stellar PSF modeling. On basis of the neighbor stars we assign magnitudes and variability whenever possible. Finally, assisted by previous literature, the redshift and luminosity are used to derive astrophysical quantities, in special the absolute magnitude, SED and spectral index. Moreover, since Gaia will not obtain direct images of the observed sources, the morphology and magnitude becomes useful as templates onto which assembling and interpreting the one-dimensional and uncontinuous line spread function samplings that will be delivered by Gaia for each QSO.

  6. Design and test of voltage and current probes for EAST ICRF antenna impedance measurement

    NASA Astrophysics Data System (ADS)

    Jianhua, WANG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Shuai, YUAN; Xinjun, ZHANG; Hua, YANG; Chengming, QIN; Yan, CHENG; Yuqing, YANG; Guillaume, URBANCZYK; Lunan, LIU; Jian, CHENG

    2018-04-01

    On the experimental advanced superconducting tokamak (EAST), a pair of voltage and current probes (V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads R L > 2.5 Ω, while the resistance deviations appear large for loads R L < 1.5 Ω, which implies that the power loss cannot be neglected at high VSWR. As the factors that give rise to the deviation of coupling resistance calculation, the phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.

  7. Plug Load Behavioral Change Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  8. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, L.; Wepfer, R.M.

    1992-12-15

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  9. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  10. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  11. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  12. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner or operator must flush each Class VI injection well with a buffer fluid, determine bottomhole reservoir...

  13. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana.

    PubMed

    Lockey, Jacob K; Willis, Mark A

    2015-07-01

    Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.

  14. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  15. Reinstated JET ICRF ILA: Overview and Results

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Durodié, Frédéric; Blackman, Trevor; Helou, Walid; Jacquet, Philippe; Lerche, Ernesto; Monakhov, Igor; Noble, Craig; Bobkov, Volodymyr; Goulding, Richard; Kaufman, Michael; Van Eester, Dirk

    2017-10-01

    The works undertaken to reinstate the JET ICRF ILA are reviewed. The vacuum matching capacitors were replaced, an extensive calibration of all the measurements in the RF circuit was carried out, new simulation tools were created and new control algorithms were implemented for the - toroidal and poloidal - phase control of the array as well as for the matching of the second stage. A review of the contribution of the reinstated ILA to the JET programme during the last campaigns is given showing namely that the new controls allowed extending the range of the operation to lower (29MHz) and higher (51MHz) frequencies than previously achieved and allowed more flexible and reliable operation. Operation with coupled power levels up to 2.8MW and voltages up to 40kV was achieved. ILA results on plasma are discussed and emphasis is given to the features of interest for ITER.

  16. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  17. Biomass plug development and propagation in porous media.

    PubMed

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright

  18. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  19. Equipment: Antenna systems

    NASA Astrophysics Data System (ADS)

    Petrie, L. E.

    1983-05-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for an HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits or both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  20. Equipment: Antenna systems

    NASA Astrophysics Data System (ADS)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  1. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov Websites

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to fuel from its onboard tank, and this provides a driving range (the distance a vehicle can travel

  2. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  3. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  4. Mechanics Model of Plug Welding

    NASA Technical Reports Server (NTRS)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  5. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    NASA Astrophysics Data System (ADS)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  6. Porous plug for Gravity Probe B

    NASA Astrophysics Data System (ADS)

    Wang, Suwen; Everitt, C. W. Francis; Frank, David J.; Lipa, John A.; Muhlfelder, Barry F.

    2015-11-01

    The confinement of superfluid helium for a Dewar in space poses a unique challenge due to its propensity to minimize thermal gradients by essentially viscous-free counterflow. This poses the risk of losing liquid through a vent pipe, reducing the efficiency of the cooling process. To confine the liquid helium in the Gravity Probe B (GP-B) flight Dewar, a porous plug technique was invented at Stanford University. Here, we review the history of the porous plug and its development, and describe the physics underlying its operation. We summarize a few missions that employed porous plugs, some of which preceded the launch of GP-B. The design, manufacture and flight performance of the GP-B plug are described, and its use resulted in the successful operation of the 2441 l flight Dewar on-orbit for 17.3 months.

  7. Numerical Simulation of Sediment Plug Formation in Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Posner, A. J.; Duan, J. G.

    2011-12-01

    A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in

  8. Odyne Plug-In Hybrid Electric Utility Truck Testing | Transportation

    Science.gov Websites

    Research | NREL Odyne Plug-In Hybrid Electric Utility Truck Evaluation Odyne Plug-In Hybrid data on plug-in hybrid electric utility trucks operated by a variety of companies. Photo courtesy of Odyne, NREL NREL is evaluating the in-service performance of about 120 plug-in hybrid electric utility

  9. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M.

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. Itmore » is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of

  10. Unbalanced-flow, fluid-mixing plug with metering capabilities

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)

    2009-01-01

    A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.

  11. Experimental study of moving throat plug in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Park, C.; Kwon, O. J.

    2015-07-01

    An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.

  12. Extending the ICRF into the Infrared: 2MASS - UCAC Astrometry

    NASA Technical Reports Server (NTRS)

    Zacharias, Norbert; McCallon, Howard L.; Kopan, Eugene; Cutri, Roc M.

    2000-01-01

    An external comparison between the infrared 2MASS and the optical UCAC positions was performed, both being on the same system, the ICRS. About 48 million sources in common were identified. Random errors of the 2MASS catalog positions are about 60 to 70 mas per coordinate for the Ks = 4 to 14 range, increasing to about 100 to 150 mas for saturated and very faint stars. Systematic position differences between the 2 catalogs are very small, about 5 to 10 mas as a function of magnitude and color, with somewhat larger errors as a function of right ascension and declination. The extension of the ICRF into the infrared has become a reality.

  13. 21 CFR 886.4155 - Scleral plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... stainless steel with or without a gold, silver, or titanium coating. The special controls for the surgical grade stainless steel scleral plug (with or without a gold, silver, or titanium coating) are: (i) The... titanium coating). The special controls for scleral plugs made of other materials are: (i) The device must...

  14. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  15. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  16. Portal vein embolization with plug/coils improves hepatectomy outcome.

    PubMed

    Malinowski, Maciej; Geisel, Dominik; Stary, Victoria; Denecke, Timm; Seehofer, Daniel; Jara, Maximillian; Baron, Annekathrin; Pratschke, Johann; Gebauer, Bernhard; Stockmann, Martin

    2015-03-01

    Portal vein embolization (PVE) has become the standard of care before extended hepatectomy. Various PVE methods using different embolization materials have been described. In this study, we compared PVE with polyvinyl alcohol particles alone (PVA only) versus PVA with plug or coils (PVA + plug/coils). Patients undergoing PVE before hepatectomy were included. PVA alone was used until December 2013, thereafter plug or coils were placed in addition. The volume of left lateral liver lobe (LLL), clinical parameters, and liver function tests were measured before PVE and resection. A total of 43 patients were recruited into the PVA only group and 42 were recruited into the PVA + plug/coils group. There were no major differences between groups except significantly higher total bilirubin level before PVE in the PVA only group, which improved before hepatectomy. Mean LLL volume increased by 25.7% after PVE in the PVA only group and by 44% in the PVA + plug/coils group (P < 0.001). Recanalization was significantly less common in the PVA + plug/coils group. In multivariate regression, initial LLL volume and use of plug or coils were the only parameters influencing LLL volume increase. The postoperative liver failure rate was significantly reduced in PVA + plug/coils group (P = <0.001). PVE using PVA particles together with plug or coils is a safe and efficient method to increase future liver remnant volume. The additional central embolization with plug or coils led to an increased hypertrophy, due to lower recanalization rates, and subsequently decreased incidence of postoperative liver failure. No additional procedure-specific complications were observed in this series. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    NASA Astrophysics Data System (ADS)

    Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  18. Antenna theory: Analysis and design

    NASA Astrophysics Data System (ADS)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  19. Fundamental Fractal Antenna Design Process

    NASA Astrophysics Data System (ADS)

    Zhu, L. P.; Kim, T. C.; Kakas, G. D.

    2017-12-01

    Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.

  20. View north of the antenna array, note the communications antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of the antenna array, note the communications antenna in the middleground - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  1. View of antenna tunnel end. Right to Antenna Silo #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of antenna tunnel end. Right to Antenna Silo #1, left to Antenna Silo #2 - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  2. L-Band Orthogonal-Mode Crossed-Slot Antenna and VHF Crossed-Loop Antenna

    DOT National Transportation Integrated Search

    1972-01-01

    A low-gain, circularly polarized, L-ban antenna; a low-gain, lineraly polarized, L-band antenna; and a low-gain, lineraly polarized, L-ban antenna; and a low-gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended ...

  3. 33 CFR 183.556 - Plugs and fittings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.556 Plugs and fittings. (a) A fuel system must not have a fitting for draining fuel. (b) A plug used to service the fuel...

  4. Plug-In Tutor Agents: Still Pluggin'

    ERIC Educational Resources Information Center

    Ritter, Steven

    2016-01-01

    "An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…

  5. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    NASA Astrophysics Data System (ADS)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  6. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  7. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  8. Antenna Controller Replacement Software

    NASA Technical Reports Server (NTRS)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  9. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  10. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  11. Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.

    PubMed

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-10-27

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.

  12. National Plug-In Electric Vehicle Infrastructure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Rames, Clement; Muratori, Matteo

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  13. MSU Antenna Pattern Data

    NASA Technical Reports Server (NTRS)

    Mo, Tsan; Kleespies, Thomas J.; Green, J. Philip

    2000-01-01

    The Microwave Sounding Unit (MSU) antenna pattern data for nine MSU Flight Models (FMs) have been successfully rescued from 22-year old 7-track and 9-track magnetic tapes and cartridges. These antenna pattern data were unpacked into user-friendly ASCII format, and are potentially useful for making antenna pattern corrections to MSU antenna temperatures in retrieving the true brightness temperatures. We also properly interpreted the contents of the data and show how to convert the measured antenna signal amplitude in volts into relative antenna power in dB with proper normalization. It is found that the data are of high quality with a 60-dB drop in the co-polarized antenna patterns from the central peak value to its side-lobe regions at scan angles beyond 30 deg. The unpacked antenna pattern data produced in this study provide a useful database for data users to correct the antenna side-lobe contribution to MSU measurements. All of the data are available to the scientific community on a single CD-ROM.

  14. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  15. Hybrid and Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  16. Electrostatic networks control plug stabilization in the PapC usher.

    PubMed

    Pham, Thieng; Henderson, Nadine S; Werneburg, Glenn T; Thanassi, David G; Delcour, Anne H

    2015-01-01

    The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear. Two structural features within the β-barrel, an α-helix and β5-6 hairpin loop, may play roles in controlling plug stabilization. Here we have tested clusters of residues at the interface of the plug, barrel, α-helix and hairpin, which participate in electrostatic networks. To assess the roles of these residues in plug stabilization, we used patch-clamp electrophysiology to compare the activity of wild-type and mutant PapC channels containing alanine substitutions at these sites. Mutations interrupting each of two salt bridge networks were relatively ineffective in disrupting plug stabilization. However, mutation of two pairs of arginines located at the inner and the outer surfaces of the PD resulted in an enhanced propensity for plug displacement. One arginine pair involved in a repulsive interaction between the linkers that tether the plug to the β-barrel was particularly sensitive to mutation. These results suggest that plug displacement, which is necessary for pilus assembly and translocation, may require a weakening of key electrostatic interactions between the plug linkers, and the plug and the α-helix.

  17. NASA SLS Booster Nozzle Plug Pieces Fly During Test

    NASA Image and Video Library

    2016-06-28

    On June 28, a test version of the booster that will help power NASA's new rocket, the Space Launch System, fired up at nearly 6,000 degrees Fahrenheit for a successful, two-minute qualification test at Orbital ATK's test facilities in Promontory, Utah. This video shows the booster's nozzle plug intentionally breaking apart. The smoky ring coming off the booster is condensed water vapor created by a pressure difference between the motor gas and normal air. The nozzle plug is an environmental barrier to prevent heat, dust and moisture from getting inside the booster before it ignites. The plug isn't always part of a static test but was included on this one due to changes made to the hardware. The foam on the plug is denser than previous NASA launch vehicles, as the engines are now in the same plane as the boosters. A numbered grid was placed on the exterior of the plug before the test so the pieces retrieved could support plug breakup assessment and reconstruction. Along with video, collecting the pieces helps determine the size and speed of them when they break apart. Nozzle plug pieces were found as far as 1,500 to 2,000 feet away from the booster. This is the last full-scale qualification test for the booster before the first, uncrewed flight of SLS with the Orion spacecraft in 2018.

  18. 40 CFR 144.63 - Financial assurance for plugging and abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... days after receiving bills for plugging and abandonment activities, the Regional Administrator will... abandonment activities, the Regional Administrator will determine whether the plugging and abandonment...

  19. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less

  20. GPS antenna designs

    NASA Technical Reports Server (NTRS)

    Laube, Samuel J. P.

    1987-01-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  1. Dual Mode Slotted Monopole Antenna

    DTIC Science & Technology

    2017-01-05

    of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...to a dual mode antenna having one mode as a slotted cylinder antenna and another mode as a monopole antenna . (2) Description of the Prior Art...0004] Slotted cylinder antennas are popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds

  2. Research on HOPE communication and data processing equipment

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Kikuchi, Toshio

    1992-08-01

    An overview of the research on heat-resisting antenna is presented. Candidate heat-resisting antennas which were selected as the result of review on seven kinds of antenna are the antennas of micro strip, cavity, and horn types. Heat resistance characteristics of electric power supplying section (connectors) of heat-resisting antenna were studied. Heat cycling test and heat shock tests were conducted on the subject plugs and it was confirmed that they can be usable at - 80 C to + 200 C against - 65 C to + 125 C for the existing plugs. Fundamental electric data such as antenna pattern were acquired mating trial produced components simulating electric characteristics of heat-resisting antenna and trial-produced ceramic tiles.

  3. 40 CFR 144.62 - Cost estimate for plugging and abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must revise the plugging and abandonment cost estimate whenever a change in the plugging and... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Cost estimate for plugging and abandonment. 144.62 Section 144.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...

  4. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  5. Engaging Tenants in Reducing Plug Load Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schantz, Marta; Langner, Rois

    Plug and Process Loads (PPLs) account for an increasingly large percentage of commercial building energy use in the U.S. due to the rising number of energy intensive plug-in devices. In addition, buildings are becoming more and more efficient and plug load energy use has become an increasingly pertinent component to achieving aggressive energy targets and netzero energy status. For multi-tenant buildings, controlling plug loads in tenant spaces can be a significant challenge. Luckily, there are a number of PPL reduction strategies, best practices, and lessons learned from numerous commercial real estate and higher education leaders who have successfully engaged buildingmore » occupants and tenants in reducing PPL energy use. This paper provides actionable PPL reduction strategies and best practices that building owners and managers can immediately apply to their own buildings.« less

  6. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  7. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  8. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Science.gov Websites

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E -mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

  9. Determination of antenna factors using a three-antenna method at open-field test site

    NASA Astrophysics Data System (ADS)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  10. 40 CFR 144.62 - Cost estimate for plugging and abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Cost estimate for plugging and... Waste Injection Wells § 144.62 Cost estimate for plugging and abandonment. (a) The owner or operator must prepare a written estimate, in current dollars, of the cost of plugging the injection well in...

  11. Overview of ASDEX Upgrade results

    DOE PAGES

    Aguiam, D.

    2017-06-28

    Here, the ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current ofmore » $${{I}_{\\text{p}}}=0.8$$ MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD).« less

  12. Mode Matching for Optical Antennas

    NASA Astrophysics Data System (ADS)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-01

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  13. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking west. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  14. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking southeast. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  15. Antenna cab interior showing waveguide from external parabolic antenna (later ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  16. 2195 Aluminum-Copper-Lithium Friction Plug Welding Development

    NASA Technical Reports Server (NTRS)

    Takeshita, Rike P.; Hartley, Paula J.; Baker, Kent S.

    1997-01-01

    Technology developments and applications of friction plug welding is presented. This friction repair welding technology is being studied for implementation on the Space Transportation System's Super Light Weight External Tank. Single plug repairs will be used on a vast majority of weld defects, however, linear defects of up to several inches can be repaired by overlapping plug welds. Methods and results of tensile, bend, simulated service, surface crack tension and other tests at room and cryogenic temperatures is discussed. Attempts to implement Friction Plug Welding has led to both tool and process changes in an attempt to minimize expansive tooling and lengthy implementation times. Process control equipment and data storage methods intended for large scale production will also be addressed. Benefits include increased strength and toughness, decreased weld repair time, automated and highly reliable process, and a lower probability of having to re-repair defect locations.

  17. Comsat Antenna

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The antenna shown is the new, multiple-beam, Unattended Earth Terminal, located at COMSAT Laboratories in Clarksburg, Maryland. Seemingly simple, it is actually a complex structure capable of maintaining contact with several satellites simultaneously (conventional Earth station antennas communicate with only one satellite at a time). In developing the antenna, COMSAT Laboratories used NASTRAN, NASA's structural analysis computer program, together with BANDIT, a companion program. The computer programs were used to model several structural configurations and determine the most suitable, The speed and accuracy of the computerized design analysis afforded appreciable savings in time and money.

  18. Study of array plasma antenna parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kumar, Prince

    2018-04-01

    This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.

  19. The Losing Battle against Plug-and-Chug

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd

    2016-01-01

    I think most physics teachers would agree that two important components of a proper solution to a numerical physics problem are to first figure out a final symbolic solution and to only plug in numbers in the end. However, in spite of our best efforts, this is not what the majority of students is actually doing. Instead, they tend to plug numbers…

  20. ICRF Development for the Variable Specific Impulse Magnetoplasma Rocket

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Baity, F. W.; Barber, G. C.; Carter, M. D.; Hoffman, D. J.; Jaeger, E. F.; Taylor, D. J.; Chang-Diaz, F. R.; Squire, J. P.; McCaskill, G.

    1997-11-01

    The feasibility of using magnetically vectored and rf-heated plasmas for space propulsion (F. R. Chang-Diaz, et al., Bull. Am. Phys. Soc., 41, 1541 (1996)) is being investigated experimentally on an asymmetric magnetic mirror device at the Advanced Space Propulsion Laboratory (ASPL), Johnson Space Center, NASA. Analysis of the antenna interaction with and the wave propagation through the dense plasma propulsion system is being studied at ORNL(Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.), using antenna design codes developed for ICH systems and mirror codes developed for the EBT experiment at ORNL. The present modeling effort is directed toward the ASPL experimental device. Antenna optimization and performance, as well as the design considerations for space-qualified rf components and systems (minimizing weight while maximizing reliability) will be presented.

  1. Multibeam antenna study, phase 1

    NASA Technical Reports Server (NTRS)

    Bellamy, J. L.

    1972-01-01

    A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.

  2. A True Metasurface Antenna.

    PubMed

    El Badawe, Mohamed; Almoneef, Thamer S; Ramahi, Omar M

    2016-01-13

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.

  3. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  4. An antenna pointing mechanism for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Heimerdinger, H.

    1981-01-01

    An antenna pointing mechanism for large reflector antennas on direct broadcasting communication satellites was built and tested. After listing the requirements and constraints for this equipment the model is described, and performance figures are given. Futhermore, results of the qualification level tests, including functional, vibrational, thermovacuum, and accelerated life tests are reported. These tests were completed successfully.

  5. Aeroacoustics of supersonic jet flows from contoured and solid/porous conical plug-nozzles

    NASA Technical Reports Server (NTRS)

    Dosanjh, Darshan S.; Das, Indu S.

    1987-01-01

    The results of an experimental study of the acoustic far-field, the shock associated noise, and the nature of the repetitive shock structure of supersonic jet flows issuing from plug-nozzles having externally-expanded plugs with pointed termination operated at a range of supercritical pressure ratios Xi approaching 2 to 4.5 are reported. The plug of one of these plug-nozzles was contoured. The other plug-nozzles had short conical plugs with either a solid surface or a combination of solid/porous surface of different porosities. The contoured and the uncontoured plug-nozzles had the same throat area and the same annulus-radius ratio K = R sub p/R sub N = 0.43. As the result of modifications of the shock structure, the acoustic performance of improperly expanded jet flows of an externally-expanded short uncontoured plug of an appropriate geometry with suitably perforated plug and a pointed termination, is shown to approach the acoustic performance of a shock-free supersonic jet issuing from an equivalent externally-expanded contoured plug-nozzle.

  6. Astigmatism in reflector antennas.

    NASA Technical Reports Server (NTRS)

    Cogdell, J. R.; Davis, J. H.

    1973-01-01

    Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.

  7. Miniaturization of Microwave Ablation Antennas

    NASA Astrophysics Data System (ADS)

    Luyen, Hung

    Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun

  8. Plug identification in drainage system using electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Hijriani, Arifa; Utama, Aji Surya; Boas, Andrianus; Mukti, M. Ridho; Widodo

    2017-07-01

    The evaluation of drainage system's performance is an important thing to do to prevent flooding. Conventionally the Government evaluates the drainage system by opening one by one the lid of drainage and detects the plug manually. This method is not effective and efficient because this method need many people, much time and relatively expensive. The purpose of this paper is to identify plugs in drainage system in G St. at Bandung Institute of Technology by using electromagnetic wave. Ground Penetrating Radar (GPR) is one of geophysics method that using electromagnetic wave with high frequency. GPR is a non-destructive method with high resolution imaging for shallow depth (˜100m) and relatively cheap. We could identify the plug without opening the lid manually so that we could save much time. GPR's sensitivity is depends on resistivity, magnetic permeability, and permittivity of an object. The result of this research is we could identify the plug on the radargram that observed by a build-up amplitude anomaly.

  9. 'Invisible' antenna takes up less space

    NASA Astrophysics Data System (ADS)

    Shelley, M.; Bond, K.

    1986-06-01

    A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.

  10. Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility.

    PubMed

    Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon

    2015-11-01

    This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets.

  11. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  12. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    NASA Astrophysics Data System (ADS)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  13. ATCRBS Antenna Modification Kit

    DOT National Transportation Integrated Search

    1976-06-01

    The report describes the design, fabrication and test results of an improved ATCRBS (Air Traffic Control Radar Beacon System) array antenna for mounting on the reflector of an ASR radar antenna. The antenna consists of a 4-foot high by 26-foot wide a...

  14. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov Websites

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by

  15. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  16. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  17. Design and force analysis of end-effector for plug seedling transplanter.

    PubMed

    Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  18. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  19. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used outdoors...

  20. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  1. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used outdoors...

  2. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  3. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  4. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas used...

  5. Antenna Efficiency and the Genius of the IEEE Standard for Antenna Terms [Education Column

    NASA Astrophysics Data System (ADS)

    Warnick, Karl F.

    2012-08-01

    At a 2007 Square Kilometre Array Design Studies (SKADS) workshop in Dwingeloo, Wim van Cappellen of the Nether lands Institute for Radio Astronomy (ASTRON) gave a presentation on figures of merit, in which he memorably compared antenna terms to apples. What seems like a simple, homogeneous fruit comes in all colors and varieties. Similarly, a survey of antenna literature and textbooks shows that authors use a wide variety of antenna figures of merit, often not in compliance with the relevant IEEE Standard Definitions of Terms for Antennas [1]. Since this standard is now in the process of revision by the Antennas and Propagation Society Antenna Standards Committee, it seems worth while to consider the standard, and clarify some common misunderstandings and inconsistent usages.

  6. Estimation of Antenna Pose in the Earth Frame Using Camera and IMU Data from Mobile Phones

    PubMed Central

    Wang, Zhen; Jin, Bingwen; Geng, Weidong

    2017-01-01

    The poses of base station antennas play an important role in cellular network optimization. Existing methods of pose estimation are based on physical measurements performed either by tower climbers or using additional sensors attached to antennas. In this paper, we present a novel non-contact method of antenna pose measurement based on multi-view images of the antenna and inertial measurement unit (IMU) data captured by a mobile phone. Given a known 3D model of the antenna, we first estimate the antenna pose relative to the phone camera from the multi-view images and then employ the corresponding IMU data to transform the pose from the camera coordinate frame into the Earth coordinate frame. To enhance the resulting accuracy, we improve existing camera-IMU calibration models by introducing additional degrees of freedom between the IMU sensors and defining a new error metric based on both the downtilt and azimuth angles, instead of a unified rotational error metric, to refine the calibration. In comparison with existing camera-IMU calibration methods, our method achieves an improvement in azimuth accuracy of approximately 1.0 degree on average while maintaining the same level of downtilt accuracy. For the pose estimation in the camera coordinate frame, we propose an automatic method of initializing the optimization solver and generating bounding constraints on the resulting pose to achieve better accuracy. With this initialization, state-of-the-art visual pose estimation methods yield satisfactory results in more than 75% of cases when plugged into our pipeline, and our solution, which takes advantage of the constraints, achieves even lower estimation errors on the downtilt and azimuth angles, both on average (0.13 and 0.3 degrees lower, respectively) and in the worst case (0.15 and 7.3 degrees lower, respectively), according to an evaluation conducted on a dataset consisting of 65 groups of data. We show that both of our enhancements contribute to the performance

  7. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  8. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  9. Implantable multilayer microstrip antenna for retinal prosthesis: antenna testing.

    PubMed

    Permana, Hans; Fang, Qiang; Rowe, Wayne S T

    2012-01-01

    Retinal prosthesis has come to a more mature stage and become a very strategic answer to Retinitis Pigmentosa (RP) and Age-related Macular Degeneration (AMD) diseases. In a retinal prosthesis system, wireless link holds a great importance for the continuity of the system. In this paper, an implantable multilayer microstrip antenna was proposed for the retinal prosthesis system. Simulations were performed in High Frequency Structure Simulator (HFSS) with the surrounding material of air and Vitreous Humor fluid. The fabricated antenna was measured for characteristic validation in free space. The results showed that the real antenna possessed similar return loss and radiation pattern, while there was discrepancy with the gain values.

  10. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  11. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  12. E-Textile Antennas for Space Environments

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  13. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  14. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...

  15. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...

  16. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...

  17. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...

  18. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be a...

  19. Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility

    PubMed Central

    Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon

    2015-01-01

    This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets. PMID:26594263

  20. High temperature penetrator assembly with bayonet plug and ramp-activated lock

    NASA Technical Reports Server (NTRS)

    Wood, K. E. (Inventor)

    1982-01-01

    A penetration apparatus, for very high temperature applications in which a base plug is inserted into an opening through a bulkhead is described. The base plug has a head shape and is seated against the highest temperature surface of the bulkhead, which may be the skin of the nose cone or other part of a space vehicle intended for nondestructive atmospheric reentry. From the second side of the bulkhead at which the less severe environment is extant, a bayonet plug is inserted into the base plug and engages an internal shoulder at about 90 deg rotation. The bayonet plug has an integral flanged portion and a pair of ramping washers which are located between the flange and the second bulkhead surface with a spacing washer as necessary.

  1. Design and force analysis of end-effector for plug seedling transplanter

    PubMed Central

    Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting. PMID:28678858

  2. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    NASA Technical Reports Server (NTRS)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  3. Wide sector coverage antennas

    NASA Astrophysics Data System (ADS)

    Yaw, D. F.

    1984-09-01

    The general design and performance characteristics of transmit and receive antennas that are currently used in electronic warfare systems are reviewed. Among transmit antennas, three-to-one bandwidth, asymmetric-beam, and circularly polarized horns are discussed, as are extremely broadband monopoles and spiral antennas. In a discussion of receive antennas, attention is given to flat and conical spirals, including cavity-backed flat spirals operating over the 2.5-18 GHz range; log periodic dipoles; and biconical horns. Finally, the design configurations and performance of interferometer direction-finding systems are briefly discussed.

  4. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Orientation Target #2 in background. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  5. View of Antenna #2 (foreground), and Antenna #1 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #2 (foreground), and Antenna #1 surface doors. Orientation Target #1 in background. Image looking northwest - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  6. Plug and Play PV Systems for American Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoepfner, Christian

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work duringmore » this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.« less

  7. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...

  8. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...

  9. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...

  10. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...

  11. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the antenna...

  12. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    PubMed

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  13. Plug Your Users into Library Resources with OpenSearch Plug-Ins

    ERIC Educational Resources Information Center

    Baker, Nicholas C.

    2007-01-01

    To bring the library catalog and other online resources right into users' workspace quickly and easily without needing much more than a short XML file, the author, a reference and Web services librarian at Williams College, learned to build and use OpenSearch plug-ins. OpenSearch is a set of simple technologies and standards that allows the…

  14. Biodegradable microfabricated plug-filters for glaucoma drainage devices.

    PubMed

    Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak

    2012-06-01

    We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.

  15. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  16. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...

  17. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...

  18. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...

  19. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna is...

  20. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Science.gov Websites

    in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in

  1. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix

    2007-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  2. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  3. Autonomous omnidirectional spacecraft antenna system

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.

    1983-01-01

    The development of a low gain Electronically Switchable Spherical Array Antenna is discussed. This antenna provides roughly 7 dBic gain for receive/transmit operation between user satellites and the Tracking and Data Relay Satellite System. When used as a pair, the antenna provides spherical coverage. The antenna was tested in its primary operating modes: directed beam, retrodirective, and Omnidirectional.

  4. Press-fit stability of an osteochondral autograft: Influence of different plug length and perfect depth alignment.

    PubMed

    Kock, Niels B; Van Susante, Job L C; Buma, Pieter; Van Kampen, Albert; Verdonschot, Nico

    2006-06-01

    Osteochondral autologous transplantation is used for the treatment of full-thickness articular cartilage lesions of a joint. Press-fit stability is an important factor for good survival of the transplanted plugs. 36 plugs of three different lengths were transplanted in fresh-frozen human knees. On one condyle, 3 plugs were exactly matched to the depth of the recipient site ("bottomed" plugs) and on the opposite condyle 3 plugs were 5 mm shorter than the depth of the recipient site ("unbottomed" plugs). Plugs were left protruding and then pushed in until flush, and then to 2 mm below flush level, using a loading apparatus. Longer plugs needed higher forces to begin displacement. At flush level, bottomed plugs needed significantly higher forces than unbottomed plugs to become displaced below flush level (mean forces of 404 N and 131 N, respectively). Shorter bottomed plugs required higher forces than longer bottomed ones. Bottomed plugs generally provide much more stability than unbottomed ones. Short bottomed plugs are more stable than long bottomed plugs. Thus, in clinical practice it is advisable to use short bottomed plugs. If, however, unbottomed plugs are still chosen, the longer the plug the higher the resulting stability will be because of higher frictional forces.

  5. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.

  6. A Polymer Plugging Gel for the Fractured Strata and Its Application

    PubMed Central

    Fan, Xiangyu; Zhao, Pengfei; Zhang, Qiangui; Zhang, Ting; Zhu, Kui; Zhou, Chenghua

    2018-01-01

    Well leakage of fractured strata is a tricky problem while drilling. This unwieldy problem is usually caused by the poor formation of the cementing degree, the staggered-mesh of the fracture, and the low bearing capacity of the formation, which can also lead to a narrow and even unsafe window of drilling fluid density. For fractured strata, the normal plugging material has the disadvantages of unsuitable size and low strength, resulting in unsuccessful first time plugging and an increase in cost. Therefore, we developed a polymer plugging gel for the fractured strata, named XNGJ-3. XNGJ-3 is mainly made of an acrylamide monomer and is accompanied by the reactive monomers of carboxyl and hydroxyl as ingredients. XNGJ-3 has a low viscosity before gelling. At 80 °C it becomes gelled, and the gelling time was controlled within the required time of the practical application. These conditions are beneficial for making the plugging material enter the crossing fracture smoothly and occlude the fracture. XNGJ-3 also has a good deformability and can avoid being damaged during the process of fracture closure. The well leakage simulated experiment revealed that the bearing capacity of this material can reach 21 MPa and the inverse bearing capacity can reach 20 MPa. These strengths are more than twice that of common polymer plugging gels. Finally, three leaked wells in the fractured strata of the Sichuan Basin were used to verify the plugging effect of XNGJ-3. Compared with other common plugging materials, XNGJ-3 has the advantages of having a higher success rate of first time plugging, a lower economic cost, a shorter work time, and so forth, which indicate that this plugging material has a good engineering application value in dealing with well leakage of fractured strata. PMID:29883407

  7. Analysis of resonant fast ion distributions during combined ICRF and NBI heating with transients using neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET

    2018-05-01

    ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.

  8. Waste isolation pilot plant (WIPP) borehole plugging program description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, C.L.; Hunter, T.O.

    1979-08-01

    The tests and experiments described attempt to provide a mix of borehole (with limited access) and in-mine (with relatively unlimited access) environments in which assessment of the various issues involved can be undertaken. The Bell Canyon Test provides the opportunity to instrument and analyze a plug in a high pressure region. The Shallow Hole Test permits application of best techniques for plugging and then access to both the top and bottom of the plug for further analysis. The Diagnostic Test Hole permits recovery of bench scale size samples for analysis and establishes an in-borehole laboratory in which to conduct testingmore » and analysis in all strata from the surface into the salt horizon. The additional in mine experiments provide the opportunity to investigate in more detail specific effects on plugs in the salt region and allows evaluation of instrumentation systems.« less

  9. Design of broadband single polarized antenna

    NASA Astrophysics Data System (ADS)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  10. Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Das, I. S.

    1985-01-01

    The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.

  11. Improved Gain Microstrip Patch Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...GAIN MICROSTRIP PATCH ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or for the...patch antenna having increased gain, and an apparatus for increasing the gain and bandwidth of an existing microstrip patch antenna . (2) Description

  12. Susceptibility-matched plugs for microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2010-07-01

    For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.

  13. Satellite Antenna Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory, the ACTS antenna system was transferred from experimental testing status to commercial development with KVH Industries, Inc. The ACTS design enables mobile satellite antennas to remain pointed at the satellite, regardless of the motion or vibration on which it is mounted. KVH's first product based on the ACTS design is a land-mobile satellite antenna system that will enable direct broadcast satellite television aboard moving trucks, recreational vehicles, trains, and buses. Future products could include use in broadcasting, emergency medical and military vehicles.

  14. 30 CFR 250.1715 - How must I permanently plug a well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...

  15. 30 CFR 250.1715 - How must I permanently plug a well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...

  16. 30 CFR 250.1715 - How must I permanently plug a well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...

  17. 30 CFR 250.1715 - How must I permanently plug a well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in open hole Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top of... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe;(ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and a...

  18. Multi-mode horn antenna simulation

    NASA Technical Reports Server (NTRS)

    Dod, L. R.; Wolf, J. D.

    1980-01-01

    Radiation patterns were computed for a circular multimode horn antenna using waveguide electric field radiation expressions. The circular multimode horn was considered as a possible reflector feed antenna for the Large Antenna Multifrequency Microwave Radiometer (LAMMR). This horn antenna uses a summation of the TE sub 11 deg and TM sub 11 deg modes to generate far field primary radiation patterns with equal E and H plane beamwidths and low sidelobes. A computer program for the radiation field expressions using the summation of waveguide radiation modes is described. The sensitivity of the multimode horn antenna radiation patterns to phase variations between the two modes is given. Sample radiation pattern calculations for a reflector feed horn for LAMMR are shown. The multimode horn antenna provides a low noise feed suitable for radiometric applications.

  19. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  20. Spiral microstrip antenna with resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1994-01-01

    The present invention relates to microstrip antennas, and more particularly to wide bandwidth spiral antennas with resistive loading. A spiral microstrip antenna having resistor element embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  1. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  2. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  3. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  4. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  5. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  6. Porous plug for reducing orifice induced pressure error in airfoils

    NASA Technical Reports Server (NTRS)

    Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)

    1988-01-01

    A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.

  7. System and method for charging a plug-in electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less

  8. Self locking drive system for rotating plug of a nuclear reactor

    DOEpatents

    Brubaker, James E.

    1979-01-01

    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  9. Plug nozzles: The ultimate customer driven propulsion system

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  10. Jet noise suppression by porous plug nozzles

    NASA Technical Reports Server (NTRS)

    Bauer, A. B.; Kibens, V.; Wlezien, R. W.

    1982-01-01

    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

  11. Broadband Cylindrical Antenna and Method

    DTIC Science & Technology

    2016-07-27

    1 of 12 BROADBAND CYLINDRICAL ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...directed to a cylindrical antenna having a broader bandwidth and a method for making such an antenna . (2) Description of the Prior Art [0004...Slotted cylinder antennas have been proposed in submarine applications before. For example, in U.S. Patent No. 6,127,983, Rivera and Josypenko disclose

  12. Measurements of AAFE RADSCAT antenna characteristics

    NASA Technical Reports Server (NTRS)

    Cross, A. E.; Jones, W. L., Jr.; Jones, A. L.

    1977-01-01

    Antenna characteristics (active and passive) for a modified AAFE-RADSCAT parabolic dish antenna are documented for a variety of antenna configurations. The modified antenna was a replacement for the original unit which was damaged in January 1975. Pattern measurements made at Langley Research Center and Johnson Space Center are presented, with an analysis of the results. Antenna loss measurements are also presented and summarized.

  13. Metamaterial-based "sabre" antenna

    NASA Astrophysics Data System (ADS)

    Hafdallah Ouslimani, Habiba; Yuan, Tangjie; Kanane, Houcine; Priou, Alain; Collignon, Gérard; Lacotte, Guillaume

    2014-05-01

    The "sabre" antenna is an array of two monopole elements, vertically polarized with omnidirectional radiation patterns, and placed on either side of a composite material on the tail of an airplane. As an in-phase reflector plane, the antenna uses a compact dual-layer high-impedance surface (DL-HIS) with offset mushroom-like Sivenpiper square shape unit cells. This topology allows one to control both operational frequency and bandgap width, while reducing the total height of the antenna to under λ0/36. The designed antenna structure has a wide bandwidth higher than 24% around 1.4 GHz. The measurements and numerical simulations agree very well.

  14. PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. 40 CFR 147.3108 - Plugging Class I, II, and III wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...

  16. 40 CFR 147.3108 - Plugging Class I, II, and III wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...

  17. 40 CFR 147.3108 - Plugging Class I, II, and III wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...

  18. 40 CFR 147.3108 - Plugging Class I, II, and III wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...

  19. 40 CFR 147.3108 - Plugging Class I, II, and III wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...

  20. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  1. Optical antenna enhanced spontaneous emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less

  2. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  3. Optical antenna enhanced spontaneous emission

    DOE PAGES

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; ...

    2015-01-26

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less

  4. Advanced Antenna Measurement Processing

    DTIC Science & Technology

    2014-06-18

    reflector antenna where the reflector functions as a passive scatterer. Here we proposed to demonstrate this separation scheme using experimentally derived...orders in the multiple reflections between these antennas . The nature of these composite patterns is not known a priori so one cannot know the accuracy...SECURITY CLASSIFICATION OF: This research project is focused on the advancement of methods of post measurement processing of antenna pattern

  5. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  6. Beam-Steerable Flat-Panel Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.

    2005-01-01

    Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.

  7. An antenna-pointing mechanism for the ETS-6 K-band Single Access (KSA) antenna

    NASA Technical Reports Server (NTRS)

    Takada, Noboru; Amano, Takahiro; Ohhashi, Toshiro; Wachi, Shigeo

    1991-01-01

    Both the design philosophy for the Antenna Pointing Mechanism (APM) to be used for the K-band Single Access (KSA) antenna system and experimental results of the APM Engineering Model (EM) tests are described. The KSA antenna system will be flown on the Engineering Test Satellite 6 (ETS-6).

  8. Unfurlable satellite antennas - A review

    NASA Technical Reports Server (NTRS)

    Roederer, Antoine G.; Rahmat-Samii, Yahia

    1989-01-01

    A review of unfurlable satellite antennas is presented. Typical application requirements for future space missions are first outlined. Then, U.S. and European mesh and inflatable antenna concepts are described. Precision deployables using rigid panels or petals are not included in the survey. RF modeling and performance analysis of gored or faceted mesh reflector antennas are then reviewed. Finally, both on-ground and in-orbit RF test techniques for large unfurlable antennas are discussed.

  9. Broad band antennas and feed methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benzel, David M.; Twogood, Richard E.

    Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (fourmore » plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.« less

  10. Susceptibility-matched plugs for microcoil NMR probes.

    PubMed

    Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2010-07-01

    For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Susceptibility-matched plugs for microcoil NMR probes

    PubMed Central

    Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2010-01-01

    For mass limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5 to 2 μL) and larger volume (15 to 20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6 to 12 fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638

  12. Broadband Pillbox Antennas.

    DTIC Science & Technology

    1984-09-21

    Identify by block number) - FIELD GROUP SUB-GROUP Double layer pillbox antennas Triple layer pillbox antenna The possibility of designing very broadband... Design .................... 1 Broadband Feed De gn ........................................... 2 Ex mental Simulation of Double Layer Pillbox...5 REFERENCES ................................................... 6 APPENDIX - COAXIAL TO WAVEGUIDE JUNCTION DESIGN

  13. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  14. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  15. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...

  16. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...

  17. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...

  18. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...

  19. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power in...

  20. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  1. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  2. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  3. A Mars Riometer: Antenna Considerations

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.

    2001-01-01

    This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.

  4. Termination of flat conductor cable to NASA/MSFC plugs

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Data, supplemented with artwork, are presented on the major steps involved with terminating flat conductor cable (FCC) to MSFC's FCC plugs. Cable and shield preparation steps include material cutting, insulation stripping, and plating of exposed conductors. Methods and equipment required to terminate FCC to each of four MSFC plugs are described.

  5. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  6. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  7. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  8. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  9. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  10. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  11. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...

  12. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...

  13. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...

  14. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...

  15. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...

  16. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...

  17. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...

  18. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...

  19. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization or...

  20. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements. (b...

  1. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...

  2. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...

  3. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...

  4. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...

  5. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...

  6. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...

  7. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...

  8. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...

  9. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna...

  10. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged and...

  11. JPL Large Advanced Antenna Station Array Study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In accordance with study requirements, two antennas are described: a 30 meter standard antenna and a 34 meter modified antenna, along with a candidate array configuration for each. Modified antenna trade analyses are summarized, risks analyzed, costs presented, and a final antenna array configuration recommendation made.

  12. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  13. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  14. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...

  15. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...

  16. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...

  17. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...

  18. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service for...

  19. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  20. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. Except for the 2390-2400 MHz band, no antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In...

  1. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. Except for the 2390-2400 MHz band, no antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In...

  2. Project Echo: Antenna Steering System

    NASA Technical Reports Server (NTRS)

    Klahn, R.; Norton, J. A.; Githens, J. A.

    1961-01-01

    The Project Echo communications experiment employed large, steerable,transmitting and receiving antennas at the ground terminals. It was necessary that these highly directional antennas be continuously and accurately pointed at the passing satellite. This paper describes a new type of special purpose data converter for directing narrow-beam communication antennas on the basis of predicted information. The system is capable of converting digital input data into real-time analog voltage commands with a dynamic accuracy of +/- 0.05 degree, which meets the requirements of the present antennas.

  3. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...

  4. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...

  5. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...

  6. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...

  7. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be more...

  8. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  9. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Science.gov Websites

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug

  10. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  11. Analysis of supersonic plug nozzle flowfield and heat transfer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Sheu, W. H.

    1988-01-01

    A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

  12. ICRF-edge and surface interactions

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2011-08-01

    This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.

  13. Revascularization and Apical Plug in an Immature Molar

    PubMed Central

    Roghanizadeh, Leyla; Fazlyab, Mahta

    2018-01-01

    Managing of necrotic permanent teeth with immature apices is a treatment challenges. Treatment of such teeth includes apexification, apical plug and more recently, revascularization technique with the probable advantage of continuation of root development. In the present case report the referred patient had discomfort with a necrotic immature mandibular first molar. Periapical radiography showed a rather large apical lesion around immature roots. Revascularization protocol using calcium-enriched mixture (CEM) cement was indicated for the mesial root. However, in distal canal apical plug technique was applied. At 2-year follow-up, both procedures were successful in relieving patient’s symptoms. Dentin formation and increase in length of the mesial root was obvious. Apical plug and revascularization technique proved to be successful in management of necrotic immature teeth; moreover, revascularization carried the advantage of continuation of root development. PMID:29692851

  14. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...

  15. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...

  16. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...

  17. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...

  18. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose of...

  19. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...

  20. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. Link to an amendment published at 77 FR 55733, Sept. 11, 2012. No antenna for a MedRadio transmitter shall be configured for...

  1. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...

  2. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...

  3. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...

  4. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service. Certain...

  5. Millimeter-wave and terahertz integrated circuit antennas

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  6. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    NASA Astrophysics Data System (ADS)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  7. Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In

    Science.gov Websites

    Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric

  8. Measurement of Antenna Bore-Sight Gain

    NASA Technical Reports Server (NTRS)

    Fortinberry, Jarrod; Shumpert, Thomas

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  9. Slotted Antenna with Anisotropic Magnetic Loading

    DTIC Science & Technology

    2016-07-26

    10 SLOTTED ANTENNA WITH ANISOTROPIC MAGNETIC LOADING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured...is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas are...popular antennas for use in line of sight communications systems, especially where the carrier frequency exceeds 300 MHz. FIG. 1 provides a diagram

  10. UHF Antenna Design for AFIT Random Noise Radar

    DTIC Science & Technology

    2012-03-01

    relatives of monopole , dipole, and slot antennas. One particularly interesting style amongst these is the Vivaldi antenna. There are two primary... monopole versions using Earth’s surface as a ground plane [26]. Antenna design and construction caught up with these early innovations over the next...Frequency independent antennas  Electric antennas (e.g. dipoles and monopoles )  Magnetic antennas (e.g. loops)  Electrically small antennas

  11. Multilayer Patch Antenna Surrounded by a Metallic Wall

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Huang, John

    2003-01-01

    A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of <=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.

  12. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  13. Rigorous analysis of thick microstrip antennas and wire antennas embedded in a substrate

    NASA Astrophysics Data System (ADS)

    Smolders, A. B.

    1992-07-01

    An efficient and rigorous method for the analysis of electrically thick rectangular microstrip antennas and wire antennas with a dielectric cover is presented. The method of moments is used in combination with the exact spectral domain Green's function in order to find the unknown currents on the antenna. The microstrip antenna is fed by a coaxial cable. A proper model of the feeding coaxial structure is used. In addition, a special attachment mode was applied to ensure continuity of current at the patch-coax transition. The efficiency of the method of moments is improved by using the so called source term extraction technique, where a great part of the infinite integrals involved with the method of moment formulation is calculated analytically. Computation time can be saved by selecting a set of basis functions that describes the current distribution on the patch and probe in an accurate way using only a few terms of this set. Thick microstrip antennas have broadband characteristics. However, a proper match to 50 Ohms is often difficult. This matching problem can be avoided by using a slightly different excitation structure. The patch is now electromagnetically coupled to the feeding probe. A bandwidth of more than 40 can easily be obtained for this type of microstrip antenna. The price to be paid is a degradation of the radiation characteristics.

  14. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.

    1984-01-01

    The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.

  15. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  16. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  17. Slotted Antenna with Uniaxial Dielectric Covering

    DTIC Science & Technology

    2016-07-08

    1 of 12 SLOTTED ANTENNA WITH UNIAXIAL DIELECTRIC COVERING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...invention is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas ...slotted cylinder antenna for use in a towed buoy. Though somewhat broadband in performance, it is not suitable for vertical mounting over a

  18. Flexible Plug Repair for Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  19. An Approach for Smart Antenna Testbed

    NASA Astrophysics Data System (ADS)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  20. A broadband double-slot waveguide antenna

    NASA Astrophysics Data System (ADS)

    Kisliuk, M.; Axelrod, A.

    1987-09-01

    A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.

  1. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  2. 3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model

    NASA Astrophysics Data System (ADS)

    Hoi, Cory; Raessi, Mehdi

    2017-11-01

    Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.

  3. Telecommunications Antennas for the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  4. Cable-catenary large antenna concept

    NASA Technical Reports Server (NTRS)

    Akle, W.

    1985-01-01

    Deployable to very large diameters (over 1000 ft), while still remaining compatible with a complete satellite system launch by STS, the cable-catenary antenna comprises: 8 radial deployable boom masts; a deployable hub and feed support center mast; balanced front and back, radial and circumferential catenary cabling for highly accurate (mm) surface control; no interfering cabling in the antenna field; and an RF reflecting mesh supported on the front catenaries. Illustrations show the antenna-satellite system deployed and stowed configurations; the antenna deployment sequence; the design analysis logic; the sizing analysis output, and typical parametric design data.

  5. Mode conversion in ICRF experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiment on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In recent mode conversion flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 are shown to play important roles. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed. Supported by USDoE awards DE-FC02-99ER54512.

  6. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  7. Preparation and Evaluation of Biodegradable Scleral Plug Containing Curcumin in Rabbit Eye.

    PubMed

    Zhang, Jun; Sun, Haiyan; Zhou, Nalei; Zhang, Bin; Ma, Jingxue

    2017-12-01

    To test whether biodegradable curcumin-loaded scleral plug is a promising choice for treating posterior ocular diseases, the study investigated the in vitro release profile of the scleral plug and its safety in vivo. Scleral plugs containing 0.5 mg, 1.0 mg and 1.5 mg curcumin were synthesized by a compression-sintering method. These scleral plugs were placed in tubes containing balanced salt solution (BSS) buffer, which was replaced by fresh buffer daily. The curcumin concentration in the removed aliquot was tested daily for 14 days using high-performance liquid chromatography (HPLC). In the study, 44 rabbits were randomly divided into four groups: control, 0.5 mg, 1.0 mg and 1.5 mg curcumin groups. The scleral plug was trans-scleral fixed in the right eye of the rabbits in the three curcumin-treated groups. The control rabbits only received sclerotomy. The treated rabbit eyes were examined by a slit-lamp biomicroscope, an indirect ophthalmoscope and electroretinogram (ERG), and subjected to histological analysis. The concentration of the 1.5 mg curcumin-loaded scleral plug was higher than 15 μg/ml for consecutive 14 days in vitro. The in vivo experiments revealed intraocular pressure, a-wave and b-wave amplitudes of ERG, and conjunctival reaction degree were not significantly different between the four groups. Retinal structure was normal in the curcumin-treated groups. The sclerotomy wound healed after the plug was completely degraded. Anterior chamber reaction or complications were not observed. The study suggests that curcumin-loaded scleral plug could sustain high concentration of curcumin in vitro and is safe in vivo. It might be a promising alternative choice for the treatment of posterior ocular diseases.

  8. Vehicle antenna development for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  9. Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements.

  10. International Conference on Antenna Theory and Techniques

    DTIC Science & Technology

    1999-12-03

    modeling; (5) mobile —nicaWon^a^nas^ radane? and absorbing coatings; (7) antenna measurements; (8) microwave ccmponents and feeders; (9 SSrial^d...LOW-GAIN ANTENNAS PRINTED ANTENNAS ANTENNAS FOR MOBILE COMMUNICATIONS 299 Radiation of the multi-mode slotted radiator V. Antyfeev, A. Borsov, A...band antenna alternatives for the European mobile satellite (EMSAT) network G. de Balbine (Tarzana, USA) 304 Optimization of characteristics of

  11. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

    PubMed

    Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F

    2006-09-01

    This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

  12. Microscopic Evaluation of Friction Plug Welds- Correlation to a Processing Analysis

    NASA Technical Reports Server (NTRS)

    Rabenberg, Ellen M.; Chen, Poshou; Gorti, Sridhar

    2017-01-01

    Recently an analysis of dynamic forge load data from the friction plug weld (FPW) process and the corresponding tensile test results showed that good plug welds fit well within an analytically determined processing parameter box. There were, however, some outliers that compromised the predictions. Here the microstructure of the plug weld material is presented in view of the load analysis with the intent of further understanding the FPW process and how it is affected by the grain structure and subsequent mechanical properties.

  13. Analysis of Satellite Communications Antenna Patterns

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1985-01-01

    Computer program accurately and efficiently predicts far-field patterns of offset, or symmetric, parabolic reflector antennas. Antenna designer uses program to study effects of varying geometrical and electrical (RF) parameters of parabolic reflector and its feed system. Accurate predictions of far-field patterns help designer predict overall performance of antenna. These reflectors used extensively in modern communications satellites and in multiple-beam and low side-lobe antenna systems.

  14. A Report on Superfluid Helium Flow Through Porous Plugs for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1983-01-01

    As a background for the study of the nature of superfluid helium flow through porous plugs for other space science uses, preliminary tests on various plugs of a given material, diameter, height, and filtration grade have been performed. Two characteristics of the plugs, pore size and number of channels, have been determined by the bubble test and warm flow test of helium gas through the plugs, respectively. Tests on the flow of He II through the plugs have also been performed. An obvious feature of the results of these tests is that for isothermal measurements of pressure versus mass flow rate below approximately 2.10 K, the flow is separated into two different regimes, indicative of the occurrence of a critical phenomenon.

  15. Optical response of bowtie antennas

    NASA Astrophysics Data System (ADS)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  16. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  17. A Modal Approach to Compact MIMO Antenna Design

    NASA Astrophysics Data System (ADS)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored

  18. Broadband Circularly Polarized Patch Antenna and Method

    DTIC Science & Technology

    2016-09-16

    300152 1 of 14 BROADBAND CIRCULARLY POLARIZED PATCH ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...present invention provides a method and apparatus for a broadband circularly polarized patch antenna . (2) Description of the Prior Art [0004] A...patch antenna , also referred to as a microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The

  19. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  20. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  1. Cassegrain antenna with a semitransparent secondary mirror.

    PubMed

    Caiyang, Weinan; Yang, Huajun; Jiang, Ping; He, Wensen; Tian, Yu; Chen, Xue

    2017-06-10

    With the help of the vector theory of reflection and refraction, a novel emitting Cassegrain antenna with a semitransparent secondary mirror has been proposed and analyzed for a distant point source. Based on the absorptivity valued at 3.00% and the reflectivity valued at 0.10%, this new emitting antenna can increase the transmission efficiency from 63.65% to 93.85%. In addition, an off-axis parabolic receiving antenna corresponding to the emitting antenna is designed and the 3D ray-trace simulation result is given. According to the simulation result, this receiving antenna can nicely converge the rays from the emitting antenna.

  2. Antennas in matter: Fundamentals, theory, and applications

    NASA Technical Reports Server (NTRS)

    King, R. W. P.; Smith, G. S.; Owens, M.; Wu, T. T.

    1981-01-01

    The volume provides an introduction to antennas and probes embedded within or near material bodies such as the earth, the ocean, or a living organism. After a fundamental analysis of insulated and bare antennas, an advanced treatment of antennas in various media is presented, including a detailed study of the electromagnetic equations in homogeneous isotropic media, the complete theory of the bare dipole in a general medium, and a rigorous analysis of the insulated antenna as well as bare and insulated loop antennas. Finally, experimental models and measuring techniques related to antennas and probes in a general dissipative or dielectric medium are examined.

  3. Modeling of the JET-EP ICRH antenna

    NASA Astrophysics Data System (ADS)

    Koch, R.; Amarante, G. S.; Heuraux, S.; Pécoul, S.; Louche, F.

    2001-10-01

    The new ICRH antenna planned for the Enhanced Performance phase of JET (JET-EP) is analyzed using the antenna coupling code ICANT, which self-consistently determines the currents on all antenna parts. This study addresses, using a simplified antenna model, the question of the impact on the coupling of the poloidal segmentation of the conductors, of their width and of their poloidal phasing. We also address the question of the relation between the imaginary part of the power computed by the code and the input impedance of the antenna. An example of current distribution on the complete antenna in vacuum is also shown.

  4. Plug-in Plan Tool v3.0.3.1

    NASA Technical Reports Server (NTRS)

    Andrea-Liner, Kathleen E.; Au, Brion J.; Fisher, Blake R.; Rodbumrung, Watchara; Hamic, Jeffrey C.; Smith, Kary; Beadle, David S.

    2012-01-01

    The role of PLUTO (Plug-in Port UTilization Officer) and the growth of the International Space Station (ISS) have exceeded the capabilities of the current tool PiP (Plug-in Plan). Its users (crew and flight controllers) have expressed an interest in a new, easy-to-use tool with a higher level of interactivity and functionality that is not bound by the limitations of Excel. The PiP Tool assists crewmembers and ground controllers in making real-time decisions concerning the safety and compatibility of hardware plugged into the UOPs (Utility Outlet Panels) onboard the ISS. The PiP Tool also provides a reference to the current configuration of the hardware plugged in to the UOPs, and enables the PLUTO and crew to test Plug-in locations for constraint violations (such as cable connector mismatches or amp limit violations), to see the amps and volts for an end item, to see whether or not the end item uses 1553 data, and the cable length between the outlet and the end item. As new equipment is flown or returned, the database can be updated appropriately as needed. The current tool is a macroheavy Excel spreadsheet with its own database and reporting functionality. The new tool captures the capabilities of the original tool, ports them to new software, defines a new dataset, and compensates for ever-growing unique constraints associated with the Plug-in Plan. New constraints were designed into the tool, and updates to existing constraints were added to provide more flexibility and customizability. In addition, there is an option to associate a "Flag" with each device that will let the user know there is a unique constraint associated with it when they use it. This helps improve the safety and efficiency of real-time calls by limiting the amount of "corporate knowledge" overhead that has to be trained and learned through use. The tool helps save time by automating previous manual processes, such as calculating connector types and deciding which cables are required and in

  5. Inflatable Antennas Support Emergency Communication

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  6. Spiral Microstrip Antenna with Resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  7. Antenna system for MSAT mission

    NASA Technical Reports Server (NTRS)

    Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora

    1988-01-01

    Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.

  8. Multiband Photonic Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  9. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  10. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed construction...

  11. 47 CFR 17.4 - Antenna structure registration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed construction...

  12. 47 CFR 80.290 - Auxiliary receiving antenna.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...

  13. 47 CFR 80.290 - Auxiliary receiving antenna.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...

  14. 47 CFR 80.290 - Auxiliary receiving antenna.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...

  15. 47 CFR 80.290 - Auxiliary receiving antenna.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...

  16. 47 CFR 80.290 - Auxiliary receiving antenna.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not available...

  17. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Annunzio, Julie; Slezak, Lee; Conley, John Jason

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology andmore » interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.« less

  18. A Meta-Surface Antenna Array Decoupling (MAAD) Method for Mutual Coupling Reduction in a MIMO Antenna System.

    PubMed

    Wang, Ziyang; Zhao, Luyu; Cai, Yuanming; Zheng, Shufeng; Yin, Yingzeng

    2018-02-16

    In this paper, a method to reduce the inevitable mutual coupling between antennas in an extremely closely spaced two-element MIMO antenna array is proposed. A suspended meta-surface composed periodic square split ring resonators (SRRs) is placed above the antenna array for decoupling. The meta-surface is equivalent to a negative permeability medium, along which wave propagation is rejected. By properly designing the rejection frequency band of the SRR unit, the mutual coupling between the antenna elements in the MIMO antenna system can be significantly reduced. Two prototypes of microstrip antenna arrays at 5.8 GHz band with and without the metasurface have been fabricated and measured. The matching bandwidths of antennas with reflection coefficient smaller than -15 dB for the arrays without and with the metasurface are 360 MHz and 900 MHz respectively. Using the meta-surface, the isolation between elements is increased from around 8 dB to more than 27 dB within the band of interest. Meanwhile, the total efficiency and peak gain of each element, the envelope correlation coefficient (ECC) between the two elements are also improved by considerable amounts. All the results demonstrate that the proposed method is very efficient for enhancing the performance of MIMO antenna arrays.

  19. Advanced Microstrip Antenna Developments : Volume II. Microstrip GPS Antennas for General Aviation Aircraft

    DOT National Transportation Integrated Search

    1982-03-01

    This report describes the application of microstrip antenna technology to the design of general aviation (G/A) aircraft antennas for use with the Global Positioning System (GPS). For most G/A aircraft, only single frequency operation will be required...

  20. Acute Delamination of Commercially Available Decellularized Osteochondral Allograft Plugs

    PubMed Central

    Degen, Ryan M.; Tetreault, Danielle; Mahony, Greg T.; Williams, Riley J.

    2016-01-01

    Articular cartilage injuries, and corresponding surgical procedures, are occurring with increasing frequency as identified by a review of recent surgical trends. Concerns have grown in recent years regarding the longevity of results following microfracture, with a shift toward cartilage restoration procedures in recent years. This case report describes 2 cases of acute failure following the use of commercially available osteochondral allograft plugs used for the treatment of osteochondral defects of the distal femur. In both cases the chondral surface of the plug delaminated from the underlying cancellous bone, resulting in persistent pain and swelling requiring reoperation and removal of the loose fragments. Caution should be employed when considering use of these plugs for the treatment of osteochondral lesions, as similar outcomes have not been noted with other cartilage restoration techniques. PMID:27688840

  1. Molecular basis of the copulatory plug polymorphism in C. elegans

    PubMed Central

    Palopoli, Michael F.; Rockman, Matthew V.; TinMaung, Aye; Ramsay, Camden; Curwen, Stephen; Aduna, Andrea; Laurita, Jason; Kruglyak, Leonid

    2008-01-01

    Heritable variation is the raw material for evolutionary change, and understanding its genetic basis is one of the central problems in modern biology. We investigated the genetic basis of a classic phenotypic dimorphism in the nematode Caenorhabditis elegans. Males from many natural isolates deposit a copulatory plug after mating, whereas males from other natural isolates—including the standard wild-type strain (N2 Bristol) that is used in most research laboratories—do not deposit plugs1. The copulatory plug is a gelatinous mass that covers the hermaphrodite vulva, and its deposition decreases the mating success of subsequent males2. We show that the plugging polymorphism results from the insertion of a retrotransposon into an exon of a novel mucin-like gene, plg-1, whose product is a major structural component of the copulatory plug. The gene is expressed in a subset of secretory cells of the male somatic gonad, and its loss has no evident effects beyond the loss of male mate-guarding. Although C. elegans descends from an obligate-outcrossing, male-female ancestor3, 4, it occurs primarily as self-fertilizing hermaphrodites5–7. The reduced selection on male-male competition associated with the origin of hermaphroditism may have permitted the global spread of a loss-of-function mutation with restricted pleiotropy. PMID:18633349

  2. Numerical modeling of the coupling of an ICRH antenna with a plasma with self-consistent antenna currents

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    2002-07-01

    A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.

  3. 47 CFR 22.1011 - Antenna height limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...

  4. 47 CFR 22.1011 - Antenna height limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...

  5. 47 CFR 22.1011 - Antenna height limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...

  6. 47 CFR 22.1011 - Antenna height limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...

  7. 47 CFR 22.1011 - Antenna height limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...

  8. 47 CFR 15.317 - Antenna requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...

  9. 47 CFR 15.317 - Antenna requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...

  10. 47 CFR 15.317 - Antenna requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...

  11. 47 CFR 15.317 - Antenna requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...

  12. 47 CFR 15.317 - Antenna requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna requirement. 15.317 Section 15.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.317 Antenna requirement. An unlicensed PCS device must meet the antenna...

  13. Implantable ferrite antenna for biomedical applications

    NASA Astrophysics Data System (ADS)

    Fazeli, Maxwell L.

    We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.

  14. Multifunctional Antenna Techniques

    DTIC Science & Technology

    2015-11-25

    the planar structure that can be sufficiently isolated from the radiation mechanism of the antenna and transformed into a TEM transmission line feed...an equivalent transmission line structure, and isolate the physical 5 | P a g e mechanisms responsible for impedance and radiation behavior...gap-fed Archimedean spiral antenna in free space with non-negligible metal width, insertion PMC boundaries to isolate the radiation and propagation

  15. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less

  16. Elimination of toxicity from polyurethane foam plugs used for plant culture

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Schwartzkopf, S. H.; Tibbitts, T. W.; Langhans, R. W.

    1985-01-01

    Polyurethane foam plugs commonly are used as collars or supports to grow plants in solution culture. Despite their utility, these foam plugs can be quite toxic to plants, particularly to small seedlings. We have observed tissue injury in tests using plugs to support lettuce, red beet, and potato plants in solution culture. Typically, the injury is initiated on the hypocotyl or stem tissue in direct contact with the foam, and appears within 30 hr as a brownish discoloration on the tissue surface. This discoloration can be followed by complete collapse of affected tissue and eventual death of the seedling. When injury does not progress beyond surface browning, the seedling survives but growth is slowed. In this paper, we report on different treatments that can be used to remove the toxicity of these plugs so they can be used in plant research.

  17. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  18. Mating Plugs in Polyandrous Giants: Which Sex Produces Them, When, How and Why?

    PubMed Central

    Kuntner, Matjaž; Kralj-Fišer, Simona; Li, Daiqin

    2012-01-01

    Background Males usually produce mating plugs to reduce sperm competition. However, females can conceivably also produce mating plugs in order to prevent unwanted, superfluous and energetically costly matings. In spiders–appropriate models for testing plugging biology hypotheses–mating plugs may consist of male genital parts and/or of amorphous covers consisting of glandular or sperm secretions. In the giant wood spider Nephila pilipes, a highly sexually dimorphic and polygamous species, males are known to produce ineffective embolic plugs through genital damage, but nothing is known about the origin and function of additional conspicuous amorphous plugs (AP) covering female genitals. Methodology We tested alternative hypotheses of the nature and function of AP in N. pilipes by staging mating trials with varying degrees of polyandry. No APs were ever formed during mating trials, which rules out the possibility of male AP formation. Instead, those females that oviposited produced the AP from a liquid secreted during egg sac formation. Polyandrous females were more likely to lay eggs and to produce the AP, as were those that mated longer and with more total insertions. Our further tests revealed that, in spite of being a side product of egg sac production, AP, when hardened, prevented any subsequent copulation. Conclusions We conclude that in the giant wood spider (Nephila pilipes), the amorphous mating plugs are not produced by the males, that repeated copulations (most likely polyandrous) are necessary for egg fertilization and AP formation, and that the AP represents a female adaptation to sexual conflict through prevention of unwanted, excessive copulations. Considering the largely unknown origin of amorphous plugs in spiders, we predict that a similar pattern might be detected in other clades, which would help elucidate the evolutionary interplay of various selection pressures responsible for the origin and maintenance of mating plugs. PMID:22829900

  19. Distributed control of large space antennas

    NASA Technical Reports Server (NTRS)

    Cameron, J. M.; Hamidi, M.; Lin, Y. H.; Wang, S. J.

    1983-01-01

    A systematic way to choose control design parameters and to evaluate performance for large space antennas is presented. The structural dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib Antenna are characterized. Some results of the effects of model parameter uncertainties to the stability, surface accuracy, and pointing errors are presented. Critical dynamics and control problems for these antenna configurations are identified and potential solutions are discussed. It was concluded that structural uncertainties and model error can cause serious performance deterioration and can even destabilize the controllers. For the hoop and column antenna, large hoop and long meat and the lack of stiffness between the two substructures result in low structural frequencies. Performance can be improved if this design can be strengthened. The two-site control system is more robust than either single-site control systems for the hoop and column antenna.

  20. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  1. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  2. Development of Novel Integrated Antennas for CubeSats

    NASA Technical Reports Server (NTRS)

    Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.

  3. Smith and Navistar Electric and Plug-In Hybrid Vehicle Testing |

    Science.gov Websites

    plug-in hybrid electric vehicles operated by a variety of companies in diverse climates across the plug-in hybrid electric drive systems in medium-duty trucks operating in fleet service across the nation. U.S. companies agreeing to participate in this evaluation project received funding from the

  4. Effects of Proud Large Osteochondral Plugs on Contact Forces and Knee Kinematics: A Robotic Study.

    PubMed

    Du, Peter Z; Markolf, Keith L; Boguszewski, Daniel V; Yamaguchi, Kent T; Lama, Christopher J; McAllister, David R; Jones, Kristofer J

    2018-05-01

    Osteochondral allograft (OCA) transplantation is used to treat large focal femoral condylar articular cartilage defects. A proud plug could affect graft survival by altering contact forces (CFs) and knee kinematics. A proud OCA plug will significantly increase CF and significantly alter knee kinematics throughout controlled knee flexion. Controlled laboratory study. Human cadaver knees had miniature load cells, each with a 20-mm-diameter cylinder of native bone/cartilage attached at its exact anatomic position, installed in both femoral condyles at standardized locations representative of clinical defects. Spacers were inserted to create proud plug conditions of +0.5, +1.0, and +1.5 mm. CFs and knee kinematics were recorded as a robot flexed the knee continuously from 0° to 50° under 1000 N of tibiofemoral compression. CFs were increased significantly (vs flush) for all proudness conditions between 0° and 45° of flexion (medial) and 0° to 50° of flexion (lateral). At 20°, the average increases in medial CF for +0.5-mm, +1-mm, and +1.5-mm proudness were +80 N (+36%), +155 N (+70%), and +193 N (+87%), respectively. Corresponding increases with proud lateral plugs were +44 N (+14%), +90 N (+29%), and +118 N (+38%). CF increases for medial plugs at 20° of flexion were significantly greater than those for lateral plugs at all proudness conditions. At 50°, a 1-mm proud lateral plug significantly decreased internal tibial rotation by 15.4° and decreased valgus rotation by 2.5°. A proud medial or lateral plug significantly increased CF between 0° and 45° of flexion. Our results suggest that a medial plug at 20° may be more sensitive to graft incongruity than a lateral plug. The changes in rotational kinematics with proud lateral plugs were attributed to earlier contact between the proud plug's surface and the lateral meniscus, leading to rim impingement with decreased tibial rotation. Increased CF and altered knee kinematics from a proud femoral plug could

  5. 47 CFR 97.15 - Station antenna structures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...

  6. 47 CFR 97.15 - Station antenna structures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...

  7. 47 CFR 97.15 - Station antenna structures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...

  8. 47 CFR 97.15 - Station antenna structures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...

  9. 47 CFR 97.15 - Station antenna structures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station antenna structures. 97.15 Section 97.15... SERVICE General Provisions § 97.15 Station antenna structures. (a) Owners of certain antenna structures... part 17 of this chapter. (b) Except as otherwise provided herein, a station antenna structure may be...

  10. Design and optimization of LTE 1800 MIMO antenna.

    PubMed

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  11. ATCRBS Antenna Modification Kit - Phase I

    DOT National Transportation Integrated Search

    1973-06-01

    The report describes the design, fabrication and test results of an improved ATCRBS (Air Traffic Control Radar Beacon System) array antenna for mounting on the reflector of an ASR radar antenna. The antenna consists of a 4-foot high by 26-foot wide a...

  12. Milestones in Broadcasting: Antennas.

    ERIC Educational Resources Information Center

    Media in Education and Development, 1985

    1985-01-01

    Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…

  13. SPS antenna pointing control

    NASA Technical Reports Server (NTRS)

    Hung, J. C.

    1980-01-01

    The pointing control of a microwave antenna of the Satellite Power System was investigated emphasizing: (1) the SPS antenna pointing error sensing method; (2) a rigid body pointing control design; and (3) approaches for modeling the flexible body characteristics of the solar collector. Accuracy requirements for the antenna pointing control consist of a mechanical pointing control accuracy of three arc-minutes and an electronic phased array pointing accuracy of three arc-seconds. Results based on the factors considered in current analysis, show that the three arc-minute overall pointing control accuracy can be achieved in practice.

  14. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  15. Shear sensing based on a microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Mohammad, I.; Huang, H.

    2012-10-01

    A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.

  16. The new 34-meter antenna

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1986-01-01

    The new 34-m high efficiency Azimuth - Elevation antenna configuration, including its features, dynamic characteristics and performance at 8.4-GHz frequencies is described. The current-technology features of this antenna produce a highly reliable configuration by incorporation of a main wheel and track azimuth support, central pintle pivot bearing, close tolerance surface panels and all-welded construction. Also described are basic drive controls that, as slaved to three automatic microprocessors, provide accurate and safe control of the antenna's steering tasks. At this time antenna installations are completed at Goldstone and Canberra and have operationally supported the Voyager - Uranus encounter. A third installation is being constructed currently in Madrid and is scheduled for completion in late 1986.

  17. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov Websites

    Emissions Data Sources and Assumptions Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data

  18. NaK Plugging Meter Design for the Feasibility Test Loops

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.

    2008-01-01

    The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.

  19. Collapsible structure for an antenna reflector

    NASA Technical Reports Server (NTRS)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  20. Adaptive Nulling in Hybrid Reflector Antennas

    DTIC Science & Technology

    1992-09-01

    correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas

  1. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone installations...

  2. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone installations...

  3. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone installations...

  4. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone installations...

  5. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone installations...

  6. Computer-Automated Evolution of Spacecraft X-Band Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.

    2010-01-01

    A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.

  7. Millimeter wave micro-CPW integrated antenna

    NASA Astrophysics Data System (ADS)

    Tzuang, Ching-Kuang C.; Lin, Ching-Chyuan

    1996-12-01

    This paper presents the latest result of applying the microstrip's leaky mode for a millimeter-wave active integrated antenna design. In contrast to the use of the first higher-order leaky mode, the second higher-order leaky mode, the second higher-order leaky mode of even symmetry is employed in the new approach, which allows larger dimension for leaky-wave antenna design and thereby reduces its performance sensitivity to the photolithographic tolerance. The new active integrated antenna operating at frequency about 34 GHz comprises of a microstrip and a coplanar waveguide stacked on top of each other, named as the millimeter wave micro-CPW integrated antenna. The feed is through the CPW that would be connected to the active uniplanar millimeter-wave (M)MIC's. Our experimental and theoretical investigations on the new integrated antenna show good input matching characteristics for such a highly directed leaky-wave antenna with the first-pass success.

  8. Porous textile antenna designs for improved wearability

    NASA Astrophysics Data System (ADS)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  9. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less

  10. Design and Optimization of LTE 1800 MIMO Antenna

    PubMed Central

    Wong, Huey Shin; Islam, Mohammad Tariqul

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than −15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz–1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi. PMID:24967440

  11. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  12. Scanning means for Cassegrainian antenna

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.; Rusch, W. V. T.

    1967-01-01

    Mechanical antenna beam switching device detects weak signals over atmospheric and equipment noise sources in microwave antennas. It periodically nutates the paraboloidal subdish in a Cassegrainian reflector system.

  13. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  14. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...

  15. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...

  16. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable on...

  17. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable on...

  18. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet the...

  19. 47 CFR 80.923 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this part...

  20. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable on...