Sample records for icrf experimental capability

  1. Modeling of the EAST ICRF antenna with ICANT Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Chengming; Zhao Yanping; Colas, L.

    2007-09-28

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  2. Modeling of the EAST ICRF antenna with ICANT Code

    NASA Astrophysics Data System (ADS)

    Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.

    2007-09-01

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  3. Uses of the ICRF and implications for future VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2006-01-01

    Since its inception on 1 Jan 1998, the fundamental ICRF has been set by the VLBI positions of 212 "defining" extragalactic radio sources. In all there are approx.3000 sources with usefully accurate (< few mas) positions consistent with the ICRF. The uses of the ICRF include fundamental astrometry, monitoring of Earth orientation, and spacecraft navigation. For fundamental astrometry, stability and accuracy are most important, and realizations at different frequencies must be in proper registration. However, there is no preferred frequency, and the GAIA mission has the potential for an optical ICRF with 500,000 objects at the 50 microarcsec level some time after the planned 2011 launch. The radio ICRF should be properly prepared for a transition to assure long term stability and consistency. Earth orientation monitoring requires objects attached to the solid Earth, and VLBI will continue to be the fundamental technique. For this purpose it is essential that the new VLBI stations contemplated in the VLBI20l0 report be capable of observing a sufficiently large and well-distributed set of stable sources, and identifying these sources is an on-going effort. Spacecraft navigation by differential VLBI is planned using the Ka-band telemetry signal, and work has begun towards an ICRF realization suitable for this purpose. The balancing of different needs related to the VLBI ICRF will be discussed.

  4. Bulk ion heating with ICRF waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantsinen, M. J., E-mail: mervi.mantsinen@bsc.es; Barcelona Supercomputing Center, Barcelona; Bilato, R.

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR andmore » is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.« less

  5. Potential Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    The analysis and data used for the ICRF represented the state of the art in global, extragalactic, X/S band microwave astrometry in 1995. The same general analysis method was used to extend the ICRF with subsequent VLBI data in a manner consistent with the original catalog. Since 1995 there have been considerable advances in the geodetic/astrometric VLBI data set and in the analysis that would significantly improve the systematic errors, stability, and density of the next realization of the ICRS when the decision is made to take this step. In particular, data acquired since 1990, including extensive use of the VLBA, are of higher quality and astrometric utility because of changes in instrumentation, schedule design, and networks as well as specifically astrometric intent. The IVS (International VLBI Service for Geodesy and Astrometry) continues to devote a portion of its observing capability to systematic extension of the astrometric data set. Sufficient data distribution exists to select a better set of defining sources. Improvements in troposphere modeling will minimize known systematic astrometric errors while accurate modeling and estimation of station effects from loading and nonlinear motions will permit the reintegration of the celestial reference frame, terrestrial reference frame and Earth orientation parameters though a single VLBI solution. The differences between the current ICRF and the potential next realization will be described.

  6. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  7. Aspects of ICRF-3

    NASA Astrophysics Data System (ADS)

    Ma, Chopo; MacMillan, Daniel; Le Bail, Karine; Gordon, David

    2016-12-01

    The Second Realization of the International Celestial Reference Frame (ICRF2) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations coordinated by the IVS and various precursor networks. Since 2009 the data set has been significantly broadened, especially by observations in the southern hemisphere. While the new southern data have ameliorated the north/south imbalance of observations, they appear to produce a systematic zonal declination change in the catalog positions. Over the 35 years of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.

  8. Considerations for ICRF-3

    NASA Astrophysics Data System (ADS)

    Ma, Chopo; MacMillan, Daniel; Gordon, David

    2015-08-01

    The Second Realization of the International Celestial Reference Frame (ICRF) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations now coordinated by the International VLBI Service for Geodesy and Astrometry (IVS) and analyzed according to the Conventions of the International Earth Rotation and Reference Systems Service (IERS). Since 2009 the data set has been significantly broadened, especially by observations in the Southern Hemisphere, and modeling of astronomical, geophysical and tropospheric effects has progressed. The new southern data appear to cause a systematic zonal declination change in the catalog positions. Over the three decades of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.

  9. Towards a Future ICRF Realization

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, D.; MacMillan, D.; Petrov, L.; Smith, David E. (Technical Monitor)

    2001-01-01

    The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the southern hemisphere. Positions of new sources have been determined, including approx.1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and reidentification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.

  10. Towards a Future ICRF Realization

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel; Petrov, Leonid

    2002-01-01

    The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the Southern Hemisphere. Positions of new sources have been determined, including approximately 1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and re-identification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.

  11. ICRF-187 in clinical oncology.

    PubMed

    Poster, D S; Penta, J S; Bruno, S; Macdonald, J S

    1981-01-01

    Although the mechanism of action of ICRF-159 and 187 has not been clearly defined, it is evident from both preclinical and early clinical studies that these compounds are of interest. There are three distinct characteristics of these ICRF compounds that deserve careful clinical evaluation. First, these drugs are apparently alkylating agents with modest, predictable and noncumulative bone marrow toxicity that makes them good potential candidates for combination chemotherapy regimens. The second characteristic that should be investigated is the suggestion that combination of ICRF-187 with an anthracycline may ameliorate the cardiac toxicity of the latter. The third factor in the preclinical evaluation of the bis-diketopiperazines that may have clinical application is the evidence that suggests that these drugs have an antimetastatic effect.

  12. Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2004-01-01

    Since the ICRF was generated in 1995, VLBI modeling and estimation, data quality: source position stability analysis, and supporting observational programs have improved markedly. There are developing and potential applications in the areas of space navigation Earth orientation monitoring and optical astrometry from space that would benefit from a refined ICRF with enhanced accuracy, stability and spatial distribution. The convergence of analysis, focused observations, and astrometric needs should drive the production of a new realization in the next few years.

  13. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Colas, L.; Mayoral, M.-L.; Beaumont, B.; Bibet, Ph.; Brémond, S.; Kazarian, F.; Mailloux, J.; Noterdaeme, J.-M.; Efda-Jet Contributors

    2003-12-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced E×B convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum.

  14. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  15. Toward the ICRF3: Astrometric Comparison of the USNO 2016A VLBI Solution with ICRF2 and Gaia DR1

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Johnson, Megan C.; Fey, Alan; Makarov, Valeri V.; Dorland, Bryan N.

    2018-06-01

    The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO toward the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in this paper is to assess U16A’s astrometry. A comparison with ICRF2 shows statistically significant offsets of size 0.1 mas between the two solutions. While Gaia DR1 positions are not precise enough to resolve these offsets, they are found to be significantly closer to U16A than ICRF2. In particular, the trend for typically larger errors for southern sources in VLBI solutions is decreased in U16A. Overall, the VLBI-Gaia offsets are reduced by 21%. The U16A list includes 718 sources not previously included in ICRF2. Twenty of those new sources have statistically significant radio-optical offsets. In two-thirds of the cases, these offsets can be explained from PanSTARRS images.

  16. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    NASA Astrophysics Data System (ADS)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  17. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    NASA Astrophysics Data System (ADS)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium-deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5-10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  18. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; ASDEX Upgrade Team

    2009-06-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5×1021 s) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90° can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  19. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  20. The Second International Celestial Reference Frame (ICRF2)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2010-01-01

    The ICRF2 catalog was constructed by the IERS/IVS Working Group with oversight by the IAU Working Group. Derived using data from August 1979 through March 2009, it is a great improvement over the original ICRF with 3414 extragalactic radio source positions, a noise floor of 40 microarcsec, and axis stability of 10 microarcsec. Significant refinements were made in the selection of defining sources, modeling, and the integration of CRF, TRF, and EOP. The adoption of the ICRF2 was approved by the IAU in Resolution B3 at the XXVII IAU General Assembly and became effective 1 January 2010.

  1. VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Bockmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2016-01-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).

  2. Assessment of a field-aligned ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Brunner, D.; Ennever, P.

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore themore » underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest

  3. ICRF heating in a straight, helically symmetric stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, E.F.; Weitzner, H.; Batchelor, D.B.

    1987-07-01

    Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating at fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in the theoretical basis for such heating. In this paper, global solutions for the ICRF wave fields in a helically symmetric, straight stellarator are calculated in the cold plasma limit. The component of the wave electric field parallel to B-vector is assumed zero. Helical symmetry allows Fourier decomposition in the longitudinal (z) direction. The two remaining partial differential equations in tau and phi identical to THETA - hz (h is the helical pitch) are solved by finite differencing.more » Energy absorption and antenna impedance are calculated from an ad hoc collision model. Results for parameters typical of the L-2 and Advanced Toroidal Facility (ATF) stellarators show that direct resonant absorption of the fundamental ion cyclotron resonance occurs mainly near the plasma edge. The magnitude of the absorption is about half that for minority heating at the two-ion hybrid resonance.« less

  4. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less

  5. Influence of ICRF heating on the stability of TAEs

    NASA Astrophysics Data System (ADS)

    Sears, J.; Burke, W.; Parker, R. R.; Snipes, J. A.; Wolfe, S.

    2007-11-01

    Unstable toroidicity-induced Alfv'en eigenmodes (TAEs) can appear spontaneously due to resonant interaction with fast particles such as fusion alphas, raising concern that TAEs may threaten ITER performance. This work investigates the progression of stable TAE damping rates toward instability during a scan of ICRF heating power up to 3.1 MW. Stable eigenmodes are identified in Alcator C-Mod by the Active MHD diagnostic. Unstable TAEs are observed to appear spontaneously in C-Mod limited L-mode plasmas at sufficient tail energies generated by >3 MW of ICRF heating. However preliminary analysis of experiments with moderate ICRF heating power show that TAE stability may not simply degrade with overall fast particle content. There are hints that the stability of some TAEs may be enhanced in the presence of fast particle distribution tails. Furthermore, the radial profile of the energetic particle distribution relative to the safety factor profile affects the ICRF power influence on TAE stability.

  6. The IAU Division A Working Group on the Third Realization of the ICRF: Background, Goals, Plans

    NASA Astrophysics Data System (ADS)

    Gaume, Ralph

    2015-08-01

    The XXVIII General Assembly of the IAU (Beijing, 2012) established the Division A Working Group on the Third Realization of the International Celestial Reference Frame (ICRF). The adopted charter of the ICRF3 Working Group includes a commitment to report on the implementation and execution plans for ICRF3 during the XXIX General Assembly of the IAU along with a targeted completion and presentation of ICRF3 in 2018 to the XXX General Assembly for adoption. This talk will discuss the background, purpose, and overall implementation plan for ICRF3, and motivate the concept, currently under consideration by the ICRF3 Working Group, that future realizations of the ICRF be based on multi-frequency astrometric data, starting with ICRF3.

  7. The Position/Structure Stability of Four ICRF2 Sources

    NASA Technical Reports Server (NTRS)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan; Boboltz, Dave; Oyama, Tomoaki; Honma, Mareki

    2010-01-01

    Four compact radio sources in the International Celestial Reference Frame (ICRF2) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6-GHz, and with VERA at 23-GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF2. Conclusions are: (1) 43-GHz VLBI high-resolution observations are often needed to determine the location of the radio core. (2) Over the observing period, the relative positions among the four radio cores were constant to 0.02 mas, suggesting that once the true radio core is identified, it remains stationary in the sky to this accuracy. (3) The emission in 0556+238, one of the four sources investigated and one of the 295 ICRF2 defining sources, was dominated by a strong component near the core and moved 0.1 mas during the year. (4) Comparison of the VLBA images at 43, 23, and 8.6-GHz with the ICRF2 positions suggests that the 8-GHz structure is often dominated by a bright non-core component. The measured ICRF2 position can be displaced more than 0.5 mas from the radio core and partake in the motion of the bright jet component.

  8. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, M.P.; Bell, R.; Budny, R.V.

    1998-07-01

    This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less

  9. IVS Observation of ICRF2-Gaia Transfer Sources

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-03-01

    The second realization of the International Celestial Reference Frame (ICRF2), which is the current fundamental celestial reference frame adopted by the International Astronomical Union, is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency’s Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ∼500,000 Quasi Stellar Objects in the optical domain an average of 70 times each during the five years of the mission. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d’Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. We describe our successful effort to implement such a program and report on the results. Most observations of the ICRF2-Gaia transfer sources now occur automatically as part of the IVS source monitoring program, while a subset of 37 sources requires special attention. Beginning in 2013, we scheduled 25 VLBI sessions devoted in whole or in part to measuring these 37 sources. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Of the sources, 87 met their observing target of 12 successful sessions per year. The position uncertainties of all of the ICRF2-Gaia transfer sources have improved since the start of this observing program. For a subset of 24 sources whose positions were very poorly known, the uncertainty

  10. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of themore » thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.« less

  11. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    NASA Astrophysics Data System (ADS)

    Gallart, Dani; Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; Krawczyk, Natalia; King, Damian; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H) at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ˜7.0 MW in D-T.

  12. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  13. Initial operation of high power ICRF system for long pulse in EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less

  14. THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan

    2011-03-15

    Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less

  15. ICRF wall conditioning at TEXTOR-94 in the presence of a 2.25 T magnetic field

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Lyssoivan, A.; Freisinger, M.; Koch, R.; van Oost, G.; Weschenfelder, F.; Winter, J.; Textor-Icrh-Team

    1997-02-01

    To investigate alternative conditioning concepts for future fusion devices with permanent magnetic fields, plasmas produced by the coupling of ICRF power to He and gas mixtures of Helium + silane, have been analyzed in the presence of a 2.25 T toroidal magnetic field at TEXTOR-94. Their qualification for wall conditioning has been investigated for different He-pressures, PHe (1 × 10 -3 < PHe ( Pa) < 1 × 10 -1) and ICRF power, PICRF (100 < PICRF ( kW) < 800). Electron densities n e averaged along different radial lines of sight across the vacuum vessel from the top to the bottom have been obtained in the range 5 × 10 10 < ne ( cm-3) < 3 × 10 12. To study quantitatively the efficiency of hydrogen desorption from the first wall at different ICRF plasma conditions in a reproducible way, the first wall was presaturated by RG-glow discharges in H 2. The amount and the evolution of the H 2 desorption from rf discharge to rf discharge was determined by ion gauge measurements combined with mass spectrometry. To demonstrate the capability of the new method for plasma assisted thin film deposition, different amounts of silane (<50%) were added to the He gas. During the ICRF pulses, the silane molecules were dissociated in the plasma and the Si atoms stick to the wall. A good balance of the amount of Si disappearing from the gas phase and that measured by post mortem surface analyses of collector probes at the wall position was found.

  16. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less

  17. Mode conversion in three ion species ICRF heating scenario

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  18. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out

  19. A folded waveguide ICRF antenna for PBX-M and TFTR

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.

    1996-02-01

    The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.

  20. ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor

    NASA Astrophysics Data System (ADS)

    Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun

    2017-10-01

    Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.

  1. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie

    2017-10-01

    A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  2. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  3. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  4. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    NASA Astrophysics Data System (ADS)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  5. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  6. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  7. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  8. Recent ICRF coupling experiments on EAST

    NASA Astrophysics Data System (ADS)

    Yuqing, YANG; Xinjun, ZHANG; Yanping, ZHAO; Chengming, QIN; Yan, CHENG; Yuzhou, MAO; Hua, YANG; Jianhua, WANG; Shuai, YUAN; Lei, WANG; Songqing, JU; Gen, CHEN; Xu, DENG; Kai, ZHANG; Baonian, WAN; Jiangang, LI; Yuntao, SONG; Xianzu, GONG; Jinping, QIAN; Tao, ZHANG

    2018-04-01

    Recent ion cyclotron resonance frequency (ICRF) coupling experiments for optimizing ICRF heating in high power discharge were performed on EAST. The coupling experiments were focus on antenna phasing and gas puffing, which were performed separately on two ports of the ion cyclotron resonance heating (ICRH) system of EAST. The antenna phasing was performed on the I-port antenna, which consists of four toroidally spaced radiating straps operating in multiple phasing cases; the coupling performance was better under low wave number | {k}\\parallel | (ranging from 4.5 to 6.5). By fuelling the plasma from gas injectors, placed as uniformly spaced array from top to bottom at each side limiter of the B-port antenna, which works in dipole phasing, the coupling resistance of the B-port antenna increased obviously. Furthermore, the coupling resistance of the I-port antenna was insensitive to a smaller rate of gas puffing but when the gas injection rate was more than a certain value (>1021s‑1), a sharp increase in the coupling resistance of the I-port antenna occurred, which was mainly caused by the toroidal asymmetric boundary density arising from gas puffing. A more specific analysis is given in the paper.

  9. ICRF operation with improved antennas in ASDEX Upgrade with W wall

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Balden, M.; Bilato, R.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Giannone, L.; Kallenbach, A.; Maier, H.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; Tsujii, N.; Zeus, F.; Zohm, H.; the ASDEX Upgrade Team

    2013-09-01

    Experiments with boron-coated side limiters of two antennas operated together in 2012 showed that the side limiters are responsible for more than half of the increased W content in the plasma. Together with the contribution from the other limiter tiles, not replaced in 2012, the limiters account for at least two thirds of the W content. A modified test two-strap ion cyclotron range of frequency (ICRF) antennas in ASDEX Upgrade with broad limiters and narrow straps has shown an improved operation with full W wall in 2011/2012 campaigns with up to a 40% lower rise of W concentration allowing more stable operation at low deuterium gas injection rate. Limiter spectroscopy measurements indicate up to a 40% reduction of the rise of the W sputtering yield during ICRF power, measured under the assumption of negligible influence of geometry variations and reflections on the measurements. The boron limiters on two antennas together with the improved broad-limiter antenna allowed a successful ICRF operation in 2012. As a part of long-term strategy of antenna design development, two three-strap antennas with phase and power balance control for reduction of E‖ are planned for installation in the future.

  10. VizieR Online Data Catalog: Radio fluxes of 195 ICRF2-Gaia transfer sources (Le Bail+, 2016)

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-07-01

    The second realization of the International Celestial Reference Frame (ICRF2) is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency's Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ~500000 Quasi Stellar Objects in the optical domain. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d'Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Table1 lists the 195 ICRF2-Gaia transfer sources. Beginning in 2003 June, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of "under-observed" sources. In 2013 March, we added all 195 ICRF2-Gaia transfer sources to the IVS source monitoring program with an observation target of 12 successful sessions per year. (1 data file).

  11. Long-Term Variations of the EOP and ICRF2

    NASA Technical Reports Server (NTRS)

    Zharov, Vladimir; Sazhin, Mikhail; Sementsov, Valerian; Sazhina, Olga

    2010-01-01

    We analyzed the time series of the coordinates of the ICRF radio sources. We show that part of the radio sources, including the defining sources, shows a significant apparent motion. The stability of the celestial reference frame is provided by a no-net-rotation condition applied to the defining sources. In our case this condition leads to a rotation of the frame axes with time. We calculated the effect of this rotation on the Earth orientation parameters (EOP). In order to improve the stability of the celestial reference frame we suggest a new method for the selection of the defining sources. The method consists of two criteria: the first one we call cosmological and the second one kinematical. It is shown that a subset of the ICRF sources selected according to cosmological criteria provides the most stable reference frame for the next decade.

  12. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  13. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  14. Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi

    2017-10-01

    The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.

  15. High-Throughput Experimental Approach Capabilities | Materials Science |

    Science.gov Websites

    NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non

  16. Arc detection for the ICRF system on ITER

    NASA Astrophysics Data System (ADS)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  17. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less

  18. Northern Hemisphere observations of ICRF sources on the USNO stellar catalogue frame

    NASA Astrophysics Data System (ADS)

    Fienga, A.; Andrei, A. H.

    2004-06-01

    The most recent USNO stellar catalogue, the USNO B1.0 (Monet et al. \\cite{Monet03}), provides positions for 1 042 618 261 objects, with a published astrometric accuracy of 200 mas and five-band magnitudes with a 0.3 mag accuracy. Its completeness is believed to be up to magnitude 21th in V-band. Such a catalogue would be a very good tool for astrometric reduction. This work investigates the accuracy of the USNO B1.0 link to ICRF and give an estimation of its internal and external accuracies by comparison with different catalogues, and by computation of ICRF sources using USNO B1.0 star positions.

  19. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less

  20. ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.

    2011-08-01

    Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources.Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna.Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.

  1. ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources. Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna. Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.

  2. ICRF Mode Conversion Flow Drive Experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Reinke, M. L.; Rice, J. E.; Wukitch, S. J.; Granetz, R.; Greenwald, M.; Hubbard, A. E.; Marmar, E. S.; Podpaly, Y. A.; Porkolab, M.; Tsujii, N.; Wolfe, S.

    2011-12-01

    We have carried out a detailed study of the dependence of ICRF mode conversion flow drive (MCFD) on plasma and RF parameters. The flow drive efficiency is found to depend strongly on the 3He concentration in D(3He) plasmas, a key parameter separating the ICRF minority heating regime and mode conversion regime. At +90 ° antenna phasing (waves in the co-Ip direction) and dipole phasing, the driven flow is in the co-Ip direction, and the change of the rotation velocity increases with both PRF and Ip, and scales unfavorably vs. plasma density and antenna frequency. When MCFD is applied to I-mode plasmas, the plasma rotation increases until the onset of MHD modes triggered by large sawtooth crashes. Very high performance I-mode plasmas with HITER98,y2˜1.4 and Te0˜8 keV have been obtained in these experiments.

  3. Linking Deep Astrometric Standards to the ICRF

    NASA Astrophysics Data System (ADS)

    Frey, S.; Platais, I.; Fey, A. L.

    2007-07-01

    The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.

  4. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  5. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Pursimo, T.

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less

  6. High-power and steady-state operation of ICRF heating in the large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less

  7. IShTAR ICRF antenna field characterization in vacuum and plasma by using probe diagnostic

    NASA Astrophysics Data System (ADS)

    Usoltceva, Mariia; Ochoukov, Roman; D'Inca, Rodolphe; Jacquot, Jonathan; Crombé, Kristel; Kostic, Ana; Heuraux, Stéphane; Faudot, Eric; Noterdaeme, Jean-Marie

    2017-10-01

    RF sheath physics is one of the key topics relevant for improvements of ICRF heating systems, which are present on nearly all modern magnetic fusion machines. This paper introduces developement and validation of a new approach to understanding general RF sheath physics. The presumed reason of enhanced plasma-antenna interactions, parallel electric field, is not measured directly, but proposed to be obtained from simulations in COMSOL Multiphysics® Modeling Software. Measurements of RF magnetic field components with B-dot probes are done on a linear device IShTAR (Ion cyclotron Sheath Test ARrangement) and then compared to simulations. Good resulting accordance is suggested to be the criterion for trustworthiness of parallel electric field estimation as a component of electromagnetic field in modeling. A comparison between simulation and experiment for one magnetic field component in vacuum has demonstrated a close match. An additional complication to this ICRF antenna field characterization study is imposed by the helicon antenna which is used as a plasma ignition tool in the test arrangement. The plasma case, in contrast to the vacuum case, must be approached carefully, since the overlapping of ICRF antenna and helicon antenna fields occurs. Distinguishing of the two fields is done by an analysis of correlation between measurements with both antennas together and with each one separately.

  8. Progress on ion cyclotron range of frequencies heating physics and technology in support of the International Tokamak Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bonoli, P. T.

    2015-02-01

    Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored.

  9. Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl. V.; Braun, F.; Dux, R.; Herrmann, A.; Giannone, L.; Kallenbach, A.; Krivska, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, T.; Rohde, V.; Schweinzer, J.; Sips, A.; Zammuto, I.; ASDEX Upgrade Team

    2010-03-01

    The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall. The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna. An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles. In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma-antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap-box distance, e.g. by increasing the

  10. Mode conversion in ICRF experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiment on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In recent mode conversion flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 are shown to play important roles. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed. Supported by USDoE awards DE-FC02-99ER54512.

  11. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  12. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  13. A Complete Bank of Optical Images of the ICRF QSOs

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Taris, Francois; Anton, Sonia; Bourda, Geraldine; Damljanovic, Goran; Souchay, Jean; Vieira Martins, Roberto; Pursimo, Tapio; Barache, Christophe; Nepomuceno da Silva Neto, Dario; Fernandes Coelho, Bruno David

    2015-08-01

    We have been developing a systematic effort to collect good quality images of the optical counterpart of ICRF sources, in particular for those that have been regularly radio surveyed either for future implementation at high frequencies and/or those that will be the link sources between the ICRF and the Gaia CRF. Observations have been taken at the LNA/Brazil, CASLEO/Argentina, NOT/Spain, LFOA/Austria, Rozhen/Bulgária, and ASV/Serbia. In complement images were collected from the SDSS. As a step to implement such image data bank and make it publicly available through the IERS service we present its description, that comprises for each source the number of measurements, filter, pixel scale, size of field, and seeing at each observation. The photometry analysis is centered on the morphology, since there remain still cases in which the host galaxy is overwhelming, and many cases in which the host asks for a non-stellar PSF modeling. On basis of the neighbor stars we assign magnitudes and variability whenever possible. Finally, assisted by previous literature, the redshift and luminosity are used to derive astrophysical quantities, in special the absolute magnitude, SED and spectral index. Moreover, since Gaia will not obtain direct images of the observed sources, the morphology and magnitude becomes useful as templates onto which assembling and interpreting the one-dimensional and uncontinuous line spread function samplings that will be delivered by Gaia for each QSO.

  14. ORNL diagnostic and modeling development for LAPD ICRF experiments

    NASA Astrophysics Data System (ADS)

    Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.

    2017-10-01

    PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).

  15. Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2

    NASA Technical Reports Server (NTRS)

    Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)

    1998-01-01

    The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.

  16. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    NASA Astrophysics Data System (ADS)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne < 1018 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  17. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  18. Reinstated JET ICRF ILA: Overview and Results

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Durodié, Frédéric; Blackman, Trevor; Helou, Walid; Jacquet, Philippe; Lerche, Ernesto; Monakhov, Igor; Noble, Craig; Bobkov, Volodymyr; Goulding, Richard; Kaufman, Michael; Van Eester, Dirk

    2017-10-01

    The works undertaken to reinstate the JET ICRF ILA are reviewed. The vacuum matching capacitors were replaced, an extensive calibration of all the measurements in the RF circuit was carried out, new simulation tools were created and new control algorithms were implemented for the - toroidal and poloidal - phase control of the array as well as for the matching of the second stage. A review of the contribution of the reinstated ILA to the JET programme during the last campaigns is given showing namely that the new controls allowed extending the range of the operation to lower (29MHz) and higher (51MHz) frequencies than previously achieved and allowed more flexible and reliable operation. Operation with coupled power levels up to 2.8MW and voltages up to 40kV was achieved. ILA results on plasma are discussed and emphasis is given to the features of interest for ITER.

  19. Theory and Practice in ICRF Antennas for Long Pulse Operation

    NASA Astrophysics Data System (ADS)

    Colas, L.; Faudot, E.; Brémond, S.; Heuraux, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Tore Supra Team

    2005-09-01

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20s×8MW and 60s×4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC E×B0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  20. Extending the ICRF into the Infrared: 2MASS - UCAC Astrometry

    NASA Technical Reports Server (NTRS)

    Zacharias, Norbert; McCallon, Howard L.; Kopan, Eugene; Cutri, Roc M.

    2000-01-01

    An external comparison between the infrared 2MASS and the optical UCAC positions was performed, both being on the same system, the ICRS. About 48 million sources in common were identified. Random errors of the 2MASS catalog positions are about 60 to 70 mas per coordinate for the Ks = 4 to 14 range, increasing to about 100 to 150 mas for saturated and very faint stars. Systematic position differences between the 2 catalogs are very small, about 5 to 10 mas as a function of magnitude and color, with somewhat larger errors as a function of right ascension and declination. The extension of the ICRF into the infrared has become a reality.

  1. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    NASA Astrophysics Data System (ADS)

    Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  2. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    NASA Astrophysics Data System (ADS)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  3. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    NASA Astrophysics Data System (ADS)

    Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.

    2005-08-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.

  4. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an

  5. Theory and Practice in ICRF Antennas for Long Pulse Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colas, L.; Bremond, S.; Mitteau, R.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot patternmore » was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.« less

  6. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less

  7. Analysis of resonant fast ion distributions during combined ICRF and NBI heating with transients using neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET

    2018-05-01

    ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.

  8. ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.

  9. Experimental Measurements of the Dynamic Electric Field Topology Associated with Magnetized RF Sheaths

    NASA Astrophysics Data System (ADS)

    Martin, E. H.; Caughman, J. B. O.; Shannon, S. C.; Klepper, C. C.; Isler, R. C.

    2013-10-01

    A major challenge facing magnetic fusion devices and the success of ITER is the design and implementation of reliable ICRH systems. The primary issue facing ICRH is the parasitic near-field which leads to an increased heat flux, sputtering, and arcing of the antenna/faraday screen. In order to aid the theoretical development of near-field physics and thus propel the design process experimental measurements are highly desired. In this work we have developed a diagnostic based on passive emission spectroscopy capable of measuring time periodic electric fields utilizing a generalized dynamic Stark effect model and a novel spectral line profile fitting package. The diagnostic was implemented on a small scale laboratory experiment designed to simulate the edge environment associated with ICRF antenna/faraday screen. The spatially and temporally resolved electric field associated with magnetized RF sheaths will be presented for two field configurations: magnetic field parallel to electric field and magnetic field perpendicular to electric field, both hydrogen and helium discharges where investigated. ORNL is managed by UT-Battelle, LCC, for the US DOE under Contract No. DE-AC05-00OR22725.

  10. Characterization and Mitigation of ICRF Antenna - Plasma Edge Interaction

    NASA Astrophysics Data System (ADS)

    Hong, Rongjie; Tynan, George; Wukitch, Steve; Lin, Yijun; Terry, Jim; Chilenski, M.; Golfinopoulos, T.; Hubbard, A.; Mumgaard, R. T.; Perkins, R.; Reinke, M. L.; Alcator C-Mod Team

    2017-10-01

    Recent experiments reveal that RF-induced potentials (VRF) in the SOL and impurity source at the antenna can be reduced to background levels via optimizing the power ratio between the inner and outer current straps, Pcent /Pout . Experiments indicate the antenna impurity source reduction for the field aligned antenna is due to geometrical alignment rather than electrical symmetry. Additional experiments performed without an optimized Pcent /Pout showed that VRF and the associated convection cells do not influence the impurity penetration or core impurity confinement. These results suggest the core impurity contamination associated with ICRF heating is dominated by an increased impurity source rather than a change in impurity transport. Further, the convective cell strength was expected to scale inversely with B-field. The observed poloidal velocity (measure of convective cell strength), however, decreased less than expected. In addition, the measured maximum VRF increased and penetrated farther into the SOL at higher B-field and plasma current. Results also suggest VRF is strongly influenced by the SOL plasma parameters rather than by RF parameters. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and DE-SC 0010720.

  11. LETTER: Study of combined NBI and ICRF enhancement of the D-3He fusion yield with a Fokker-Planck code

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    A two-dimensional bounce averaged Fokker-Planck code is used to study the fusion yield and the wave absorption by residual hydrogen ions in higher harmonic ICRF heating of D (120 keV) and 3He (80 keV) beams in the JT-60U tokamak. Both for the fourth harmonic resonance of 3He (ω = 4ωc3He(0), which is accompanied by the third harmonic resonance of hydrogen (ω = 3ωcH) at the low field side, and for the third harmonic resonance of 3He (ω = 4ωcD(0) = 3ωc3He(0)) = 2ωcH(0)), a few per cent of hydrogen ions are found to absorb a large fraction of the ICRF power and to degrade the fusion output power. In the latter case, D beam acceleration due to the fourth harmonic resonance in the 3He(D) regime can enhance the fusion yield more effectively. A discussion is given of the effect of D beam acceleration due to the fifth harmonic resonance (ω = 5ωcD) at the high field side in the case of ω = 4ωc3He(0) and of the optimization of the fusion yield in the case of lower electron density and higher electron temperature

  12. TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2006-07-01

    The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA

  13. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  14. Radio structure effects on the optical and radio representations of the ICRF

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.; da Silva Neto, D. N.; Assafin, M.; Vieira Martins, R.

    Silva Neto et al. (2002) show that comparing the ICRF Ext.1 sources standard radio position (Ma et al. 1998) against their optical counterpart position (Zacharias et al. 1999, Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9±1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio stucture. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.

  15. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m{sup 2}. The data showed that it remained as high as around 50% during the campaign period becausemore » graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.« less

  16. Structures and Materials Experimental Facilities and Capabilities Catalog

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)

    2000-01-01

    The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.

  17. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  18. Evidence of Non-Coincidence between Radio and Optical Positions of ICRF Sources.

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.; da Silva, D. N.; Assafin, M.; Vieira Martins, R.

    2003-11-01

    Silva Neto et al. (SNAAVM: 2002) show that comparing the ICRF Ext1 sources standard radio position (Ma et al., 1998) against their optical counterpart position(ZZHJVW: Zacharias et al., 1999; USNO A2.0: Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9 +/- 1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio structure. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.

  19. Scrape-off layer reflectometer for Alcator C-Mod.

    PubMed

    Hanson, G R; Wilgen, J B; Lau, C; Lin, Y; Wallace, G M; Wukitch, S J

    2008-10-01

    A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

  20. Development of plasma sources for ICRF heating experiment in KMAX mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Liu, Ming; Yi, Hongshen; Lin, Munan; Shi, Peiyun

    2016-10-01

    KMAX, Keda Mirror with AXisymmeticity, is a tandem mirror machine with a length of 10 meters and diameters of 1.2 meters in the central cell and 0.3 meters in the mirror throat. In the past experiments, the plasma was generated by helicon wave launched from the west end. We obtained the blue core mode in argon discharge, however, it cannot provide sufficient plasma for hydrogen discharge, which is at least 1012 cm-3 required for effective ICRF heating. Several attempts have thus been tried or under design to increase the central cell's plasma density: (1) a washer gun with aperture of 1cm has been successfully tested, and a plasma density of 1013 cm-3 was achieved in the west cell near the gun, however, the plasma is only 1011 cm-3 in the central cell possible due to the mirror trapping and/or neutral quenching effect (2) a larger washer gun with aperture of 2.5 cm and a higher power capacitor bank are being assembled in order to generate more plasmas. In addition, how to mitigate the neutrals is under consideration (3) A hot cathode is been designed and will be tested in combination with plasma gun or alone. Preliminary results from those plasma sources will be presented and discussed.

  1. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST

    NASA Astrophysics Data System (ADS)

    Urbanczyk, Guillaume; Zhang, Xinjun; Qin, Chengming; Zhao, Yanping; Zhang, Tao; Zhang, Ling; Li, Jiangang; Yuan, Shuai; Chen, Liang; Zhang, Heng; Zhang, Jiahui; Wang, Jianhua; Yang, Xiuda; Qian, Jinping

    2017-10-01

    Waves in the Ion Cyclotron (ICRF) and Lower Hybrid (LH) Range of Frequencies are efficient techniques respectively to heat the plasma and drive current. Main difficulties come from a trade-off between good RF coupling and acceptable level of impurities release. The mutual influence of both systems makes such equilibrium often hard to reach [1]. In order to investigate those interactions based on Scrape-Off Layer (SOL) plasma parameters, a new reciprocating probe was designed allying a three tips Langmuir probe with an emissive wire. The emissive filament provides a precise measure of plasma potential [2], which can be used to calibrate Langmuir probe's results. This paper reports on experimental results obtained on EAST, where there are two ICRF antennas and two LH launchers. Among others diagnostics, the new reciprocating probe enabled to evidence the deleterious influence of ICRF power on LHWs coupling in L-mode plasmas. In areas connected with an active ICRF antenna, SOL potentials increase while densities tend to decrease, respectively enhancing impurities release and deteriorating LHWs coupling. This phenomenon has mostly been attributed to RF sheath; the one that forms on top of Plasma Facing Components (PFCs) and causes ExB density convections [3]. From those experiments it seems ICRF has a strong influence on magnetically connected areas, both in the near field - influencing ICRF waves coupling - and in farther locations such as in front of LH grills. Moreover, influence of ICRF on LH system was observed both in L and H modes. Those results are consistent with RF sheath rectification process. Concerning the influence of LHWs on ICRF coupling, nothing was observed in L-mode. Besides during H-mode experiments, LHWs have been identified as having a mitigating effect on ELMs [4], which on average lowers the pedestal, increasing edge densities to the profit of ICRF waves coupling.

  2. Influence of Magnetic Field Ripple on the Intrinsic Rotation of Tokamak Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nave, M. F. F.; Johnson, T.; Eriksson, L.-G.

    Using the unique capability of JET to monotonically change the amplitude of the magnetic field ripple, without modifying other relevant equilibrium conditions, the effect of the ripple on the angular rotation frequency of the plasma column was investigated under the conditions of no external momentum input. The ripple amplitude was varied from 0.08% to 1.5% in Ohmic and ion-cyclotron radio-frequency (ICRF) heated plasmas. In both cases the ripple causes counterrotation, indicating a strong torque due to nonambipolar transport of thermal ions and in the case of ICRF also fast ions.

  3. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  4. Spectral Calculation of ICRF Wave Propagation and Heating in 2-D Using Massively Parallel Computers

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; D'Azevedo, E.; Berry, L. A.; Carter, M. D.; Batchelor, D. B.

    2000-10-01

    Spectral calculations of ICRF wave propagation in plasmas have the natural advantage that they require no assumption regarding the smallness of the ion Larmor radius ρ relative to wavelength λ. Results are therefore applicable to all orders in k_bot ρ where k_bot = 2π/λ. But because all modes in the spectral representation are coupled, the solution requires inversion of a large dense matrix. In contrast, finite difference algorithms involve only matrices that are sparse and banded. Thus, spectral calculations of wave propagation and heating in tokamak plasmas have so far been limited to 1-D. In this paper, we extend the spectral method to 2-D by taking advantage of new matrix inversion techniques that utilize massively parallel computers. By spreading the dense matrix over 576 processors on the ORNL IBM RS/6000 SP supercomputer, we are able to solve up to 120,000 coupled complex equations requiring 230 GBytes of memory and achieving over 500 Gflops/sec. Initial results for ASDEX and NSTX will be presented using up to 200 modes in both the radial and vertical dimensions.

  5. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    NASA Astrophysics Data System (ADS)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically <10%) can be absorbed by the D ions. We find that an anti-aliasing filter is required in AORSA to calculate this fraction correctly while including up-shift and down-shift in the parallel wave spectrum. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  6. Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin

    2016-10-01

    It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.

  7. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2015-12-01

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod's field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.

  8. Design, performance, and grounding aspects of the International Thermonuclear Experimental Reactor ion cyclotron range of frequencies antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durodié, F., E-mail: frederic.durodie@rma.ac.be; Dumortier, P.; Vrancken, M.

    2014-06-15

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV andmore » limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and

  9. LEWICE 2.2 Capabilities and Thermal Validation

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    2002-01-01

    A computational model of bleed air anti-icing and electrothermal de-icing have been added to the LEWICE 2.0 software by integrating the capabilities of two previous programs, ANTICE and LEWICE/ Thermal. This combined model has been released as LEWICE version 2.2. Several advancements have also been added to the previous capabilities of each module. This report will present the capabilities of the software package and provide results for both bleed air and electrothermal cases. A comprehensive validation effort has also been performed to compare the predictions to an existing electrothermal database. A quantitative comparison shows that for deicing cases, the average difference is 9.4 F (26%) compared to 3 F for the experimental data while for evaporative cases the average difference is 2 F (32%) compared to an experimental error of 4 F.

  10. Recent experimental results of KSTAR RF heating and current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control Systemmore » (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.« less

  11. Recent experimental results of KSTAR RF heating and current drive

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.

    2015-12-01

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  12. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G., E-mail: tgjenkins@txcorp.com; Smithe, David N., E-mail: smithe@txcorp.com

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scansmore » over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.« less

  13. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  14. Measurement of ICRF wave propagation using a microwave reflectometer with fast antenna switching on GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Sekine, R.; Kubota, Y.; Shima, Y.; Kohagura, J.; Yoshikawa, M.; Sakamoto, M.; Nakashima, Y.

    2017-12-01

    Slow Alfvén wave in ion cyclotron range of frequency (ICRF) is a powerful tool to heat ions confined in a mirror field. In spite of its efficient heating effect that has been attained in the central cell of GAMMA 10, there are still unknown characteristics concerning boundary condition, transient variation of heating effect, exact picture of cyclotron damping, and so on. To study these characteristics in detail, a multi-point measurement of the waves inside the hot plasma has been recently developed by using a microwave reflectometer. In addition to a radial profile measurement that is available by a usual reflectometer, an axial measurement has been achieved by arraying transmitting and receiving horn antennas in the axial direction, which are repeatedly switched in time during a discharge with PIN diode switches. Another transmitting and receiving horn antenna pair was newly added to the system and probing at five cross sections was achieved in a single discharge with time resolution of about 1 ms at each antenna pair position. With the upgraded reflectometer system, axial and radial distributions of wave-induced fluctuations and those temporal behavior were clearly observed, offering valuable data on wave physics in a hot mirror plasma.

  15. Development of Experimental Icing Simulation Capability for Full-Scale Swept Wings: Hybrid Design Process, Years 1 and 2

    NASA Technical Reports Server (NTRS)

    Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete; hide

    2017-01-01

    This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.

  16. On the Hipparcos Link to the ICRF derived from VLA and MERLIN radio astrometry

    NASA Astrophysics Data System (ADS)

    Hering, R.; Walter, H. G.

    2007-06-01

    Positions and proper motions obtained from observations by the very large array (VLA) and the multi-element radio-linked interferometer network (MERLIN) are used to establish the link of the Hipparcos Celestial Reference Frame (HCRF) to the International Celestial Reference Frame (ICRF). The VLA and MERLIN data are apparently the latest ones published in the literature. Their mean epoch at around 2001 is about 10 years after the epoch of the Hipparcos catalogue and, therefore, the data are considered suitable to check the Hipparcos link established at epoch 1991.25. The parameters of the link, i.e., the angles of frame orientation and the angular rates of frame rotation, are estimated by fitting these parameters to the differences of the optical and radio positions and proper motions of stars common to the Hipparcos catalogue and the VLA and MERLIN data. Both the estimates of the angles of orientation and the angular rates of rotation show nearly consistent but insignificant results for all samples of stars treated. We conclude that not only the size of the samples of 9 15 stars is too small, but also that the accuracy of the radio positions and, above all, of the radio proper motions is insufficient, the latter being based on early-epoch star positions of low accuracy. The present observational data at epoch 2001 suggest that maintenance of the Hipparcos frame is not feasible at this stage.

  17. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    NASA Astrophysics Data System (ADS)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  18. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  19. Development of Capabilities for New Experimental Studies on the Elasticity and Rheology of Lower Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Triplett, R.; Weidner, D.; Whitaker, M. L.; Chen, H.; Li, L.

    2017-12-01

    Key mineralogical components of the mid-mantle of the Earth have historically been difficult to obtain elasticity data on because they either cannot be recovered to ambient conditions (e.g. calcium silicate perovskite) or back-transform during experimental preparation (e.g. magnesium silicate perovskite). Recently the conditions of the mid-mantle (14+ GPa, 1500+ K) and even of the lower mantle (24+ GPa, 1800+ K) have become reachable using multi-anvil apparatuses (MAA) with in-situ synchrotron x-ray capabilities, but the capabilities of these facilities have not yet fully matured. Examples include that reaching such pressures typically results in samples that are too small for ultrasonics, the few ultrasonics experiments done at these conditions have extremely limited x-ray visibility, and rheological experiments that apply differential stress have not been done at these conditions on large volume samples. The pressure reachable in a Large Volume Press (LVP) is limited by the properties of available ultra-hard (UH) materials such as tungsten carbide (WC) and x-ray transparent polycrystalline diamond (PCD) and cubic boron nitride (cBN). A key factor is the interaction of 1st stage anvils and anvils of UH materials; obtaining WC anvils of larger size is prohibitive in both capability and cost, and anvils of hardened steel are limited in the tonnage that can be applied before damage occurs. Other complications include the difference in compressibility between WC and PCD/cBN anvils and the availability of WC with simultaneous high compressive strength (pressure gain per tonnage) and high transverse rupture strength (lower chance of blowout and reusability). The DT25 press to be used at the new NSLS-II beamline XPD-D is a Kawaii-style LVP MAA which accepts 25 mm UH 2nd-stage anvils and has the capability to apply a differential load while at extreme conditions. We report on our development of techniques to do new and expanded experiments at lower mantle conditions

  20. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  1. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2015-08-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.

  2. An Assessment of Current Fan Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Woodward, Richard P.; Elliott, David M.; Fite, E. Brian; Hughes, Christopher E.; Podboy, Gary G.; Sutliff, Daniel L.

    2008-01-01

    In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.

  3. Interaction Between the Celestial and the Terrestrial Reference Frames

    NASA Technical Reports Server (NTRS)

    Gordon, David; MacMillan, Dan; Bolotin, Sergei; Le Bail, Karine; Gipson, John; Ma, Chopo

    2010-01-01

    Effects of International Celestial Reference Frame (ICRF2) on the Terrestrial Reference Frames (TRF), CRF and EOP's, The ICRF2 became official on Jan. 1, 2010. It includes positions of 3414 compact radio astronomical sources observed with VLBI, a fivefold increase from the first ICRF. Numerous new VLBI models were used and the most unstable sources were treated as arc parameters to avoid distortions of the frame. The ICRF2 has a noise floor of 40 micro-arc-seconds and an axis stability of 10 micro-arc-seconds. It was aligned with the ICRS using 138 stable sources common to ICRF2 and ICRF-Ext2. Maintenance of ICRF2 is to be made using 295 defining sources chosen for their historical positional stability, minimal source structure, and sky distribution. Their stability and their more uniform sky distribution eliminate the two largest weaknesses of ICRF I. The switchover to ICRF2 has some small effects on the TRF, CRF and Earth Orientation Parameters (EOP). A CRF based on ICRF2 shows a relative rotation of 40 micro-arc-seconds, mostly about the Y-axis. Small shifts are also seen in the EOP's, the largest being 11 micro-arc-seconds in X-pole. Some small but insignificant differences are also seen in the TRF. These results will be presented and discussed.

  4. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    PubMed Central

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2008-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components. PMID:18607511

  5. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2003-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.

  6. Exploration Medical Capability (ExMC) Projects

    NASA Technical Reports Server (NTRS)

    Wu, Jimmy; Watkins, Sharmila; Baumann, David

    2010-01-01

    During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.

  7. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through

  8. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    PubMed

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a

  9. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  10. High resolution, monochromatic x-ray topography capability at CHESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z.

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities,more » and presents experimental results from several applications.« less

  11. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; hide

    2014-01-01

    A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

  12. Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.

    2012-10-01

    Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.

  13. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  14. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  15. Toward a Public Toxicogenomics Capability for Supporting ...

    EPA Pesticide Factsheets

    A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within chemical, genomics, and toxicological information domains. This capability also depends on common genomics standards, protocol description, and functional linkages of diverse public Internet data resources. We present a survey of public genomics resources from these vantage points and conclude that, despite progress in many areas, the current state of the majority of public microarray databases is inadequate for supporting these objectives, particularly with regard to chemical indexing. To begin to address these inadequacies, we focus chemical annotation efforts on experimental content contained in the two primary public genomic resources: ArrayExpress and Gene Expression Omnibus. Automated scripts and extensive manual review were employed to transform free-text experiment descriptions into a standardized, chemically indexed inventory of experiments in both resources. These files, which include top-level summary annotations, allow for identification of current chemical-associated experimental content, as well as chemical-exposure–related (or

  16. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  17. Air elimination capability in rapid infusion systems.

    PubMed

    Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G

    2011-11-01

    Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  18. Advanced Capabilities for Wind Tunnel Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.

    2010-01-01

    Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.

  19. ICRF-edge and surface interactions

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2011-08-01

    This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.

  20. Direction and Integration of Experimental Ground Test Capabilities and Computational Methods

    NASA Technical Reports Server (NTRS)

    Dunn, Steven C.

    2016-01-01

    This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.

  1. Effect of Graphene Oxide on the Damping Capability of Recycled Mortar

    NASA Astrophysics Data System (ADS)

    Wei, Jing-Jie; Long, Wu-Jian; Fang, Chang-Le; Li, Hao-Dao; Guo, Yue-Gui

    2018-03-01

    The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the damping capability of recycled mortar. The effect of GO on damping capability was examined by using dynamic mechanical analyzer (DMA), It is showed that the recycled mortar with GO has a better damping capability than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration products.

  2. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis1

    PubMed Central

    Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.

    2010-01-01

    Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445

  3. Molecular dispersion spectroscopy – new capabilities in laser chemical sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state-of-the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS) based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace-gases and enable new capabilities such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459

  4. The flow patterning capability of localized natural convection.

    PubMed

    Huang, Ling-Ting; Chao, Ling

    2016-09-14

    Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.

  5. NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia D. Gentillon

    2011-09-01

    Projects for the Very High Temperature Reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. The NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory has been established to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities formore » displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities. The capabilities are described from the perspective of NDMAS users, starting with those who just view experimental data and analytical results on the INL NDMAS web portal. Web display and delivery capabilities are described in detail. Also the current web pages that show Advanced Gas Reactor, Advanced Graphite Capsule, and High Temperature Materials test results are itemized. Capabilities available to NDMAS developers are more extensive, and are described using a second series of examples. Much of the data analysis efforts focus on understanding how thermocouple measurements relate to simulated temperatures and other experimental parameters. Statistical control charts and correlation monitoring provide an ongoing assessment of instrument accuracy. Data analysis capabilities are virtually unlimited for those who use the NDMAS web data download capabilities and the analysis software of their choice. Overall, the NDMAS provides convenient data analysis and web delivery capabilities for studying a very large and rapidly increasing database of well-documented, pedigreed data.« less

  6. Assessment of CFD capability for prediction of hypersonic shock interactions

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  7. Dynamical Reference Frame: Current Relevance and Future Prospects

    NASA Technical Reports Server (NTRS)

    Standish, E. M., Jr

    2000-01-01

    Planetary and lunar ephemerides are no longer used for the determination of inertial space. Instead, the new fundamental reference frame, the International Celestial Reference Frame (ICRF), is inherently less susceptible to extraneous, non-inertial rotations than a dynamical reference frame determined by the ephemerides would be. Consequently, the ephemerides are now adjusted onto the ICRF, and they are fit to two modern, accurate observational data types: ranging (radar, lunar laser, spacecraft) and Very Long Baseline Interferometry (VLBI) (of spacecraft near planets). The uncertainties remaining in the inner planet ephemerides are on the order of 1 kilometer, both in relative positions between the bodies and in the orientation of the inner system as a whole. The predictive capabilities of the inner planet ephemerides are limited by the uncertainties in the masses of many asteroids. For this reason, future improvements to the ephemerides must await determinations of many asteroid masses. Until then, it will be necessary to constantly update the ephemerides with a continuous supply of observational data.

  8. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    enhancements to NASA capabilities in ground-based testing. They ensure that these wind tunnels will provide accurate and relevant experimental data for years to come, supporting both NASAs mission and the missions of our government and industry customers.

  9. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-01

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a `test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude φ0 (normalized to a characteristic length for transverse transport and to the local temperature). A `peaking factor' is built from the DC peak potential normalized to φ0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the `peaking factor' for ITER will be presented for a given configuration.

  10. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially amore » Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.« less

  11. A senior manufacturing laboratory for determining injection molding process capability

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Plocinski, David

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.

  12. New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.

    2007-12-01

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.

  13. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    .R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent inmore » the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________« less

  14. Influence of Cultural, Organizational, and Automation Capability on Human Automation Trust: A Case Study of Auto-GCAS Experimental Test Pilots

    NASA Technical Reports Server (NTRS)

    Koltai, Kolina; Ho, Nhut; Masequesmay, Gina; Niedober, David; Skoog, Mark; Cacanindin, Artemio; Johnson, Walter; Lyons, Joseph

    2014-01-01

    This paper discusses a case study that examined the influence of cultural, organizational and automation capability upon human trust in, and reliance on, automation. In particular, this paper focuses on the design and application of an extended case study methodology, and on the foundational lessons revealed by it. Experimental test pilots involved in the research and development of the US Air Force's newly developed Automatic Ground Collision Avoidance System served as the context for this examination. An eclectic, multi-pronged approach was designed to conduct this case study, and proved effective in addressing the challenges associated with the case's politically sensitive and military environment. Key results indicate that the system design was in alignment with pilot culture and organizational mission, indicating the potential for appropriate trust development in operational pilots. These include the low-vulnerability/ high risk nature of the pilot profession, automation transparency and suspicion, system reputation, and the setup of and communications among organizations involved in the system development.

  15. Meeting Capability Goals through Effective Modelling and Experimentation of C4ISTAR Options

    DTIC Science & Technology

    2011-06-01

    UNCLASSIFIED 9 Key Facts 12 industry partners drawn from the major defence providers ~80 associate members made up of small and medium sized...in the emergence of a number of effective monopolies. The UK Defence marketplace has become too small and the major equipment ‘replacement’ cycles too...ProcessThreat & Need Figure 3. Environment for Capability Trading The environment is aligned with the MOD’s strategy for Enterprise Architecture *10

  16. Capability 9.4 Servicing

    NASA Technical Reports Server (NTRS)

    Moe, Rud

    2005-01-01

    This paper presents viewgraphs on capability structure 9.4 servicing. The topics include: 1) Servicing Description; 2) Benefits of Servicing; 3) Drivers & Assumptions for Servicing; 4) Capability Breakdown Structure 9.4 Servicing; 5) Roadmap for Servicing; 6) 9.4 Servicing Critical Gaps; 7) Capability 9.4 Servicing; 8) Capability 9.4.1 Inspection; 9) State-of-the-Art /Maturity Level /Capabilities for 9.4.1 Inspection; 10) Capability 9.4.2 Diagnostics; 11) State-of-the-Art/Maturity Level /Capabilities for 9.4.2 Diagnostics; 12) Capability 9.4.3 Perform Planned Maintenance; 13) State-of-the-Art /Maturity Level /Capabilities for 9.4.3 Perform Planned Maintenance; 14) Capability 9.4.4 Perform Unplanned Repair; 15) State-of-the-Art /Maturity Level /Capabilities for 9.4.4 Perform Unplanned Repair; 16) Capability 9.4.5 Install Upgrade; 17) Capability 9.4.5 Install Upgrade; 18) State-of-the-Art /Maturity Level /Capabilities for 9.4.5 Install Upgrade; 19) Capability 9.4.6 Planning, Logistics, Training; and 20) State-of-the-Art /Maturity Level /Capabilities for 9.4.6 Planning, Logistics, & Training;

  17. Unmanned and Unattended Response Capability for Homeland Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less

  18. Upgrade of Irradiation Test Capability of the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Sekine, Takashi; Aoyama, Takafumi; Suzuki, Soju; Yamashita, Yoshioki

    2003-06-01

    The JOYO MK-II core was operated from 1983 to 2000 as fast neutron irradiation bed. In order to meet various requirements for irradiation tests for development of FBRs, the JOYO upgrading project named MK-III program was initiated. The irradiation capability in the MK-III core will be about four times larger than that of the MK-II core. Advanced irradiation test subassemblies such as capsule type subassembly and on-line instrumentation rig are planned. As an innovative reactor safety system, the irradiation test of Self-Actuated Shutdown System (SASS) will be conducted. In order to improve the accuracy of neutron fluence, the core management code system was upgraded, and the Monte Carlo code and Helium Accumulation Fluence Monitor (HAFM) were applied. The MK-III core is planned to achieve initial criticality in July 2003.

  19. Relation between experimental and non-experimental study designs. HB vaccines: a case study.

    PubMed

    Jefferson, T; Demicheli, V

    1999-01-01

    To examine the relation between experimental and non-experimental study design in vaccinology. Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.

  20. Interaction of ICRF Fields with the Plasma Boundary in AUG and JET and Guidelines for Antenna Optimization

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Bilato, R.; Braun, F.; Colas, L.; Dux, R.; Van Eester, D.; Giannone, L.; Goniche, M.; Herrmann, A.; Jacquet, P.; Kallenbach, A.; Krivska, A.; Lerche, E.; Mayoral, M.-L.; Milanesio, D.; Monakhov, I.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.

    2009-11-01

    W sputtering during ICRF on ASDEX Upgrade (AUG) and temperature rise on JET A2 antenna septa are considered in connection with plasma conditions at the antenna plasma facing components and E‖ near-fields. Large antenna-plasma clearance, high gas puff and low light impurity content are favorable to reduce W sputtering in AUG. The spatial distribution of spectroscopically measured effective W sputtering yields clearly points to the existence of strong E‖ fields at the antenna box ("feeder fields") which dominate over the fields in front of the antenna straps. The picture of E‖ fields, obtained by HFSS code, corroborates the dominant role of E‖ at the antenna box on the formation of sheath-driving RF voltages for AUG. Large antenna-plasma clearance and low gas puff are favorable to reduce septum temperature of JET A2 antennas. Assuming a linear relation between the septum temperature and the sheath driving RF voltage calculated by HFSS, the changes of the temperature with dipole phasing (00ππ, 0ππ0 or 0π0π) are well described by the related changes of the RF voltages. Similarly to the AUG antenna, the strongest E‖ are found at the limiters of the JET A2 antenna for all used dipole phasings and at the septum for the phasings different from 0π0π. A simple general rule can be used to minimize E‖ at the antenna: image currents can be allowed only at the surfaces which do not intersect magnetic field lines at large angles of incidence. Possible antenna modifications generally rely either on a reduction of the image currents, on their short-circuiting by introducing additional conducting surfaces or on imposing the E‖ = 0 boundary condition. On the example of AUG antenna, possible options to minimize the sheath driving voltages are presented.

  1. Energy-absorption capability of composite tubes and beams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Jones, Robert M.

    1989-01-01

    In this study the objective was to develop a method of predicting the energy-absorption capability of composite subfloor beam structures. Before it is possible to develop such an analysis capability, an in-depth understanding of the crushing process of composite materials must be achieved. Many variables affect the crushing process of composite structures, such as the constituent materials' mechanical properties, specimen geometry, and crushing speed. A comprehensive experimental evaluation of tube specimens was conducted to develop insight into how composite structural elements crush and what are the controlling mechanisms. In this study the four characteristic crushing modes, transverse shearing, brittle fracturing, lamina bending, and local buckling were identified and the mechanisms that control the crushing process defined. An in-depth understanding was developed of how material properties affect energy-absorption capability. For example, an increase in fiber and matrix stiffness and failure strain can, depending upon the configuration of the tube, increase energy-absorption capability. An analysis to predict the energy-absorption capability of composite tube specimens was developed and verified. Good agreement between experiment and prediction was obtained.

  2. Nuclear Data Needs and Capabilities for Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applicationsmore » (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).« less

  3. Relation between experimental and non-experimental study designs. HB vaccines: a case study

    PubMed Central

    Jefferson, T.; Demicheli, V.

    1999-01-01

    STUDY OBJECTIVE: To examine the relation between experimental and non- experimental study design in vaccinology. DESIGN: Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. SETTING: Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. RESULTS: Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.   PMID:10326054

  4. Lunar Capabilities Roadmap

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Lawrence, D. J.; Neal, C. R.; Clark, P. E.; Green, R. O.; Horanyi, M.; Johnson, M. D.; Kelso, R. M.; Sultana, M.; Thompson, D. R.

    2016-11-01

    A Lunar Capabilities Roadmap (LCR) is required to highlight capabilities critical for science and exploration of the Moon as well as beyond. The LCR will focus mainly on capabilities with examples of specific technologies to satisfy those needs.

  5. Assessment of Current Jet Noise Prediction Capabilities

    NASA Technical Reports Server (NTRS)

    Hunter, Craid A.; Bridges, James E.; Khavaran, Abbas

    2008-01-01

    An assessment was made of the capability of jet noise prediction codes over a broad range of jet flows, with the objective of quantifying current capabilities and identifying areas requiring future research investment. Three separate codes in NASA s possession, representative of two classes of jet noise prediction codes, were evaluated, one empirical and two statistical. The empirical code is the Stone Jet Noise Module (ST2JET) contained within the ANOPP aircraft noise prediction code. It is well documented, and represents the state of the art in semi-empirical acoustic prediction codes where virtual sources are attributed to various aspects of noise generation in each jet. These sources, in combination, predict the spectral directivity of a jet plume. A total of 258 jet noise cases were examined on the ST2JET code, each run requiring only fractions of a second to complete. Two statistical jet noise prediction codes were also evaluated, JeNo v1, and Jet3D. Fewer cases were run for the statistical prediction methods because they require substantially more resources, typically a Reynolds-Averaged Navier-Stokes solution of the jet, volume integration of the source statistical models over the entire plume, and a numerical solution of the governing propagation equation within the jet. In the evaluation process, substantial justification of experimental datasets used in the evaluations was made. In the end, none of the current codes can predict jet noise within experimental uncertainty. The empirical code came within 2dB on a 1/3 octave spectral basis for a wide range of flows. The statistical code Jet3D was within experimental uncertainty at broadside angles for hot supersonic jets, but errors in peak frequency and amplitude put it out of experimental uncertainty at cooler, lower speed conditions. Jet3D did not predict changes in directivity in the downstream angles. The statistical code JeNo,v1 was within experimental uncertainty predicting noise from cold subsonic

  6. Production of Internal Transport Barriers via self-generated flows in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Fiore, Catherine L.

    2011-10-01

    New results suggest that changes observed in the intrinsic toroidal rotation influence ITB formation in Alcator C-Mod that arise when the resonance for ICRF minority heating is positioned off-axis at or outside of the plasma half-radius. These ITBs form in a reactor relevant regime, without particle or momentum injection, with Ti ~Te, and with monotonic q profiles (qmin < 1). C-Mod H-mode plasmas exhibit strong intrinsic co-current rotation that increases with increasing stored energy without external drive. With the resonance position off-axis, the rotation decreases in the center of the plasma resulting in a radial rotation profile with a central well which deepens and moves farther off-axis when the ICRF resonance is at the plasma half-radius. This profile results in strong ExB shear (>1.5x105 Rad/sec) in the region where the ITB foot is observed. The self generated ExB shearing increases rapidly after the H-mode transition in off-axis ICRF heated discharges, before other profile changes are observed. Gyrokinetic analyses indicate that this spontaneous shearing rate is comparable to the linear ITG growth rate at the ITB location and may be responsible for stabilizing the underlying turbulence. Detailed measurement of the ion temperature demonstrates that the radial profile also flattens as the ICRF resonance position moves off axis. This decreases R/LTi in the barrier region, lessening the drive for the ITG turbulence and the resulting particle transport. The reduction in particle transport resulting from increase in core stability allows the neoclassical pinch to peak the density and pressure on axis. This suggests that spontaneous rotation is a potential tool for plasma profile control in reactor plasmas. The experimental results and corresponding gyrokinetic study will be presented. US-DoE DE-FC02-99ER54512 and DE-FG03-96ER54373.

  7. Demonstrating the Physics Basis for the ITER 15 MA Inductive Discharge on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Wolfe, S. M.; Hutchinson, I. H.; Hughes, J. W.; Lin, Y.; Ma, Y.; Mikkelsen, D. R.; Poli, F.; Reinke, M. L.; Wukitch, S. J.

    2012-10-01

    Rampup discharges in C-Mod, matching ITE's current diffusion times show ICRF heating can save V-s but results in only weak effects on the current profile, despite strong modifications of the central electron temperature. Simulation of these discharges with TSC, and TORIC for ICRF, using multiple transport models, do not reproduce the temperature profile evolution, or the experimental internal self-inductance li, by sufficiently large amounts to be unacceptable for projections to ITER operation. For the flattop phase experiments EDA H-modes approach the ITER parameter targets of q95=3, H98=1, n/nGr=0.85, betaN=1.7, and k=1.8, and sustain them similar to a normalized ITER flattop time. The discharges show a degradation of energy confinement at higher densities, but increasing H98 with increasing net power to the plasma. For these discharges intrinsic impurities (B, Mo) provided radiated power fractions of 25-37%. Experiments show the plasma can remain in H-mode in rampdown with ICRF injection, the density will decrease with Ip while in the H-mode, and the back transition occurs when the net power reaches about half the L-H transition power. C-Mod indicates that faster rampdowns are preferable. Work supported by US Dept of Energy under DE-AC02-CH0911466 and DE-FC02-99ER54512.

  8. Celestial Reference Frames at Multiple Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.

    2012-01-01

    In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).

  9. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are

  10. Capabilities and Incapabilities of the Capabilities Approach to Health Justice.

    PubMed

    Selgelid, Michael J

    2016-01-01

    This first part of this article critiques Sridhar Venkatapuram's conception of health as a capability. It argues that Venkatapuram relies on the problematic concept of dignity, implies that those who are unhealthy lack lives worthy of dignity (which seems politically incorrect), sets a low bar for health, appeals to metaphysically problematic thresholds, fails to draw clear connections between appealed-to capabilities and health, and downplays the importance/relevance of health functioning. It concludes by questioning whether justice entitlements should pertain to the capability for health versus health achievements, challenging Venkatapuram's claims about the strength of health entitlements, and demonstrating that the capabilities approach is unnecessary to address social determinants of health. © 2016 John Wiley & Sons Ltd.

  11. Possible systematics in the VLBI catalogs as seen from Gaia

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.

    2018-01-01

    Aims: In order to investigate the systematic errors in the very long baseline interferometry (VLBI) positions of extragalactic sources (quasars) and the global differences between Gaia and VLBI catalogs, we use the first data release of Gaia (Gaia DR1) quasar positions as the reference and study the positional offsets of the second realization of the International Celestial Reference Frame (ICRF2) and the Goddard VLBI solution 2016a (gsf2016a) catalogs. Methods: We select a sample of 1032 common sources among three catalogs and adopt two methods to represent the systematics: considering the differential orientation (offset) and declination bias; analyzing with the vector spherical harmonics (VSH) functions. Results: Between two VLBI catalogs and Gaia DR1, we find that: i) the estimated orientation is consistent with the alignment accuracy of Gaia DR1 to ICRF, of 0.1 mas, but the southern and northern hemispheres show opposite orientations; ii) the declination bias in the southern hemisphere between Gaia DR1 and ICRF2 is estimated to be +152 μas, much larger than that between Gaia DR1 and gsf2016a which is +34 μas. Between two VLBI catalogs, we find that: i) the rotation component shows that ICRF2 and gsf2016a are generally consistent within 30 μas; ii) the glide component and quadrupole component report two declination-dependent offsets: dipolar deformation of +50 μas along the Z-axis, and quadrupolar deformation of -50 μas that would induce a pattern of sin2δ. Conclusions: The significant declination bias between Gaia DR1 and ICRF2 catalogs reported in previous studies is possibly attributed to the systematic errors of ICRF2 in the southern hemisphere. The global differences between ICRF2 and gsf2016a catalogs imply that possible, mainly declination-dependent systematics exit in the VLBI positions and need further investigations in the future Gaia data release and the next generation of ICRF.

  12. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  13. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  14. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoukov, R.; Bobkov, V.; Faugel, H.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performedmore » on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under

  15. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  16. GMI Capabilities

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Rodriguez, Jose; Steenrod, Steve; Liu, Junhua; Strahan, Susan; Nielsen, Eric

    2015-01-01

    We describe the capabilities of the Global Modeling Initiative (GMI) chemical transport model (CTM) with a special focus on capabilities related to the Atmospheric Tomography Mission (ATom). Several science results based on GMI hindcast simulations and preliminary results from the ATom simulations are highlighted. We also discuss the relationship between GMI and GEOS-5.

  17. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less

  18. An Improved NDE (Non-Destructive Evaluation) Capability for Aerospace Components.

    DTIC Science & Technology

    1984-12-21

    proposed design will use the scintillator/fiber-optic Reticon detector which was investigated in the eperimental studies discussed above. The x rays...practical operation. Experimental studies of a microfocal x-ray source and the SFRD pinpointed current proklems and capabilities. A conceptual design ...authors would like to acknowledge the following important contributions to this effort: Chuck Isaacson for his help in the design and implementation of

  19. CAPABILITIES AND SKILLS*

    PubMed Central

    Heckman, James J.; Corbin, Chase O.

    2016-01-01

    This paper discusses the relevance of recent research on the economics of human development to the work of the Human Development and Capability Association. The recent economics of human development brings insights about the dynamics of skill accumulation to an otherwise static literature on capabilities. Skills embodied in agents empower people. Enhanced skills enhance opportunities and hence promote capabilities. We address measurement problems common to both the economics of human development and the capability approach. The economics of human development analyzes the dynamics of preference formation, but is silent about which preferences should be used to evaluate alternative policies. This is both a strength and a limitation of the approach. PMID:28261378

  20. Strength capability while kneeling.

    PubMed

    Haslegrave, C M; Tracy, M F; Corlett, E N

    1997-12-01

    Work sometimes has to be carried out kneeling, particularly where jobs are performed in confined spaces as is common for miners, aircraft baggage handlers and maintenance workers. In order to assess the risks in performing forceful tasks under such conditions, data is needed on strength capabilities of kneeling subjects. A study was undertaken to measure isometric strength in single-handed exertions for male subjects and to investigate the effects on this of task layout factors (direction of force exertion, reach distance, height of the workpiece and orientation relative to the subject's sagittal plane). The data has been tabulated to show the degree to which strength may be reduced in different situations and analysis of the task factors showed their influence to be complex with direction of exertion and reach distance having the greatest effect. The results also suggest that exertions are weaker when subjects are kneeling on two knees than when kneeling on one knee, although this needs to be confirmed by direct experimental comparison.

  1. Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes

    NASA Astrophysics Data System (ADS)

    Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.

    2018-03-01

    A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.

  2. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

    NASA Astrophysics Data System (ADS)

    Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui

    2012-12-01

    This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.

  3. Ohmic ITBs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, William L.; Bespamyatnov, Igor O.; Fiore, C. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.

    2007-11-01

    Internal transport barrier (ITB) plasmas can arise spontaneously in Ohmic Alcator C-Mod plasmas. The operational prescription for the ITB include formation of an EDA H-mode in a toroidal magnetic field that is ramping down and a subsequent increase in the toroidal magnetic field. Like ITBs generated with off-axis ICRF heating, these have peaked pressure profiles which can be suppressed by on-axis ICRF heating. Recent work on onset conditions for the ICRF generated ITB (K. Zhurovich, et al., To be published in Nuclear Fusion) demonstrates that the broadening of the ion temperature profile due to off-axis ICRF reduces the ion temperature gradient and suppreses the ITG instability driven particle flux as the primary mechanism for ITB formation. The object of this study is to examine the characteristics of Ohmic ITBs to find whether this model for onset is supported.

  4. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal

    2017-04-01

    The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

  5. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  6. Towards a capabilities database to inform inclusive design: experimental investigation of effective survey-based predictors of human-product interaction.

    PubMed

    Tenneti, Raji; Johnson, Daniel; Goldenberg, Liz; Parker, Richard A; Huppert, Felicia A

    2012-07-01

    A key issue in the field of inclusive design is the ability to provide designers with an understanding of people's range of capabilities. Since it is not feasible to assess product interactions with a large sample, this paper assesses a range of proxy measures of design-relevant capabilities. It describes a study that was conducted to identify which measures provide the best prediction of people's abilities to use a range of products. A detailed investigation with 100 respondents aged 50-80 years was undertaken to examine how they manage typical household products. Predictor variables included self-report and performance measures across a variety of capabilities (vision, hearing, dexterity and cognitive function), component activities used in product interactions (e.g. using a remote control, touch screen) and psychological characteristics (e.g. self-efficacy, confidence with using electronic devices). Results showed, as expected, a higher prevalence of visual, hearing, dexterity, cognitive and product interaction difficulties in the 65-80 age group. Regression analyses showed that, in addition to age, performance measures of vision (acuity, contrast sensitivity) and hearing (hearing threshold) and self-report and performance measures of component activities are strong predictors of successful product interactions. These findings will guide the choice of measures to be used in a subsequent national survey of design-relevant capabilities, which will lead to the creation of a capability database. This will be converted into a tool for designers to understand the implications of their design decisions, so that they can design products in a more inclusive way. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Validation of Heavy Ion Transport Capabilities in PHITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronningen, Reginald M.

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown formore » a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.« less

  8. Photoresist thin-film effects on alignment process capability

    NASA Astrophysics Data System (ADS)

    Flores, Gary E.; Flack, Warren W.

    1993-08-01

    Two photoresists were selected for alignment characterization based on their dissimilar coating properties and observed differences on alignment capability. The materials are Dynachem OFPR-800 and Shipley System 8. Both photoresists were examined on two challenging alignment levels in a submicron CMOS process, a nitride level and a planarized second level metal. An Ultratech Stepper model 1500 which features a darkfield alignment system with a broadband green light for alignment signal detection was used for this project. Initially, statistically designed linear screening experiments were performed to examine six process factors for each photoresist: viscosity, spin acceleration, spin speed, spin time, softbake time, and softbake temperature. Using the results derived from the screening experiments, a more thorough examination of the statistically significant process factors was performed. A full quadratic experimental design was conducted to examine viscosity, spin speed, and spin time coating properties on alignment. This included a characterization of both intra and inter wafer alignment control and alignment process capability. Insight to the different alignment behavior is analyzed in terms of photoresist material properties and the physical nature of the alignment detection system.

  9. Plasma-Surface Interactions and RF Antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, D. N.; Beckwith, K.; Davidson, B. D.; Kruger, S. E.; Pankin, A. Y.; Roark, C. M.

    2015-11-01

    Implementation of recently developed finite-difference time-domain (FDTD) modeling techniques on high-performance computing platforms allows RF power flow, and antenna near- and far-field behavior, to be studied in realistic experimental ion-cyclotron resonance heating scenarios at previously inaccessible levels of resolution. We present results and 3D animations of high-performance (10k-100k core) FDTD simulations of Alcator C-Mod's field-aligned ICRF antenna on the Titan supercomputer, considering (a) the physics of slow wave excitation in the immediate vicinity of the antenna hardware and in the scrape-off layer for various edge densities, and (b) sputtering and impurity production, as driven by self-consistent sheath potentials at antenna surfaces. Related research efforts in low-temperature plasma modeling, including the use of proper orthogonal decomposition methods for PIC/fluid modeling and the development of plasma chemistry tools (e.g. a robust and flexible reaction database, principal path reduction analysis capabilities, and improved visualization options), will also be summarized. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501 and ALCC/OLCF.

  10. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  11. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  12. Assessment of Static Delamination Propagation Capabilities in Commercial Finite Element Codes Using Benchmark Analysis

    NASA Technical Reports Server (NTRS)

    Orifici, Adrian C.; Krueger, Ronald

    2010-01-01

    With capabilities for simulating delamination growth in composite materials becoming available, the need for benchmarking and assessing these capabilities is critical. In this study, benchmark analyses were performed to assess the delamination propagation simulation capabilities of the VCCT implementations in Marc TM and MD NastranTM. Benchmark delamination growth results for Double Cantilever Beam, Single Leg Bending and End Notched Flexure specimens were generated using a numerical approach. This numerical approach was developed previously, and involves comparing results from a series of analyses at different delamination lengths to a single analysis with automatic crack propagation. Specimens were analyzed with three-dimensional and two-dimensional models, and compared with previous analyses using Abaqus . The results demonstrated that the VCCT implementation in Marc TM and MD Nastran(TradeMark) was capable of accurately replicating the benchmark delamination growth results and that the use of the numerical benchmarks offers advantages over benchmarking using experimental and analytical results.

  13. Threshold Capabilities: Threshold Concepts and Knowledge Capability Linked through Variation Theory

    ERIC Educational Resources Information Center

    Baillie, Caroline; Bowden, John A.; Meyer, Jan H. F.

    2013-01-01

    The Threshold Capability Integrated Theoretical Framework (TCITF) is presented as a framework for the design of university curricula, aimed at developing graduates' capability to deal with previously unseen situations in their professional, social, and personal lives. The TCITF is a new theoretical framework derived from, and heavily dependent…

  14. Investigating the Capabilities of Ground Penetrating Radar for Imaging Shallow Experimental Fractures

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Moysey, S. M.; Murdoch, L. C.; Denison, J. L. S.; Ahmadian, M.

    2017-12-01

    We have used ground penetrating radar (GPR) to image fractures formed in shallow sediments as a result of high-pressure injection. Understanding fracture formation and behavior is important for a variety of reasons, ranging from validating fracture formation theories to characterizing fracture networks induced for enhancing recovery schemes in low permeability rocks. GPR is a high resolution geophysical method that is sensitive to electromagnetic property changes in the subsurface. The resolution of GPR is, however, typically on the order of ¼ of the wavelength, which for the 900MHz GPR data is on the order of 2-5cm. Thus it was not clear prior to the experiment whether it would be possible for GPR to image the fractures formed during the injection. We found that the GPR was indeed able to image the fractures very well as they evolved through time. Over the course of the experiment, we were able to collect pseudo-3D data that allowed us to monitor the growth of the fracture over time. The experiment was also repeated for different injection materials to examine how the fill in the fractures impacts the GPR signal. From the GPR data we are able to reconstruct the approximate three-dimensional shape of the facture over time. At the end of the experiment, the experimental cells were trenched so that the actual fracture distribution could be mapped. Overall, the GPR interpretation showed reasonable agreement with what we could observed in the trenches. The experimental results suggest that GPR characterization of fractures is feasible.

  15. ICRF Development for the Variable Specific Impulse Magnetoplasma Rocket

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Baity, F. W.; Barber, G. C.; Carter, M. D.; Hoffman, D. J.; Jaeger, E. F.; Taylor, D. J.; Chang-Diaz, F. R.; Squire, J. P.; McCaskill, G.

    1997-11-01

    The feasibility of using magnetically vectored and rf-heated plasmas for space propulsion (F. R. Chang-Diaz, et al., Bull. Am. Phys. Soc., 41, 1541 (1996)) is being investigated experimentally on an asymmetric magnetic mirror device at the Advanced Space Propulsion Laboratory (ASPL), Johnson Space Center, NASA. Analysis of the antenna interaction with and the wave propagation through the dense plasma propulsion system is being studied at ORNL(Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.), using antenna design codes developed for ICH systems and mirror codes developed for the EBT experiment at ORNL. The present modeling effort is directed toward the ASPL experimental device. Antenna optimization and performance, as well as the design considerations for space-qualified rf components and systems (minimizing weight while maximizing reliability) will be presented.

  16. Sensor Alerting Capability

    NASA Astrophysics Data System (ADS)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  17. Electro-Thermal-Mechanical Simulation Capability Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D

    such as magnetic flux compression generators and railguns. This project compliments ongoing DNT projects that have an experimental emphasis. Our research efforts have been encapsulated in the Diablo and ALE3D simulation codes. This new ETM capability already has both internal and external users, and has spawned additional research in plasma railgun technology. By developing this capability Engineering has become a world-leader in ETM design, analysis, and simulation. This research has positioned LLNL to be able to compete for new business opportunities with the DoD in the area of railgun design. We currently have a three-year $1.5M project with the Office of Naval Research to apply our ETM simulation capability to railgun bore life issues and we expect to be a key player in the railgun community.« less

  18. Overview of the new capabilities of TORIC-v6 and comparison with TORIC-v5

    NASA Astrophysics Data System (ADS)

    Bilato, R.; Brambilla, M.; Bertelli, N.

    2016-10-01

    Since its release, version 5 (v5) of the full-wave TORIC code, characterized by an optimized parallelized solver for its routinely use in TRANSP package, has been ameliorated in many technical issues, e.g. the plasma-vacuum transition and the full-spectrum antenna modeling. For the WPCD-benchmark cases a good agreement between the new version, v6, and v5 is found. The major improvement, however, has been done in interfacing TORIC-v6 with the Fokker-Planck SSFPQL solver to account for the back-reaction of ICRF and NBI heating on the wave propagation and absorption. Special algorithms have been developed for SSFPQL for the numerical precision at high pitch-angle resolution and to evaluate the generalized dispersion function directly from the numerical solution. Care has been spent in automatizing the non-linear loop between TORIC-v6 and SSFPQL. In v6 the description of wave absorption at high-harmonics has been revised and applied to DEMO. For high-harmonic regimes there is an ongoing activity on the comparison with AORSA.

  19. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  20. SSA Building Blocks - Transforming Your Data and Applications into Operational Capability

    NASA Astrophysics Data System (ADS)

    Buell, D.; Hawthorne, Shayn, L.; Higgins, J.

    The Electronic System Center's 850 Electronic Systems Group (ELSG) is currently using a Service Oriented Architecture (SOA) to rapidly create net-centric experimental prototypes. This SOA has been utilized effectively across diverse mission areas, such as global air operations and rapid sensor tasking for improved space event management. The 850 ELSG has deployed a working, accredited, SOA on the SIPRNET and provided real-time space information to five separate distributed operations centers. The 850 ELSG has learned first-hand the power of SOAs for integrating DoD and non-DoD SSA data in a rapid and agile manner, allowing capabilities to be fielded and sensors to be integrated in weeks instead of months. This opens a world of opportunity to integrate University data and experimental or proof-of-concept data with sensitive sensors and sources to support developing an array of SSA products for approved users in and outside of the space community. This paper will identify how new capabilities can be proactively developed to rapidly answer critical needs when SOA methodologies are employed and identifies the operational utility and the far-reaching benefits realized by implementing a service-oriented architecture. We offer a new paradigm for how data and application producer's contributions are presented for the rest of the community to leverage.

  1. Validation of Shielding Analysis Capability of SuperMC with SINBAD

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Yang, Qi; Wu, Bin; Han, Yuncheng; Song, Jing

    2017-09-01

    Abstract: The shielding analysis capability of SuperMC was validated with the Shielding Integral Benchmark Archive Database (SINBAD). The SINBAD was compiled by RSICC and NEA, it includes numerous benchmark experiments performed with the D-T fusion neutron source facilities of OKTAVIAN, FNS, IPPE, etc. The results from SuperMC simulation were compared with experimental data and MCNP results. Very good agreement with deviation lower than 1% was achieved and it suggests that SuperMC is reliable in shielding calculation.

  2. Health Capability: Conceptualization and Operationalization

    PubMed Central

    2010-01-01

    Current theoretical approaches to bioethics and public health ethics propose varied justifications as the basis for health care and public health, yet none captures a fundamental reality: people seek good health and the ability to pursue it. Existing models do not effectively address these twin goals. The approach I espouse captures both of these orientations through a concept here called health capability. Conceptually, health capability illuminates the conditions that affect health and one's ability to make health choices. By respecting the health consequences individuals face and their health agency, health capability offers promise for finding a balance between paternalism and autonomy. I offer a conceptual model of health capability and present a health capability profile to identify and address health capability gaps. PMID:19965570

  3. Resource-Based Capability on Development Knowledge Management Capabilities of Coastal Community

    NASA Astrophysics Data System (ADS)

    Teniwut, Roberto M. K.; Hasyim, Cawalinya L.; Teniwut, Wellem A.

    2017-10-01

    Building sustainable knowledge management capabilities in the coastal area might face a whole new challenge since there are many intangible factors involved from openness on new knowledge, access and ability to use the latest technology to the various local wisdom that still in place. The aimed of this study was to identify and analyze the resource-based condition of coastal community in this area to have an empirical condition of tangible and intangible infrastructure on developing knowledge management capability coastal community in Southeast Maluku, Indonesia. We used qualitative and quantitative analysis by depth interview and questionnaire for collecting the data with multiple linear regression as our analysis method. The result provided the information on current state of resource-based capability of a coastal community in this Southeast Maluku to build a sustainability model of knowledge management capabilities especially on utilization marine and fisheries resources. The implication of this study can provide an empirical information for government, NGO and research institution to dictate on how they conducted their policy and program on developing coastal community region.

  4. Computational Modeling and Experimental Validation of Shock Induced Damage in Woven E-Glass/Vinylester Laminates

    NASA Astrophysics Data System (ADS)

    Hufner, D. R.; Augustine, M. R.

    2018-05-01

    A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.

  5. Remote Sensing Operational Capabilities

    DTIC Science & Technology

    1999-10-01

    systems. In each of the cases orbital and sensor characteristics were modeled , as was the possible impact of weather over target areas. In each of the...collect the desired information quickly, it is imperative that the satellite be capable of accessing the target area frequently. • Flexibility and...be capable of accessing the target area frequently. 66 • Flexibility and speed in tasking: the system should be capable of collecting data with a

  6. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    NASA Astrophysics Data System (ADS)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  7. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    NASA Astrophysics Data System (ADS)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  8. [Cosmid libraries containing DNA from human chromosome 13].

    PubMed

    Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K

    1996-03-01

    We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.

  9. Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Baumann, David; Wu, Jimmy; Barsten, Kristina

    2010-01-01

    Exploration Medical Capability (ExMC) is an element of NASA's Human Research Program (HRP). ExMC's goal is to address the risk of the Inability to Adequately Recognize or Treat an Ill or Injured Crewmember. This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions. This poster is being presented to inform the audience of the gaps and tasks being investigated by ExMC and to encourage discussions of shared interests and possible future collaborations.

  10. Capitalizing on capabilities.

    PubMed

    Ulrich, Dave; Smallwood, Norm

    2004-06-01

    By making the most of organizational capabilities--employees' collective skills and fields of expertise--you can dramatically improve your company's market value. Although there is no magic list of proficiencies that every organization needs in order to succeed, the authors identify 11 intangible assets that well-managed companies tend to have: talent, speed, shared mind-set and coherent brand identity, accountability, collaboration, learning, leadership, customer connectivity, strategic unity, innovation, and efficiency. Such companies typically excel in only three of these capabilities while maintaining industry parity in the other areas. Organizations that fall below the norm in any of the 11 are likely candidates for dysfunction and competitive disadvantage. So you can determine how your company fares in these categories (or others, if the generic list doesn't suit your needs), the authors explain how to conduct a "capabilities audit," describing in particular the experiences and findings of two companies that recently performed such audits. In addition to highlighting which intangible assets are most important given the organization's history and strategy, this exercise will gauge how well your company delivers on its capabilities and will guide you in developing an action plan for improvement. A capabilities audit can work for an entire organization, a business unit, or a region--indeed, for any part of a company that has a strategy to generate financial or customer-related results. It enables executives to assess overall company strengths and weaknesses, senior leaders to define strategy, midlevel managers to execute strategy, and frontline leaders to achieve tactical results. In short, it helps turn intangible assets into concrete strengths.

  11. Experimental Test Concept for a Cargo Data Interchange System (CARDIS) : Volume 1. Text.

    DOT National Transportation Integrated Search

    1976-05-01

    This report includes the recommended CARDIS experimental test system functional capabilities. It identifies the CARDIS functions that are inherent to an information exchange capability and optional systems which are required by the transportation rel...

  12. Experimental Test Concept for a Cargo Data Interchange System (CARDIS) : Volume 2. Appendixes.

    DOT National Transportation Integrated Search

    1976-05-01

    This report includes the recommended CARDIS experimental test system functional capabilities. It identifies the CARDIS functions that are inherent to an information exchange capability and optional systems which are required by the transportation rel...

  13. Experimentation in machine discovery

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Simon, Herbert A.

    1990-01-01

    KEKADA, a system that is capable of carrying out a complex series of experiments on problems from the history of science, is described. The system incorporates a set of experimentation strategies that were extracted from the traces of the scientists' behavior. It focuses on surprises to constrain its search, and uses its strategies to generate hypotheses and to carry out experiments. Some strategies are domain independent, whereas others incorporate knowledge of a specific domain. The domain independent strategies include magnification, determining scope, divide and conquer, factor analysis, and relating different anomalous phenomena. KEKADA represents an experiment as a set of independent and dependent entities, with apparatus variables and a goal. It represents a theory either as a sequence of processes or as abstract hypotheses. KEKADA's response is described to a particular problem in biochemistry. On this and other problems, the system is capable of carrying out a complex series of experiments to refine domain theories. Analysis of the system and its behavior on a number of different problems has established its generality, but it has also revealed the reasons why the system would not be a good experimental scientist.

  14. The Role of Plasma Rotation in C-Mod Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Rice, J. E.; Podpaly, Y.; Reinke, M. L.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2010-11-01

    ITBs in Alcator C-Mod featuring highly peaked density and pressure profiles are induced by injecting ICRF power with the second harmonic of the resonant frequency for minority hydrogen off-axis at the plasma half radius. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin < 1. In C-Mod a strong co-current toroidal rotation, peaked on axis, develops after the transition to H-mode. If an ITB forms, this rotation decreases in the center of the plasma and forms a well, and often reverses direction in the core. This indicates that there is a strong EXB shearing rate in the region where the foot in the ITB density profile is observed. Preliminary gyrokinetic analyses indicate that this shearing rate is comparable to the ion temperature gradient mode (ITG) growth rate at this location and may be responsible for stabilizing the turbulence. Gyrokinetic analyses of recent experimental data obtained from a complete scan of the ICRF resonance position across the entire C-Mod plasma will be presented.

  15. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  16. Toward a US National Air Quality Forecast Capability: Current and Planned Capabilities

    EPA Science Inventory

    As mandated by Congress, NOAA is establishing a US national air quality forecast capability. This capability is being built with EPA, to provide air quality forecast information with enough accuracy and lead-time so that people can take actions to limit harmful effects of poor a...

  17. High fidelity studies of exploding foil initiator bridges, Part 1: Experimental method

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Neal, William

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage and in the case of EFIs, flyer velocity. Correspondingly, experimental methods have in general been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, predicting a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately validated. In this first paper of a three part study, the experimental method for determining the current, voltage, flyer velocity and multi-dimensional profile of detonator components is presented. This improved capability, along with high fidelity simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  18. KSC Technical Capabilities Website

    NASA Technical Reports Server (NTRS)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  19. Toward a Capability Engineering Process

    DTIC Science & Technology

    2004-12-01

    TOWARD A CAPABILITY ENGINEERING PROCESS M. Lizotte, F. Bernier, M. Mokhtari , M. Couture, G. Dussault, C. Lalancette, F. Lemieux System of Systems...Lizotte, F. Lemieux, the US DoD 5000 acquisition strategies?; and (8) since a M. Mokhtari , 2004: Toward Capability Engineering capability can be

  20. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  1. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  2. A New Determination of Planetary Precession

    NASA Astrophysics Data System (ADS)

    Harada, Wataru; Fukushima, Toshio

    2004-01-01

    By using a nonlinear method of harmonic analysis, we have analyzed the motion of two angles, Ω and ɛ, specifying the direction of the Newtonian heliocentric orbital angular momentum of the Earth-Moon barycenter in the latest lunar and planetary ephemeris, DE405, from 1629 to 2169. Here Ω is the longitude of the node of the ecliptic of date with respect to the International Celestial Reference Frame (ICRF) equator, measured from the ICRF x-axis, while ɛ is the obliquity of the ecliptic of date referred to the ICRF equator. After dropping 86 Fourier terms and four mixed secular terms that were detected, we determined their secular variation in the form of quadratic polynomials as ΩDE405=-0.02109+10.54227t+0.48609t2 and ɛDE405=84,381.40578-46.81972t+0.04817t2 , where the units are arcseconds and t is the time since J2000.0 measured in Julian centuries. This is the latest determination of the planetary precession in the inertial sense and referred to the ICRF.

  3. Estimating the Celestial Reference Frame via Intra-Technique Combination

    NASA Astrophysics Data System (ADS)

    Iddink, Andreas; Artz, Thomas; Halsig, Sebastian; Nothnagel, Axel

    2016-12-01

    One of the primary goals of Very Long Baseline Interferometry (VLBI) is the determination of the International Celestial Reference Frame (ICRF). Currently the third realization of the internationally adopted CRF, the ICRF3, is under preparation. In this process, various optimizations are planned to realize a CRF that does not benefit only from the increased number of observations since the ICRF2 was published. The new ICRF can also benefit from an intra-technique combination as is done for the Terrestrial Reference Frame (TRF). Here, we aim at estimating an optimized CRF by means of an intra-technique combination. The solutions are based on the input to the official combined product of the International VLBI Service for Geodesy and Astrometry (IVS), also providing the radio source parameters. We discuss the differences in the setup using a different number of contributions and investigate the impact on TRF and CRF as well as on the Earth Orientation Parameters (EOPs). Here, we investigate the differences between the combined CRF and the individual CRFs from the different analysis centers.

  4. The role of turbulent suppression in the triggering ITBs on C-Mod

    NASA Astrophysics Data System (ADS)

    Zhurovich, K.; Fiore, C. L.; Ernst, D. R.; Bonoli, P. T.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Marmar, E. S.; Mikkelsen, D. R.; Phillips, P.; Rice, J. E.

    2007-11-01

    Internal transport barriers can be routinely produced in C-Mod steady EDA H-mode plasmas by applying ICRF at |r/a|>= 0.5. Access to the off-axis ICRF heated ITBs may be understood within the paradigm of marginal stability. Analysis of the Te profiles shows a decrease of R/LTe in the ITB region as the RF resonance is moved off axis. Ti profiles broaden as the ICRF power deposition changes from on-axis to off-axis. TRANSP calculations of the Ti profiles support this trend. Linear GS2 calculations do not reveal any difference in ETG growth rate profiles for ITB vs. non-ITB discharges. However, they do show that the region of stability to ITG modes widens as the ICRF resonance is moved outward. Non-linear simulations show that the outward turbulent particle flux exceeds the Ware pinch by factor of 2 in the outer plasma region. Reducing the temperature gradient significantly decreases the diffusive flux and allows the Ware pinch to peak the density profile. Details of these experiments and simulations will be presented.

  5. Long-Term Stability of Radio Sources in VLBI Analysis

    NASA Technical Reports Server (NTRS)

    Engelhardt, Gerald; Thorandt, Volkmar

    2010-01-01

    Positional stability of radio sources is an important requirement for modeling of only one source position for the complete length of VLBI data of presently more than 20 years. The stability of radio sources can be verified by analyzing time series of radio source coordinates. One approach is a statistical test for normal distribution of residuals to the weighted mean for each radio source component of the time series. Systematic phenomena in the time series can thus be detected. Nevertheless, an inspection of rate estimation and weighted root-mean-square (WRMS) variations about the mean is also necessary. On the basis of the time series computed by the BKG group in the frame of the ICRF2 working group, 226 stable radio sources with an axis stability of 10 as could be identified. They include 100 ICRF2 axes-defining sources which are determined independently of the method applied in the ICRF2 working group. 29 stable radio sources with a source structure index of less than 3.0 can also be used to increase the number of 295 ICRF2 defining sources.

  6. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    NASA Astrophysics Data System (ADS)

    Christiansen, Rasmus E.; Sigmund, Ole

    2016-09-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior. The experimental results confirm the predicted refractive capability as well as the predicted transmission at an interface. The study simultaneously provides an estimate of the attenuation inside the slab stemming from the boundary layer effects—insight which can be utilized in the further design of the metamaterial slabs. The capability of tailoring the refractive behavior opens possibilities for different applications. For instance, a slab exhibiting zero refraction across a wide angular range is capable of funneling acoustic energy through it, while a material exhibiting the negative refractive behavior across a wide angular range provides lensing and collimating capabilities.

  7. Verification of the predictive capabilities of the 4C code cryogenic circuit model

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi

    2014-01-01

    The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.

  8. NASA Capability Roadmaps Executive Summary

    NASA Technical Reports Server (NTRS)

    Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan

    2005-01-01

    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.

  9. The Impact of IT Capability on Employee Capability, Customer Value, Customer Satisfaction, and Business Performance

    ERIC Educational Resources Information Center

    Chae, Ho-Chang

    2009-01-01

    This study empirically examines the impact of IT capability on firms' performance and evaluates whether firms' IT capabilities play a role in improving employee capability, customer value, customer satisfaction, and ultimately business performance. The results were based on comparing the business performance of the IT leader companies with that of…

  10. A tradeoff study of determine the optimum approach to a wash/rinse capability to support future space flight

    NASA Technical Reports Server (NTRS)

    Wilson, D. A.

    1976-01-01

    Specific requirements for a wash/rinse capability to support Spacelab biological experimentation and to identify various concepts for achieving this capability were determined. This included the examination of current state-of-the-art and emerging technology designs that would meet the wash/rinse requirements. Once several concepts were identified, including the disposable utensils, tools and gloves or other possible alternatives, a tradeoff analysis involving system cost, weight, volume utilization, functional performance, maintainability, reliability, power utilization, safety, complexity, etc., was performed so as to determine an optimum approach for achieving a wash/rinse capability to support future space flights. Missions of varying crew size and durations were considered.

  11. Amartya Sen's Capability Approach and Education

    ERIC Educational Resources Information Center

    Walker, Melanie

    2005-01-01

    The human capabilities approach developed by the economist Amartya Sen links development, quality of life and freedom. This article explores the key ideas in the capability approach of: capability, functioning, agency, human diversity and public participation in generating valued capabilities. It then considers how these ideas relate specifically…

  12. SAIP2014, the 59th Annual Conference of the South African Institute of Physics

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Chris; Karataglidis, Steven

    2015-04-01

    The International Celestial Reference Frame (ICRF) was adopted by the International Astronomical Union (IAU) in 1997. The current standard, the ICRF-2, is based on Very Long Baseline Interferometric (VLBI) radio observations of positions of 3414 extragalactic radio reference sources. The angular resolution achieved by the VLBI technique is on a scale of milliarcsecond to sub-milliarcseconds and defines the ICRF with the highest accuracy available at present. An ideal reference source used for celestial reference frame work should be unresolved or point-like on these scales. However, extragalactic radio sources, such as those that definevand maintain the ICRF, can exhibit spatially extended structures on sub-milliarsecond scalesvthat may vary both in time and frequency. This variability can introduce a significant error in the VLBI measurements thereby degrading the accuracy of the estimated source position. Reference source density in the Southern celestial hemisphere is also poor compared to the Northern hemisphere, mainly due to the limited number of radio telescopes in the south. In order to dene the ICRF with the highest accuracy, observational efforts are required to find more compact sources and to monitor their structural evolution. In this paper we show that the astrometric VLBI sessions can be used to obtain source structure information and we present preliminary imaging results for the source J1427-4206 at 2.3 and 8.4 GHz frequencies which shows that the source is compact and suitable as a reference source.

  13. Widening Participation; Widening Capability

    ERIC Educational Resources Information Center

    Walker, Melanie

    2008-01-01

    This paper proposes that widening participation in higher education might distinctively be conceptualised beyond economically driven human capital outcomes, as a matter of widening capability. Specifically, the paper proposes forming the capability of students to become and to be "strong evaluators", able to make reflexive and informed…

  14. Telematics Options and Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Cabell

    This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.

  15. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  16. Graphical Visualization of Human Exploration Capabilities

    NASA Technical Reports Server (NTRS)

    Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex

    2016-01-01

    NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description

  17. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  18. Counterforce Targeting Capabilities and Challenges

    DTIC Science & Technology

    2004-08-01

    COUNTERFORCE TARGETING CAPABILITIES AND CHALLENGES by Barry R. Schneider The Counterproliferation Papers Future Warfare Series No. 22 USAF...TITLE AND SUBTITLE Counterforce Targeting Capabilities and Challenges 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Rev. 8-98) Prescribed by ANSI Std Z39-18 Counterforce Targeting Capabilities and Challenges Barry R. Schneider August 2004 The Counterproliferation

  19. Human push capability.

    PubMed

    Barnett, Ralph L; Liber, Theodore

    2006-02-22

    Use of unassisted human push capability arises from time to time in the areas of crowd and animal control, the security of locked doors, the integrity of railings, the removal of tree stumps and entrenched vehicles, the manoeuvering of furniture, and athletic pursuits such as US football or wrestling. Depending on the scenario, human push capability involves strength, weight, weight distribution, push angle, footwear/floor friction, and the friction between the upper body and the pushed object. Simple models are used to establish the relationships among these factors.

  20. An optimized method to calculate error correction capability of tool influence function in frequency domain

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan

    2017-10-01

    An optimized method to calculate error correction capability of tool influence function (TIF) in certain polishing conditions will be proposed based on smoothing spectral function. The basic mathematical model for this method will be established in theory. A set of polishing experimental data with rigid conformal tool is used to validate the optimized method. The calculated results can quantitatively indicate error correction capability of TIF for different spatial frequency errors in certain polishing conditions. The comparative analysis with previous method shows that the optimized method is simpler in form and can get the same accuracy results with less calculating time in contrast to previous method.

  1. Numerical and experimental capabilities for studying rocket plume-regolith interactions

    NASA Astrophysics Data System (ADS)

    White, C.; Scanlon, T. J.; Merrifield, J. A.; Kontis, K.; Langener, T.; Alves, J.

    2016-11-01

    Soft landings on extra-terrestrial airless bodies will be required for future sample return missions, such as the Phobos Sample Return (PhSR). PhSR is a candidate mission of ESA's Mars Robotic Exploration Preparation (MREP-2) Programme. Its main objective is to acquire and return a sample from the Martian moon Phobos, after a scientific characterisation phase of the moon and of the landing site. If a rocket is used to slow down the spacecraft to a vertical descent velocity that it will be able to free-fall from, care has to be taken to ensure that the rocket exhaust does not contaminate the surface regolith that is to be collected, and that the rocket does not cause unacceptable levels of erosion to the surface, which could jeopardise the mission. In addition to the work being done in the scope of PhSR, the European Space Agency is funding an experimental facility for investigating these nozzle expansion problems; the current progress of this is described. To support this work, an uncoupled hybrid computational fluid dynamics-direct simulation Monte Carlo method is developed and used to simulate the exhaust of a mono-propellant rocket above the surface of an airless body. The pressure, shear stress, and heat flux at the surface are compared to an analytical free-molecul solution to determine the altitude above which the free-molecular solution is suffcient for predicting these properties. The pressures match well as low as 15 m above the surface, but the heat flux and shear stress are not in agreement until an altitude of 40 m. A new adsorption/desorption boundary condition for the direct simulation Monte Carlo code has also been developed for future use in in-depth contamination studies.

  2. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  3. Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Nayani, Sudheer N.; Castner, Ray; Bruce, Walter E., IV; Inskeep, Jacob

    2015-01-01

    This study focused on the capability of NASA Tetrahedral Unstructured Software System's CFD code USM3D capability to predict the interaction between a shock and supersonic plume flow. Previous studies, published in 2004, 2009 and 2013, investigated USM3D's supersonic plume flow results versus historical experimental data. This current study builds on that research by utilizing the best practices from the early papers for properly capturing the plume flow and then adding a wedge acting as a shock generator. This computational study is in conjunction with experimental tests conducted at the Glenn Research Center 1'x1' Supersonic Wind Tunnel. The comparison of the computational and experimental data shows good agreement for location and strength of the shocks although there are vertical shifts between the data sets that may be do to the measurement technique.

  4. High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-07-01

    In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.

  5. Heterogeneity and Cooperation: The Role of Capability and Valuation on Public Goods Provision

    PubMed Central

    Kolle, Felix

    2018-01-01

    We experimentally investigate the effects of two different sources of heterogeneity - capability and valuation - on the provision public goods when punishment is possible or not. We find that compared to homogeneous groups, asymmetric valuations for the public good have negative effects on cooperation and its enforcement through informal sanctions. Asymmetric capabilities in providing the public good, in contrast, have a positive and stabilizing effect on voluntary contributions. The main reason for these results are the different externalities contributions have on the other group members’ payoffs affecting individuals’ willingness to cooperate. We thus provide evidence that it is not the asymmetric nature of groups per se that facilitates or impedes collective action, but that it is rather the nature of asymmetry that determines the degree of cooperation and the level of public good provision. PMID:29367794

  6. Health information technology and dynamic capabilities.

    PubMed

    Leung, Ricky C

    2012-01-01

    Health information technology (HIT) purports to increase quality and efficiency in health care organizations. However, health care organizations are situated in constantly changing environments. They need dynamic capabilities to implement HIT effectively. This article builds on the dynamic capabilities perspective and generates propositions about implementing HIT in dynamic environments. Specifically, I identify the (1) the necessary resources and capabilities for organizations to implement HIT; (2) the organizational capabilities and benefits that can be enhanced by HIT; and (3) the similarities and differences between three distinct forms of HIT. I synthesized the literature on dynamic capabilities and HIT to identify dynamic capabilities that are associated with (1) electronic medical records, (2) telemedicine, and (3) social media. In addition, I discuss the benefits of these HITs for improving the dynamic capabilities of health care organizations. PROPOSITIONS/FINDINGS: This article generates three sets of propositions that can be tested empirically. First, I am concerned with how organizational size and human resources affect successful implementation of HIT. In addition, I argue that three technology-specific factors--hospital type, medical specialty, and socially desirable technical features--may affect the implementation of HIT. To cope with constantly changing environmental pressures, health administrators need to deploy, modify, and/or acquire organizational resources skillfully. Practitioners need to identify dynamic capabilities to support specific forms of HIT and understand how HIT enables health care organizations in turn. The concept of evolutionary fitness in the dynamic capabilities perspective may be developed to measure HIT implementation.

  7. Design and development of ultra-wideband 3 dB hybrid coupler for Ion cyclotron resonance frequency heating in tokamak.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2014-04-01

    Design and development of a high power ultra-wideband, 3 dB tandem hybrid coupler is presented and its application in ICRF heating of the tokamak is discussed. In order to achieve the desired frequency band of 38-112 MHz and 200 kW power handling capability, the 3 dB hybrid coupler is developed using two 3-element 8.34 ± 0.2 dB coupled lines sections in tandem. In multi-element coupled lines, junctions are employed for the joining of coupled elements that produce the undesirable reactance called junction discontinuity effect. The effect becomes prominent in the high power multi-element coupled lines for high frequency (HF) and very high frequency(VHF) applications because of larger structural dimensions. Junction discontinuity effect significantly deteriorates coupling and output performance from the theoretical predictions. For the analysis of junction discontinuity effect and its compensation, a theoretical approach has been developed and generalized for n-element coupled lines section. The theory has been applied in the development of the 3 dB hybrid coupler. The fabricated hybrid coupler has been experimentally characterized using vector network analyzer and obtained results are found in good agreement with developed theory.

  8. Modeling of propulsive jet plumes--extension of modeling capabilities by utilizing wall curvature effects

    NASA Astrophysics Data System (ADS)

    Doerr, S. E.

    1984-06-01

    Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.

  9. Particle simulations on transport control in divertors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Mieko; Ido, Shunji

    1995-04-01

    Particle orbit simulations are carried out to study the reflection of He ions recycled from a tokamak divertor by RF electric fields, which have the frequency close to ion cyclotron resonance frequency (ICRF). The performance of particle reflection and the requirement to the intensity of RF fields are studied. The control of He recycling by ICRF fields is found to be available. 4 refs., 4 figs.

  10. Experimental macroevolution†

    PubMed Central

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  11. Development of a versatile user-friendly IBA experimental chamber

    NASA Astrophysics Data System (ADS)

    Kakuee, Omidreza; Fathollahi, Vahid; Lamehi-Rachti, Mohammad

    2016-03-01

    Reliable performance of the Ion Beam Analysis (IBA) techniques is based on the accurate geometry of the experimental setup, employment of the reliable nuclear data and implementation of dedicated analysis software for each of the IBA techniques. It has already been shown that geometrical imperfections lead to significant uncertainties in quantifications of IBA measurements. To minimize these uncertainties, a user-friendly experimental chamber with a heuristic sample positioning system for IBA analysis was recently developed in the Van de Graaff laboratory in Tehran. This system enhances IBA capabilities and in particular Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA) techniques. The newly developed sample manipulator provides the possibility of both controlling the tilt angle of the sample and analyzing samples with different thicknesses. Moreover, a reasonable number of samples can be loaded in the sample wheel. A comparison of the measured cross section data of the 16O(d,p1)17O reaction with the data reported in the literature confirms the performance and capability of the newly developed experimental chamber.

  12. Quantumness-generating capability of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  13. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  14. Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers

    PubMed Central

    Realini, Marco; Botteon, Alessandra; Colombo, Chiara; Noll, Sarah; Elliott, Stephen R.; Matousek, Pavel

    2016-01-01

    A recently developed micrometer-scale spatially offset Raman spectroscopy (μ-SORS) method provides a new analytical capability for investigating non-destructively the chemical composition of sub-surface, micrometer-scale thickness, diffusely scattering layers at depths beyond the reach of conventional confocal Raman microscopy. Here, we demonstrate experimentally, for the first time, the capability of μ-SORS to determine whether two detected chemical components originate from two separate layers or whether the two components are mixed together in a single layer. Such information is important in a number of areas, including conservation of cultural heritage objects, and is not available, for highly turbid media, from conventional Raman microscopy, where axial (confocal) scanning is not possible due to an inability to facilitate direct imaging within the highly scattering sample. This application constitutes an additional capability for μ-SORS in addition to its basic capacity to determine the overall chemical make-up of layers in a turbid system. PMID:26767641

  15. Organisational Capability--What Does It Mean?

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2006

    2006-01-01

    Organisational capability is rapidly becoming recognized as the key to organizational success. However, the lack of research on it has been well documented in the literature, and organizational capability remains an elusive concept. Yet an understanding of organizational capability can offer insights into how RTOs might work most effectively,…

  16. Community Psychology and the Capabilities Approach

    PubMed Central

    2016-01-01

    What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles—what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen’s focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum’s specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology’s focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters. PMID:25822113

  17. Community psychology and the capabilities approach.

    PubMed

    Shinn, Marybeth

    2015-06-01

    What makes for a good life? The capabilities approach to this question has much to offer community psychology, particularly with respect to marginalized groups. Capabilities are freedoms to engage in valued social activities and roles-what people can do and be given both their capacities, and environmental opportunities and constraints. Economist Amartya Sen's focus on freedoms and agency resonates with psychological calls for empowerment, and philosopher Martha Nussbaum's specification of requirements for a life that is fully human provides an important guide for social programs. Community psychology's focus on mediating structures has much to offer the capabilities approach. Parallels between capabilities, as enumerated by Nussbaum, and settings that foster positive youth development, as described in a National Research Council Report (Eccles and Gootman (Eds) in Community programs to promote youth development. National Academy Press, Washington, 2002) suggest extensions of the approach to children. Community psychologists can contribute to theory about ways to create and modify settings to enhance capabilities as well as empowerment and positive youth development. Finally, capabilities are difficult to measure, because they involve freedoms to choose but only choices actually made or enacted can be observed. The variation in activities or goals across members of a setting provides a measure of the capabilities that the setting fosters.

  18. Experimental aeroelasticity history, status and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1990-01-01

    NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.

  19. Managing corporate capabilities:theory and industry approaches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Adam M.

    2007-02-01

    This study characterizes theoretical and industry approaches to organizational capabilities management and ascertains whether there is a distinct ''best practice'' in this regard. We consider both physical capabilities, such as technical disciplines and infrastructure, and non-physical capabilities such as corporate culture and organizational procedures. We examine Resource-Based Theory (RBT), which is the predominant organizational management theory focused on capabilities. RBT seeks to explain the effect of capabilities on competitiveness, and thus provide a basis for investment/divestment decisions. We then analyze industry approaches described to us in interviews with representatives from Goodyear, 3M, Intel, Ford, NASA, Lockheed Martin, and Boeing. Wemore » found diversity amongst the industry capability management approaches. Although all organizations manage capabilities and consider them to some degree in their strategies, no two approaches that we observed were identical. Furthermore, we observed that theory is not a strong driver in this regard. No organization used the term ''Resource-Based Theory'', nor did any organization mention any other guiding theory or practice from the organizational management literature when explaining their capabilities management approaches. As such, we concluded that there is no single best practice for capabilities management. Nevertheless, we believe that RBT and the diverse industry experiences described herein can provide useful insights to support development of capabilities management approaches.« less

  20. Experimental Physical Sciences Vistas: MaRIE (draft)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlachter, Jack

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national

  1. RXIO: Design and implementation of high performance RDMA-capable GridFTP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yuan; Yu, Weikuan; Vetter, Jeffrey S.

    2011-12-21

    For its low-latency, high bandwidth, and low CPU utilization, Remote Direct Memory Access (RDMA) has established itself as an effective data movement technology in many networking environments. However, the transport protocols of grid run-time systems, such as GridFTP in Globus, are not yet capable of utilizing RDMA. In this study, we examine the architecture of GridFTP for the feasibility of enabling RDMA. An RDMA-capable XIO (RXIO) framework is designed and implemented to extend its XIO system and match the characteristics of RDMA. Our experimental results demonstrate that RDMA can significantly improve the performance of GridFTP, reducing the latency by 32%more » and increasing the bandwidth by more than three times. In achieving such performance improvements, RDMA dramatically cuts down CPU utilization of GridFTP clients and servers. In conclusion, these results demonstrate that RXIO can effectively exploit the benefits of RDMA for GridFTP. It offers a good prototype to further leverage GridFTP on wide-area RDMA networks.« less

  2. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  3. Transport and Stability in C-Mod ITBs in Diverse Regimes

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Howard, N. T.; Kasten, C. P.; Mikkelsen, D.; Reinke, M. L.; Rice, J. E.; White, A. E.; Rowan, W. L.; Bespamyatnov, I.

    2012-10-01

    Internal Transport Barriers (ITBs) in C-Mod feature highly peaked density and pressure profiles and are typically induced by the introduction of radio frequency power in the ion cyclotron range of frequencies (ICRF) with the second harmonic of the resonance for minority hydrogen ions positioned off-axis at the plasma half radius on either the low or high field side of the plasma. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin< 1. Thus they allow exploration of ITB dynamics in a reactor relevant regime. Recently, linear and non-linear gyrokinetic simulations have demonstrated that changes in the ion temperature and plasma rotation profiles, coincident with the application of off-axis ICRF heating, contribute to greater stability to ion temperature gradient driven fluctuation in the plasma. This results in reduced turbulent driven outgoing heat flux. To date, ITB formation in C-Mod has only been observed in EDA H-mode plasmas with moderate (2-3 MW) ICRF power. Experiments to explore the formation of ITBs in other operating regimes such as I-mode and also with high ICRF power are being undertaken to understand further the process of ITB formation and sustainment, especially with regard to turbulent driven transport.

  4. Capabilities and constraints of combustion diagnostics in microgravity

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    1993-01-01

    A significant scientific return from both existing and proposed microgravity combustion science experiments is substantially dependent on the availability of diagnostic systems for the collection of the required scientific data. To date, the available diagnostic instrumentation has consisted primarily of conventional photographic media and intrusive temperature and velocity probes, such as thermocouples and hot wire anemometers. This situation has arisen primarily due to the unique and severe operational constraints inherent in reduced gravity experimentation. Each of the various reduced gravity facilities is accompanied by its own peculiar envelope of capabilities and constraints. Drop towers, for example, pose strict limitations on available working volume and power, as well as autonomy of operation. In contrast, hardware developed for space flight applications can be somewhat less constrained in regards to the aforementioned quantities, but is additionally concerned with numerous issues involving safety and reliability.

  5. CASL Dakota Capabilities Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Simmons, Chris; Williams, Brian J.

    2017-10-10

    The Dakota software project serves the mission of Sandia National Laboratories and supports a worldwide user community by delivering state-of-the-art research and robust, usable software for optimization and uncertainty quantification. These capabilities enable advanced exploration and riskinformed prediction with a wide range of computational science and engineering models. Dakota is the verification and validation (V&V) / uncertainty quantification (UQ) software delivery vehicle for CASL, allowing analysts across focus areas to apply these capabilities to myriad nuclear engineering analyses.

  6. 3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2016-10-01

    Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.

  7. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  8. Connecting Curriculum, Capabilities and Careers

    ERIC Educational Resources Information Center

    Thomas, Ian; Depasquale, James

    2016-01-01

    Purpose: The reported research aims to examine the extent to which sustainability capabilities have been delivered by a specific example of Education for Sustainability (EfS) and Education for Sustainable Development (ESD), and how important the capabilities have been in the workplace. Design/methodology/approach Students who participated in an…

  9. Indigenous Research Capability in Aotearoa

    ERIC Educational Resources Information Center

    Ormond, Adreanne; Williams, Les R. Tumoana

    2013-01-01

    This article begins by considering the general nature of capability, from some dictionary meanings, then extends to theoretical perspectives related to the capability approach. As a consequence, we arrive at an operational definition that emphasises the ability to solve problems in a systematic way that brings transformation. In these terms,…

  10. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  11. Capabilities Roadmap Briefings to the National Research Council

    NASA Technical Reports Server (NTRS)

    2005-01-01

    High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.

  12. Experimental Products Development Team (EPDT) Supporting New AWIPS . Part 2; Capabilities

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.

    2015-01-01

    In 2012, the Experimental Products Development Team (EPDT) was formed within NASA's Short-term Prediction Research and Transition (SPoRT) Center to create training for development of plug-ins to extend the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) version 2. The broader atmospheric science community had a need for AWIPS II development training being created at SPoRT and EPDT was expanded to include other groups who were looking for training. Since the expansion of the group occurred, EPDT has provided AWIPS II development training to over thirty participants spanning a wide variety of groups such as NWS Systems Engineering Center, NWS Meteorological Development Laboratory, and several NOAA Cooperative Institutes. Participants within EPDT solidify their learning experience through hands-on learning and by participating in a "code-sprint" in which they troubleshoot existing and develop plug-ins. The hands-on learning workshop is instructor lead with participants completing exercises within the AWIPS II Development Environment. During the code sprints EPDT groups work on projects important to the community and have worked on various plug-ins such as an RGB image recipe creation tool, and an mPing (crowd sourced precipitation type reporting system) ingest and display. EPDT has developed a well-defined training regime which prepares participants to fully develop plug-ins for the extendible AWIPS II architecture from ingest to the display of new data. SPoRT has hosted 2 learning workshops and 1 code sprint over the last two years, and continues to build and shape the EPDT group based on feedback from previous workshops. The presentation will provide an overview of EPDT current and future activities, and best practices developed within EPDT.

  13. Group Capability Model

    NASA Technical Reports Server (NTRS)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  14. Identifying 21st Century Capabilities

    ERIC Educational Resources Information Center

    Stevens, Robert

    2012-01-01

    What are the capabilities necessary to meet 21st century challenges? Much of the literature on 21st century skills focuses on skills necessary to meet those challenges associated with future work in a globalised world. The result is a limited characterisation of those capabilities necessary to address 21st century social, health and particularly…

  15. Integrated System Health Management (ISHM): Systematic Capability Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzwel, John; Duncavage, Dan

    2006-01-01

    This paper provides a credible approach for implementation of ISHM capability in any system. The requirements and processes to implement ISHM capability are unique in that a credible capability is initially implemented at a low level, and it evolves to achieve higher levels by incremental augmentation. In contrast, typical capabilities, such as thrust of an engine, are implemented once at full Functional Capability Level (FCL), which is not designed to change during the life of the product. The approach will describe core ingredients (e.g. technologies, architectures, etc.) and when and how ISHM capabilities may be implemented. A specific architecture/taxonomy/ontology will be described, as well as a prototype software environment that supports development of ISHM capability. This paper will address implementation of system-wide ISHM as a core capability, and ISHM for specific subsystems as expansions and evolution, but always focusing on achieving an integrated capability.

  16. A framework for offshore vendor capability development

    NASA Astrophysics Data System (ADS)

    Yusuf Wibisono, Yogi; Govindaraju, Rajesri; Irianto, Dradjad; Sudirman, Iman

    2016-02-01

    Offshore outsourcing is a common practice conducted by companies, especially in developed countries, by relocating one or more their business processes to other companies abroad, especially in developing countries. This practice grows rapidly owing to the ease of accessing qualified vendors with a lower cost. Vendors in developing countries compete more intensely to acquire offshore projects. Indonesia is still below India, China, Malaysia as main global offshore destinations. Vendor capability is among other factors that contribute to the inability of Indonesian vendor in competing with other companies in the global market. Therefore, it is essential to study how to increase the vendor's capability in Indonesia, in the context of global offshore outsourcing. Previous studies on the vendor's capability mainly focus on capabilities without considering the dynamic of capabilities due to the environmental changes. In order to be able to compete with competitors and maintain the competitive advantage, it is necessary for vendors to develop their capabilities continuously. The purpose of this study is to develop a framework that describes offshore vendor capability development along the client-vendor relationship stages. The framework consists of three main components, i.e. the stages of client-vendor relationship, the success of each stage, and the capabilities of vendor at each stage.

  17. Adhesive capability of total-etch, self-etch, and self-adhesive systems for fiber post cementation

    NASA Astrophysics Data System (ADS)

    Theodor, Y.; Koesmaningati, H.; Gita, F.

    2017-08-01

    The aim of this study was to analyze whether self-etch and self-adhesive systems are comparable to the total-etch system for fiber post cementation. This experimental laboratory study, which was approved by an ethics committee, was performed using 27 mandibular premolar teeth randomly divided into three groups. Fiber post cementation was done using three different adhesive systems. Specimens were prepared with a thickness of 5 mm, which was measured from the cervical to medial areas of the root, and stored for 24 h in saline solution at room temperature. A push-out test was performed using a universal testing machine (Shimidzu AG-5000E) with a crosshead speed of 0.5 mm/min. The results of one way ANOVA bivariate testing showed that the total-etch and self-etch systems have comparable adhesion capability (p<0.05) and that the self-adhesive system has the lowest adhesion capability (p>0.05). With easier application, the self-etch system has a comparable adhesion capability to the total-etch system.

  18. Disability and capability: exploring the usefulness of Martha Nussbaum's capabilities approach for the UN disability rights convention.

    PubMed

    Harnacke, Caroline

    2013-01-01

    I explore the usefulness of Martha Nussbaum's capabilities approach in regard to the UN Convention on the Rights of Persons with Disabilities (CRPD). The CRPD aims at empowering people with disabilities by granting them a number of civil and political, but also economic, social and cultural rights. Implementing the CRPD will clearly be politically challenging and also very expensive for states. Thus, questions might arise as to whether the requirements set in the CRPD can be justified from an ethical perspective. I will first investigate if Nussbaum's capabilities approach provides support for the rights claimed in the CRPD. Second, I will investigate to what extent Nussbaum's capabilities approach is a useful tool to set priorities among rights in the course of the implementation of the convention. This is an urgent question because seen realistically, it will not be possible to realize all rights at once and thus some rights need to receive greater priority than others. I will argue that the capabilities approach can be regarded as supporting the rights specified in the CRPD, but that it proves unable to guide the implementation process due to an insufficient grounding of the capabilities. Employing the capabilities approach thus leads to only limited results. © 2013 American Society of Law, Medicine & Ethics, Inc.

  19. A class of nonideal solutions. 2: Application to experimental data

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.; Donovan, L. F.

    1983-01-01

    Functions for the representation of the thermodynamic properties of nonideal solutions were applied to the experimental data for several highly nonideal solutions. The test solutions were selected to cover both electrolyte behavior. The results imply that the functions are fully capable of representing the experimental data within their accuracy over the whole composition range and demonstrate that many nonideal solutions can be regarded as members of the defined class of nonideal solutions.

  20. Rheology of welding: experimental constraints

    NASA Astrophysics Data System (ADS)

    Quane, S. L.; Russell, J. K.; Kennedy, L. A.

    2003-04-01

    The rheological behavior of pyroclastic deposits during welding is incompletely understood and is based on a surprisingly small number of experimental studies. Previous pioneering experimental studies were done on small (1 cm thick) samples of ash/crystal mixtures under constant load. They established minimum welding temperatures between 600 and 700^oC under loads of 0.7 MPa (˜40 m of ignimbrite) to 3.6 MPa (˜250 m depth of ignimbrite). However, these data are neither sufficiently comprehensive nor coherent enough to fully describe the rheology of pyroclastic mixtures. In addition, previous studies did not examine the microstructural and geometric changes associated with welding compaction. Our goal is to provide accurate and comprehensive constitutive relationships between material properties, temperature, load and strain rate for pyroclastic material undergoing welding. Here we present results from a newly designed experimental apparatus. The experimental apparatus consists of a LoadTrac II fully automated uniaxial compression load frame manufactured by Geocomp Corporation. The load frame has a built in displacement transducer and can run both constant strain rate (10-6 to 0.25 cm/s) and constant load (up to 1150 kg) tests to a maximum displacement of 7.5 cm. The sample assembly comprises 5 cm diameter cylindrical upper and lower pistons (insulating ceramic with steel conductive ends) housed in a copper jacket. Samples are 5 cm diameter cores and can vary in length from 1 to 15 cm depending on experimental needs. A fiber insulated tube furnace capable of reaching temperatures ≈1000^oC surrounds the sample assembly. Temperature is measured using a thermocouple located inside the sample through the bottom piston; the furnace controller is capable of maintaining temperature fluctuations to <5^oC. Deformation experiments are performed on pre-fabricated cylinders of soda-lime glass beads and rhyolitic volcanic ash, as well as, cores of pumiceous rhyodacite

  1. Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley; Lung, Shun-fat

    2008-01-01

    An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.

  2. Revised genetic requirements for the decatenation G2 checkpoint: the role of ATM

    PubMed Central

    Bower, Jacquelyn J.; Zhou, Yingchun; Zhou, Tong; Simpson, Dennis A.; Arlander, Sonnet J.; Paules, Richard S.; Cordeiro-Stone, Marila; Kaufmann, William K.

    2010-01-01

    The decatenation G2 checkpoint is proposed to delay cellular progression from G2 into mitosis when intertwined daughter chromatids are insufficiently decatenated. Previous studies indicated that the ATM- and Rad3-related (ATR) checkpoint kinase, but not the ataxia telangiectasia-mutated (ATM) kinase, was required for decatenation G2 checkpoint function. Here, we show that the method used to quantify decatenation G2 checkpoint function can influence the identification of genetic requirements for the checkpoint. Normal human diploid fibroblast (NHDF) lines responded to the topoisomerase II (topo II) catalytic inhibitor ICRF-193 with a stringent G2 arrest and a reduction in the mitotic index. While siRNA-mediated depletion of ATR and CHEK1 increased the mitotic index in ICRF-193 treated NHDF lines, depletion of these proteins did not affect the mitotic entry rate, indicating that the decatenation G2 checkpoint was functional. These results suggest that ATR and CHEK1 are not required for the decatenation G2 checkpoint, but may influence mitotic exit after inhibition of topo II. A re-evaluation of ataxia telangiectasia (AT) cell lines using the mitotic entry assay indicated that ATM was required for the decatenation G2 checkpoint. Three NHDF cell lines responded to ICRF-193 with a mean 98% inhibition of the mitotic entry rate. Examination of the mitotic entry rates in AT fibroblasts upon treatment with ICRF-193 revealed a significantly attenuated decatenation G2 checkpoint response, with a mean 59% inhibition of the mitotic entry rate. In addition, a normal lymphoblastoid line exhibited a 95% inhibition of the mitotic entry rate after incubation with ICRF-193, whereas two AT lymphoblastoid lines displayed only 36% and 20% inhibition of the mitotic entry rate. Stable depletion of ATM in normal human fibroblasts with short hairpin RNA also attenuated decatenation G2 checkpoint function by an average of 40%. Western immunoblot analysis demonstrated that treatment with ICRF

  3. Fast digital noise filter capable of locating spectral peaks and shoulders

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.; Knight, R. D.

    1972-01-01

    Experimental data frequently have a poor signal-to-noise ratio which one would like to enhance before analysis. With the data in digital form, this may be accomplished by means of a digital filter. A fast digital filter based upon the principle of least squares and using the techniques of convoluting integers is described. In addition to smoothing, this filter also is capable of accurately and simultaneously locating spectral peaks and shoulders. This technique has been adapted into a computer subroutine, and results of several test cases are shown, including mass spectral data and data from a proportional counter for the High Energy Astronomy Observatory.

  4. Expanded operational capabilities of the Langley Mach 7 Scramjet test facility

    NASA Technical Reports Server (NTRS)

    Thomas, S. R.; Guy, R. W.

    1983-01-01

    An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.

  5. Sandia Laboratories technical capabilities: engineering analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundergan, C. D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (auth)

  6. Anlysis capabilities for plutonium-238 programs

    NASA Astrophysics Data System (ADS)

    Wong, A. S.; Rinehart, G. H.; Reimus, M. H.; Pansoy-Hjelvik, M. E.; Moniz, P. F.; Brock, J. C.; Ferrara, S. E.; Ramsey, S. S.

    2000-07-01

    In this presentation, an overview of analysis capabilities that support 238Pu programs will be discussed. These capabilities include neutron emission rate and calorimetric measurements, metallography/ceramography, ultrasonic examination, particle size determination, and chemical analyses. The data obtained from these measurements provide baseline parameters for fuel clad impact testing, fuel processing, product certifications, and waste disposal. Also several in-line analyses capabilities will be utilized for process control in the full-scale 238Pu Aqueous Scrap Recovery line in FY01.

  7. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  8. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  9. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  10. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  11. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  12. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  13. Demonstration of new PCSD capabilities

    NASA Technical Reports Server (NTRS)

    Gough, M.

    1986-01-01

    The new, more flexible and more friendly graphics capabilities to be available in later releases of the Pilot Climate Data System were demonstrated. The LIMS-LAMAT data set was chosen to illustrate these new capabilities. Pseudocolor and animation were used to represent the third and fourth dimensions, expanding the analytical capabilities available through the traditional two-dimensional x-y plot. In the new version, variables for the axes are chosen by scrolling through viable selections. This scrolling feature is a function of the new user interface customization. The new graphics are extremely user friendly and should free the scientist to look at data and converse with it, without doing any programming. The system is designed to rapidly plot any variable versus any other variable and animate by any variable. Any one plot in itself is not extraordinary; however, the fact that a user can generate the plots instead of a programmer distinguishes the graphics capabilities of the PCDS from other software packages. In addition, with the new CDF design, the system will become more generic, and the new graphics will become much more rigorous in the area of correlative studies.

  14. Earth Science Capability Demonstration Project

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  15. Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.

    2010-01-01

    The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.

  16. Comparison of CFD simulations with experimental data for a tanker model advancing in waves

    NASA Astrophysics Data System (ADS)

    Orihara, Hideo

    2011-03-01

    In this paper, CFD simulation results for a tanker model are compared with experimental data over a range of wave conditions to verify a capability to predict the sea-keeping performance of practical hull forms. CFD simulations are conducted using WISDAM-X code which is capable of unsteady RANS calculations in arbitrary wave conditions. Comparisons are made of unsteady surface pressures, added resistance and ship motions in regular waves for cases of fully-loaded and ballast conditions of a large tanker model. It is shown that the simulation results agree fairly well with the experimental data, and that WISDAM-X code can predict sea-keeping performance of practical hull forms.

  17. Disability, Capability, and Special Education: Towards a Capability-Based Theory

    ERIC Educational Resources Information Center

    Reindal, Solveig Magnus

    2009-01-01

    The main objective of the article was to investigate the claim that the capability approach fares better with an understanding of disability as presented by the World Health Organization's "International Classification of Functioning, Disability and Health" (ICF) than by the social model, which has been promoted within disability studies. Scholars…

  18. Selecting Capabilities for Quality of Life Measurement

    ERIC Educational Resources Information Center

    Robeyns, Ingrid

    2005-01-01

    The capability approach advocates that interpersonal comparisons be made in the space of functionings and capabilities. However, Amartya Sen has not specified which capabilities should be selected as the relevant ones. This has provoked two types of criticism. The stronger critique is Martha Nussbaum's claim that Sen should endorse one specific…

  19. DDP-516 Computer Graphics System Capabilities

    DOT National Transportation Integrated Search

    1972-06-01

    This report describes the capabilities of the DDP-516 Computer Graphics System. One objective of this report is to acquaint DOT management and project planners with the system's current capabilities, applications hardware and software. The Appendix i...

  20. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S.; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach

    2016-02-01

    Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice.

  1. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  2. Adding Pluggable and Personalized Natural Control Capabilities to Existing Applications

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-01

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities. PMID:25635410

  3. Adding pluggable and personalized natural control capabilities to existing applications.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-28

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities.

  4. A Human Capabilities Framework for Evaluating Student Learning

    ERIC Educational Resources Information Center

    Walker, Melanie

    2008-01-01

    This paper proposes a human capabilities approach for evaluating student learning and the social and pedagogical arrangements that support equality in capabilities for all students. It outlines the focus on valuable beings and doings in the capability approach developed by Amartya Sen, and Martha Nussbaum's capabilities focus on human flourishing.…

  5. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  6. Joint Experimentation on Scalable Parallel Processors (JESPP)

    DTIC Science & Technology

    2006-04-01

    made use of local embedded relational databases, implemented using sqlite on each node of an SPP to execute queries and return results via an ad hoc ...rl.af.mil 12a. DISTRIBUTION / AVAILABILITY STATEENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 12b. DISTRIBUTION CODE 13. ABSTRACT...Experimentation Directorate (J9) required expansion of its joint semi-automated forces (JSAF) code capabilities; including number of entities, behavior complexity

  7. Improved Testing Capability and Adaptability Through the Use of Wireless Sensors

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.

    2003-01-01

    From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. Sensor wiring is routed along piping and through cable trenches, making its way from the engine test area, through the test stand area and to the signal conditioning building before final transfer to the test control center. When sensor requirements lie outside the reach of the routine sensor cable routing, the use of wireless sensor networks becomes particularly attractive due to their versatility and ease of installation. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group has found numerous applications for its sensor-adaptable wireless sensor suite. While not intended for critical engine measurements or control loops, in-house hardware and software development of the sensor suite can provide improved testing capability for a range of applications including the safety monitoring of propellant storage barrels and as an experimental test-bed for embedded health monitoring paradigms.

  8. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  9. Unidata Workshop: Demonstrating Democratization of Numerical Weather Prediction Capabilities Using Linked Environments for Atmospheric Discovery (LEAD) Capabilities

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Wilson, A.; Marru, S.; Rossi, A.; Christi, M.; Hampton, S.; Gannon, D.; Alameda, J.; Ramamurthy, M.; Droegemeier, K.

    2006-12-01

    On July 13th 2006 during the triannual Unidata Workshop, members of the Unidata community got their first experience with capabilities being developed under the Linked Environments for Atmospheric Discovery (LEAD) project (see: http://lead.ou.edu). The key LEAD goal demonstrated during the workshop was that of "Democratization," that is, providing capabilities that typically have a high barrier to entry to the larger meteorological community. At the workshop, participants worked with software that demonstrated the specific concepts of: 1) Lowering the barrier to entry by making it easy for users to: - Experiment using meteorological tools - Create meteorological forecasts - Perform mesoscale modeling and forecasting - Access data (source and product) - Make use of large scale cyberinfrastructure (E.g. TeraGrid) 2) Giving users the freedom from technological issues such as: - Hassle-free access to supercomputing resources - Hassle-free execution of forecast models and related tools - Data format independence This talk will overview the capabilities presented to the Unidata workshop participants as well as capabilities developed since the workshop. There will also be a lessons-learned section. This overview will be accomplished with a live demonstration of some of the capabilities. Capabilities that will be discussed and demonstrated have applicability across many disciplines e.g. discovering, acquiring and using data and orchestrating of complex workflow. Acknowledgement: The LEAD project involves the work of nearly 100 individuals whose dedication has resulted in the capabilities that will be shown here. The authors would like to recognize all of them, but in particular we'd like to recognize: John Caron, Rich Clark, Ethan Davis, Charles Hart, Yuan Ho, Scott Jenson, Rob Kambic, Brian Kelly, Ning Liu, Jeff McWhirter, Don Murray, Beth Plale, Rahul Ramachandran, Yogesh Simmhan, Kevin Thomas, Nithya Vijayakumar, Yunheng Wang, Dan Weber, and Bob Wilhelmson.

  10. Experimental quantum fingerprinting with weak coherent pulses.

    PubMed

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-30

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  11. Experimental quantum fingerprinting with weak coherent pulses

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  12. Building Airport Surface HITL Simulation Capability

    NASA Technical Reports Server (NTRS)

    Chinn, Fay Cherie

    2016-01-01

    FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.

  13. Anisotropic yield function capable of predicting eight ears

    NASA Astrophysics Data System (ADS)

    Yoon, J. H.; Cazacu, O.

    2011-08-01

    Deep drawing of a cylindrical cup from a rolled sheet is one of the typical forming operations where the effect of this anisotropy is most evident. Indeed, it is well documented in the literature that the number of ears and the shape of the earing pattern correlate with the r-values profile. For the strongly textured aluminum alloy AA 5042 (Numisheet Benchmark 2011), the experimental r-value distribution has two minima between the rolling and transverse direction data provided for this show that the r-value along the transverse direction (TD) is five times larger than the value corresponding to the rolling direction. Therefore, it is expected that there are more that the earing profile has more than four ears. The main objective of this paper is to assess whether a new form of CPB06ex2 yield function (Plunkett et al. (2008)) tailored for metals with no tension-compression asymmetry is capable of predicting more than four ears for this material.

  14. Preliminary Investigation of the Process Capabilities of Hydroforging

    PubMed Central

    Alzahrani, Bandar; Ngaile, Gracious

    2016-01-01

    Hydroforging is a hybrid forming operation whereby a thick tube is formed to a desired geometry by combining forging and hydroforming principles. Through this process hollow structures with high strength-to-weight ratio can be produced for applications in power transmission systems and other structural components that demands high strength-to-weight ratio. In this process, a thick tube is deformed by pressurized fluid contained within the tube using a multi-purpose punch assembly, which is also used to feed tube material into the die cavity. Fluid pressure inside the thick tube is developed by volume change governed by the movement of the punch assembly. In contrast to the conventional tube hydroforming (THF), the hydroforging process presented in this study does not require external supply of pressurized fluid to the deforming tube. To investigate the capability of hydroforging process, an experimental setup was developed and used to hydroforge various geometries. These geometries included hollow flanged vessels, hexagonal flanged parts, and hollow bevel and spur gears. PMID:28787840

  15. Capabilities for Constrained Military Operations

    DTIC Science & Technology

    2016-12-01

    capabilities that have low technology risk and accomplish all of this on a short timeline. I fully endorse all of the recommendations contained in...for the U.S. to address such conflicts. The good news is that The DoD can prevail with inexpensive capabilities that have low technology risk and on a...future actions. The Study took a three-pronged approach to countering potential adversaries’ strategies for waging long-term campaigns for

  16. Experimental evaluation of a 600 lbf spacecraft rocket engine.

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1972-01-01

    Experimental results are presented for a long-duration-capability (1000-sec), space-storable, bipropellant liquid rocket motor burning fluorine/hydrazine or FLOX/monomethylhydrazine. The interrelationship between injected mixture ratio and the per cent film cooling on vacuum specific impulse performance and chamber heat transfer is given. Experimental sea level measurements are used to predict space vacuum performance based upon simplified JANNAF reference procedures. Dynamic combustion stability is demonstrated over a wide range of operating conditions. Analytical results of char penetration, erosion, and ablative wall temperature distributions are presented for prototype chamber designs.

  17. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    DTIC Science & Technology

    2017-03-01

    minimal differences were noted. As discussed above, a “dummy” four- bladed hub was fabricated to permit application of shaker loads to the ARES testbed...experimental data used for comparison was from wind-tunnel testing of a set of Active-Twist Rotor (ATR) blades , which had undergone extensive bench...experimental measurements, one low-speed and the other high-speed. Although these blades are capable of actively twisting during flight, in both of these

  18. Dolphin sonar detection and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-05-01

    Dolphins have a very sophisticated short range sonar that surpasses all technological sonar in its capabilities to perform complex target discrimination and recognition tasks. The system that the U.S. Navy has for detecting mines buried under ocean sediment is one that uses Atlantic bottlenose dolphins. However, close examination of the dolphin sonar system will reveal that the dolphin acoustic hardware is fairly ordinary and not very special. The transmitted signals have peak-to-peak amplitudes as high as 225-228 dB re 1 μPa which translates to an rms value of approximately 210-213 dB. The transmit beamwidth is fairly broad at about 10o in both the horizontal and vertical planes and the receiving beamwidth is slightly broader by several degrees. The auditory filters are not very narrow with Q values of about 8.4. Despite these fairly ordinary features of the acoustic system, these animals still demonstrate very unusual and astonishing capabilities. Some of the capabilities of the dolphin sonar system will be presented and the reasons for their keen sonar capabilities will be discussed. Important features of their sonar include the broadband clicklike signals used, adaptive sonar search capabilities and large dynamic range of its auditory system.

  19. Overview of ASC Capability Computing System Governance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott W.

    This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

  20. Curriculum Mapping to Embed Graduate Capabilities

    ERIC Educational Resources Information Center

    Spencer, David; Riddle, Matthew; Knewstubb, Bernadette

    2012-01-01

    Graduate capabilities are an essential aspect of undergraduate development in higher education. Accordingly, La Trobe University's "Design for learning" has identified particular university-wide graduate capabilities and required all faculties to explicitly embed these in their curricula. The Faculty of Law and Management developed an approach to…

  1. SD46 Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.

  2. Robotic Access to Planetary Surfaces Capability Roadmap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A set of robotic access to planetary surfaces capability developments and supporting infrastructure have been identified. Reference mission pulls derived from ongoing strategic planning. Capability pushes to enable broader mission considerations. Facility and flight test capability needs. Those developments have been described to the level of detail needed for high-level planning. Content and approach. Readiness and metrics. Rough schedule and cost. Connectivity to mission concepts.

  3. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  4. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden listens to a reporter’s question after he announced the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  5. 47 CFR 95.649 - Power capability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Power capability. 95.649 Section 95.649... SERVICES Technical Regulations Certification Requirements § 95.649 Power capability. No CB, R/C, LPRS, FRS, MedRadio, MURS, or WMTS unit shall incorporate provisions for increasing its transmitter power to any...

  6. Adult Financial Capability Framework. Second Edition

    ERIC Educational Resources Information Center

    Basic Skills Agency, 2006

    2006-01-01

    Both the Financial Services Authority and the Basic Skills Agency are committed to supporting those individuals and organisations working to improve the financial capability of themselves and others. The development of the National Strategy for Financial Capability, coordinated by the Financial Services Authority, and the commissioning of a…

  7. 47 CFR 95.649 - Power capability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Power capability. 95.649 Section 95.649... SERVICES Technical Regulations Certification Requirements § 95.649 Power capability. No CB, R/C, LPRS, FRS, MedRadio, MURS, or WMTS unit shall incorporate provisions for increasing its transmitter power to any...

  8. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    PubMed

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  9. Capabilities and Contributions of Unwed Fathers

    ERIC Educational Resources Information Center

    Lerman, Robert I.

    2010-01-01

    Young, minority, and poorly educated fathers in fragile families have little capacity to support their children financially and are hard-pressed to maintain stability in raising those children. In this article, Robert Lerman examines the capabilities and contributions of unwed fathers, how their capabilities and contributions fall short of those…

  10. Physician capability to electronically exchange clinical information, 2011.

    PubMed

    Patel, Vaishali; Swain, Matthew J; King, Jennifer; Furukawa, Michael F

    2013-10-01

    To provide national estimates of physician capability to electronically share clinical information with other providers and to describe variation in exchange capability across states and electronic health record (EHR) vendors using the 2011 National Ambulatory Medical Care Survey Electronic Medical Record Supplement. Survey of a nationally representative sample of nonfederal office-based physicians who provide direct patient care. The survey was administered by mail with telephone follow-up and had a 61% weighted response rate. The overall sample consisted of 4326 respondents. We calculated estimates of electronic exchange capability at the national and state levels, and applied multivariate analyses to examine the association between the capability to exchange different types of clinical information and physician and practice characteristics. In 2011, 55% of physicians had computerized capability to send prescriptions electronically; 67% had the capability to view lab results electronically; 42% were able to incorporate lab results into their EHR; 35% were able to send lab orders electronically; and, 31% exchanged patient clinical summaries with other providers. The strongest predictor of exchange capability is adoption of an EHR. However, substantial variation exists across geography and EHR vendors in exchange capability, especially electronic exchange of clinical summaries. In 2011, a majority of office-based physicians could exchange lab and medication data, and approximately one-third could exchange clinical summaries with patients or other providers. EHRs serve as a key mechanism by which physicians can exchange clinical data, though physicians' capability to exchange varies by vendor and by state.

  11. Compositional design and optimization of dentin adhesive with neutralization capability.

    PubMed

    Song, Linyong; Ye, Qiang; Ge, Xueping; Spencer, Paulette

    2015-09-01

    The objective of this work was to investigate the polymerization behavior, neutralization capability, and mechanical properties of dentin adhesive formulations with the addition of the tertiary amine co-monomer, 2-N-morpholinoethyl methacrylate (MEMA). A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a control adhesive. Compared with the control formulation, the MEMA-containing adhesive formulations were characterized comprehensively with regard to water miscibility of liquid resin, water sorption and solubility of cured polymer, real-time photopolymerization kinetics, dynamic mechanical analysis (DMA), and modulated differential scanning calorimetry (MDSC). The neutralization capacity was characterized by monitoring the pH shift of 1mM lactic acid (LA) solution, in which the adhesive polymers were soaked. With increasing MEMA concentrations, experimental copolymers showed higher water sorption, lower glass transition temperature and lower crosslinking density compared to the control. The pH values of LA solution gradually increased from 3.5 to about 6.0-6.5 after 90 days. With the increase in crosslinking density of the copolymers, the neutralization rate was depressed. The optimal MEMA concentration was between 20 and 40 wt%. As compared to the control, the results indicated that the MEMA-functionalized copolymer showed neutralization capability. The crosslinking density of the copolymer networks influenced the neutralization rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Action Learning, Performativity and Negative Capability

    ERIC Educational Resources Information Center

    Edmonstone, John

    2016-01-01

    The paper examines the concept of negative capability as a human capacity for containment and contrasts it with well-valued positive capability as expressed through performativity in organisations and society. It identifies the problem of dispersal--the complex ways we behave in order to avoid the emotional challenges of living with uncertainty.…

  13. Experimental quantum fingerprinting with weak coherent pulses

    PubMed Central

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  14. Application of thrusting ejectors to tactical aircraft having vertical lift and short-field capability

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Stoll, F.; Aoyagi, K.

    1981-01-01

    The status of ejector development in terms of application to V/STOL aircraft is reported in three categories: aircraft systems and ejector concepts; ejector performance including prediction techniques and experimental data base available; and, integration of the ejector with complete aircraft configurations. Available prediction techniques are reviewed and performance of three ejector designs with vertical lift capability is summarized. Applications of the 'fuselage' and 'short diffuser' ejectors to fighter aircraft are related to current and planned research programs. Recommendations are listed for effort needed to evaluate installed performance.

  15. NATO initial common operational picture capability project

    NASA Astrophysics Data System (ADS)

    Fanti, Laura; Beach, David

    2002-08-01

    The Common Operational Picture (COP) capability can be defined as the ability to display on a single screen integrated views of the Recognized Maritime, Air and Ground Pictures, enriched by other tactical data, such as theater plans, assets, intelligence and logistics information. The purpose of the COP capability is to provide military forces a comprehensive view of the battle space, thereby enhancing situational awareness and the decision-making process across the military command and control spectrum. The availability of a COP capability throughout the command structure is a high priority operational requirement in NATO. A COP capability for NATO is being procured and implemented in an incremental way within the NATO Automated Information System (Bi-SC AIS) Functional Services programme under the coordination of the NATO Consultation, Command and Control Agency (NC3A) Integrated Programme Team 5 (IPT5). The NATO Initial COP (iCOP) capability project, first step of this evolutionary procurement, will provide an initial COP capability to NATO in a highly pragmatic and low-risk fashion, by using existing operational communications infrastructure and NATO systems, i.e. the NATO-Wide Integrated Command and Control Software for Air Operations (ICC), the Maritime Command and Control Information System (MCCIS), and the Joint Operations and Intelligence Information System (JOIIS), which will provide respectively the Recognized Air, Maritime and Ground Pictures. This paper gives an overview of the NATO Initial COP capability project, including its evolutionary implementation approach, and describes the technical solution selected to satisfy the urgent operational requirement in a timely and cost effective manner.

  16. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  17. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  18. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  19. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  20. Human-Centered Design Capability

    NASA Technical Reports Server (NTRS)

    Fitts, David J.; Howard, Robert

    2009-01-01

    For NASA, human-centered design (HCD) seeks opportunities to mitigate the challenges of living and working in space in order to enhance human productivity and well-being. Direct design participation during the development stage is difficult, however, during project formulation, a HCD approach can lead to better more cost-effective products. HCD can also help a program enter the development stage with a clear vision for product acquisition. HCD tools for clarifying design intent are listed. To infuse HCD into the spaceflight lifecycle the Space and Life Sciences Directorate developed the Habitability Design Center. The Center has collaborated successfully with program and project design teams and with JSC's Engineering Directorate. This presentation discusses HCD capabilities and depicts the Center's design examples and capabilities.

  1. Characterizing Learning Environments Capable of Nurturing Generic Capabilities in Higher Education

    ERIC Educational Resources Information Center

    Kember, David; Leung, Doris Y. P.; Ma, Rosa S. F.

    2007-01-01

    There has been wide recognition that today's graduates need the type of generic capabilities necessary for lifelong learning. However, the mechanism by which universities can develop these generic skills is not clearly established. This study aimed to investigate the mechanism for their development. Structural equation modeling (SEM) was used to…

  2. Background: Preflight Screening, In-flight Capabilities, and Postflight Testing

    NASA Technical Reports Server (NTRS)

    Gibson, Charles Robert; Duncan, James

    2009-01-01

    Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):

  3. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  4. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less

  5. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration

  6. Bridging Homes and Classrooms: Advancing Students' Capabilities

    ERIC Educational Resources Information Center

    Sugiono, Sugiono; Skourdoumbis, Andrew; Gale, Trevor

    2018-01-01

    This paper investigates the capabilities of remote rural teachers in Indonesia's Probolinggo Regency to make meaningful pedagogic connections between students' homes and their classrooms. The term "capabilities" is derived from Sen's to Nussbaum's capabilities approach, which refers to substantive freedom or opportunities that a person…

  7. Space Communications Capability Roadmap Interim Review

    NASA Technical Reports Server (NTRS)

    Spearing, Robert; Regan, Michael

    2005-01-01

    Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.

  8. FMC/TFM experimental comparisons

    NASA Astrophysics Data System (ADS)

    Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni

    2018-04-01

    Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.

  9. In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Duke, Michael

    2005-01-01

    A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.

  10. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  11. Preseason Perceived Physical Capability and Previous Injury.

    PubMed

    Sciascia, Aaron; Haegele, Lauren E; Lucas, Jean; Uhl, Timothy L

    2015-09-01

    Patient opinion about the ability to perform athletic maneuvers is important after injury; however, prospective assessment of self-perceived physical capability for athletes before the beginning of a season is lacking. To perform a descriptive analysis of knee, shoulder, and elbow self-perceived measures of physical capability specific to athletics and to compare the measures between athletes with and without a history of injury. Cross-sectional study. Preparticipation physical examinations. A total of 738 collegiate athletes (486 men, 251 women; age = 19 ± 1 years) were administered questionnaires after receiving medical clearance to participate in their sports. Of those athletes, 350 reported a history of injury. Athletes self-reported a history of knee, shoulder, or elbow injury. Perceived physical capability of the 3 joints was evaluated using the Knee Injury and Osteoarthritis Outcome Score Sport and Recreation Function and Knee-Related Quality of Life subscales and the Kerlan-Jobe Orthopaedic Clinic Shoulder and Elbow Score. We conducted nonparametric analysis to determine if scores differed between athletes with and without a history of injury. Median values for the Knee Injury and Osteoarthritis Outcome Score Sports and Recreation Function and Knee-Related Quality of Life subscales and the Kerlan-Jobe Orthopaedic Clinic Shoulder and Elbow Score for all athletes were 100. Median values for perceived physical capability of athletes with a history of injury were 3 to 12 points lower for each questionnaire before the start of the season (P < .001). Our study provided descriptive values for individual perceived knee, shoulder, and elbow physical capability of collegiate athletes participating in 19 sports. Athletes who did not report previous injuries perceived their physical capabilities to be nearly perfect, which could set the goal for these athletes to return to participation after injury. Athletes reporting previous injuries perceived less physical

  12. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  13. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.

  14. Capability 9.2 Mobility

    NASA Technical Reports Server (NTRS)

    Zakrasjek, June

    2005-01-01

    Modern operational concepts require significant bandwidths and multipoint communication capabilities. Provide voice, video and data communications among vehicles moving along the surface, vehicles in suborbital transport or reconnaissance, surface elements, and home planet facilities.

  15. [Run the risk: social disadvantage or capability?

    PubMed

    Muñoz-Duque, Luz Adriana

    2018-05-10

    This article discusses the notions of risk and risk acceptability from a social justice perspective, especially in light of the capability approach proposed by Amartya Sen. The article argues that risk can be the expression of restrictions on subjects' capabilities, deriving from social disadvantages that can be taken for granted in their daily realities. On the other hand, risk can be viewed as an expression of capability in cases where subjects have accepted or admitted the risk through the exercise of freedom, as long as the subjects that relate to the risk do so in keeping with their idea of a good life, the building of which implies the full development of capability for agency. The article concludes with some thoughts on the issues of risk and risk acceptability in the sphere of public health.

  16. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Hanada, M.; Kojima, A.

    2010-02-15

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cmx1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D{sup -} ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulsemore » duration to hold 500 kV reached 40 s of the power supply limitation.« less

  17. Personality Assessment: A Competency-Capability Perspective.

    PubMed

    Kaslow, Nadine J; Finklea, J Tyler; Chan, Ginny

    2018-01-01

    This article begins by reviewing the proficiency of personality assessment in the context of the competencies movement, which has dominated health service psychology in recent years. It examines the value of including a capability framework for advancing this proficiency and enhancing the quality of personality assessments, including Therapeutic Assessment (Finn & Tonsager, 1997 ), that include a personality assessment component. This hybrid competency-capability framework is used to set the stage for the conduct of personality assessments in a variety of contexts and for the optimal training of personality assessment. Future directions are offered in terms of ways psychologists can strengthen their social contract with the public and offer a broader array of personality assessments in more diverse contexts and by individuals who are both competent and capable.

  18. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model

  19. Should the capability approach be applied in health economics?

    PubMed

    Coast, Joanna; Smith, Richard; Lorgelly, Paula

    2008-06-01

    This editorial questions the implications of the capability approach for health economics. Two specific issues are considered: the evaluative space of capablities (as opposed to health or utility) and the decision-making principle of maximisation. The paper argues that the capability approach can provide a richer evaluative space enabling improved evaluation of many interventions. It also argues that more thought is needed about the decision-making principles both within the capability approach and within health economics more generally. Specifically, researchers should analyse equity-oriented principles such as equalisation and a 'decent minimum' of capability, rather than presuming that the goal must be the maximisation of capability.

  20. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model

  1. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  2. Developing a Dual-Level Capabilities Approach: Using Constructivist Grounded Theory and Feminist Ethnography to Enhance the Capabilities Approaches

    ERIC Educational Resources Information Center

    Hall, Kia M. Q.

    2014-01-01

    In this study, a dual-level capabilities approach to development is introduced. This approach intends to improve upon individual-focused capabilities approaches developed by Amartya Sen and Martha Nussbaum. Based upon seven months of ethnographic research in the Afro-descendant, autochthonous Garifuna community of Honduras, constructivist grounded…

  3. Transferable Denitrification Capability of Thermus thermophilus

    PubMed Central

    Alvarez, Laura; Bricio, Carlos; Blesa, Alba; Hidalgo, Aurelio

    2014-01-01

    Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments. PMID:24141123

  4. HEALTH, VITAL GOALS, AND CENTRAL HUMAN CAPABILITIES

    PubMed Central

    Venkatapuram, Sridhar

    2013-01-01

    I argue for a conception of health as a person's ability to achieve or exercise a cluster of basic human activities. These basic activities are in turn specified through free-standing ethical reasoning about what constitutes a minimal conception of a human life with equal human dignity in the modern world. I arrive at this conception of health by closely following and modifying Lennart Nordenfelt's theory of health which presents health as the ability to achieve vital goals. Despite its strengths I transform Nordenfelt's argument in order to overcome three significant drawbacks. Nordenfelt makes vital goals relative to each community or context and significantly reflective of personal preferences. By doing so, Nordenfelt's conception of health faces problems with both socially relative concepts of health and subjectively defined wellbeing. Moreover, Nordenfelt does not ever explicitly specify a set of vital goals. The theory of health advanced here replaces Nordenfelt's (seemingly) empty set of preferences and society-relative vital goals with a human species-wide conception of basic vital goals, or ‘central human capabilities and functionings’. These central human capabilities come out of the capabilities approach (CA) now familiar in political philosophy and economics, and particularly reflect the work of Martha Nussbaum. As a result, the health of an individual should be understood as the ability to achieve a basic cluster of beings and doings—or having the overarching capability, a meta-capability, to achieve a set of central or vital inter-related capabilities and functionings. PMID:22420910

  5. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  6. Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review

    NASA Technical Reports Server (NTRS)

    Manning, Rob; Schmitt, Harrison H.; Graves, Claude

    2005-01-01

    Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.

  7. Some applications of the NASTRAN level 16 subsonic flutter analysis capability. [to transport wing and arrow wing

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Cunningham, H. J.

    1976-01-01

    The Level 16 flutter analysis capability was applied to an aspect-ratio-6.8 subsonic transport type wing, an aspect-ratio-1.7 arrow wing, and an aspect-ratio-1.3 all movable horizontal tail with a geared elevator. The transport wing and arrow wing results are compared with experimental results obtained in the Langley transonic dynamic tunnel and with other calculated results obtained using subsonic lifting surface (kernel function) unsteady aerodynamic theory.

  8. An Interoperability Framework and Capability Profiling for Manufacturing Software

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.

    ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.

  9. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  10. Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators

    NASA Astrophysics Data System (ADS)

    Cocking, Alexander

    Optical microresonators have been demonstrated to provide a large enhancement in electric field by containing an resonant mode in a very small volume. This resonant enhancement is proportional to the quality of the resonator, which for microspheres has been demonstrated to be on the order of 1010. These devices can be leveraged to greatly improve light-matter interaction and for this reason the theoretical background of optical microresonators is discussed in the second chapter. This includes the use of COMSOL Multiphysics to model the mode structure and scattering from different resonator geometries. The second chapter also contains details on the fabrication and experimental design of optical microresonators. This includes the fabrication of fiber tapers for evanescent wave coupling into the devices. Once the theoretical framework for utilizing resonators as tools for enhancement has been established in the second chapter, we progress to the discussion of the microbubble geometry and its potential for use as an on-chip sensor system. Topics covered include design, fabrication, and theoretical analysis of the mode structure in this geometry. Modal interaction with a liquid filled microbubble is demonstrated. Additionally, the use of microbubble resonators as highly accurate temperature sensors is demonstrated experimentally and theoretically. In chapter 4 we investigate the use of silica microspheres as sensing devices; specifically, using them for the purpose of sensing nano-particles and chemicals in incredibly minute quantities. In this section microresonators are demonstrated to provide enhancement to Raman scattering from nano-scale particles. This configuration retains the traditional sensing methods of resonators by observing mode shifting and splitting in the resonance spectrum, while adding in a label-free sensing ability to determine material composition on adhered micro and nanoparticles. The fifth chapter discusses the characterization of a new class

  11. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Mike

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.

  12. Experimental and Computational Evaluation of Flush-Mounted, S-Duct Inlets

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Allan, Brian G.

    2004-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability. an experimental investigation of four S-duct inlet configurations was conducted. A computational study of one of the inlets was also conducted using a Navier-Stokes solver. The objectives of this investigation were to: 1) develop a new high Reynolds number inlet test capability for flush-mounted inlets; 2) provide a database for CFD tool validation; 3) evaluate the performance of S-duct inlets with large amounts of boundary layer ingestion; and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83. Reynolds numbers (based on duct exit diameter) from 5.1 million to a full-scale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of the experimental study indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise. The computational results captured the inlet pressure recovery and distortion trends with Mach number and inlet mass-flow well: the reversal of the pressure recovery trend with increasing inlet mass-flow at low and high Mach numbers was predicted by CFD. However, CFD results were generally more pessimistic (larger losses) than measured experimentally.

  13. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2012-11-01

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  14. Reform of experimental teaching based on quality cultivation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun

    2017-08-01

    Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.

  15. Targeted NextGen Capabilities for 2025

    DTIC Science & Technology

    2011-11-01

    increased arrival capacity to single runways by reducing longitudinal wake separation standards for Instrument Flight Rules ( IFR ) operations under certain...b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Targeted NextGen Capabilities...The examples cited are not intended to cover every aircraft and every flight. In some instances, the available capabilities for 2025 will not be

  16. Dispersion and Input Control Capability in European Large Size Reverberant Acoustic Chambers

    NASA Astrophysics Data System (ADS)

    Yarza, A.; Lopez, J.; Ozores, E.

    2012-07-01

    The acoustic test in reverberant chamber is one of the load cases to be proved during the environmental test campaign that demonstrates the capability of a space- unit to survive the launch phase. The crucial requirement for the large size structures is often the survival of the acoustic vibration test, and can be defined as the design driver load case in many circumstances. In addition, the commercial market demands lighter structures as an objective to reduce costs. For an efficient optimisation of the product it is very important to have powerful structural analysis tools in order to obtain knowledge of the structural needs and to refine existing methods for the prediction of structural loads experienced during acoustic testing. In the same line, as part of the contributors involved in the test it is important to acquire knowledge of the characteristics of the reverberant chamber itself and the behaviour of the fluid. With this purpose, EADS CASA Espacio (ECE) has used the measured data of the parameters of the fluid extracted from test of the deployable reflectors validated in the past five years, with the final objective to improve and optimise the capability to face up the acoustic test. In this paper experimental data extracted from acoustic tests performed to space-units are presented. Information related to two European large size acoustic chambers are used. The pressure field inside the acoustic chamber has been post-processed with the objective to study the behaviour of the fluid during the test. The diffuseness of the pressure field and the control capability of the acoustic profile are parameters to be considered as contributors for the design of the structures. The homogeneity of the microphones’ measurements is taken into account to describe the dispersion of the pressure inside the reverberant chamber along the frequency domain. Upon of that, the capability of the facilities to control the input profile is analysed from a statistical point of view

  17. Assessing sufficient capability: A new approach to economic evaluation.

    PubMed

    Mitchell, Paul Mark; Roberts, Tracy E; Barton, Pelham M; Coast, Joanna

    2015-08-01

    Amartya Sen's capability approach has been discussed widely in the health economics discipline. Although measures have been developed to assess capability in economic evaluation, there has been much less attention paid to the decision rules that might be applied alongside. Here, new methods, drawing on the multidimensional poverty and health economics literature, are developed for conducting economic evaluation within the capability approach and focusing on an objective of achieving "sufficient capability". This objective more closely reflects the concern with equity that pervades the capability approach and the method has the advantage of retaining the longitudinal aspect of estimating outcome that is associated with quality-adjusted life years (QALYs), whilst also drawing on notions of shortfall associated with assessments of poverty. Economic evaluation from this perspective is illustrated in an osteoarthritis patient group undergoing joint replacement, with capability wellbeing assessed using ICECAP-O. Recommendations for taking the sufficient capability approach forward are provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biometrics Enabling Capability Increment 1 (BEC Inc 1)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Biometrics Enabling Capability Increment 1 (BEC Inc 1) Defense Acquisition Management...Phone: 227-3119 DSN Fax: Date Assigned: July 15, 2015 Program Information Program Name Biometrics Enabling Capability Increment 1 (BEC Inc 1) DoD...therefore, no Original Estimate has been established. BEC Inc 1 2016 MAR UNCLASSIFIED 4 Program Description The Biometrics Enabling Capability (BEC

  19. Health, vital goals, and central human capabilities.

    PubMed

    Venkatapuram, Sridhar

    2013-06-01

    I argue for a conception of health as a person's ability to achieve or exercise a cluster of basic human activities. These basic activities are in turn specified through free-standing ethical reasoning about what constitutes a minimal conception of a human life with equal human dignity in the modern world. I arrive at this conception of health by closely following and modifying Lennart Nordenfelt's theory of health which presents health as the ability to achieve vital goals. Despite its strengths I transform Nordenfelt's argument in order to overcome three significant drawbacks. Nordenfelt makes vital goals relative to each community or context and significantly reflective of personal preferences. By doing so, Nordenfelt's conception of health faces problems with both socially relative concepts of health and subjectively defined wellbeing. Moreover, Nordenfelt does not ever explicitly specify a set of vital goals. The theory of health advanced here replaces Nordenfelt's (seemingly) empty set of preferences and society-relative vital goals with a human species-wide conception of basic vital goals, or 'central human capabilities and functionings'. These central human capabilities come out of the capabilities approach (CA) now familiar in political philosophy and economics, and particularly reflect the work of Martha Nussbaum. As a result, the health of an individual should be understood as the ability to achieve a basic cluster of beings and doings-or having the overarching capability, a meta-capability, to achieve a set of central or vital inter-related capabilities and functionings. © 2012 John Wiley & Sons Ltd.

  20. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, whichmore » could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.« less

  1. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.

    1992-01-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  2. Building Organisational Capability the Private Provider Way

    ERIC Educational Resources Information Center

    Guthrie, Hugh

    2008-01-01

    Organisational capability is recognised as a key to organisational success. The combination of human capital (peoples' skills and knowledge), social capital (relationships between people) and organisational capital (the organisation's processes), is central to building an organisation's capability. This paper, presented at the 2008 annual…

  3. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  4. International Space Station Capabilities and Payload Accommodations

    NASA Technical Reports Server (NTRS)

    Kugler, Justin; Jones, Rod; Edeen, Marybeth

    2010-01-01

    This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.

  5. Nuclide Depletion Capabilities in the Shift Monte Carlo Code

    DOE PAGES

    Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...

    2017-12-21

    A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.

  6. New single-aircraft integrated atmospheric observation capabilities

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2011-12-01

    Improving current weather and climate model capabilities requires better understandings of many atmospheric processes. Thus, advancing atmospheric observation capabilities has been regarded as the highest imperatives to advance the atmospheric science in the 21st century. Under the NSF CAREER support, we focus on developing new airborne observation capabilities through the developments of new instrumentations and the single-aircraft integration of multiple remote sensors with in situ probes. Two compact Wyoming cloud lidars were built to work together with a 183 GHz microwave radiometer, a multi-beam Wyoming cloud radar and in situ probes for cloud studies. The synergy of these remote sensor measurements allows us to better resolve the vertical structure of cloud microphysical properties and cloud scale dynamics. Together with detailed in situ data for aerosol, cloud, water vapor and dynamics, we developed the most advanced observational capability to study cloud-scale properties and processes from a single aircraft (Fig. 1). A compact Raman lidar was also built to work together with in situ sampling to characterize boundary layer aerosol and water vapor distributions for many important atmospheric processes studies, such as, air-sea interaction and convective initialization. Case studies will be presented to illustrate these new observation capabilities.

  7. Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model.

    PubMed

    Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2005-12-08

    This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).

  8. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  9. Joint Enabling Capabilities Command

    Science.gov Websites

    Executive Director Chief of Staff Joint Planning Support Element Joint Communications Support Element mission Joint Enabling Capabilities Command provides decisive joint communications, planning and public and responsive support for joint communications, planning and public affairs. Priorities * Deliver

  10. Sierra/SolidMechanics 4.48 Capabilities in Development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose

    This document is a user's guide for capabilities that are not considered mature but are available in Sierra/SolidMechanics (Sierra/SM) for early adopters. The determination of maturity of a capability is determined by many aspects: having regression and verification level testing, documentation of functionality and syntax, and usability are such considerations. Capabilities in this document are lacking in one or many of these aspects.

  11. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  12. Methodology for Conducting Analyses of Army Capabilities

    DTIC Science & Technology

    1992-06-01

    31 Determine Sensitivity of Operations to Functions ........................ 34 Generate Capability Issues ...40 Package and Prioritize Issues ..................................... 40 IDENTIFY AND ASSESS CAPABILITY IMPROVEMENTS .................. 43 Generate...identify critical issues , and make force modernization recommendations to Headquarters, Depart- ment of the Army (HQDA). The work described in this report

  13. Defining and Assessing Enterprise Capability in Schools

    ERIC Educational Resources Information Center

    Davies, Peter; Hughes, Amanda

    2015-01-01

    This paper describes the development of an instrument for assessing enterprise capability in schools. The approach to assessing enterprise capability builds on previous work by including three dimensions: self-efficacy, aspirations and knowledge and awareness. We find significant but weak associations between these three constructs suggesting that…

  14. Capability and Health Functioning in Ethiopian Households

    ERIC Educational Resources Information Center

    Mabsout, Ramzi

    2011-01-01

    From a recent Ethiopian representative household survey this paper empirically operationalizes concepts from the capability approach to shed light on the relationship between conversion factors, capability inputs and health functionings. The subjects of the study are women in partnership. The results suggest their health functionings are…

  15. High field side launch of RF waves: A new approach to reactor actuators

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.

    2015-12-01

    challenges associated with locating antenna structures on the HFS can be overcome if HFS antennas are incorporated in the overall experimental design from the start. The Advanced Divertor and radio frequency eXperiment(ADX) will include LH and ICRF antennas located on the HFS. Compact antenna designs based on proven technologies (e.g. multi-junction and "4-way splitter" antennas) fit within the available space on the HFS of ADX. Field aligned ICRF antennas are also located on the HFS. The ADX vacuum vessel design includes dedicated space for transmission lines, pressure windows, and vacuum feedthrus for accessing the HFS wall.

  16. EXPERIMENTAL THYROIDISM

    PubMed Central

    Cunningham, R. H.

    1898-01-01

    From the results of the various experiments already detailed I feel justified in drawing the following conclusions: (1) Absolutely fresh thyroid gland is not poisonous, in the usual sense of the term, when absorbed through the alimentary canal. (2) The symptoms of induced thyroidism are manifestations of an intoxication resulting from the ingestion of decomposed thyroid material, a conclusion that agrees in part with the previously related observations of Lanz. (3) The so-called experimental thyroidism is not specific for the thyroid only, for the ingestion of many substances derived from animal tissues other than the thyroid gland may produce an intoxication strikingly similar in every respect to that of experimental thyroidism. (4) Most, if not all, animal tissues yield substances which, if injected in large quantities directly into the circulation or beneath the skin, will produce an intoxication often very similar to that produced by injections of various substances derived from the fresh thyroid tissue. (5) The effects resulting from the intravascular or subcutaneous injections of aqueous extracts, decoctions and the concentrated extractives of the thyroid tissue, of the thymus, of muscle, etc., are by no means necessarily indicative of the function and the action of the hypothetical internal secretions of the same tissues during life. (6) The utilization of the fact that ingestion of decomposed thyroid material produces on certain occasions an intoxication with certain symptoms similar to some of those of G-raves' disease is not justifiable for the furtherance of the theory that the symptoms of exophthalmic goitre result from an over-production of the thyroid secretion. (7) Our results lead us to conclude with Drechsel that the fresh thyroid tissue yields at least probably two substances that are capable of palliating the symptoms of the acute cachexia in totally thyroidless dogs. (8) The thymus tissue also yields one and probably two substances that are as

  17. Experimental Verification of a Dynamic Voltage Restorer Capable of Significantly Reducing an Energy-Storage Element

    NASA Astrophysics Data System (ADS)

    Jimichi, Takushi; Fujita, Hideaki; Akagi, Hirofumi

    This paper deals with a dynamic voltage restorer (DVR) characterized by installing the shunt converter at the load side. The DVR can compensate for the load voltage when a voltage sag appears in the supply voltage. An existing DVR requires a large capacitor bank or other energy-storage elements such as double-layer capacitors or batteries. The DVR presented in this paper requires only a small dc capacitor intended for smoothing the dc-link voltage. Moreover, three control methods for the series converter are compared and discussed to reduce the series-converter rating, paying attention to the zero-sequence voltages included in the supply voltage and the compensating voltage. Experimental results obtained from a 200-V, 5-kW laboratory system are shown to verify the viability of the system configuration and the control methods.

  18. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  19. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  20. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  1. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  2. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  3. 47 CFR 1.20006 - Assistance capability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Assistance capability requirements. 1.20006... regarding wire and electronic communications and call-identifying information, see 47 U.S.C. 1002. A carrier... equipment, facilities, and services comply with the assistance capability requirements of 47 U.S.C. 1002. (c...

  4. Highlights of the Alcator C-Mod Research Campaign

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Alcator Team

    2011-10-01

    Alcator C-Mod has completed an experimental campaign focusing on broad scientific issues with particular emphasis on ITER needs and requests. Experiments with no NBI torque have investigated spontaneous flow reversal, creation of transport barriers aided by the shear of intrinsic rotation and a variety of RF flow drive schemes. Studies of I-mode have found conditions where a wide operating regime opens up, allowing easy access to long-lived, high-performance discharges with L-mode like particle confinement. We are validating the EPED and BOUT++ models for pedestal height/width and ELM onset using extended parameter scans in ELMy H-mode. The challenge of high-Z impurity generation with ICRF is being addressed first by deployment of a novel antenna whose current straps and antenna box are perpendicular to the total magnetic field -second by studies of the modification of edge impurity transport, where fine-scale Er structures in the SOL in the presence of ICRF heating have been found. LH current drive has produced non-inductive reversed shear regimes at n ~ 5x1019 which exhibit electron temperature ITBs. The first observations have been made of in-tokamak production of divertor tungsten nano-structures (fuzz), which had previously been seen only in linear laboratory experiments. Supported by DoE DE-FC02-99ER54512.

  5. Occupational Therapists' Views of Nussbaum's Life Capability: An Exploratory Study.

    PubMed

    Mousavi, Tahmineh; Dharamsi, Shafik; Forwell, Susan; Dean, Elizabeth

    2015-10-01

    Life Capability is the first and most fundamental of Nussbaum's 10 Central Human Functional Capabilities (CHFCs). This capability refers to a person having a quality life of normal duration. The purpose of this study was to explore the views' of occupational therapists about Life Capability, specifically, their perspectives of this capability and its perceived relevance to practice. Semi-structured interviews with 14 occupational therapists in British Columbia, Canada, were conducted and thematically analyzed. Within this Canadian context, three themes emerged regarding occupational therapists' views about Life Capability: basic human right, quality of life, and longevity. Occupational therapists appear to view Life Capability as being consistent with the values of the occupational therapy profession. Nussbaum's other CHFCs warrant study to explore the degree to which the Capabilities Approach could complement existing occupational therapy theories, science, and practice. © The Author(s) 2015.

  6. Pretreatment Capabilities and Benefits of Electrocoagulation

    DTIC Science & Technology

    2004-12-01

    PRETREATMENT CAPABILITIES AND BENEFITS OF ELECTROCOAGULATION Michael Mickley Mickley & Associates Boulder, Colorado...DATES COVERED - 4. TITLE AND SUBTITLE Pretreatment Capabilities and Benefits of Electrocoagulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...4 2.1 Background for Electrocoagulation Technology ………………………. 4 2.1.1 Applications ……………………………………………………. 4 2.1.2

  7. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by amore » new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.« less

  8. Exploration Medical Capability System Engineering Overview

    NASA Technical Reports Server (NTRS)

    Mindock, J.; McGuire, K.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  9. Robotic follower experimentation results: ready for FCS increment I

    NASA Astrophysics Data System (ADS)

    Jaczkowski, Jeffrey J.

    2003-09-01

    Robotics is a fundamental enabling technology required to meet the U.S. Army's vision to be a strategically responsive force capable of domination across the entire spectrum of conflict. The U. S. Army Research, Development and Engineering Command (RDECOM) Tank Automotive Research, Development & Engineering Center (TARDEC), in partnership with the U.S. Army Research Laboratory, is developing a leader-follower capability for Future Combat Systems. The Robotic Follower Advanced Technology Demonstration (ATD) utilizes a manned leader to provide a highlevel proofing of the follower's path, which operates with minimal user intervention. This paper will give a programmatic overview and discuss both the technical approach and operational experimentation results obtained during testing conducted at Ft. Bliss, New Mexico in February-March 2003.

  10. Practitioner perspectives on foundational capabilities.

    PubMed

    Leider, Jonathon P; Juliano, Chrissie; Castrucci, Brian C; Beitsch, Leslie M; Dilley, Abby; Nelson, Rachel; Kaiman, Sherry; Sprague, James B

    2015-01-01

    National efforts are underway to classify a minimum set of public health services that all jurisdictions throughout the United States should provide regardless of location. Such a set of basic programs would be supported by crosscutting services, known as the "foundational capabilities" (FCs). These FCs are assessment services, preparedness and disaster response, policy development, communications, community partnership, and organizational support activities. To ascertain familiarity with the term and concept of FCs and gather related perspectives from state and local public health practitioners. In fall 2013, we interviewed 50 leaders from state and local health departments. We asked about familiarity with the term "foundational capabilities," as well as the broader concept of FCs. We attempted to triangulate the utility of the FC concept by asking respondents about priority programs and services, about perceived unique contributions made by public health, and about prevalence and funding for the FCs. Telephone-based interviews. Fifty leaders of state and local health departments. Practitioner familiarity with and perspectives on the FCs, information about current funding streams for public health, and the likelihood of creating nationwide FCs that would be recognized and accepted by all jurisdictions. Slightly more than half of the leaders interviewed said that they were familiar with the concept of FCs. In most cases, health departments had all of the capabilities to some degree, although operationalization varied. Few indicated that current funding levels were sufficient to support implementing a minimum level of FCs nationally. Respondents were not able to articulate the current or optimal levels of services for the various capabilities, nor the costs associated with them. Further research is needed to understand the role of FCs as part of the foundational public health services.

  11. Direct Laser Writing of Single-Material Sheets with Programmable Self-Rolling Capability

    NASA Astrophysics Data System (ADS)

    Bauhofer, Anton; KröDel, Sebastian; Bilal, Osama; Daraio, Chiara; Constantinescu, Andrei

    Direct laser writing, a sub-class of two-photon polymerization, facilitates 3D-printing of single-material microstructures with inherent residual stresses. Here we show that controlled distribution of these stresses allows for fast and cost-effective fabrication of structures with programmable self-rolling capability. We investigate 2D sheets that evolve into versatile 3D structures. Precise control over the shape morphing potential is acquired through variations in geometry and writing parameters. Effects of capillary action and gravity were shown to be relevant for very thin sheets (thickness <1.5um) and have been analytically and experimentally quantified. In contrast to that, the deformations of sheets with larger thickness (>1.5um) are dominated by residual stresses and adhesion forces. The presented structures create local tensions up to 180MPa, causing rolling curvatures of 25E3m-1. A comprehensive analytical model that captures the relevant influence factors was developed based on laminate plate theory. The predicted curvature and directionality correspond well with the experimentally obtained data. Potential applications are found in drug encapsulation and particle traps for emulsions with differing surface energies. This work was supported by the Swiss National Science Foundation.

  12. 48 CFR 5231.205-90 - Shipbuilding capability preservation agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Shipbuilding capability... Organizations 5231.205-90 Shipbuilding capability preservation agreements. (a) Scope and authority. Where it... enter into a shipbuilding capability preservation agreement with a contractor. As authorized by section...

  13. 48 CFR 5231.205-90 - Shipbuilding capability preservation agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Shipbuilding capability... Organizations 5231.205-90 Shipbuilding capability preservation agreements. (a) Scope and authority. Where it... enter into a shipbuilding capability preservation agreement with a contractor. As authorized by section...

  14. 48 CFR 5231.205-90 - Shipbuilding capability preservation agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Shipbuilding capability... Organizations 5231.205-90 Shipbuilding capability preservation agreements. (a) Scope and authority. Where it... enter into a shipbuilding capability preservation agreement with a contractor. As authorized by section...

  15. 48 CFR 5231.205-90 - Shipbuilding capability preservation agreements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Shipbuilding capability... Organizations 5231.205-90 Shipbuilding capability preservation agreements. (a) Scope and authority. Where it... enter into a shipbuilding capability preservation agreement with a contractor. As authorized by section...

  16. Geometry and gravity influences on strength capability

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.

    1994-01-01

    Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.

  17. Building IT capability in health-care organizations.

    PubMed

    Khatri, Naresh

    2006-05-01

    While computer technology has revolutionized industries such as banking and airlines, it has done little for health care so far. Most of the health-care organizations continue the early-computer-era practice of buying the latest technology without knowing how it might effectively be employed in achieving business goals. By investing merely in information technology (IT) rather than in IT capabilities they acquire IT components--primarily hardware, software, and vendor-provided services--which they do not understand and, as a result, are not capable of fully utilizing for achieving organizational objectives. In the absence of internal IT capabilities, health-care organizations have relied heavily on the fragmented IT vendor market in which vendors do not offer an open architecture, and are unwilling to offer electronic interfaces that would make their 'closed' systems compatible with those of other vendors. They are hamstrung as a result because they have implemented so many different technologies and databases that information stays in silos. Health systems can meet this challenge by developing internal IT capabilities that would allow them to seamlessly integrate clinical and business IT systems and develop innovative uses of IT. This paper develops a comprehensive conception of IT capability grounded in the resource-based theory of the firm as a remedy to the woes of IT investments in health care.

  18. Transit satellite system timing capabilities

    NASA Technical Reports Server (NTRS)

    Finsod, T. D.

    1978-01-01

    Current time transfer capabilities of the Transit Satellite System are reviewed. Potential improvements in the changes in equipment and operational procedures using operational satellites are discussed.

  19. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  20. The silicon vidicon: Integration, storage and slow scan capability - Experimental observation of a secondary mode of operation.

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1971-01-01

    Description of the performance of the silicon diode array vidicon - an imaging sensor which possesses wide spectral response, high quantum efficiency, and linear response. These characteristics, in addition to its inherent ruggedness, simplicity, and long-term stability and operating life make this device potentially of great usefulness for ground-base and spaceborne planetary and stellar imaging applications. However, integration and charged storage for periods greater than approximately five seconds are not possible at room temperature because of diode saturation from dark current buildup. Since dark current can be reduced by cooling, measurements were made in the range from -65 to 25 C. Results are presented on the extension of integration, storage, and slow scan capabilities achievable by cooling. Integration times in excess of 20 minutes were achieved at the lowest temperatures. The measured results are compared with results obtained with other types of sensors and the advantages of the silicon diode array vidicon for imaging applications are discussed.

  1. Cultivating Human Capabilities in Venturesome Learning Environments

    ERIC Educational Resources Information Center

    Hogan, Padraig

    2013-01-01

    The notion of competencies has been a familiar feature of educational reform policies for decades. In this essay, Padraig Hogan begins by highlighting the contrasting notion of capabilities, pioneered by the research of Amartya Sen and Martha Nussbaum. An educational variant of the notion of capabilities then becomes the basis for exploring…

  2. A Cyanobacterium Capable of Swimming Motility

    NASA Astrophysics Data System (ADS)

    Waterbury, John B.; Willey, Joanne M.; Franks, Diana G.; Valois, Frederica W.; Watson, Stanley W.

    1985-10-01

    A novel cyanobacterium capable of swimming motility wass isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.

  3. Anti-proliferative effects, cell cycle G2/M phase arrest and blocking of chromosome segregation by probimane and MST-16 in human tumor cell lines

    PubMed Central

    Lu, Da Yong; Huang, Min; Xu, Cheng Hui; Yang, Wei Yi; Hu, Chao Xin; Lin, Li Ping; Tong, Lin Jiang; Li, Mei Hong; Lu, Wei; Zhang, Xiong Wen; Ding, Jian

    2005-01-01

    Background Anticancer bisdioxopiperazines, including ICRF-154, razoxane (Raz, ICRF-159) and ICRF-193, are a family of anticancer agents developed in the UK, especially targeting metastases of neoplasms. Two other bisdioxopiperazine derivatives, probimane (Pro) and MST-16, were synthesized at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. Cytotoxic activities and mechanisms of Raz (+)-steroisomer (ICRF-187, dexrazoxane), Pro and MST-16 against tumor cells were evaluated by MTT colorimetry, flow cytometry and karyotyping. Results Pro was cytotoxic to human tumor cell lines in vitro (IC50<50 μM for 48 h). Four human tumor cell lines (SCG-7901, K562, A549 and HL60) were susceptible to Pro at low inhibitory concentrations (IC50 values < 10 μM for 48 h). Although the IC50 against HeLa cell line of vincristine (VCR, 4.56 μM), doxorubicin (Dox, 1.12 μM) and 5-fluoruouracil (5-Fu, 0.232 μM) are lower than Pro (5.12 μM), ICRF-187 (129 μM) and MST-16 (26.4 μM), VCR, Dox and 5-Fu shows a low dose-related – high cytotoxic activity. Time-response studies showed that the cytotoxic effects of Pro are increased for 3 days in human tumor cells, whereas VCR, Dox and 5-Fu showed decreased cytotoxic action after 24 h. Cell cycle G2/M phase arrest and chromosome segregation blocking by Pro and MST-16 were noted. Although there was similar effects of Pro and MST-16 on chromosome segregation blocking action and cell cycle G2/M phase arrest at 1- 4 μM, cytotoxicity of Pro against tumor cells was higher than that of MST-16 in vitro by a factor of 3- 10 folds. Our data show that Pro may be more effective against lung cancer and leukemia while ICRF-187 and MST-16 shows similar IC50 values only against leukemia. Conclusion It suggests that Pro has a wider spectrum of cytotoxic effects against human tumor cells than other bisdioxopiperazines, especially against solid tumors, and with a single cytotoxic pathway of Pro and MST-16 affecting

  4. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  5. Capabilities for Intercultural Dialogue

    ERIC Educational Resources Information Center

    Crosbie, Veronica

    2014-01-01

    The capabilities approach offers a valuable analytical lens for exploring the challenge and complexity of intercultural dialogue in contemporary settings. The central tenets of the approach, developed by Amartya Sen and Martha Nussbaum, involve a set of humanistic goals including the recognition that development is a process whereby people's…

  6. Developing "Assessment Capable" Learners

    ERIC Educational Resources Information Center

    Frey, Nancy; Fisher, Douglas; Hattie, John

    2018-01-01

    For students, the authors argue, the ability to assess their own learning--that is, to actively understand their own progress and trajectory--can have a significant impact on achievement levels. The authors discuss factors associated with "assessment-capable learners" and offer examples of how to foster such characteristics in classrooms.

  7. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environmentmore » without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.« less

  8. The ISS Fluids Integrated Rack (FIR): a Summary of Capabilities

    NASA Astrophysics Data System (ADS)

    Gati, F.; Hill, M. E.

    2002-01-01

    the top and bottom of the rack. Transmission of micro-gravity disturbances to and from the rack is minimized through the Active Rack Isolation System (ARIS). The environmental subsystem will utilize air and water to remove heat generated by facility and experimental hardware. The air will be circulated throughout the rack and will be cooled by an air-water heat exchanger. Water will be used directly to cool some of the FIR components and will also be available to cool experiment hardware as required. The electrical subsystem includes the Electrical Power Control Unit (EPCU), which provides 28 VDC and 120 VDC power to the facility and the experiment hardware. The EPCU will also provide power management and control functions, as well as fault protection capabilities. The FIR will provide access to the ISS gaseous nitrogen and vacuum systems. These systems are available to support experiment operations such as the purging of experimental cells, creating flows within experimental cells and providing dry conditions where needed. The FIR Command and Data Management subsystem (CDMS) provides command and data handling for both facility and experiment hardware. The Input Output Processor (IOP) provides the overall command and data management functions for the rack including downlinking or writing data to removable drives. The IOP will also monitor the health and status of the rack subsystems. The Image Processing and Storage Units (IPSU) will perform diagnostic control and image data acquisition functions. An IPSU will be able to control a digital camera, receive image data from that camera and process/ compress image data as necessary. The Fluids Science and Avionics Package (FSAP) will provide the primary control over an experiment. The FSAP contains various computer boards/cards that will perform data and control functions. To support the imaging needs, cameras and illumination sources will be available to the investigator. Both color analog and black and white digital

  9. Conceptualizing and assessing improvement capability: a review

    PubMed Central

    Boaden, Ruth; Walshe, Kieran

    2017-01-01

    Abstract Purpose The literature is reviewed to examine how ‘improvement capability’ is conceptualized and assessed and to identify future areas for research. Data sources An iterative and systematic search of the literature was carried out across all sectors including healthcare. The search was limited to literature written in English. Data extraction The study identifies and analyses 70 instruments and frameworks for assessing or measuring improvement capability. Information about the source of the instruments, the sectors in which they were developed or used, the measurement constructs or domains they employ, and how they were tested was extracted. Results of data synthesis The instruments and framework constructs are very heterogeneous, demonstrating the ambiguity of improvement capability as a concept, and the difficulties involved in its operationalisation. Two-thirds of the instruments and frameworks have been subject to tests of reliability and half to tests of validity. Many instruments have little apparent theoretical basis and do not seem to have been used widely. Conclusion The assessment and development of improvement capability needs clearer and more consistent conceptual and terminological definition, used consistently across disciplines and sectors. There is scope to learn from existing instruments and frameworks, and this study proposes a synthetic framework of eight dimensions of improvement capability. Future instruments need robust testing for reliability and validity. This study contributes to practice and research by presenting the first review of the literature on improvement capability across all sectors including healthcare. PMID:28992146

  10. NASA Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space

  11. NASA's Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created

  12. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing

    2013-08-01

    The method of directly printing liquid metal films as highly conductive and super compliant electrodes for dielectric elastomer actuator (DEA) was proposed and experimentally demonstrated with working mechanisms interpreted. Such soft electrodes enable DE film to approach its maximum strain and stress at relatively low voltages. Further, its unique capability of achieving two-dimensional in-plane self-healing by merely actuating the DEA was disclosed, which would allow actuators more tolerant to fault and resilient to abusive environments. This high performance actuator has important value in a wide spectrum of situations ranging from artificial muscle, flexible electronics to smart clothing etc.

  13. Assessment of the MHD capability in the ATHENA code using data from the ALEX facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1989-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.

  14. Australian Space Situational Awareness Capability Demonstrations

    NASA Astrophysics Data System (ADS)

    Morreale, B.; Bessell, T.; Rutten, M.; Cheung, B.

    Australia is increasing its contribution to the global space situational awareness (SSA) problem by committing to acquire and operate SSA sensors. Over the last year, a series of collaborative SSA experiments have been undertaken to demonstrate the capabilities of Australian sensors. These experiments aimed to demonstrate how existing Australian sensors could perform in a surveillance of space role, prove passive radar’s capability to observe low earth orbit (LEO) satellites and perform SSA handoffs to optical sensors. The trials established a data sharing and communications protocol that bridged defence, academia, and industry partners. Geographically dispersed optical assets, including the Falcon telescope in Canberra, Raven telescopes in Exmouth (Western Australia) and Defence Science and Technology (DST) Telescopes in Adelaide (South Australia) collected on LEO satellites and established cueing protocols. The Murchison Widefield Array (MWA) located in Western Australia, demonstrated the capability of passive radar as an SSA asset after successfully observing LEO satellites based on reflected terrestrial radio signals. The combination of radar and optical SSA assets allows for the exploitation of each sensors unique advantages and locations across the Australian continent. This paper outlines the capabilities and diversity of Australian optical and radar sensors as demonstrated by field trials in 2016 and 2017. It suggests future potential for harnessing novel radar and optical integration techniques to supplement high-value assets such as the Space Surveillance Telescope as part of the Space Surveillance Network.

  15. Upgrade of U.S. EPA's Experimental Stream Facility Supervisory Control and Data Acquisition System

    EPA Science Inventory

    The Supervisory control and data acquisition (SCADA) system for the U.S. EPA’s Experimental Stream Facility (ESF) was upgraded using Camile hardware and software in 2015. The upgrade added additional hardwired connections, new wireless capabilities, and included a complete rewrit...

  16. Trends in Microfabrication Capabilities & Device Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Todd; Jones, Adam; Lentine, Anthony L.

    The last two decades have seen an explosion in worldwide R&D, enabling fundamentally new capabilities while at the same time changing the international technology landscape. The advent of technologies for continued miniaturization and electronics feature size reduction, and for architectural innovations, will have many technical, economic, and national security implications. It is important to anticipate possible microelectronics development directions and their implications on US national interests. This report forecasts and assesses trends and directions for several potentially disruptive microfabrication capabilities and device architectures that may emerge in the next 5-10 years.

  17. Contingent Capability of a Conceived Child: Civil Law Aspect

    ERIC Educational Resources Information Center

    Kirillova, Elena A.; Suslikov, Vladimir N.; Blinkova, Elena V.; Blinkov, Oleg E.; Staroseltseva, Marina M.

    2016-01-01

    This paper covers on contingent legal capability of a conceived child. To protect the capability of conceived children and legal rights, including property, emerging on that basis, it is imperative to strictly identify the moment of emergence and termination of legal capability. The objective of this research is to analyze the provisions on civil…

  18. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  19. Study of capabilities and limitations of 3D printing technology

    NASA Astrophysics Data System (ADS)

    Lemu, H. G.

    2012-04-01

    3D printing is one of the developments in rapid prototyping technology. The inception and development of the technology has highly assisted the product development phase of product design and manufacturing. The technology is particularly important in educating product design and 3D modeling because it helps students to visualize their design idea, to enhance their creative design process and enables them to touch and feel the result of their innovative work. The availability of many 3D printers on the market has created a certain level of challenge for the user. Among others, complexity of part geometry, material type, compatibility with 3D CAD models and other technical aspects still need in-depth study. This paper presents results of the experimental work on the capabilities and limitations of the Z510 3D printer from Z-corporation. Several parameters such as dimensional and geometrical accuracy, surface quality and strength as a function of model size, orientation and file exchange format are closely studied.

  20. Development of JSDF Cyber Warfare Defense Critical Capability

    DTIC Science & Technology

    2010-03-01

    attack identification capability is essential for a nation to defend her vital infrastructures against offensive cyber warfare . Although the necessity of...cyber-attack identification capability is quite clear, the Japans preparation against cyber warfare is quite limited.

  1. Technique development for modulus, microcracking, hermeticity, and coating evaluation capability characterization of SiC/SiC tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xunxiang; Ang, Caen K.; Singh, Gyanender P.

    Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge Nationalmore » Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.« less

  2. Exploration Medical Capability - Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, Michael; Watkins, Sharmila; Barr, Yael; Barsten, Kristina; Fung, Paul; Baumann, David

    2011-01-01

    The objectives of the Technology Watch process are to identify emerging, high-impact technologies that augment current ExMC development efforts, and to work with academia, industry, and other government agencies to accelerate the development of medical care and research capabilities for the mitigation of potential health issues that could occur during space exploration missions. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion. Such collaborations also further NASA s goal to provide a safe and healthy environment for human exploration. The Tech Watch project addresses requirements and capabilities identified by knowledge and technology gaps that are derived from a discrete set of medical conditions that are most likely to occur on exploration missions. These gaps are addressed through technology readiness level assessments, market surveys, collaborations and distributed innovation opportunities. Ultimately, these gaps need to be closed with respect to exploration missions, and may be achieved through technology development projects. Information management is a key aspect to this process where Tech Watch related meetings, research articles, collaborations and partnerships are tracked by the HRP s Exploration Medical Capabilities (ExMC) Element. In 2011, ExMC will be introducing the Tech Watch external website and evidence wiki that will provide access to ExMC technology and knowledge gaps, technology needs and requirements documents.

  3. Installation of automatic control at experimental breeder reactor II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, H.A.; Booty, W.F.; Chick, D.R.

    1985-08-01

    The Experimental Breeder Reactor II (EBR-II) has been modified to permit automatic control capability. Necessary mechanical and electrical changes were made on a regular control rod position; motor, gears, and controller were replaced. A digital computer system was installed that has the programming capability for varied power profiles. The modifications permit transient testing at EBR-II. Experiments were run that increased power linearly as much as 4 MW/s (16% of initial power of 25 MW(thermal)/s), held power constant, and decreased power at a rate no slower than the increase rate. Thus the performance of the automatic control algorithm, the mechanical andmore » electrical control equipment, and the qualifications of the driver fuel for future power change experiments were all demonstrated.« less

  4. Project CAPABLE: Model Unit.

    ERIC Educational Resources Information Center

    Madawaska School District, ME.

    Project CAPABLE (Classroom Action Program: Aim: Basic Learning Effectiveness) is a classroom approach which integrates the basic learning skills with content. The goal of the project is to use basic learning skills to enhance the learning of content and at the same time use the content to teach basic learning skills. This manual illustrates how…

  5. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  6. Defining Medical Capabilities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Antonsen, E.; Blue, R.; Reyes, D.; Mulcahy, R.; Kerstman, E.; Bayuse, T.

    2018-01-01

    Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.

  7. From fish to fashion: experimental and theoretical insights into the evolution of culture

    PubMed Central

    Laland, K. N.; Atton, N.; Webster, M. M.

    2011-01-01

    Recent years have witnessed a re-evaluation of the cognitive capabilities of fishes, including with respect to social learning. Indeed, some of the best experimental evidence for animal traditions can be found in fishes. Laboratory experimental studies reveal that many fishes acquire dietary, food site and mating preferences, predator recognition and avoidance behaviour, and learn pathways, through copying1 other fishes. Concentrating on foraging behaviour, we will present the findings of laboratory experiments that reveal social learning, behavioural innovation, the diffusion of novel behaviour through populations and traditional use of food sites. Further studies reveal surprisingly complex social learning strategies deployed by sticklebacks. We will go on to place these observations of fish in a phylogenetic context, describing in which respects the learning and traditionality of fish are similar to, and differ from, that observed in other animals. We end by drawing on theoretical insights to suggest processes that may have played important roles in the evolution of the human cultural capability. PMID:21357218

  8. Advanced Power System Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.

  9. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai

    2016-10-01

    To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.

  10. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties ofmore » the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.« less

  11. Effect of present technology on airship capabilities

    NASA Technical Reports Server (NTRS)

    Madden, R. T.

    1975-01-01

    The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.

  12. Stakeholder Alignment and Changing Geospatial Information Capabilities

    NASA Astrophysics Data System (ADS)

    Winter, S.; Cutcher-Gershenfeld, J.; King, J. L.

    2015-12-01

    Changing geospatial information capabilities can have major economic and social effects on activities such as drought monitoring, weather forecasts, agricultural productivity projections, water and air quality assessments, the effects of forestry practices and so on. Whose interests are served by such changes? Two common mistakes are assuming stability in the community of stakeholders and consistency in stakeholder behavior. Stakeholder communities can reconfigure dramatically as some leave the discussion, others enter, and circumstances shift — all resulting in dynamic points of alignment and misalignment . New stakeholders can bring new interests, and existing stakeholders can change their positions. Stakeholders and their interests need to be be considered as geospatial information capabilities change, but this is easier said than done. New ways of thinking about stakeholder alignment in light of changes in capability are presented.

  13. Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  14. Impact of quasar proper motions on the alignment between the International Celestial Reference Frame and the Gaia reference frame

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Malkin, Z.; Zhu, Z.

    2018-03-01

    The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.

  15. Ohmic ITBs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rowan, W. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.

    2007-11-01

    Internal transport barrier plasmas can arise spontaneously in ohmic Alcator C-Mod plasmas where an EDA H-mode has been developed by magnetic field ramping. These ohmic ITBs share the hallmarks of ITBs created with off-axis ICRF injection in that they have highly peaked density and pressure profiles and the peaking can be suppressed by on-axis ICRF. There is a reduction of particle and thermal flux in the barrier region which then allows the neoclassical pinch to peak the central density. Recent work on ITB onset conditions [1] which was motivated by turbulence studies [2] points to the broadening of the Ti profile with off-axis ICRF acting to reduce the ion temperature gradient. This suppresses ITG instability driven particle fluxes, which is thought to be the primary mechanism for ITB formation. The object of this study is to examine the characteristics of ohmic ITBs to find whether the stability of plasmas and the plasma parameters support the onset model. [1]K. Zhurovich, et al., To be published in Nuclear Fusion [2] D. R. Ernst, et al., Phys. Plasmas 11, 2637 (2004)

  16. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner; Sam Bhattacharyya; Mike Houts

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less

  17. Cyber Capabilities for Global Strike in 2035

    DTIC Science & Technology

    2012-02-15

    operations force, by treating cyber warfare capabilities in the same manner as it treats its other weapon systems. It argues that despite preconceptions of...As such, while automation is required, cyber warfare will be much more manpower intensive than is currently understood, and will require a force that...constantly keeping cyber warfare capabilities in pace with the technologies of the environment.This paper reaches these conclusions by first providing a

  18. Cyber Capabilities for Global Strike in 2035

    DTIC Science & Technology

    2012-02-15

    operations force, by treating cyber warfare capabilities in the same manner as it treats its other weapon systems. It argues that despite preconceptions of...As such, while automation is required, cyber warfare will be much more manpower intensive than is currently understood, and will require a force...constantly keeping cyber warfare capabilities in pace with the technologies of the environment. This paper reaches these conclusions by first providing a

  19. Steady-state capabilities for hydroturbines with OpenFOAM

    NASA Astrophysics Data System (ADS)

    Page, M.; Beaudoin, M.; Giroux, A. M.

    2010-08-01

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  20. An Overview of Power Capability Requirements for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak

    2005-01-01

    Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.

  1. Defence Capability Plan 2009

    DTIC Science & Technology

    2009-01-01

    components or systems to prevent the unauthorised opening of the system, access to the internal workings or Intellectual Property . > Armoured vehicles. This...This is the ability to repair specialist alloys and composite materials, to develop new repair techniques and to undertake precision machining of...Selected ballistic munitions and explosives. This capability relates to the manufacture of some high usage munitions, ammunition components

  2. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  3. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature.

    PubMed

    Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1  h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  4. Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne W.; Spry, James A.; Ronney, Paul D.; Pandian, Nathan R.; Welder, Eric

    2012-01-01

    The objective of this research was to design, build, and test an experimental apparatus for studying the parameters of atmospheric entry heating, and the inactivation of temperature-resistant bacterial spores. The apparatus is capable of controlled, rapid heating of sample coupons to temperatures of 200 to 350 C and above. The vacuum chamber permits operation under vacuum or special atmospheric gas mixtures.

  5. Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun

    2018-07-01

    Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.

  6. Strategic Capability Development in the Higher Education Sector

    ERIC Educational Resources Information Center

    Brown, Paul

    2004-01-01

    The research adopts a case study approach (in higher education) to investigate how strategic capabilities might be developed in an organisation through strategic management development (SMD). SMD is defined as "Management development interventions which are intended to enhance the strategic capability and corporate performance of an…

  7. Threshold Capability Development in Intensive Mode Business Units

    ERIC Educational Resources Information Center

    Crispin, Stuart; Hancock, Phil; Male, Sally Amanda; Baillie, Caroline; MacNish, Cara; Leggoe, Jeremy; Ranmuthugala, Dev; Alam, Firoz

    2016-01-01

    Purpose: The purpose of this paper is to explore: student perceptions of threshold concepts and capabilities in postgraduate business education, and the potential impacts of intensive modes of teaching on student understanding of threshold concepts and development of threshold capabilities. Design/Methodology/Approach: The student experience of…

  8. Automation of experimental research of waveguide paths induction soldering

    NASA Astrophysics Data System (ADS)

    Tynchenko, V. S.; Petrenko, V. E.; Kukartsev, V. V.; Tynchenko, V. V.; Antamoshkin, O. A.

    2018-05-01

    The article presents an automated system of experimental studies of the waveguide paths induction soldering process. The system is a part of additional software for a complex of automated control of the technological process of induction soldering of thin-walled waveguide paths from aluminum alloys, expanding its capabilities. The structure of the software product, the general appearance of the controls and the potential application possibilities are presented. The utility of the developed application by approbation in a series of field experiments was considered and justified. The application of the experimental research system makes it possible to improve the process under consideration, providing the possibility of fine-tuning the control regulators, as well as keeping the statistics of the soldering process in a convenient form for analysis.

  9. Description of Liquid Nitrogen Experimental Test Facility

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.

    1991-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  10. Description of liquid nitrogen experimental test facility

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.

    1992-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  11. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.

  12. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  13. A murine experimental anthracycline extravasation model: pathology and study of the involvement of topoisomerase II alpha and iron in the mechanism of tissue damage.

    PubMed

    Thougaard, Annemette V; Langer, Seppo W; Hainau, Bo; Grauslund, Morten; Juhl, Birgitte Ravn; Jensen, Peter Buhl; Sehested, Maxwell

    2010-02-28

    The bisdioxopiperazine topoisomerase II catalytic inhibitor dexrazoxane has successfully been introduced into the clinic as an antidote to accidental anthracycline extravasation based on our preclinical mouse studies. The histology of this mouse extravasation model was investigated and found to be similar to findings in humans: massive necrosis in the subcutis, dermis and epidermis followed by sequestration and healing with granulation tissue, and a graft-versus-host-like reaction with hyperkeratotic and acanthotic keratinocytes, occasional apoptoses, epidermal invasion by lymphocytes and healing with dense dermal connective tissue. The extension of this fibrosis was quantified, and dexrazoxane intervention resulted in a statistically significant decrease in fibrosis extension, as also observed in the clinic. Several mechanisms have been proposed in anthracycline extravasation cytotoxicity, and we tested two major hypotheses: (1) interaction with topoisomerase II alpha and (2) the formation of tissue damaging reactive oxygen species following redox cycling of an anthracycline Fe(2+) complex. Dexrazoxane could minimise skin damage via both mechanisms, as it stops the catalytic activity of topoisomerase II alpha and thereby prevents access of anthracycline to the enzyme and thus cytotoxicity, and also acts as a strong iron chelator following opening of its two bisdioxopiperazine rings. Using the model of extravasation in a dexrazoxane-resistant transgenic mouse with a heterozygous mutation in the topoisomerase II alpha gene (Top2a(Y165S/+)), we found that dexrazoxane provided a protection against anthracycline-induced skin wounds that was indistinguishable from that found in wildtype mice. Thus, interaction with topoisomerase II alpha is not central in the pathogenesis of anthracycline-induced skin damage. In contrast to dexrazoxane, the iron-chelating bisdioxopiperazine ICRF-161 do not inhibit the catalytic cycle of topoisomerase II alpha. This compound was used to

  14. Heutagogic approach to developing capable learners.

    PubMed

    Abraham, Reem Rachel; Komattil, Ramnarayan

    2017-03-01

    The twenty-first century higher education sector has come a long way after undergoing continuous metamorphosis from pedagogy to andragogy. Most of the educational approaches adopted in medical schools are directed towards developing more of competencies and less of capability, which is the ability to use competencies in novel contexts. Competencies alone are not sufficient to thrive in the present day work place as medical profession subsumes complex contexts; it is in this scenario that, medical educators are entrusted with the challenging task of developing "capable learners". In the heutagogical approach, learners are required to decide upon what to learn and how to learn and therefore the control of the learning process is on the learner and the role of the teacher becomes that of a navigator. This paper highlights the current higher educational practices based on heutagogy, considers its application in the context of Problem-based learning and also discusses a few challenges in incorporating this approach in the existing undergraduate medical curriculum. The article proposes the use of social media in order to support learner autonomy, which in turn improves learners' cognitive engagement with content and tasks, thereby assisting the development of attributes associated with capability.

  15. Graphical workstation capability for reliability modeling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.

    1992-01-01

    In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.

  16. Researching pharmacist managerial capability: philosophical perspectives and paradigms of inquiry.

    PubMed

    Woods, Phillip; Gapp, Rod; King, Michelle A

    2015-01-01

    In successful community pharmacy business enterprises suitably responsive actions to meet ever-increasing change require capable pharmacy managers who readily learn and adapt. Capability as a concept is generally understood to be the ability of a manager to identify and act to solve unfamiliar problems in unfamiliar situations. Capability is characterized by adaptability and flexibility. However, different understandings of the concept 'capability' and what it means to be 'capable' are indirect and incomplete. This paper aims to clarify current theories regarding the concept of 'capability' at the level of the individual, and through this to make more explicit what is known about the phenomenon, but more particularly, how we know what we know. The analysis includes the concept of 'competence' because explanations of capability include competence, and the two concepts are not clearly separated in the literature. By probing the epistemological origins of current theory concerning both concepts, the limiting taken for granted assumptions are revealed. Assumptions about context and time, and the psychological theory through which individuals are assumed to perceive, know and learn, are illuminated. The analysis, in connection with the literature, shows how the interpretive philosophic research approach may reveal a different and useful theoretical perspective for explaining capability as a dynamic performance. It is suggested that such a perspective may narrow the gap between the theory of capability and its practice. The interpretive perspective holds potential to reveal how capability, as performed by successful community pharmacy managers, might be further researched and strengthened. This paper supports the challenging suggestion that pharmacy social research needs to rebalance the dominance of purely empirical research by exploring interpretive methodologies to better understand human actions and relations in the context of pharmacy. Crown Copyright © 2015

  17. Research for new UAV capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  18. Using superconducting undulator for enhanced imaging capabilities of MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yampolsky, Nikolai

    MaRIE x-ray free electron laser (FEL) is envisioned to deliver a burst of closely spaced in time pulses for enabling the capability of studying the dynamic processes in a sample. MaRIE capability can be largely enhanced using the superconducting undulator, which has the capability of doubling its period. This technology will allow reaching the photon energy as low as ~200-500 eV. As a result, the MaRIE facility will have a broader photon energy range enabling a larger variety of experiments. The soft x-ray capability is more likely to achieve the 3D imaging of dynamic processes in noncrystal materials than themore » hard x-ray capability alone.« less

  19. The Impact of Place in Building Human Capability

    ERIC Educational Resources Information Center

    Garlick, Steve

    2014-01-01

    While it is accepted that there are "sensitive" and "critical" periods of life during which certain human capabilities are more readily acquired, and where the multiplied returns on our investment in human capability building are more significant, it is also argued that there are place-based contexts (society, nature, culture,…

  20. Measuring Organisational Capabilities in the Higher Education Sector

    ERIC Educational Resources Information Center

    Bobe, Belete J.; Kober, Ralph

    2015-01-01

    Purpose: Drawing on the resource-based view (RBV), the purpose of this paper is to develop a framework and instrument to measure the organisational capabilities of university schools/departments. In doing so, this study provides evidence of the way competitive resources are bundled to generate organisational capabilities that give university…

  1. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  2. Organizational Capabilities for Integrating Care: A Review of Measurement Tools.

    PubMed

    Evans, Jenna M; Grudniewicz, Agnes; Baker, G Ross; Wodchis, Walter P

    2016-12-01

    The success of integrated care interventions is highly dependent on the internal and collective capabilities of the organizations in which they are implemented. Yet, organizational capabilities are rarely described, understood, or measured with sufficient depth and breadth in empirical studies or in practice. Assessing these capabilities can contribute to understanding why some integrated care interventions are more effective than others. We identified, organized, and assessed survey instruments that measure the internal and collective organizational capabilities required for integrated care delivery. We conducted an expert consultation and searched Medline and Google Scholar databases for survey instruments measuring factors outlined in the Context and Capabilities for Integrating Care Framework. A total of 58 instruments were included in the review and assessed based on their psychometric properties, practical considerations, and applicability to integrated care efforts. This study provides a bank of psychometrically sound instruments for describing and comparing organizational capabilities. Greater use of these instruments across integrated care interventions and studies can enhance standardized comparative analyses and inform change management. Further research is needed to build an evidence base for these instruments and to explore the associations between organizational capabilities and integrated care processes and outcomes. © The Author(s) 2016.

  3. Archiving Software Systems: Approaches to Preserve Computational Capabilities

    NASA Astrophysics Data System (ADS)

    King, T. A.

    2014-12-01

    A great deal of effort is made to preserve scientific data. Not only because data is knowledge, but it is often costly to acquire and is sometimes collected under unique circumstances. Another part of the science enterprise is the development of software to process and analyze the data. Developed software is also a large investment and worthy of preservation. However, the long term preservation of software presents some challenges. Software often requires a specific technology stack to operate. This can include software, operating systems and hardware dependencies. One past approach to preserve computational capabilities is to maintain ancient hardware long past its typical viability. On an archive horizon of 100 years, this is not feasible. Another approach to preserve computational capabilities is to archive source code. While this can preserve details of the implementation and algorithms, it may not be possible to reproduce the technology stack needed to compile and run the resulting applications. This future forward dilemma has a solution. Technology used to create clouds and process big data can also be used to archive and preserve computational capabilities. We explore how basic hardware, virtual machines, containers and appropriate metadata can be used to preserve computational capabilities and to archive functional software systems. In conjunction with data archives, this provides scientist with both the data and capability to reproduce the processing and analysis used to generate past scientific results.

  4. Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubie D.

    2005-01-01

    Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304.

  5. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  6. Statistical analysis on experimental calibration data for flowmeters in pressure pipes

    NASA Astrophysics Data System (ADS)

    Lazzarin, Alessandro; Orsi, Enrico; Sanfilippo, Umberto

    2017-08-01

    This paper shows a statistical analysis on experimental calibration data for flowmeters (i.e.: electromagnetic, ultrasonic, turbine flowmeters) in pressure pipes. The experimental calibration data set consists of the whole archive of the calibration tests carried out on 246 flowmeters from January 2001 to October 2015 at Settore Portate of Laboratorio di Idraulica “G. Fantoli” of Politecnico di Milano, that is accredited as LAT 104 for a flow range between 3 l/s and 80 l/s, with a certified Calibration and Measurement Capability (CMC) - formerly known as Best Measurement Capability (BMC) - equal to 0.2%. The data set is split into three subsets, respectively consisting in: 94 electromagnetic, 83 ultrasonic and 69 turbine flowmeters; each subset is analysed separately from the others, but then a final comparison is carried out. In particular, the main focus of the statistical analysis is the correction C, that is the difference between the flow rate Q measured by the calibration facility (through the accredited procedures and the certified reference specimen) minus the flow rate QM contemporarily recorded by the flowmeter under calibration, expressed as a percentage of the same QM .

  7. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  8. The Capability Approach: A Critical Review of Its Application in Health Economics.

    PubMed

    Karimi, Milad; Brazier, John; Basarir, Hasan

    The capability approach is an approach to assessing well-being developed by Amartya Sen. Interest in this approach has resulted in several attempts to develop questionnaires to measure and value capability at an individual level in health economics. This commentary critically reviews the ability of these questionnaires to measure and value capability. It is argued that the method used in the questionnaires to measure capability will result in a capability set that is an inaccurate description of the individual's true capability set. The measured capability set will either represent only one combination and ignore the value of choice in the capability set, or represent one combination that is not actually achievable by the individual. In addition, existing methods of valuing capability may be inadequate because they do not consider that capability is a set. It may be practically more feasible to measure and value capability approximately rather than directly. Suggestions are made on how to measure and value an approximation to capability, but further research is required to implement the suggestions. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. RF current profile control studies in the alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.

    1999-09-01

    Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.

  10. Time-Dependent Material Properties of Shotcrete: Experimental and Numerical Study.

    PubMed

    Neuner, Matthias; Cordes, Tobias; Drexel, Martin; Hofstetter, Günter

    2017-09-11

    A new experimental program, focusing on the evolution of the Young's modulus, uniaxial compressive strength, shrinkage and creep of shotcrete is presented. The laboratory tests are, starting at very young ages of the material, conducted on two different types of specimens sampled at the site of the Brenner Basetunnel. The experimental results are evaluated and compared to other experiments from the literature. In addition, three advanced constitutive models for shotcrete, i.e., the model by Meschke, the model by Schädlich and Schweiger, and the model by Neuner et al., are validated on the basis of the test data, and the capabilities of the models to represent the observed shotcrete behavior are assessed. Hence, the gap between the the outdated experimental data on shotcrete available in the literature on the one hand and the nowadays available advanced shotcrete models, on the other hand, is closed.

  11. Vulnerability, Health Agency and Capability to Health.

    PubMed

    Straehle, Christine

    2016-01-01

    One of the defining features of the capability approach (CA) to health, as developed in Venkatapuram's book Health Justice, is its aim to enable individual health agency. Furthermore, the CA to health hopes to provide a strong guideline for assessing the health-enabling content of social and political conditions. In this article, I employ the recent literature on the liberal concept of vulnerability to assess the CA. I distinguish two kinds of vulnerability. Considering circumstantial vulnerability, I argue that liberal accounts of vulnerability concerned with individual autonomy, align with the CA to health. Individuals should, as far as possible, be able to make health-enabling decisions about their lives, and their capability to do so should certainly not be hindered by public policy. The CA to health and a vulnerability-based analysis then work alongside to define moral responsibilities and designate those who hold them. Both approaches demand social policy to address circumstances that hinder individuals from taking health-enabling decisions. A background condition of vulnerability, on the other hand, even though it hampers the capability for health, does not warrant the strong moral claim proposed by the CA to health to define health as a meta-capability that should guide social policy. Nothing in our designing social policy could change the challenge to health agency when we deal with background conditions of vulnerability. © 2016 John Wiley & Sons Ltd.

  12. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  13. A federated capability-based access control mechanism for internet of things (IoTs)

    NASA Astrophysics Data System (ADS)

    Xu, Ronghua; Chen, Yu; Blasch, Erik; Chen, Genshe

    2018-05-01

    The prevalence of Internet of Things (IoTs) allows heterogeneous embedded smart devices to collaboratively provide intelligent services with or without human intervention. While leveraging the large-scale IoT-based applications like Smart Gird and Smart Cities, IoT also incurs more concerns on privacy and security. Among the top security challenges that IoTs face is that access authorization is critical in resource and information protection over IoTs. Traditional access control approaches, like Access Control Lists (ACL), Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC), are not able to provide a scalable, manageable and efficient mechanisms to meet requirement of IoT systems. The extraordinary large number of nodes, heterogeneity as well as dynamicity, necessitate more fine-grained, lightweight mechanisms for IoT devices. In this paper, a federated capability-based access control (FedCAC) framework is proposed to enable an effective access control processes to devices, services and information in large scale IoT systems. The federated capability delegation mechanism, based on a propagation tree, is illustrated for access permission propagation. An identity-based capability token management strategy is presented, which involves registering, propagation and revocation of the access authorization. Through delegating centralized authorization decision-making policy to local domain delegator, the access authorization process is locally conducted on the service provider that integrates situational awareness (SAW) and customized contextual conditions. Implemented and tested on both resources-constrained devices, like smart sensors and Raspberry PI, and non-resource-constrained devices, like laptops and smart phones, our experimental results demonstrate the feasibility of the proposed FedCAC approach to offer a scalable, lightweight and fine-grained access control solution to IoT systems connected to a system network.

  14. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to

  15. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  16. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  17. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  18. Satellite-based Tropical Cyclone Monitoring Capabilities

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  19. An experimental study of unsteady sprays at very high injection pressures

    NASA Astrophysics Data System (ADS)

    Reggiori, A.; Mariani, F.; Parigi, G.; Carlevaro, R.

    An experimental study of the development of fuel sprays under very high injection pressures is described. A gas gun capable of generating pressure pulses up to 10,000 bar has been employed as an injection pump. Tests have been carried out with simple cylindrical nozzles, injecting diesel oil in ambient air. The development of the jet has been visualized by means of flash shadowgraphy.

  20. Experimental investigation of the Multipoint Ultrasonic Flowmeter

    NASA Astrophysics Data System (ADS)

    Jakub, Filipský

    2018-06-01

    The Multipoint Ultrasonic Flowmeter is a vector tomographic device capable of reconstructing all three components of velocity field based solely on boundary ultrasonic measurements. Computer simulations have shown the feasibility of such a device and have been published previously. This paper describes an experimental investigation of achievable accuracy of such a method. Doubled acoustic tripoles used to obtain information of the solenoidal part of vector field show extremely short differences between the Time Of Flights (TOFs) of individual sensors and are therefore sensitive to parasitic effects of TOF measurements. Sampling at 40MHz and correlation method is used to measure the TOF.