Sample records for icrf wave heating

  1. Bulk ion heating with ICRF waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantsinen, M. J., E-mail: mervi.mantsinen@bsc.es; Barcelona Supercomputing Center, Barcelona; Bilato, R.

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR andmore » is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.« less

  2. ICRF heating in a straight, helically symmetric stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, E.F.; Weitzner, H.; Batchelor, D.B.

    1987-07-01

    Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating at fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in the theoretical basis for such heating. In this paper, global solutions for the ICRF wave fields in a helically symmetric, straight stellarator are calculated in the cold plasma limit. The component of the wave electric field parallel to B-vector is assumed zero. Helical symmetry allows Fourier decomposition in the longitudinal (z) direction. The two remaining partial differential equations in tau and phi identical to THETA - hz (h is the helical pitch) are solved by finite differencing.more » Energy absorption and antenna impedance are calculated from an ad hoc collision model. Results for parameters typical of the L-2 and Advanced Toroidal Facility (ATF) stellarators show that direct resonant absorption of the fundamental ion cyclotron resonance occurs mainly near the plasma edge. The magnitude of the absorption is about half that for minority heating at the two-ion hybrid resonance.« less

  3. Mode conversion in three ion species ICRF heating scenario

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  4. The behavior of neutron emissions during ICRF minority heating of plasma at EAST

    NASA Astrophysics Data System (ADS)

    Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team

    2016-07-01

    Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium-deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H  +  D ratio was in the range of 5-10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.

  5. Influence of ICRF heating on the stability of TAEs

    NASA Astrophysics Data System (ADS)

    Sears, J.; Burke, W.; Parker, R. R.; Snipes, J. A.; Wolfe, S.

    2007-11-01

    Unstable toroidicity-induced Alfv'en eigenmodes (TAEs) can appear spontaneously due to resonant interaction with fast particles such as fusion alphas, raising concern that TAEs may threaten ITER performance. This work investigates the progression of stable TAE damping rates toward instability during a scan of ICRF heating power up to 3.1 MW. Stable eigenmodes are identified in Alcator C-Mod by the Active MHD diagnostic. Unstable TAEs are observed to appear spontaneously in C-Mod limited L-mode plasmas at sufficient tail energies generated by >3 MW of ICRF heating. However preliminary analysis of experiments with moderate ICRF heating power show that TAE stability may not simply degrade with overall fast particle content. There are hints that the stability of some TAEs may be enhanced in the presence of fast particle distribution tails. Furthermore, the radial profile of the energetic particle distribution relative to the safety factor profile affects the ICRF power influence on TAE stability.

  6. Spectral Calculation of ICRF Wave Propagation and Heating in 2-D Using Massively Parallel Computers

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; D'Azevedo, E.; Berry, L. A.; Carter, M. D.; Batchelor, D. B.

    2000-10-01

    Spectral calculations of ICRF wave propagation in plasmas have the natural advantage that they require no assumption regarding the smallness of the ion Larmor radius ρ relative to wavelength λ. Results are therefore applicable to all orders in k_bot ρ where k_bot = 2π/λ. But because all modes in the spectral representation are coupled, the solution requires inversion of a large dense matrix. In contrast, finite difference algorithms involve only matrices that are sparse and banded. Thus, spectral calculations of wave propagation and heating in tokamak plasmas have so far been limited to 1-D. In this paper, we extend the spectral method to 2-D by taking advantage of new matrix inversion techniques that utilize massively parallel computers. By spreading the dense matrix over 576 processors on the ORNL IBM RS/6000 SP supercomputer, we are able to solve up to 120,000 coupled complex equations requiring 230 GBytes of memory and achieving over 500 Gflops/sec. Initial results for ASDEX and NSTX will be presented using up to 200 modes in both the radial and vertical dimensions.

  7. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    NASA Astrophysics Data System (ADS)

    Gallart, Dani; Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; Krawczyk, Natalia; King, Damian; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H) at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ˜7.0 MW in D-T.

  8. Assessment of a field-aligned ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Brunner, D.; Ennever, P.

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore themore » underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest

  9. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  10. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Colas, L.; Mayoral, M.-L.; Beaumont, B.; Bibet, Ph.; Brémond, S.; Kazarian, F.; Mailloux, J.; Noterdaeme, J.-M.; Efda-Jet Contributors

    2003-12-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced E×B convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum.

  11. High-power and steady-state operation of ICRF heating in the large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less

  12. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  13. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  14. Measurement of ICRF wave propagation using a microwave reflectometer with fast antenna switching on GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Sekine, R.; Kubota, Y.; Shima, Y.; Kohagura, J.; Yoshikawa, M.; Sakamoto, M.; Nakashima, Y.

    2017-12-01

    Slow Alfvén wave in ion cyclotron range of frequency (ICRF) is a powerful tool to heat ions confined in a mirror field. In spite of its efficient heating effect that has been attained in the central cell of GAMMA 10, there are still unknown characteristics concerning boundary condition, transient variation of heating effect, exact picture of cyclotron damping, and so on. To study these characteristics in detail, a multi-point measurement of the waves inside the hot plasma has been recently developed by using a microwave reflectometer. In addition to a radial profile measurement that is available by a usual reflectometer, an axial measurement has been achieved by arraying transmitting and receiving horn antennas in the axial direction, which are repeatedly switched in time during a discharge with PIN diode switches. Another transmitting and receiving horn antenna pair was newly added to the system and probing at five cross sections was achieved in a single discharge with time resolution of about 1 ms at each antenna pair position. With the upgraded reflectometer system, axial and radial distributions of wave-induced fluctuations and those temporal behavior were clearly observed, offering valuable data on wave physics in a hot mirror plasma.

  15. ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor

    NASA Astrophysics Data System (ADS)

    Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun

    2017-10-01

    Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.

  16. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    NASA Astrophysics Data System (ADS)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically <10%) can be absorbed by the D ions. We find that an anti-aliasing filter is required in AORSA to calculate this fraction correctly while including up-shift and down-shift in the parallel wave spectrum. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  17. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    NASA Astrophysics Data System (ADS)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  18. Recent ICRF coupling experiments on EAST

    NASA Astrophysics Data System (ADS)

    Yuqing, YANG; Xinjun, ZHANG; Yanping, ZHAO; Chengming, QIN; Yan, CHENG; Yuzhou, MAO; Hua, YANG; Jianhua, WANG; Shuai, YUAN; Lei, WANG; Songqing, JU; Gen, CHEN; Xu, DENG; Kai, ZHANG; Baonian, WAN; Jiangang, LI; Yuntao, SONG; Xianzu, GONG; Jinping, QIAN; Tao, ZHANG

    2018-04-01

    Recent ion cyclotron resonance frequency (ICRF) coupling experiments for optimizing ICRF heating in high power discharge were performed on EAST. The coupling experiments were focus on antenna phasing and gas puffing, which were performed separately on two ports of the ion cyclotron resonance heating (ICRH) system of EAST. The antenna phasing was performed on the I-port antenna, which consists of four toroidally spaced radiating straps operating in multiple phasing cases; the coupling performance was better under low wave number | {k}\\parallel | (ranging from 4.5 to 6.5). By fuelling the plasma from gas injectors, placed as uniformly spaced array from top to bottom at each side limiter of the B-port antenna, which works in dipole phasing, the coupling resistance of the B-port antenna increased obviously. Furthermore, the coupling resistance of the I-port antenna was insensitive to a smaller rate of gas puffing but when the gas injection rate was more than a certain value (>1021s‑1), a sharp increase in the coupling resistance of the I-port antenna occurred, which was mainly caused by the toroidal asymmetric boundary density arising from gas puffing. A more specific analysis is given in the paper.

  19. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  20. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of themore » thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.« less

  1. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less

  2. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    NASA Astrophysics Data System (ADS)

    Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  3. ICRF Mode Conversion Flow Drive Experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Reinke, M. L.; Rice, J. E.; Wukitch, S. J.; Granetz, R.; Greenwald, M.; Hubbard, A. E.; Marmar, E. S.; Podpaly, Y. A.; Porkolab, M.; Tsujii, N.; Wolfe, S.

    2011-12-01

    We have carried out a detailed study of the dependence of ICRF mode conversion flow drive (MCFD) on plasma and RF parameters. The flow drive efficiency is found to depend strongly on the 3He concentration in D(3He) plasmas, a key parameter separating the ICRF minority heating regime and mode conversion regime. At +90 ° antenna phasing (waves in the co-Ip direction) and dipole phasing, the driven flow is in the co-Ip direction, and the change of the rotation velocity increases with both PRF and Ip, and scales unfavorably vs. plasma density and antenna frequency. When MCFD is applied to I-mode plasmas, the plasma rotation increases until the onset of MHD modes triggered by large sawtooth crashes. Very high performance I-mode plasmas with HITER98,y2˜1.4 and Te0˜8 keV have been obtained in these experiments.

  4. Initial operation of high power ICRF system for long pulse in EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less

  5. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  6. ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.

  7. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  8. A predictive transport modeling code for ICRF-heated tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.K.; Hwang, D.Q.; Houlberg, W.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3.more » Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.« less

  9. Analysis of resonant fast ion distributions during combined ICRF and NBI heating with transients using neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET

    2018-05-01

    ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.

  10. Development of plasma sources for ICRF heating experiment in KMAX mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Liu, Ming; Yi, Hongshen; Lin, Munan; Shi, Peiyun

    2016-10-01

    KMAX, Keda Mirror with AXisymmeticity, is a tandem mirror machine with a length of 10 meters and diameters of 1.2 meters in the central cell and 0.3 meters in the mirror throat. In the past experiments, the plasma was generated by helicon wave launched from the west end. We obtained the blue core mode in argon discharge, however, it cannot provide sufficient plasma for hydrogen discharge, which is at least 1012 cm-3 required for effective ICRF heating. Several attempts have thus been tried or under design to increase the central cell's plasma density: (1) a washer gun with aperture of 1cm has been successfully tested, and a plasma density of 1013 cm-3 was achieved in the west cell near the gun, however, the plasma is only 1011 cm-3 in the central cell possible due to the mirror trapping and/or neutral quenching effect (2) a larger washer gun with aperture of 2.5 cm and a higher power capacitor bank are being assembled in order to generate more plasmas. In addition, how to mitigate the neutrals is under consideration (3) A hot cathode is been designed and will be tested in combination with plasma gun or alone. Preliminary results from those plasma sources will be presented and discussed.

  11. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out

  12. Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikezoe, R., E-mail: ikezoe@prc.tsukuba.ac.jp; Ichimura, M.; Okada, T.

    2015-09-15

    A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in themore » magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.« less

  13. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E. J.; Green, D. L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  14. Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E.J.; Green, D.L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  15. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  16. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE PAGES

    Bertelli, N.; Valeo, E. J.; Green, D. L.; ...

    2017-04-03

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  17. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  18. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie

    2017-10-01

    A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  19. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an

  20. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less

  1. Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin

    2016-10-01

    It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.

  2. Mode conversion in ICRF experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiment on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In recent mode conversion flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 are shown to play important roles. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed. Supported by USDoE awards DE-FC02-99ER54512.

  3. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    NASA Astrophysics Data System (ADS)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  4. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    PubMed

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  5. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  6. Aspects of ICRF-3

    NASA Astrophysics Data System (ADS)

    Ma, Chopo; MacMillan, Daniel; Le Bail, Karine; Gordon, David

    2016-12-01

    The Second Realization of the International Celestial Reference Frame (ICRF2) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations coordinated by the IVS and various precursor networks. Since 2009 the data set has been significantly broadened, especially by observations in the southern hemisphere. While the new southern data have ameliorated the north/south imbalance of observations, they appear to produce a systematic zonal declination change in the catalog positions. Over the 35 years of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.

  7. Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi

    2017-10-01

    The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.

  8. Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.

    2012-10-01

    Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.

  9. Recent Heating and Current Drive results on JET

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Baranov, Y.; Barbato, E.; Bibet, Ph.; Castaldo, C.; Cesario, R.; Cocilovo, V.; Crisanti, F.; De Angelis, R.; Ekedahl, A. C.; Figueiredo, A.; Graham, M.; Granucci, G.; Hartmann, D.; Heikkinen, J.; Hellsten, T.; Imbeaux, F.; Jones, T. T. H.; Johnson, T.; Kirov, K. V.; Lamalle, P.; Laxaback, M.; Leuterer, F.; Litaudon, X.; Maget, P.; Mailloux, J.; Mantsinen, M. J.; Mayoral, M. L.; Meo, F.; Monakhov, I.; Nguyen, F.; Noterdaeme, J.-M.; Pericoli-Ridolfini, V.; Podda, S.; Panaccione, L.; Righi, E.; Rimini, F.; Sarazin, Y.; Sibley, A.; Staebler, A.; Tala, T.; Van Eester, D.

    2001-10-01

    An overview is presented of the results obtained on JET by the Heating and Current Drive Task Force (TF-H) in the period May 2000—March 2001. A strongly improved Lower Hybrid (LH) coupling was achieved by optimizing the plasma shape and by controlling the local edge density via the injection of CD4. Up to 4 MW have been coupled in type III ELMy H-mode and/or on Internal Transport Barrier (ITB) plasmas with reflection coefficients as low as 4%. Long lasting quasi steady-state ITBs have been obtained by adding the LH current to the bootstrap and beam driven components. Furthermore the use of LH in the pre-heat phase results in electron temperature in excess of 10 keV, deep negative magnetic shear and strongly reduced power threshold for ITB formation. Preliminary results on ICRF coupling are reported including the effect of CD4 injection and the commissioning of the wide band matching system on ELMy plasmas. IC CD scenarios have been studied in H and 3He minority and used to modify the stability of the sawtooth to influence the formation of seed islands for the appearance of NTM. Up to 3 MW of IC power was coupled in the high magnetic field fast wave CD scenario. Preliminary MSE measurements indicate differences in the current profiles between -90° and +90° phasing. Careful measurements of the toroidal rotation, in plasmas heated by ICRF only show some dependence on the position of the resonance layer. Finally the use of ICRF minority heating under real-time control, in response to measured plasma parameters to simulate the effect of alpha particles, is presented. ICRF heating results in ITER non-activated scenarios are reported in a companion paper.

  10. Considerations for ICRF-3

    NASA Astrophysics Data System (ADS)

    Ma, Chopo; MacMillan, Daniel; Gordon, David

    2015-08-01

    The Second Realization of the International Celestial Reference Frame (ICRF) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations now coordinated by the International VLBI Service for Geodesy and Astrometry (IVS) and analyzed according to the Conventions of the International Earth Rotation and Reference Systems Service (IERS). Since 2009 the data set has been significantly broadened, especially by observations in the Southern Hemisphere, and modeling of astronomical, geophysical and tropospheric effects has progressed. The new southern data appear to cause a systematic zonal declination change in the catalog positions. Over the three decades of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.

  11. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less

  12. Towards a Future ICRF Realization

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, D.; MacMillan, D.; Petrov, L.; Smith, David E. (Technical Monitor)

    2001-01-01

    The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the southern hemisphere. Positions of new sources have been determined, including approx.1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and reidentification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.

  13. Towards a Future ICRF Realization

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel; Petrov, Leonid

    2002-01-01

    The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the Southern Hemisphere. Positions of new sources have been determined, including approximately 1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and re-identification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.

  14. ICRF-187 in clinical oncology.

    PubMed

    Poster, D S; Penta, J S; Bruno, S; Macdonald, J S

    1981-01-01

    Although the mechanism of action of ICRF-159 and 187 has not been clearly defined, it is evident from both preclinical and early clinical studies that these compounds are of interest. There are three distinct characteristics of these ICRF compounds that deserve careful clinical evaluation. First, these drugs are apparently alkylating agents with modest, predictable and noncumulative bone marrow toxicity that makes them good potential candidates for combination chemotherapy regimens. The second characteristic that should be investigated is the suggestion that combination of ICRF-187 with an anthracycline may ameliorate the cardiac toxicity of the latter. The third factor in the preclinical evaluation of the bis-diketopiperazines that may have clinical application is the evidence that suggests that these drugs have an antimetastatic effect.

  15. Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2004-01-01

    Since the ICRF was generated in 1995, VLBI modeling and estimation, data quality: source position stability analysis, and supporting observational programs have improved markedly. There are developing and potential applications in the areas of space navigation Earth orientation monitoring and optical astrometry from space that would benefit from a refined ICRF with enhanced accuracy, stability and spatial distribution. The convergence of analysis, focused observations, and astrometric needs should drive the production of a new realization in the next few years.

  16. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  17. Toward the ICRF3: Astrometric Comparison of the USNO 2016A VLBI Solution with ICRF2 and Gaia DR1

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Johnson, Megan C.; Fey, Alan; Makarov, Valeri V.; Dorland, Bryan N.

    2018-06-01

    The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO toward the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in this paper is to assess U16A’s astrometry. A comparison with ICRF2 shows statistically significant offsets of size 0.1 mas between the two solutions. While Gaia DR1 positions are not precise enough to resolve these offsets, they are found to be significantly closer to U16A than ICRF2. In particular, the trend for typically larger errors for southern sources in VLBI solutions is decreased in U16A. Overall, the VLBI-Gaia offsets are reduced by 21%. The U16A list includes 718 sources not previously included in ICRF2. Twenty of those new sources have statistically significant radio-optical offsets. In two-thirds of the cases, these offsets can be explained from PanSTARRS images.

  18. Uses of the ICRF and implications for future VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2006-01-01

    Since its inception on 1 Jan 1998, the fundamental ICRF has been set by the VLBI positions of 212 "defining" extragalactic radio sources. In all there are approx.3000 sources with usefully accurate (< few mas) positions consistent with the ICRF. The uses of the ICRF include fundamental astrometry, monitoring of Earth orientation, and spacecraft navigation. For fundamental astrometry, stability and accuracy are most important, and realizations at different frequencies must be in proper registration. However, there is no preferred frequency, and the GAIA mission has the potential for an optical ICRF with 500,000 objects at the 50 microarcsec level some time after the planned 2011 launch. The radio ICRF should be properly prepared for a transition to assure long term stability and consistency. Earth orientation monitoring requires objects attached to the solid Earth, and VLBI will continue to be the fundamental technique. For this purpose it is essential that the new VLBI stations contemplated in the VLBI20l0 report be capable of observing a sufficiently large and well-distributed set of stable sources, and identifying these sources is an on-going effort. Spacecraft navigation by differential VLBI is planned using the Ka-band telemetry signal, and work has begun towards an ICRF realization suitable for this purpose. The balancing of different needs related to the VLBI ICRF will be discussed.

  19. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    NASA Astrophysics Data System (ADS)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  20. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  1. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki.

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  2. Heat, heat waves, and out-of-hospital cardiac arrest.

    PubMed

    Kang, Si-Hyuck; Oh, Il-Young; Heo, Jongbae; Lee, Hyewon; Kim, Jungeun; Lim, Woo-Hyun; Cho, Youngjin; Choi, Eue-Keun; Yi, Seung-Muk; Sang, Do Shin; Kim, Ho; Youn, Tae-Jin; Chae, In-Ho; Oh, Seil

    2016-10-15

    Cardiac arrest is one of the common presentations of cardiovascular disorders and a leading cause of death. There are limited data on the relationship between out-of-hospital cardiac arrest (OHCA) and ambient temperatures, specifically extreme heat. This study investigated how heat and heat waves affect the occurrence of OHCA. Seven major cities in Korea with more than 1 million residents were included in this study. A heat wave was defined as a daily mean temperature above the 98th percentile of the yearly distribution for at least two consecutive days. A total of 50,318 OHCAs of presumed cardiac origin were identified from the nationwide emergency medical service database between 2006 and 2013. Ambient temperature and OHCA had a J-shaped relationship with a trough at 28°C. Heat waves were shown to be associated with a 14-% increase in the risk of OHCA. Adverse effects were apparent from the beginning of each heat wave period and slightly increased during its continuation. Excess OHCA events during heat waves occurred between 3PM and 5PM. Subgroup analysis showed that those 65years or older were significantly more susceptible to heat waves. Ambient temperature and OHCA had a J-shaped relationship. The risk of OHCA was significantly increased with heat waves. Excess OHCA events primarily occurred during the afternoon when the temperature was high. We found that the elderly were more susceptible to the deleterious effects of heat waves. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Urban Heat Wave Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  4. The Second International Celestial Reference Frame (ICRF2)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2010-01-01

    The ICRF2 catalog was constructed by the IERS/IVS Working Group with oversight by the IAU Working Group. Derived using data from August 1979 through March 2009, it is a great improvement over the original ICRF with 3414 extragalactic radio source positions, a noise floor of 40 microarcsec, and axis stability of 10 microarcsec. Significant refinements were made in the selection of defining sources, modeling, and the integration of CRF, TRF, and EOP. The adoption of the ICRF2 was approved by the IAU in Resolution B3 at the XXVII IAU General Assembly and became effective 1 January 2010.

  5. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, M.P.; Bell, R.; Budny, R.V.

    1998-07-01

    This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less

  6. VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Bockmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2016-01-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).

  7. Urban Heat Wave Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.

    2016-01-01

    Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.

  8. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic-A Comparison with Previous Heat Waves.

    PubMed

    Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva

    2017-12-13

    This study aimed to assess the impacts of heat waves during the summer of 2015 on mortality in the Czech Republic and to compare them with those of heat waves back to the previous record-breaking summer of 1994. We analyzed daily natural-cause mortality across the country's entire population. A mortality baseline was determined using generalized additive models adjusted for long-term trends, seasonal and weekly cycles, and identified heat waves. Mortality deviations from the baseline were calculated to quantify excess mortality during heat waves, defined as periods of at least three consecutive days with mean daily temperature higher than the 95th percentile of annual distribution. The summer of 2015 was record-breaking in the total duration of heat waves as well as their total heat load. Consequently, the impact of the major heat wave in 2015 on the increase in excess mortality relative to the baseline was greater than during the previous record-breaking heat wave in 1994 (265% vs. 240%). Excess mortality was comparable among the younger age group (0-64 years) and the elderly (65+ years) in the 1994 major heat wave while it was significantly larger among the elderly in 2015. The results suggest that the total heat load of a heat wave needs to be considered when assessing its impact on mortality, as the cumulative excess heat factor explains the magnitude of excess mortality during a heat wave better than other characteristics such as duration or average daily mean temperature during the heat wave. Comparison of the mortality impacts of the 2015 and 1994 major heat waves suggests that the recently reported decline in overall heat-related mortality in Central Europe has abated and simple extrapolation of the trend would lead to biased conclusions even for the near future. Further research is needed toward understanding the additional mitigation measures required to prevent heat-related mortality in the Czech Republic and elsewhere.

  9. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves

    PubMed Central

    Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva

    2017-01-01

    This study aimed to assess the impacts of heat waves during the summer of 2015 on mortality in the Czech Republic and to compare them with those of heat waves back to the previous record-breaking summer of 1994. We analyzed daily natural-cause mortality across the country’s entire population. A mortality baseline was determined using generalized additive models adjusted for long-term trends, seasonal and weekly cycles, and identified heat waves. Mortality deviations from the baseline were calculated to quantify excess mortality during heat waves, defined as periods of at least three consecutive days with mean daily temperature higher than the 95th percentile of annual distribution. The summer of 2015 was record-breaking in the total duration of heat waves as well as their total heat load. Consequently, the impact of the major heat wave in 2015 on the increase in excess mortality relative to the baseline was greater than during the previous record-breaking heat wave in 1994 (265% vs. 240%). Excess mortality was comparable among the younger age group (0–64 years) and the elderly (65+ years) in the 1994 major heat wave while it was significantly larger among the elderly in 2015. The results suggest that the total heat load of a heat wave needs to be considered when assessing its impact on mortality, as the cumulative excess heat factor explains the magnitude of excess mortality during a heat wave better than other characteristics such as duration or average daily mean temperature during the heat wave. Comparison of the mortality impacts of the 2015 and 1994 major heat waves suggests that the recently reported decline in overall heat-related mortality in Central Europe has abated and simple extrapolation of the trend would lead to biased conclusions even for the near future. Further research is needed toward understanding the additional mitigation measures required to prevent heat-related mortality in the Czech Republic and elsewhere. PMID:29236040

  10. Future heat waves and surface ozone

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  11. Unidirectional spin-wave heat conveyer.

    PubMed

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  12. Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China.

    PubMed

    Dong, Wentan; Zeng, Qiang; Ma, Yue; Li, Guoxing; Pan, Xiaochuan

    2016-09-21

    Heat waves are associated with increased mortality, however, few studies have examined the added effect of heat waves. Moreover, there is limited evidence for the influence of different heat wave definitions (HWs) on cardiovascular mortality in Beijing, the capital of China. The aim of this study was to find the best HW definitions for cardiovascular mortality, and we examined the effect modification by an individual characteristic on cardiovascular mortality in Beijing, a typical northern city in China. We applied a Poisson generalized additive approach to estimate the differences in cardiovascular mortality during heat waves (using 12 HWs) compared with non-heat-wave days in Beijing from 2006 to 2009. We also validated the model fit by checking the residuals to ensure that the autocorrelation was successfully removed. In addition, the effect modifications by individual characteristics were explored in different HWs. Our results showed that the associations between heat waves and cardiovascular mortality differed from different HWs. HWs using the 93th percentile of the daily average temperature (27.7 °C) and a duration ≥5 days had the greatest risk, with an increase of 18% (95% confidence interval (CI): 6%, 31%) in the overall population, 24% (95% CI: 10%, 39%) in an older group (ages ≥65 years), and 22% (95% CI: 3%, 44%) in a female group. The added effect of heat waves was apparent after 5 consecutive heat wave days for the overall population and the older group. Females and the elderly were at higher risk than males and younger subjects (ages <65 years). Our findings suggest that heat wave definitions play a significant role in the relationship between heat wave and cardiovascular mortality. Using a suitable definition may have implications for designing local heat early warning systems and protecting the susceptible populations during heat waves.

  13. On the Dynamics of Austral Heat Waves

    NASA Astrophysics Data System (ADS)

    Risbey, James S.; O'Kane, Terence J.; Monselesan, Didier P.; Franzke, Christian L. E.; Horenko, Illia

    2018-01-01

    This work examines summer heat wave events in four different regions of Australia (southwest, central, southeast, and northeast) to assess similarities and differences in the circulations that precede, accompany, and follow the heat wave events. A series of circulation composites are constructed for days from 10 days prior to 5 days following onset of each heat wave event. The composites of geopotential height anomalies and wave activity flux vectors show that heat waves in southwest and southeast Australia are preceded by coherent wave train structures in the Indian Ocean region, accompanied by blocking in the Australian region (as an amplified node of the wave train structure), and followed by coherent responses of wave train patterns in the Pacific and South America regions. The heat wave blocking high is maintained by convergence of wave activity in a well-defined wave channel. The concentration of wave activity in the block is aided by the formation of a subtropical jet branch and wave barrier on the equatorward side of the block. Heat waves in central and northeast Australia show similar wave train life cycle responses, but with a proximate ridge in the midtroposphere and a trough in the nearby waveguide region. Heat waves in Australia can be viewed as an element of successive expression of the planetary waveguide modes in the Southern Hemisphere and serve as signifiers of organized, active phases of these modes.

  14. A folded waveguide ICRF antenna for PBX-M and TFTR

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.

    1996-02-01

    The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.

  15. Wave heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  16. Heating performances of a IC in-blanket ring array

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Ragona, R.

    2015-12-01

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  17. Heating performances of a IC in-blanket ring array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosia, G., E-mail: gbosia@to.infn.it; Ragona, R.

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) basedmore » on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.« less

  18. The IAU Division A Working Group on the Third Realization of the ICRF: Background, Goals, Plans

    NASA Astrophysics Data System (ADS)

    Gaume, Ralph

    2015-08-01

    The XXVIII General Assembly of the IAU (Beijing, 2012) established the Division A Working Group on the Third Realization of the International Celestial Reference Frame (ICRF). The adopted charter of the ICRF3 Working Group includes a commitment to report on the implementation and execution plans for ICRF3 during the XXIX General Assembly of the IAU along with a targeted completion and presentation of ICRF3 in 2018 to the XXX General Assembly for adoption. This talk will discuss the background, purpose, and overall implementation plan for ICRF3, and motivate the concept, currently under consideration by the ICRF3 Working Group, that future realizations of the ICRF be based on multi-frequency astrometric data, starting with ICRF3.

  19. Wave heating of the solar atmosphere

    PubMed Central

    Arregui, Iñigo

    2015-01-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. PMID:25897091

  20. Heat Wave and Mortality: A Multicountry, Multicommunity Study

    PubMed Central

    Gasparrini, Antonio; Armstrong, Ben G.; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; Coelho, Micheline de Sousa Zanotti Stagliorio; Pan, Xiaochuan; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel D.; Bell, Michelle L.; Scortichini, Matteo; Michelozzi, Paola; Punnasiri, Kornwipa; Li, Shanshan; Tian, Linwei; Garcia, Samuel David Osorio; Seposo, Xerxes; Overcenco, Ala; Zeka, Ariana; Goodman, Patrick; Dang, Tran Ngoc; Dung, Do Van; Mayvaneh, Fatemeh; Saldiva, Paulo Hilario Nascimento; Williams, Gail; Tong, Shilu

    2017-01-01

    Background: Few studies have examined variation in the associations between heat waves and mortality in an international context. Objectives: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. Methods: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave–mortality relation over lags of 0–10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. Results: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave–mortality associations, but not daily minimum temperature. Conclusions: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar

  1. Extreme European heat waves since 1950 with Heat Wave Magnitude Index and their occurrence in the future

    NASA Astrophysics Data System (ADS)

    Russo, Simone; Dosio, Alessandro; Sillmann, Jana

    2015-04-01

    Heat waves are defined as prolonged periods of extremely hot weather and their magnitude and frequency are expected to increase in the future under climate change. Here we grade the heat waves occurred in Europe since 1950, by means of the Heat Wave Magnitude Index (HWMI) applied to daily maximum temperature from European Observation dataset (E-OBS). As shown in many studies the worst event in the last decades occurred in Russia in 2010. However many other heat waves, as shown here and documented in literature and also in newspapers, occurred in different European regions in the past 64 years. In addition, predictions from ten models from the COordinated Regional climate Downscaling EXperiment (CORDEX) under different IPCC AR5 scenarios, suggest an increased probability of occurrence of extreme heat waves by the end of the century. In particular, under the most severe scenario, events of the same severity, as the 2010 Russian heat wave, will become the norm and are projected to occur as often as every two years in the studied region.

  2. The Position/Structure Stability of Four ICRF2 Sources

    NASA Technical Reports Server (NTRS)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan; Boboltz, Dave; Oyama, Tomoaki; Honma, Mareki

    2010-01-01

    Four compact radio sources in the International Celestial Reference Frame (ICRF2) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6-GHz, and with VERA at 23-GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF2. Conclusions are: (1) 43-GHz VLBI high-resolution observations are often needed to determine the location of the radio core. (2) Over the observing period, the relative positions among the four radio cores were constant to 0.02 mas, suggesting that once the true radio core is identified, it remains stationary in the sky to this accuracy. (3) The emission in 0556+238, one of the four sources investigated and one of the 295 ICRF2 defining sources, was dominated by a strong component near the core and moved 0.1 mas during the year. (4) Comparison of the VLBA images at 43, 23, and 8.6-GHz with the ICRF2 positions suggests that the 8-GHz structure is often dominated by a bright non-core component. The measured ICRF2 position can be displaced more than 0.5 mas from the radio core and partake in the motion of the bright jet component.

  3. IShTAR ICRF antenna field characterization in vacuum and plasma by using probe diagnostic

    NASA Astrophysics Data System (ADS)

    Usoltceva, Mariia; Ochoukov, Roman; D'Inca, Rodolphe; Jacquot, Jonathan; Crombé, Kristel; Kostic, Ana; Heuraux, Stéphane; Faudot, Eric; Noterdaeme, Jean-Marie

    2017-10-01

    RF sheath physics is one of the key topics relevant for improvements of ICRF heating systems, which are present on nearly all modern magnetic fusion machines. This paper introduces developement and validation of a new approach to understanding general RF sheath physics. The presumed reason of enhanced plasma-antenna interactions, parallel electric field, is not measured directly, but proposed to be obtained from simulations in COMSOL Multiphysics® Modeling Software. Measurements of RF magnetic field components with B-dot probes are done on a linear device IShTAR (Ion cyclotron Sheath Test ARrangement) and then compared to simulations. Good resulting accordance is suggested to be the criterion for trustworthiness of parallel electric field estimation as a component of electromagnetic field in modeling. A comparison between simulation and experiment for one magnetic field component in vacuum has demonstrated a close match. An additional complication to this ICRF antenna field characterization study is imposed by the helicon antenna which is used as a plasma ignition tool in the test arrangement. The plasma case, in contrast to the vacuum case, must be approached carefully, since the overlapping of ICRF antenna and helicon antenna fields occurs. Distinguishing of the two fields is done by an analysis of correlation between measurements with both antennas together and with each one separately.

  4. High field side launch of RF waves: A new approach to reactor actuators

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.

    2015-12-01

    Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡c k∥/ω >√{1 -ωpi 2/ω2+ωpe 2/ωce 2 }+ωp e/|ωc e| ) and the condition for strong electron Landau damping (n∥˜√{30 /Te } with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering

  5. LETTER: Study of combined NBI and ICRF enhancement of the D-3He fusion yield with a Fokker-Planck code

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    A two-dimensional bounce averaged Fokker-Planck code is used to study the fusion yield and the wave absorption by residual hydrogen ions in higher harmonic ICRF heating of D (120 keV) and 3He (80 keV) beams in the JT-60U tokamak. Both for the fourth harmonic resonance of 3He (ω = 4ωc3He(0), which is accompanied by the third harmonic resonance of hydrogen (ω = 3ωcH) at the low field side, and for the third harmonic resonance of 3He (ω = 4ωcD(0) = 3ωc3He(0)) = 2ωcH(0)), a few per cent of hydrogen ions are found to absorb a large fraction of the ICRF power and to degrade the fusion output power. In the latter case, D beam acceleration due to the fourth harmonic resonance in the 3He(D) regime can enhance the fusion yield more effectively. A discussion is given of the effect of D beam acceleration due to the fifth harmonic resonance (ω = 5ωcD) at the high field side in the case of ω = 4ωc3He(0) and of the optimization of the fusion yield in the case of lower electron density and higher electron temperature

  6. Potential Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    The analysis and data used for the ICRF represented the state of the art in global, extragalactic, X/S band microwave astrometry in 1995. The same general analysis method was used to extend the ICRF with subsequent VLBI data in a manner consistent with the original catalog. Since 1995 there have been considerable advances in the geodetic/astrometric VLBI data set and in the analysis that would significantly improve the systematic errors, stability, and density of the next realization of the ICRS when the decision is made to take this step. In particular, data acquired since 1990, including extensive use of the VLBA, are of higher quality and astrometric utility because of changes in instrumentation, schedule design, and networks as well as specifically astrometric intent. The IVS (International VLBI Service for Geodesy and Astrometry) continues to devote a portion of its observing capability to systematic extension of the astrometric data set. Sufficient data distribution exists to select a better set of defining sources. Improvements in troposphere modeling will minimize known systematic astrometric errors while accurate modeling and estimation of station effects from loading and nonlinear motions will permit the reintegration of the celestial reference frame, terrestrial reference frame and Earth orientation parameters though a single VLBI solution. The differences between the current ICRF and the potential next realization will be described.

  7. Future Heat Waves in Paris Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Beaulant, A.; Lemonsu, A.; Somot, S.; Masson, V.

    2010-12-01

    Cities are particularly vulnerable to heat waves, firstly because they concentrate the majority of the population and, secondly because the heat island that characterizes the urban climate exacerbates heat wave effects. This work is part of the interdisciplinary VURCA project (Vulnerability of cities to heat waves), which deals with the evolution of heat wave events in the context of global warming, urban vulnerability and adaptation strategies. The aim of this study is to analyse urban heat wave events in present climate (1950-2009) and their evolution in an enhanced greenhouse gazes future climate (2010-2100). We used daily observations of temperature from several stations covering Paris metropolitan area and climate projections following three different IPCC-SRES scenarios (B1, A1B, A2) and issued from several ENSEMBLES regional climate models. The heat wave definition is based on the indexes of the operational French warning system. A heat wave is detected within observed or simulated time-series by a heat wave peak, when the temperatures exceed the value of the 99.9th percentile. Its duration is determined by all adjacent days to this peak, for which the temperatures are not durably smaller than the 99.9th percentile value minus 2 °C. The 99.9th percentile threshold is inferred from quantile-quantile plots produced for each climate model in comparison with observations for the reference period 1950-2000. Heat waves have been extracted within observations and 12 climatic simulations. The number of heat wave events and cumulated HW days per year have been calculated, the maximum being seven heat waves cumulating more than 60 HW days in one year in the case of the A2 scenario and until 50 days in the case of the more moderate A1B scenario. From 2050, the occurrence of three or four HW events per year is becoming the norm all scenarios taken together. The evolution of heat wave features has been analysed, highlighting the large variability of the climatic

  8. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  9. An analysis of heat wave trends using heat index in East Malaysia

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Yatim, A. N. M.

    2017-05-01

    This paper aimed to investigate the heat wave trends in East Malaysia based on the National Weather Services (NWS) Heat Index. The heat index was calculated by using mean temperature and mean relative humidity on monthly basis for 5 meteorological stations in East Malaysia during the period 2008 to 2010. The trends for heat wave were estimated from Heat Index based on the least square regression analysis at each station level. Results showed that the heat wave trends are increasing at all stations. The highest heat index was occurred in Sandakan on July 2010 with heat index 35°C while the lowest heat index happened at Kuching in January 2009 with 27.3°C. From the heat wave observed, East Malaysia is still in caution categories or normal condition (27°C-32°C) and the extreme caution (32°C-41°C) was observed during southwest monsoon (May-July). The safety condition of heat waves in East Malaysia is possibly due to weak to moderate El Nino occurred during the period of observation.

  10. IVS Observation of ICRF2-Gaia Transfer Sources

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-03-01

    The second realization of the International Celestial Reference Frame (ICRF2), which is the current fundamental celestial reference frame adopted by the International Astronomical Union, is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency’s Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ∼500,000 Quasi Stellar Objects in the optical domain an average of 70 times each during the five years of the mission. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d’Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. We describe our successful effort to implement such a program and report on the results. Most observations of the ICRF2-Gaia transfer sources now occur automatically as part of the IVS source monitoring program, while a subset of 37 sources requires special attention. Beginning in 2013, we scheduled 25 VLBI sessions devoted in whole or in part to measuring these 37 sources. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Of the sources, 87 met their observing target of 12 successful sessions per year. The position uncertainties of all of the ICRF2-Gaia transfer sources have improved since the start of this observing program. For a subset of 24 sources whose positions were very poorly known, the uncertainty

  11. Heat waves and urban heat islands in Europe: A review of relevant drivers.

    PubMed

    Ward, Kathrin; Lauf, Steffen; Kleinschmit, Birgit; Endlicher, Wilfried

    2016-11-01

    The climate change and the proceeding urbanization create future health challenges. Consequently, more people around the globe will be impaired by extreme weather events, such as heat waves. This study investigates the causes for the emergence of surface urban heat islands and its change during heat waves in 70 European cities. A newly created climate class indicator, a set of meaningful landscape metrics, and two population-related parameters were applied to describe the Surface Urban Heat Island Magnitude (SUHIM) - the mean temperature increase within the urban heat island compared to its surrounding, as well as the Heat Magnitude (HM) - the extra heat load added to the average summer SUHIM during heat waves. We evaluated the relevance of varying urban parameters within linear models. The exemplary European-wide heat wave in July 2006 was chosen and compared to the average summer conditions using MODIS land surface temperature with an improved spatial resolution of 250m. The results revealed that the initial size of the urban heat island had significant influence on SUHIM. For the explanation of HM the size of the heat island, the regional climate and the share of central urban green spaces showed to be critical. Interestingly, cities of cooler climates and cities with higher shares of urban green spaces were more affected by additional heat during heat waves. Accordingly, cooler northern European cities seem to be more vulnerable to heat waves, whereas southern European cities appear to be better adapted. Within the ascertained population and climate clusters more detailed explanations were found. Our findings improve the understanding of the urban heat island effect across European cities and its behavior under heat waves. Also, they provide some indications for urban planners on case-specific adaptation strategies to adverse urban heat caused by heat waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  13. THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomalont, Ed; Johnston, Kenneth; Fey, Alan

    2011-03-15

    Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less

  14. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  15. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    NASA Astrophysics Data System (ADS)

    Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.

    2005-08-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.

  16. The role of local heating in the 2015 Indian Heat Wave.

    PubMed

    Ghatak, Debjani; Zaitchik, Benjamin; Hain, Christopher; Anderson, Martha

    2017-08-09

    India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface models, we find that the heat wave included two distinct peaks: one in late May, and a second in early June. During the first peak we find that clear skies led to a positive net radiation anomaly at the surface, but there is no significant sensible heat flux anomaly within the core of the heat wave affected region. By the time of the second peak, however, soil moisture had dropped to anomalously low levels in the core heat wave region, net surface radiation was anomalously high, and a significant positive sensible heat flux anomaly developed. This led to a substantial local forcing on air temperature that contributed to the intensity of the event. The analysis indicates that the highly agricultural landscape of North and Central India can reinforce heat extremes under dry conditions.

  17. Theory and Practice in ICRF Antennas for Long Pulse Operation

    NASA Astrophysics Data System (ADS)

    Colas, L.; Faudot, E.; Brémond, S.; Heuraux, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Tore Supra Team

    2005-09-01

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20s×8MW and 60s×4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC E×B0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  18. Using Forecast and Observed Weather Data to Assess Performance of Forecast Products in Identifying Heat Waves and Estimating Heat Wave Effects on Mortality

    PubMed Central

    Chen, Yeh-Hsin; Schwartz, Joel D.; Rood, Richard B.; O’Neill, Marie S.

    2014-01-01

    Background: Heat wave and health warning systems are activated based on forecasts of health-threatening hot weather. Objective: We estimated heat–mortality associations based on forecast and observed weather data in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves. Methods: We derived and compared apparent temperature (AT) and heat wave days (with heat waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather observations and six different forecast products. We used Poisson regression with and without adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to estimate and compare associations of daily all-cause mortality with observed and predicted AT and heat wave days. Results: The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had about half the number of false positives compared with all other forecasts. On average, controlling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality (95% CI: –1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 6.2% higher mortality (95% CI: –0.4, 13.2%) than non–heat wave days. The accuracy of predictions varied, but associations between mortality and forecast heat generally tended to overestimate heat effects, whereas associations with forecast heat waves tended to underestimate heat wave effects, relative to associations based on observed weather metrics. Conclusions: Our findings suggest that incorporating knowledge of local conditions may improve the accuracy of predictions used to activate heat wave and health warning systems. Citation: Zhang K, Chen YH, Schwartz JD, Rood RB, O’Neill MS. 2014. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ Health Perspect 122:912–918;

  19. More Intense Mega Heat Waves in the Warmer World

    NASA Astrophysics Data System (ADS)

    Choi, G.; Robinson, D. A.

    2017-12-01

    In this study, changes in the occurrences of heat waves on the globe since the mid- 20th century and the synoptic characteristics of mega heat waves at regional scales in the warmer climate are examined. The NCEP-NCAR reanalysis surface data show that there have been no obvious linear changes in the heat wave frequencies at the continental scales since the mid-20th century, but amplified interdecadal variations led to unprecedented intense heat waves in the recent decades at the regional scales. Such mega heat waves have been more frequently observed in the poleward subtropical climate belts as well as in the interior region of continents. According to the analyses of upper tropospheric data, the occurrences of more intense mega heat waves since the late 20th century may be associated with the expansion of subtropical high pressures. These results suggest that populous cities near the subtropical climate zones should provide proactive mega heat wave warning systems for residents due to their vulnerability to the sudden attack of human lives harvest by mega heat waves in the warmer 21st century.

  20. Warming set stage for deadly heat wave

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the summer of 2010, soaring temperatures and widespread forest fires ravaged western Russia, killing 55,000 and causing $15 billion in economic losses. In the wake of the record-setting heat wave, two studies sought to identify the contribution that human activities made to the event. One showed that temperatures seen during the deadly heat wave fell within the bounds of natural variability, while another attributed the heat wave to human activity, arguing that anthropogenic warming increased the chance of record-breaking temperatures occurring. Merging the stances of both studies, Otto et al. sought to show that while human contributions to climate change did not necessarily cause the deadly heat wave, they did play a role in setting the stage for its occurrence. Using an ensemble of climate simulations, the authors assessed the expected magnitude and frequency of an event like the 2010 heat wave under both 1960s and 2000s environmental conditions. The authors found that although the average temperature in July 2010 was 5°C higher than the average July temperature from the past half decade, the deadly heat wave was within the natural variability of 1960s, as well as 2000s, climate conditions

  1. Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    NASA Technical Reports Server (NTRS)

    Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.

    2013-01-01

    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.

  2. Heat Wave Changes in the Eastern Mediterranean since 1960

    NASA Astrophysics Data System (ADS)

    Kuglitsch, Franz G.; Toreti, Andrea; Xoplaki, Elena; Della-Marta, Paul M.; Zerefos, Christos S.; Türkes, Murat; Luterbacher, Jürg

    2010-05-01

    Heat waves have discernible impacts on mortality and morbidity, infrastructure, agricultural resources, the retail industry, ecosystem and tourism and consequently affect human societies. A new definition of socially relevant heat waves is presented and applied to new data sets of high-quality homogenized daily maximum and minimum summer air temperature series from 246 stations in the eastern Mediterranean region (including Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Israel, Romania, Serbia, Slovenia, Turkey). Changes in heat wave number, length and intensity between 1960 and 2006 are quantified. Daily temperature homogeneity analysis suggest that many instrumental measurements in the 1960s are warm-biased, correcting for these biases regionally averaged heat wave trends are up to 8% higher. We find significant changes across the western Balkans, southwestern and western Turkey, and along the southern Black Sea coastline. Since the 1960s, the mean heat wave intensity, heat wave length and heat wave number across the eastern Mediterranean region have increased by a factor 7.6 ±1.3, 7.5 ±1.3 and 6.2 ±1.1, respectively. These findings suggest that the heat wave increase in this region is higher than previously reported.

  3. Increasing probability of mortality during Indian heat waves.

    PubMed

    Mazdiyasni, Omid; AghaKouchak, Amir; Davis, Steven J; Madadgar, Shahrbanou; Mehran, Ali; Ragno, Elisa; Sadegh, Mojtaba; Sengupta, Ashmita; Ghosh, Subimal; Dhanya, C T; Niknejad, Mohsen

    2017-06-01

    Rising global temperatures are causing increases in the frequency and severity of extreme climatic events, such as floods, droughts, and heat waves. We analyze changes in summer temperatures, the frequency, severity, and duration of heat waves, and heat-related mortality in India between 1960 and 2009 using data from the India Meteorological Department. Mean temperatures across India have risen by more than 0.5°C over this period, with statistically significant increases in heat waves. Using a novel probabilistic model, we further show that the increase in summer mean temperatures in India over this period corresponds to a 146% increase in the probability of heat-related mortality events of more than 100 people. In turn, our results suggest that future climate warming will lead to substantial increases in heat-related mortality, particularly in developing low-latitude countries, such as India, where heat waves will become more frequent and populations are especially vulnerable to these extreme temperatures. Our findings indicate that even moderate increases in mean temperatures may cause great increases in heat-related mortality and support the efforts of governments and international organizations to build up the resilience of these vulnerable regions to more severe heat waves.

  4. Northern Eurasian Heat Waves and Droughts

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max; Groisman, Pavel

    2013-01-01

    This article reviews our understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA GEOS-5 AGCM. Key new results are: 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave), 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST, and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in our understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.

  5. Responses of tree species to heat waves and extreme heat events.

    PubMed

    Teskey, Robert; Wertin, Timothy; Bauweraerts, Ingvar; Ameye, Maarten; McGuire, Mary Anne; Steppe, Kathy

    2015-09-01

    The number and intensity of heat waves has increased, and this trend is likely to continue throughout the 21st century. Often, heat waves are accompanied by drought conditions. It is projected that the global land area experiencing heat waves will double by 2020, and quadruple by 2040. Extreme heat events can impact a wide variety of tree functions. At the leaf level, photosynthesis is reduced, photooxidative stress increases, leaves abscise and the growth rate of remaining leaves decreases. In some species, stomatal conductance increases at high temperatures, which may be a mechanism for leaf cooling. At the whole plant level, heat stress can decrease growth and shift biomass allocation. When drought stress accompanies heat waves, the negative effects of heat stress are exacerbated and can lead to tree mortality. However, some species exhibit remarkable tolerance to thermal stress. Responses include changes that minimize stress on photosynthesis and reductions in dark respiration. Although there have been few studies to date, there is evidence of within-species genetic variation in thermal tolerance, which could be important to exploit in production forestry systems. Understanding the mechanisms of differing tree responses to extreme temperature events may be critically important for understanding how tree species will be affected by climate change. © 2014 John Wiley & Sons Ltd.

  6. Implementation of the Montreal heat response plan during the 2010 heat wave.

    PubMed

    Price, Karine; Perron, Stéphane; King, Norman

    2013-02-11

    The objective of this paper is to describe Montreal's heat response plan and its application during the July 2010 heat wave. The Montreal heat response plan is designed to ensure the surveillance of weather and health indicators during the summer season and to coordinate actions to be undertaken during this period to reduce morbidity and mortality due to heat, particularly when weather thresholds are reached or an increase in health indicators is observed. It was developed to coordinate and apply intervention measures on the Island of Montreal and has been in effect since 2004. In the beginning of July 2010, Montreal experienced a heat wave that lasted 5 days. During this period, health indicators such as total mortality, prehospital emergency transports, calls to the health information line and hospital admissions were monitored by the Montreal public health surveillance system. The decision to implement emergency interventions and actions performed by regional and local public health and municipal partners (intervention level) was made following attainment of a predetermined weather threshold and increases in health indicators. The significant increase in daily observed mortality from all causes and in particular people dying at home or in the community prompted the Director of public health to conduct a chart review of all people deceased from July 5 to July 11, 2010 to determine cause of death and underlying health conditions. During the heat wave, there were 304 reported deaths from all causes in Montreal residents, of which 106 were probably or possibly heat-related. Major underlying health conditions in heat-related deaths included cardiovascular problems and mental health illness. Furthermore, in the case of people with mental illness who died during the heat wave, the chart review revealed that many were contacted 24 hours prior to their death by health care professionals, family members, neighbours or friends. Following the 2010 heat wave, the Montreal

  7. Extreme heat changes post-heat wave community reassembly

    PubMed Central

    Seifert, Linda I; Weithoff, Guntram; Vos, Matthijs

    2015-01-01

    Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29°C and 39°C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39°C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29°C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial

  8. THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; Shibata, K., E-mail: antolin@astro.uio.n, E-mail: shibata@kwasan.kyoto-u.ac.j

    In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. Newmore » observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish

  9. Modeling of the EAST ICRF antenna with ICANT Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Chengming; Zhao Yanping; Colas, L.

    2007-09-28

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  10. Modeling of the EAST ICRF antenna with ICANT Code

    NASA Astrophysics Data System (ADS)

    Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.

    2007-09-01

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  11. The impact of heat waves on children's health: a systematic review.

    PubMed

    Xu, Zhiwei; Sheffield, Perry E; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  12. The impact of heat waves on children's health: a systematic review

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Sheffield, Perry E.; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  13. Stochastic Ion Heating by the Lower-Hybrid Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G.; Tel'nikhin, A.; Krotov, A.

    2011-01-01

    The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.

  14. Accounting for adaptation and intensity in projecting heat wave-related mortality.

    PubMed

    Wang, Yan; Nordio, Francesco; Nairn, John; Zanobetti, Antonella; Schwartz, Joel D

    2018-02-01

    How adaptation and intensity of heat waves affect heat wave-related mortality is unclear, making health projections difficult. We estimated the effect of heat waves, the effect of the intensity of heat waves, and adaptation on mortality in 209 U.S. cities with 168 million people during 1962-2006. We improved the standard time-series models by incorporating the intensity of heat waves using excess heat factor (EHF) and estimating adaptation empirically using interactions with yearly mean summer temperature (MST). We combined the epidemiological estimates for heat wave, intensity, and adaptation with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset to project heat wave-related mortality by 2050. The effect of heat waves increased with its intensity. Adaptation to heat waves occurred, which was shown by the decreasing effect of heat waves with MST. However, adaptation was lessened as MST increased. Ignoring adaptation in projections would result in a substantial overestimate of the projected heat wave-related mortality (by 277-747% in 2050). Incorporating the empirically estimated adaptation into projections would result in little change in the projected heat wave-related mortality between 2006 and 2050. This differs regionally, however, with increasing mortality over time for cities in the southern and western U.S. but decreasing mortality over time for the north. Accounting for adaptation is important to reduce bias in the projections of heat wave-related mortality. The finding that the southern and western U.S. are the areas that face increasing heat-related deaths is novel, and indicates that more regional adaptation strategies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Heat waves over Central Europe in regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  16. Theory and Practice in ICRF Antennas for Long Pulse Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colas, L.; Bremond, S.; Mitteau, R.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot patternmore » was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.« less

  17. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  18. Progress on ion cyclotron range of frequencies heating physics and technology in support of the International Tokamak Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bonoli, P. T.

    2015-02-01

    Ion cyclotron range of frequency (ICRF) heating is foreseen as an integral component of the initial ITER operation. The status of ICRF preparations for ITER and supporting research were updated in the 2007 [Gormezano et al., Nucl. Fusion 47, S285 (2007)] report on the ITER physics basis. In this report, we summarize progress made toward the successful application of ICRF power on ITER since that time. Significant advances have been made in support of the technical design by development of new techniques for arc protection, new algorithms for tuning and matching, carrying out experimental tests of more ITER like antennas and demonstration on mockups that the design assumptions are correct. In addition, new applications of the ICRF system, beyond just bulk heating, have been proposed and explored.

  19. Added effect of heat wave on mortality in Seoul, Korea.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  20. Resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-06-01

    Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  1. Determining Heat Waves from Observations and COSMO-CLM Simulations in Istanbul

    NASA Astrophysics Data System (ADS)

    Yuruk, Cemre; Unal, Yurdanur; Irem Bilgen, Simge; Topcu, Sema; Mentes, Sibel

    2016-04-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model coupled with MPI-ESM-LR in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2013 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 °C from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. An example of this situation is observed in a Kilyos station located northern part of the city. Kilyos experiences only one heat wave in the beginning of 1970s whereas the number of heat waves increases in years and reaches to the maximum value of 5 in 2000. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. In addition to station data analyses, the local climate of Istanbul and its vicinity is simulated by CCLM model with approximately 3

  2. Temporal Compounding of Heat Waves in the Present and Projected Future

    NASA Astrophysics Data System (ADS)

    Baldwin, J. W.; Dessy, J.; Vecchi, G. A.; Oppenheimer, M.

    2017-12-01

    The hazard of heat waves is projected to increase significantly with global warming, motivating much recent research characterizing various aspects of these extreme events. One less examined aspect of heat waves is their temporal structure. Here we first modify existing heat wave duration definitions to flexibly account for a variety of possible heat wave temporal structures (sequences of hot and cooler days). We then examine past heat waves associated with high mortality using observational reanalysis data, and note that many past heat waves might be better described as series of hot days compounded together with short breaks of cooler days in between. We employ Geophysical Fluid Dynamics Laboratory (GFDL) global climate model (GCM) simulations to compare the frequency of these compound heat waves in the present and projected future with higher levels of atmospheric carbon dioxide. Our results indicate that temporally compound heatwaves will constitute a greater proportion of heat wave risk with global warming. Via examining synthetic autoregressive model data, we propose that this phenomenon is expected when shifting the mean of a time series with some memory and noise. Notably, an increased proportion of compound events implies that vulnerability from prior hot days will play an increasingly large role in heat wave risk, with possible implications for both heat wave-related policy and preparedness.

  3. Whistlers, Helicons, Lower Hybrid Waves: the Physics of RF Wave Absorption Without Cyclotron Resonances

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    2014-10-01

    In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.

  4. [Impact of heat waves on non-accidental deaths in Jinan, China].

    PubMed

    Zhang, J; Liu, S Q; Zhou, L; Gong, S P; Liu, Y L; Zhang, Y; Zhang, J

    2016-02-20

    To assess the impact of heat waves on non-accidental deaths, and to investigate the influencing factors for deaths caused by heat waves in Jinan, China. Daily death data and meteorological data for summer days with or without heat waves in Jinan from 2012 to 2014 were collected, and a cross-over analysis was conducted to evaluate the influence of heat waves on non-accidental deaths and deaths caused by other reasons. The univariate and multivariate logistic regression models were used to investigate the influencing factors for deaths caused by heat waves. The risks of non-accidental deaths and deaths caused by circulation system diseases during the days with heat waves were 1.82 times(95% CI: 1.47~2.36) and 1.53 times(95% CI: 1.14~2.07) those during the days without heat waves. The multivariate logistic regression analysis showed that old age(≥75 years)(OR=1.184, 95% CI: 1.068~1.313), low educational level(OR=1.187, 95% CI: 1.064~1.324), and deaths outside hospital(OR=1.105, 95% CI: 1.009~1.210) were associated with the high risk of deaths during the days with heat waves. Heat waves significantly increase the risk of non-accidental deaths and deaths caused by circulation system diseases in Jinan, and the deaths during the days with heat waves are related to age, educational level, and place of death.

  5. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  6. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  7. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoukov, R.; Bobkov, V.; Faugel, H.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performedmore » on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under

  8. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  9. Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr

    2015-04-01

    The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.

  10. Ion Bernstein wave heating research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    1993-02-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and

  11. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    NASA Astrophysics Data System (ADS)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  12. Heat waves and warm periods in Slovakia

    NASA Astrophysics Data System (ADS)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  13. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    NASA Astrophysics Data System (ADS)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne < 1018 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  14. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project.

    PubMed

    D'Ippoliti, Daniela; Michelozzi, Paola; Marino, Claudia; de'Donato, Francesca; Menne, Bettina; Katsouyanni, Klea; Kirchmayer, Ursula; Analitis, Antonis; Medina-Ramón, Mercedes; Paldy, Anna; Atkinson, Richard; Kovats, Sari; Bisanti, Luigi; Schneider, Alexandra; Lefranc, Agnès; Iñiguez, Carmen; Perucci, Carlo A

    2010-07-16

    The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  15. Wave propagation model of heat conduction and group speed

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  16. Sahelian springtime heat waves and their evolution over the past 60 years

    NASA Astrophysics Data System (ADS)

    Barbier, Jessica; Guichard, Françoise; Bouniol, Dominique; Couvreux, Fleur; Roehrig, Romain

    2017-04-01

    The Sahel is a semi-arid region which experiences very high temperature both during day- and night-times: monthly-mean temperatures in Spring typically oscillate between 30 and 40°C. At the same time a strong climatic warming has been observed over the past 60 years in this region: it reaches +1,5°C over April-May. Thus heat waves in this region have severe impacts on health, ecosystem, agriculture and more broadly economical activities, which will probably worsen in the context of climate change. However, heat waves in the Sahel remain poorly studied. The present work documents Sahelian heat waves and assesses their evolution across the last 60 years. Properties of heat waves are sensitive to the way they are detected. Here, we use a methodology based on anomalies that allows to filter the seasonal, inter-annual and climatic evolutions, using a percentile-type threshold. It is applied separately to daily maximum and minimum temperatures and leads to two types of heat waves: day- and night-time ones. This separation matters because physical processes linked to minimum and maximum temperatures can be quite distinct. The changes in both types of heat wave were studied over the period 1950-2012 using the Berkeley Earth Surface Temperature gridded product: several heat wave characteristics were investigated, including morphological ones such as the length and the spatial extent of the event, the heat wave intensity and the associated warming trends. We found no significant trends in the frequency, duration and spatial extent of both types of heat waves, while on the other hand their maximum and minimum temperatures displayed significant positive trends. They were mainly explained by the regional warming. By contrast, with a standard climatic heat index using percentile-threshold on raw temperatures, both day- and night-time heat wave frequencies were increasing, and while the day-time heat waves were getting longer and larger, the night-time heat waves were getting

  17. Predictability of the European heat and cold waves

    NASA Astrophysics Data System (ADS)

    Lavaysse, Christophe; Naumann, Gustavo; Alfieri, Lorenzo; Salamon, Peter; Vogt, Jürgen

    2018-06-01

    Heat and cold waves may have considerable human and economic impacts in Europe. Recent events, like the heat waves observed in France in 2003 and Russia in 2010, illustrated the major consequences to be expected. Reliable Early Warning Systems for extreme temperatures would, therefore, be of high value for decision makers. However, they require a clear definition and robust forecasts of these events. This study analyzes the predictability of heat and cold waves over Europe, defined as at least three consecutive days of {T}_{min} and {T}_{max} above the quantile Q90 (under Q10), using the extended ensemble system of ECMWF. The results show significant predictability for events within a 2-week lead time, but with a strong decrease of the predictability during the first week of forecasts (from 80 to 40% of observed events correctly forecasted). The scores show a higher predictive skill for the cold waves (in winter) than for the heat waves (in summer). The uncertainties and the sensitivities of the predictability are discussed on the basis of tests conducted with different spatial and temporal resolutions. Results demonstrate the negligible effect of the temporal resolution (very few errors due to bad timing of the forecasts), and a better predictability of large-scale events. The onset and the end of the waves are slightly less predictable with an average of about 35% (30%) of observed heat (cold) waves onsets or ends correctly forecasted with a 5-day lead time. Finally, the forecasted intensities show a correlation of about 0.65 with those observed, revealing the challenge to predict this important characteristic.

  18. Eurasian Heat Waves: Mechanisms and Predictability

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Schubert, Siegfried; Koster, Randal; Suarez, Max

    2012-01-01

    This study uses the NASA MERRA reanalysis and GEOS 5 model simulations to examine the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The focus is on the warm season and the part of the Eurasian continent that extends north of about 40oN, or roughly to the north of the mean upper tropospheric jet stream. The results show that such extreme events are an amplification of natural patterns of atmospheric variability that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more intense in the last thirty years as a result of the overall warming of the Asian continent. Sensitivity experiments with perturbed initial conditions indicate that these events have limited predictability.

  19. Public crowdsensing of heat waves by social media data

    NASA Astrophysics Data System (ADS)

    Grasso, Valentina; Crisci, Alfonso; Morabito, Marco; Nesi, Paolo; Pantaleo, Gianni

    2017-07-01

    Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  20. Outpatient clinic visits during heat waves: findings from a large family medicine clinical database.

    PubMed

    Vashishtha, Devesh; Sieber, William; Hailey, Brittany; Guirguis, Kristen; Gershunov, Alexander; Al-Delaimy, Wael K

    2018-03-10

    The purpose of this study was to determine whether heat waves are associated with increased frequency of clinic visits for ICD-9 codes of illnesses traditionally associated with heat waves. During 4 years of family medicine clinic data between 2012 and 2016, we identified six heat wave events in San Diego County. For each heat wave event, we selected a control period in the same season that was twice as long. Scheduling a visit on a heat wave day (versus a non-heat wave day) was the primary predictor, and receiving a primary ICD-9 disease code related to heat waves was the outcome. Analyses were adjusted for age, gender, race/ethnicity and marital status. Of the 5448 visits across the heat wave and control periods, 6.4% of visits (n = 346) were for heat wave-related diagnoses. Scheduling a visit on heat wave day was not associated with receiving a heat wave-related ICD code as compared with the control period (adjusted odds ratio: 1.35; 95% confidence interval: 0.86-1.36; P = 0.51). We show that in a relatively large and demographically diverse population, patients who schedule appointments during heat waves are not being more frequently seen for diagnoses typically associated with heat waves in the acute setting. Given that heat waves are increasing in frequency due to climate change, there is an opportunity to increase utilization of primary care clinics during heat waves.

  1. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  2. California heat waves: their spatial evolution, variation, and coastal modulation by low clouds

    NASA Astrophysics Data System (ADS)

    Clemesha, Rachel E. S.; Guirguis, Kristen; Gershunov, Alexander; Small, Ivory J.; Tardy, Alexander

    2018-06-01

    We examine the spatial and temporal evolution of heat waves through California and consider one of the key modulating factors of summertime coastal climate—coastal low cloudiness (CLC). Heat waves are defined relative to daytime maximum temperature (Tmax) anomalies after removing local seasonality and capture unseasonably warm events during May—September. California is home to several diverse climate regions and characteristics of extreme heat events are also variable throughout these regions. Heat wave events tend to be shorter, but more anomalously intense along the coast. Heat waves typically impact both coastal and inland regions, although there is more propensity towards coastally trapped events. Most heat waves with a strong impact across regions start at the coast, proceed inland, and weaken at the coast before letting up inland. Typically, the beginning of coastal heat waves are associated with a loss of CLC, followed by a strong rebound of CLC starting close to the peak in heat wave intensity. The degree to which an inland heat wave is expressed at the coast is associated with the presence of these low clouds. Inland heat waves that have very little expression at the coast tend to have CLC present and an elevated inversion base height compared with other heat waves.

  3. Heat protection behaviors and positive affect about heat during the 2013 heat wave in the United Kingdom.

    PubMed

    Lefevre, Carmen E; Bruine de Bruin, Wändi; Taylor, Andrea L; Dessai, Suraje; Kovats, Sari; Fischhoff, Baruch

    2015-03-01

    Heat waves pose serious health risks, and are expected to become more frequent, longer lasting, and more intense in the future under a changing climate. Yet, people in the UK seem to feel positive when thinking about hot weather. According to research on the affect heuristic, any positive or negative emotions evoked by potentially risky experiences may be used as cues to inform concerns about risk protection. If so, then their positive feelings toward hot weather might lead UK residents to lower intentions to adopt heat protection behaviors. Here, we examine the relationships between heat protection behaviors during the July 2013 UK heat wave and self-reports of having heard heat protection recommendations, feeling positive affect about heat, seeing heat protection measures as effective, and trusting the organizations making those recommendations. Responses to a national survey revealed that 55.1% of participants had heard heat protection recommendations during the 2013 UK heat wave. Those who reported having heard recommendations also indicated having implemented more heat protection behaviors, perceiving heat protection behaviors as more effective, feeling more positive about heat, and intending to implement more protection behaviors in future hot summers. Mediation analyses suggested that heat protection recommendations may motivate heat protection behaviors by increasing their perceived effectiveness, but undermine their implementation by evoking positive affect about hot weather. We discuss our findings in the context of the affect heuristic and its implications for heat protection communications. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic.

    PubMed

    Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Maiheu, Bino; De Ridder, Koen; Daglis, Ioannis A; Manunta, Paolo; Paganini, Marc

    2013-10-01

    The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.

  5. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  6. Projected Heat Wave Characteristics over the Korean Peninsula During the Twenty-First Century

    NASA Astrophysics Data System (ADS)

    Shin, Jongsoo; Olson, Roman; An, Soon-Il

    2018-02-01

    Climate change is expected to increase temperatures globally, and consequently more frequent, longer, and hotter heat waves are likely to occur. Ambiguity in defining heat waves appropriately makes it difficult to compare changes in heat wave events over time. This study provides a quantitative definition of a heat wave and makes probabilistic heat wave projections for the Korean Peninsula under two global warming scenarios. Changes to heat waves under global warming are investigated using the representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) experiments from 30 coupled models participating in phase five of the Coupled Model Inter-comparison Project. Probabilistic climate projections from multi-model ensembles have been constructed using both simple and weighted averaging. Results from both methods are similar and show that heat waves will be more intense, frequent, and longer lasting. These trends are more apparent under the RCP8.5 scenario as compared to the RCP4.5 scenario. Under the RCP8.5 scenario, typical heat waves are projected to become stronger than any heat wave experienced in the recent measurement record. Furthermore, under this scenario, it cannot be ruled out that Korea will experience heat wave conditions spanning almost an entire summer before the end of the 21st century.

  7. Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E. M. C.; Reu, P. L.

    Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less

  8. Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves

    DOE PAGES

    Jones, E. M. C.; Reu, P. L.

    2017-11-28

    Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less

  9. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage.

    PubMed

    Janssens, Lizanne; Tüzün, Nedim; Stoks, Robby

    2017-11-01

    Under global change organisms are exposed to multiple, potentially interacting stressors. Especially interactions between successive stressors are poorly understood and recently suggested to depend on their timing of exposure. We particularly need studies assessing the impact of exposure to relevant stressors at various life stages and how these interact. We investigated the single and combined impacts of a heat wave (mild [25 °C] and extreme [30 °C]) during the egg stage, followed by successive exposure to esfenvalerate (ESF) and a heat wave during the larval stage in damselflies. Each stressor caused mortality. The egg heat wave and larval ESF exposure had delayed effects on survival, growth and lipid peroxidation (MDA). This resulted in deviations from the prediction that stressors separated by a long time interval would not interact: the egg heat wave modulated the interaction between the stressors in the larval stage. Firstly, ESF caused delayed mortality only in larvae that had been exposed to the extreme egg heat wave and this strongly depended upon the larval heat wave treatment. Secondly, ESF only increased MDA in larvae not exposed to the egg heat wave. We found little support for the prediction that when there is limited time between stressors, synergistic interactions should occur. The intermediate ESF concentration only caused delayed mortality when combined with the larval heat wave, and the lowest ESF concentrations only increased oxidative damage when followed by the mild larval heat wave. Survival selection mitigated the interaction patterns between successive stressors that are individually lethal, and therefore should be included in a predictive framework for the time-scale dependence of the outcome of multistressor studies with pollutants. The egg heat wave shaping the interaction pattern between successive pesticide exposure and a larval heat wave highlights the connectivity between the concepts of 'heat-induced pesticide sensitivity' and

  10. Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review

    PubMed Central

    Li, Mengmeng; Gu, Shaohua; Bi, Peng; Yang, Jun; Liu, Qiyong

    2015-01-01

    In the past few decades, several devastating heat wave events have significantly challenged public health. As these events are projected to increase in both severity and frequency in the future, it is important to assess the relationship between heat waves and the health indicators that can be used in the early warning systems to guide the public health response. Yet there is a knowledge gap in the impact of heat waves on morbidity. In this study, a comprehensive review was conducted to assess the relationship between heat waves and different morbidity indicators, and to identify the vulnerable populations. The PubMed and ScienceDirect database were used to retrieve published literature in English from 1985 to 2014 on the relationship between heat waves and morbidity, and the following MeSH terms and keywords were used: heat wave, heat wave, morbidity, hospital admission, hospitalization, emergency call, emergency medical services, and outpatient visit. Thirty-three studies were included in the final analysis. Most studies found a short-term negative health impact of heat waves on morbidity. The elderly, children, and males were more vulnerable during heat waves, and the medical care demand increased for those with existing chronic diseases. Some social factors, such as lower socioeconomic status, can contribute to heat-susceptibility. In terms of study methods and heat wave definitions, there remain inconsistencies and uncertainties. Relevant policies and guidelines need to be developed to protect vulnerable populations. Morbidity indicators should be adopted in heat wave early warning systems in order to guide the effective implementation of public health actions. PMID:25993103

  11. Climate change scenarios of heat waves in Central Europe and their uncertainties

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondřej; Kyselý, Jan; Farda, Aleš

    2018-02-01

    The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970-1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020-2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070-2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.

  12. Characterization of the mutual influence of Ion Cyclotron and Lower Hybrid Range of frequencies systems on EAST

    NASA Astrophysics Data System (ADS)

    Urbanczyk, Guillaume; Zhang, Xinjun; Qin, Chengming; Zhao, Yanping; Zhang, Tao; Zhang, Ling; Li, Jiangang; Yuan, Shuai; Chen, Liang; Zhang, Heng; Zhang, Jiahui; Wang, Jianhua; Yang, Xiuda; Qian, Jinping

    2017-10-01

    Waves in the Ion Cyclotron (ICRF) and Lower Hybrid (LH) Range of Frequencies are efficient techniques respectively to heat the plasma and drive current. Main difficulties come from a trade-off between good RF coupling and acceptable level of impurities release. The mutual influence of both systems makes such equilibrium often hard to reach [1]. In order to investigate those interactions based on Scrape-Off Layer (SOL) plasma parameters, a new reciprocating probe was designed allying a three tips Langmuir probe with an emissive wire. The emissive filament provides a precise measure of plasma potential [2], which can be used to calibrate Langmuir probe's results. This paper reports on experimental results obtained on EAST, where there are two ICRF antennas and two LH launchers. Among others diagnostics, the new reciprocating probe enabled to evidence the deleterious influence of ICRF power on LHWs coupling in L-mode plasmas. In areas connected with an active ICRF antenna, SOL potentials increase while densities tend to decrease, respectively enhancing impurities release and deteriorating LHWs coupling. This phenomenon has mostly been attributed to RF sheath; the one that forms on top of Plasma Facing Components (PFCs) and causes ExB density convections [3]. From those experiments it seems ICRF has a strong influence on magnetically connected areas, both in the near field - influencing ICRF waves coupling - and in farther locations such as in front of LH grills. Moreover, influence of ICRF on LH system was observed both in L and H modes. Those results are consistent with RF sheath rectification process. Concerning the influence of LHWs on ICRF coupling, nothing was observed in L-mode. Besides during H-mode experiments, LHWs have been identified as having a mitigating effect on ELMs [4], which on average lowers the pedestal, increasing edge densities to the profit of ICRF waves coupling.

  13. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  14. Heat waves in lowland Germany and their circulation-related conditions

    NASA Astrophysics Data System (ADS)

    Tomczyk, Arkadiusz M.; Sulikowska, Agnieszka

    2017-09-01

    The research study aimed at assessing multiannual variability of heat wave occurrence in the lowland part of Germany between 1966 and 2015 and determining the role of atmospheric circulation in their occurrence. The analysis was conducted with the use of two independent datasets, that is, the dataset of Germany's National Meteorological Service, Deutscher Wetterdienst, and American meteorological reanalysis database of the National Centre for Environmental Prediction/National Centre for Atmospheric Research. This article defines a hot day as a day with maximum temperature of >30 °C, and a heat wave as a sequence of at least three such days. The observed warming translated into an increase in a number of hot days and, consequently, an increase in the frequency of heat wave occurrence. In the analysed 50-year period, the smallest number of heat waves was observed between 1976 and 1985, and the largest number between 2006 and 2015 in the lowland part of Germany. The occurrence of heat waves in lowland Germany was related to anticyclonic circulation.

  15. Effects of heat waves on mortality: effect modification and confounding by air pollutants.

    PubMed

    Analitis, Antonis; Michelozzi, Paola; D'Ippoliti, Daniela; De'Donato, Francesca; Menne, Bettina; Matthies, Franziska; Atkinson, Richard W; Iñiguez, Carmen; Basagaña, Xavier; Schneider, Alexandra; Lefranc, Agnès; Paldy, Anna; Bisanti, Luigi; Katsouyanni, Klea

    2014-01-01

    Heat waves and air pollution are both associated with increased mortality. Their joint effects are less well understood. We explored the role of air pollution in modifying the effects of heat waves on mortality, within the EuroHEAT project. Daily mortality, meteorologic, and air pollution data from nine European cities for the years 1990-2004 were assembled. We defined heat waves by taking both intensity and duration into account. The city-specific effects of heat wave episodes were estimated using generalized estimating equation models, adjusting for potential confounders with and without inclusion of air pollutants (particles, ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide). To investigate effect modification, we introduced an interaction term between heat waves and each single pollutant in the models. Random effects meta-analysis was used to summarize the city-specific results. The increase in the number of daily deaths during heat wave episodes was 54% higher on high ozone days compared with low, among people age 75-84 years. The heat wave effect on high PM10 days was increased by 36% and 106% in the 75-84 year and 85+ year age groups, respectively. A similar pattern was observed for effects on cardiovascular mortality. Effect modification was less evident for respiratory mortality, although the heat wave effect itself was greater for this cause of death. The heat wave effect was smaller (15-30%) after adjustment for ozone or PM10. The heat wave effect on mortality was larger during high ozone or high PM10 days. When assessing the effect of heat waves on mortality, lack of adjustment for ozone and especially PM10 overestimates effect parameters. This bias has implications for public health policy.

  16. Warm vegetarians? Heat waves and diet shifts in tadpoles.

    PubMed

    Carreira, B M; Segurado, P; Orizaola, G; Gonçalves, N; Pinto, V; Laurila, A; Rebelo, R

    2016-11-01

    Temperature can play an important role in determining the feeding preferences of ectotherms. In light of the warmer temperatures arising with the current climatic changes, omnivorous ectotherms may perform diet shifts toward higher herbivory to optimize energetic intake. Such diet shifts may also occur during heat waves, which are projected to become more frequent, intense, and longer lasting in the future. Here, we investigated how heat waves of different duration affect feeding preferences in omnivorous anuran tadpoles and how these choices affect larval life history. In laboratory experiments, we fed tadpoles of three species on animal, plant, or mixed diet and exposed them to short heat waves (similar to the heat waves these species experience currently) or long heat waves (predicted to increase under climate change). We estimated the dietary choices of tadpoles fed on the mixed diet using stable isotopes and recorded tadpole survival and growth, larval period, and mass at metamorphosis. Tadpole feeding preferences were associated with their thermal background, with herbivory increasing with breeding temperature in nature. Patterns in survival, growth, and development generally support decreased efficiency of carnivorous diets and increased efficiency or higher relative quality of herbivorous diets at higher temperatures. All three species increased herbivory in at least one of the heat wave treatments, but the responses varied among species. Diet shifts toward higher herbivory were maladaptive in one species, but beneficial in the other two. Higher herbivory in omnivorous ectotherms under warmer temperatures may impact species differently and further contribute to changes in the structure and function of freshwater environments. © 2016 by the Ecological Society of America.

  17. Heat, Heat Waves, and Hospital Admissions among the Elderly in the United States, 1992–2006

    PubMed Central

    Zanobetti, Antonella; Schwartz, Joel D.; Wellenius, Gregory A.; O’Neill, Marie S.

    2014-01-01

    Background: Heat-wave frequency, intensity, and duration are increasing with global climate change. The association between heat and mortality in the elderly is well documented, but less is known regarding associations with hospital admissions. Objectives: Our goal was to determine associations between moderate and extreme heat, heat waves, and hospital admissions for nonaccidental causes among Medicare beneficiaries ≥ 65 years of age in 114 cities across five U.S. climate zones. Methods: We used Medicare inpatient billing records and city-specific data on temperature, humidity, and ozone from 1992 through 2006 in a time-stratified case-crossover design to estimate the association between hospitalization and moderate [90th percentile of apparent temperature (AT)] and extreme (99th percentile of AT) heat and heat waves (AT above the 95th percentile over 2–8 days). In sensitivity analyses, we additionally considered confounding by ozone and holidays, different temperature metrics, and alternate models of the exposure–response relationship. Results: Associations between moderate heat and hospital admissions were minimal, but extreme heat was associated with a 3% (95% CI: 2%, 4%) increase in all-cause hospital admissions over the subsequent 8 days. In cause-specific analyses, extreme heat was associated with increased hospitalizations for renal (15%; 95% CI: 9%, 21%) and respiratory (4%; 95% CI: 2%, 7%) diseases, but not for cardiovascular diseases. An added heat-wave effect was observed for renal and respiratory admissions. Conclusion: Extreme heat is associated with increased hospital admissions, particularly for renal causes, among the elderly in the United States. Citation: Gronlund CJ, Zanobetti A, Schwartz JD, Wellenius GA, O’Neill MS. 2014. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ Health Perspect 122:1187–1192; http://dx.doi.org/10.1289/ehp.1206132 PMID:24905551

  18. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach.

    PubMed

    Pansch, Christian; Scotti, Marco; Barboza, Francisco R; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Bucholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin

    2018-04-23

    Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.

  19. ICRF operation with improved antennas in ASDEX Upgrade with W wall

    NASA Astrophysics Data System (ADS)

    Bobkov, V.; Balden, M.; Bilato, R.; Braun, F.; Dux, R.; Herrmann, A.; Faugel, H.; Fünfgelder, H.; Giannone, L.; Kallenbach, A.; Maier, H.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; Tsujii, N.; Zeus, F.; Zohm, H.; the ASDEX Upgrade Team

    2013-09-01

    Experiments with boron-coated side limiters of two antennas operated together in 2012 showed that the side limiters are responsible for more than half of the increased W content in the plasma. Together with the contribution from the other limiter tiles, not replaced in 2012, the limiters account for at least two thirds of the W content. A modified test two-strap ion cyclotron range of frequency (ICRF) antennas in ASDEX Upgrade with broad limiters and narrow straps has shown an improved operation with full W wall in 2011/2012 campaigns with up to a 40% lower rise of W concentration allowing more stable operation at low deuterium gas injection rate. Limiter spectroscopy measurements indicate up to a 40% reduction of the rise of the W sputtering yield during ICRF power, measured under the assumption of negligible influence of geometry variations and reflections on the measurements. The boron limiters on two antennas together with the improved broad-limiter antenna allowed a successful ICRF operation in 2012. As a part of long-term strategy of antenna design development, two three-strap antennas with phase and power balance control for reduction of E‖ are planned for installation in the future.

  20. Thermal responses in a coronal loop maintained by wave heating mechanisms

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  1. Atmospheric aerosol variability above the Paris Area during the 2015 heat wave - Comparison with the 2003 and 2006 heat waves

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Shang, Xiaoxia

    2017-12-01

    The aerosol layers during the heat wave of July 2015 over Paris Area have been studied using a N2-Raman lidar with co- and cross-polarized channels. The lidar observations are examined to allow the identification of main aerosol types and their origins, in synergy with measurements of the AERONET sunphotometer network and back trajectory studies from the HYSPLIT model. The results are compatible with spaceborne observations of MODIS and CALIOP. As for previous heat waves of August 2003 and July 2006 occurring in France, the aerosol optical thickness is very large, up to 0.8 at the lidar wavelength of 355 nm (between 0.5 and 0.7 at 550 nm). However, air mass trajectories highlight that the observed aerosol layers may have multiple and diverse origins during the 2015 heat wave (North America, Northwest Africa, Southern and Northern Europe). Biomass burning, pollution and desert dust aerosols have been identified, using linear particle depolarization ratio, lidar ratio and analysis of back trajectories initiated at the altitudes and arrival times of the plumes. These layers are elevated and are shown to have little impact on surface aerosol concentrations (PM10 < 40 μg m-3 or PM2.5 < 25 μg m-3) and therefore no influence on the local air quality during the 2015 heat wave, unlike in 2003 and 2006. However, they significantly modify the radiative budget by trapping part of the solar ingoing/outgoing fluxes, which leads to a mean aerosol radiative forcing close to +50 ± 17 Wm-2 per aerosol optical thickness unit at 550 nm (AOT550) for solar zenith angles between 55 and 75°, which are available from sunphotometer measurements. This value is smaller than those of the 2003 and 2006 heat waves, which are assessed to be +95 ± 13 and +70 ± 18 Wm-2/AOT550, respectively. The differences between the heat wave of 2015 and the others are mainly due to both the nature and the diversity of aerosols, as indicated by the dispersion of the single scattering albedo distributions at

  2. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  3. VizieR Online Data Catalog: Radio fluxes of 195 ICRF2-Gaia transfer sources (Le Bail+, 2016)

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Gordon, D.; MacMillan, D. S.; Behrend, D.; Thomas, C. C.; Bolotin, S.; Himwich, W. E.; Baver, K. D.; Corey, B. E.; Titus, M.; Bourda, G.; Charlot, P.; Collioud, A.

    2016-07-01

    The second realization of the International Celestial Reference Frame (ICRF2) is based on Very Long Baseline Interferometry (VLBI) data at radio frequencies in X band and S band. The European Space Agency's Gaia mission, launched on 2013 December 19, started routine scientific operations in 2014 July. By scanning the whole sky, it is expected to observe ~500000 Quasi Stellar Objects in the optical domain. This means that, in the future, two extragalactic celestial reference frames, at two different frequency domains, will coexist. It will thus be important to align them very accurately. In 2012, the Laboratoire d'Astrophysique de Bordeaux (LAB) selected 195 sources from ICRF2 that will be observed by Gaia and should be suitable for aligning the radio and optical frames: they are called ICRF2-Gaia transfer sources. The LAB submitted a proposal to the International VLBI Service (IVS) to regularly observe these ICRF2-Gaia transfer sources at the same rate as Gaia observes them in the optical realm, e.g., roughly once a month. Of the 195 sources, all but one have been successfully observed in the 12 months prior to 2015 September 01. Table1 lists the 195 ICRF2-Gaia transfer sources. Beginning in 2003 June, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of "under-observed" sources. In 2013 March, we added all 195 ICRF2-Gaia transfer sources to the IVS source monitoring program with an observation target of 12 successful sessions per year. (1 data file).

  4. The role of local heating in the 2015 Indian heat wave

    USDA-ARS?s Scientific Manuscript database

    India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examina...

  5. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China

    NASA Astrophysics Data System (ADS)

    Wang, Weiwen; Zhou, Wen; Li, Xiuzhen; Wang, Xin; Wang, Dongxiao

    2016-05-01

    Summer heat waves with persistent extreme high temperatures have been occurring with increasing frequency in recent decades. These extreme events have disastrous consequences for human health, economies, and ecosystems. In this study, we examine three summers with intense and protracted heat waves: the summers of 2003, 2006, and 2013, with high temperatures located mainly in southeastern, southwestern, and eastern China, respectively. The synoptic-scale characteristics of these heat waves and associated atmospheric circulation anomalies are investigated. In the early heat wave episode of 2003, a heat center was located in the southeast coastal provinces during the first 20 days of July. The maximum southward displacement of the East Asian jet stream (EAJS) induced anticyclonic anomalies to the south, associated with southwestward intensification of the western North Pacific subtropical high (WNPSH), and extreme high temperatures were found only to the south of the Yangtze River. In the later episode, a poleward displacement of the EAJS and an enhanced WNPSH over the midlatitudes of eastern China resulted in a "heat dome" over the region, and the heat wave extended northward to cover a larger area of eastern China. The coupling between the westward-enhanced WNPSH and poleward-displaced EAJS was found in the East China heat wave of 2013 as well. But the area of high temperatures reached far to the north in August 2013, with below-normal temperatures located in a small region of South China. In the 2006 southwestern drought and heat wave, extreme poleward displacement of the EAJS, associated with extraordinary westward extension of the WNSPH, resulted in further blocking of the moisture supply from the southwest monsoon. Large-scale moisture deficiencies, dry conditions, and downslope winds were common features of all investigated heat wave episodes. But in 2006, low-level heat lows associated with a well-mixed layer due to intensive daytime heating and atmospheric

  6. Operation of ICRF antennas in a full tungsten environment in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Braun, F.; Dux, R.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Rohde, V.; ASDEX Upgrade Team

    2009-06-01

    In the 2007 and early part of 2008 experimental campaigns, ASDEX Upgrade operated with full tungsten (W) wall without boronization. Use of ICRF power results in a significant increase of W source. Low temperature conditions at the plasma facing components, achieved by a large clearance between the separatrix and the antenna (>6 cm) and by elevated gas puff rates (>5×1021 s) help to lower W sputtering yield during ICRF. Operation of neighboring ICRF antennas at the phase difference close to -90° can lead to a reduction in the W source. However, a reduction of parallel near-fields by antenna design is needed to further minimize the W source. A relation has been established between the HFSS code calculations predicting a dominant role of box currents in the formation of parallel antenna near-fields and the experiment. The shapes of the measured vertical profile of effective sputtering yields and the calculated sheath driving voltages show a qualitative agreement. This confirms that the existing tools are a good basis to design an improved antenna.

  7. Long-Term Variations of the EOP and ICRF2

    NASA Technical Reports Server (NTRS)

    Zharov, Vladimir; Sazhin, Mikhail; Sementsov, Valerian; Sazhina, Olga

    2010-01-01

    We analyzed the time series of the coordinates of the ICRF radio sources. We show that part of the radio sources, including the defining sources, shows a significant apparent motion. The stability of the celestial reference frame is provided by a no-net-rotation condition applied to the defining sources. In our case this condition leads to a rotation of the frame axes with time. We calculated the effect of this rotation on the Earth orientation parameters (EOP). In order to improve the stability of the celestial reference frame we suggest a new method for the selection of the defining sources. The method consists of two criteria: the first one we call cosmological and the second one kinematical. It is shown that a subset of the ICRF sources selected according to cosmological criteria provides the most stable reference frame for the next decade.

  8. Identifying Heat Waves in Florida: Considerations of Missing Weather Data.

    PubMed

    Leary, Emily; Young, Linda J; DuClos, Chris; Jordan, Melissa M

    2015-01-01

    Using current climate models, regional-scale changes for Florida over the next 100 years are predicted to include warming over terrestrial areas and very likely increases in the number of high temperature extremes. No uniform definition of a heat wave exists. Most past research on heat waves has focused on evaluating the aftermath of known heat waves, with minimal consideration of missing exposure information. To identify and discuss methods of handling and imputing missing weather data and how those methods can affect identified periods of extreme heat in Florida. In addition to ignoring missing data, temporal, spatial, and spatio-temporal models are described and utilized to impute missing historical weather data from 1973 to 2012 from 43 Florida weather monitors. Calculated thresholds are used to define periods of extreme heat across Florida. Modeling of missing data and imputing missing values can affect the identified periods of extreme heat, through the missing data itself or through the computed thresholds. The differences observed are related to the amount of missingness during June, July, and August, the warmest months of the warm season (April through September). Missing data considerations are important when defining periods of extreme heat. Spatio-temporal methods are recommended for data imputation. A heat wave definition that incorporates information from all monitors is advised.

  9. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  10. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  11. Heat waves according to warm spell duration index in Slovakia during 1901-2016

    NASA Astrophysics Data System (ADS)

    Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav

    2017-04-01

    A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.

  12. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  13. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  14. New York City Impact on Regional Heat Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Luis E.; Schoonen, Martin

    Abstract Extreme heat events are projected to increase in magnitude and frequency throughout this century due to increasing global temperatures, making it critically important to acquire improved understanding of their genesis and interactions with large cities. This study presents an application of the factor separation method to assess combined impacts of a synoptic scale heat wave, urban land cover, and urban energy and momentum fluxes on temperatures and winds over New York City via use of high resolution simulations (1 km grid spacing) with an urbanized WRF model. Results showed that, while the heat wave had the largest contribution tomore » temperatures (> 8°C), urban surface factors matched it in highly urbanized areas. Surface factors matched this in highly urbanized areas during night and early morning hours, with contributions up to 5°C, when calm land breeze conditions result in a strong urban heat island. Positive interactions between all factors during morning and nighttime indicate urban heat island amplification of up to 4°C during the heat wave. Midtown Manhattan vertical cross-sections, where urban canopies are most dense, showed a change in the sign (from positive to negative) of the contribution of the urban fluxes between night and day below 500 m, possibly due to radiation blocking and increased thermal storage by buildings as well as frictional effects opposing the incoming warm air.« less

  15. New York City Impact on Regional Heat Wave

    DOE PAGES

    Ortiz, Luis E.; Schoonen, Martin

    2018-04-01

    Abstract Extreme heat events are projected to increase in magnitude and frequency throughout this century due to increasing global temperatures, making it critically important to acquire improved understanding of their genesis and interactions with large cities. This study presents an application of the factor separation method to assess combined impacts of a synoptic scale heat wave, urban land cover, and urban energy and momentum fluxes on temperatures and winds over New York City via use of high resolution simulations (1 km grid spacing) with an urbanized WRF model. Results showed that, while the heat wave had the largest contribution tomore » temperatures (> 8°C), urban surface factors matched it in highly urbanized areas. Surface factors matched this in highly urbanized areas during night and early morning hours, with contributions up to 5°C, when calm land breeze conditions result in a strong urban heat island. Positive interactions between all factors during morning and nighttime indicate urban heat island amplification of up to 4°C during the heat wave. Midtown Manhattan vertical cross-sections, where urban canopies are most dense, showed a change in the sign (from positive to negative) of the contribution of the urban fluxes between night and day below 500 m, possibly due to radiation blocking and increased thermal storage by buildings as well as frictional effects opposing the incoming warm air.« less

  16. Identifying Heat Waves in Florida: Considerations of Missing Weather Data

    PubMed Central

    Leary, Emily; Young, Linda J.; DuClos, Chris; Jordan, Melissa M.

    2015-01-01

    Background Using current climate models, regional-scale changes for Florida over the next 100 years are predicted to include warming over terrestrial areas and very likely increases in the number of high temperature extremes. No uniform definition of a heat wave exists. Most past research on heat waves has focused on evaluating the aftermath of known heat waves, with minimal consideration of missing exposure information. Objectives To identify and discuss methods of handling and imputing missing weather data and how those methods can affect identified periods of extreme heat in Florida. Methods In addition to ignoring missing data, temporal, spatial, and spatio-temporal models are described and utilized to impute missing historical weather data from 1973 to 2012 from 43 Florida weather monitors. Calculated thresholds are used to define periods of extreme heat across Florida. Results Modeling of missing data and imputing missing values can affect the identified periods of extreme heat, through the missing data itself or through the computed thresholds. The differences observed are related to the amount of missingness during June, July, and August, the warmest months of the warm season (April through September). Conclusions Missing data considerations are important when defining periods of extreme heat. Spatio-temporal methods are recommended for data imputation. A heat wave definition that incorporates information from all monitors is advised. PMID:26619198

  17. Temperature and heat wave trends in northwest Mexico

    NASA Astrophysics Data System (ADS)

    Martínez-Austria, Polioptro F.; Bandala, Erick R.; Patiño-Gómez, Carlos

    2016-02-01

    Increase in temperature extremes is one of the main expected impacts of climate change, as well as one of the first signs of its occurrence. Nevertheless, results emerging from General Circulation Models, while sufficient for large scales, are not enough for forecasting local trends and, hence, the IPCC has called for local studies based on on-site data. Indeed, it is expected that climate extremes will be detected much earlier than changes in climate averages. Heat waves are among the most important and least studied climate extremes, however its occurrence has been only barely studied and even its very definition remains controversial. This paper discusses the observed changes in temperature trends and heat waves in Northwestern Mexico, one of the most vulnerable regions of the country. The climate records in two locations of the region are analyzed, including one of the cities with extreme climate in Mexico, Mexicali City in the state of Baja California and the Yaqui River basin at Sonora State using three different methodologies. Results showed clear trends on temperature increase and occurrence of heat waves in both of the study zones using the three methodologies proposed. As result, some policy making suggestion are included in order to increase the adaptability of the studied regions to climate change, particularly related with heat wave occurrence.

  18. Future Heat Waves In Asia

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.

    2017-12-01

    I will review recent work from my group on the impact of climate change on the intensity and frequency of heat waves in Asia. Our studies covered Southwest Asia, South Asia, East China, and the Maritime continent. In any of these regions, the risk associated with climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that the wet-bulb temperature is a useful variable to consider in describing the natural hazard from heat waves since it can be easily compared to the natural threshold that defines the upper limit on human survivability. Based on an ensemble of high resolution climate change simulations, we project extremes of wet-bulb temperature conditions in each of these four regions of Asia. We consider the business-as-usual scenario of future greenhouse gas emissions, as well as a moderate mitigation scenario. The results from these regions will be compared and lessons learned summarized.

  19. Arc detection for the ICRF system on ITER

    NASA Astrophysics Data System (ADS)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  20. Health impacts of the July 2010 heat wave in Québec, Canada.

    PubMed

    Bustinza, Ray; Lebel, Germain; Gosselin, Pierre; Bélanger, Diane; Chebana, Fateh

    2013-01-21

    One of the consequences of climate change is the increased frequency and intensity of heat waves which can cause serious health impacts. In Québec, July 2010 was marked by an unprecedented heat wave in recent history. The purpose of this study is to estimate certain health impacts of this heat wave. The crude daily death and emergency department admission rates during the heat wave were analyzed in relation to comparison periods using 95% confidence intervals. During the heat wave, the crude daily rates showed a significant increase of 33% for deaths and 4% for emergency department admissions in relation to comparison periods. No displacement of mortality was observed over a 60-day horizon. The all-cause death indicator seems to be sufficiently sensitive and specific for surveillance of exceedences of critical temperature thresholds, which makes it useful for a heat health-watch system. Many public health actions combined with the increased use of air conditioning in recent decades have contributed to a marked reduction in mortality during heat waves. However, an important residual risk remains, which needs to be more vigorously addressed by public health authorities in light of the expected increase in the frequency and severity of heat waves and the aging of the population.

  1. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less

  2. Northern Hemisphere observations of ICRF sources on the USNO stellar catalogue frame

    NASA Astrophysics Data System (ADS)

    Fienga, A.; Andrei, A. H.

    2004-06-01

    The most recent USNO stellar catalogue, the USNO B1.0 (Monet et al. \\cite{Monet03}), provides positions for 1 042 618 261 objects, with a published astrometric accuracy of 200 mas and five-band magnitudes with a 0.3 mag accuracy. Its completeness is believed to be up to magnitude 21th in V-band. Such a catalogue would be a very good tool for astrometric reduction. This work investigates the accuracy of the USNO B1.0 link to ICRF and give an estimation of its internal and external accuracies by comparison with different catalogues, and by computation of ICRF sources using USNO B1.0 star positions.

  3. Heat waves in Africa and India: a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Janicot, Serge; Moron, Vincent; Oueslati, Boutheina; Pohl, Benjamin; Rome, Sandra; Lalou, Richard; Dos Santos, Stéphanie

    2017-04-01

    While the heat wave impacts on public health have been widely addressed in developed countries, less effort has been made to detect them and evaluate their impacts in least developed countries, especially in Africa and to a lesser extent in India, where climate is warmer and adaptation capacities are low. Climate and epidemiologic analyses show however that this problem is already present and climate projections indicate that such events should increase in frequency and intensity in the coming decades. However climate models display important temperature and radiative biases over this region, which must be reduced to provide robust information on the future evolution of heat waves. Moreover early warning systems have to face up to institutional malfunctions. This talk lays the elements for a multidisciplinary approach of tackling heat wave occurrences.

  4. Parametric instability induced by X-mode wave heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  5. Was there a basis for anticipating the 2010 Russian heat wave?

    NASA Astrophysics Data System (ADS)

    Dole, Randall; Hoerling, Martin; Perlwitz, Judith; Eischeid, Jon; Pegion, Philip; Zhang, Tao; Quan, Xiao-Wei; Xu, Taiyi; Murray, Donald

    2011-03-01

    The 2010 summer heat wave in western Russia was extraordinary, with the region experiencing the warmest July since at least 1880 and numerous locations setting all-time maximum temperature records. This study explores whether early warning could have been provided through knowledge of natural and human-caused climate forcings. Model simulations and observational data are used to determine the impact of observed sea surface temperatures (SSTs), sea ice conditions and greenhouse gas concentrations. Analysis of forced model simulations indicates that neither human influences nor other slowly evolving ocean boundary conditions contributed substantially to the magnitude of this heat wave. They also provide evidence that such an intense event could be produced through natural variability alone. Analysis of observations indicate that this heat wave was mainly due to internal atmospheric dynamical processes that produced and maintained a strong and long-lived blocking event, and that similar atmospheric patterns have occurred with prior heat waves in this region. We conclude that the intense 2010 Russian heat wave was mainly due to natural internal atmospheric variability. Slowly varying boundary conditions that could have provided predictability and the potential for early warning did not appear to play an appreciable role in this event.

  6. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.

    PubMed

    Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H

    2017-05-31

    Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.

  7. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  8. Contrasting Heat Budget Dynamics During Two La Niña Marine Heat Wave Events Along Northwestern Australia

    NASA Astrophysics Data System (ADS)

    Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenling

    2018-02-01

    Two marine heat wave events along Western Australia (WA) during the alternate austral summer periods of 2010/2011 and 2012/2013, both linked to La Niña conditions, severely impacted marine ecosystems over more than 12° of latitude, which included the unprecedented bleaching of many coral reefs. Although these two heat waves were forced by similar large-scale climate drivers, the warming patterns differed substantially between events. The central coast of WA (south of 22°S) experienced greater warming in 2010/2011, whereas the northwestern coast of WA experienced greater warming in 2012/2013. To investigate how oceanic and atmospheric heat exchange processes drove these different spatial patterns, an analysis of the ocean heat budget was conducted by integrating remote sensing observations, in situ mooring data, and a high-resolution (˜1 km) ocean circulation model (Regional Ocean Modeling System). The results revealed substantial spatial differences in the relative contributions made by heat advection and air-sea heat exchange between the two heat wave events. During 2010/2011, anomalous warming driven by heat advection was present throughout the region but was much stronger south of 22°S where the poleward-flowing Leeuwin Current strengthens. During 2012/2013, air-sea heat exchange had a much more positive (warming) influence on sea surface temperatures (especially in the northwest), and when combined with a more positive contribution of heat advection in the north, this can explain the regional differences in warming between these two La Niña-associated marine heat wave events.

  9. US Drought-Heat Wave Relationships in Past Versus Current Climates

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.

    2017-12-01

    This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.

  10. The 2006 California Heat Wave: Impacts on Hospitalizations and Emergency Department Visits

    PubMed Central

    Knowlton, Kim; Rotkin-Ellman, Miriam; King, Galatea; Margolis, Helene G.; Smith, Daniel; Solomon, Gina; Trent, Roger; English, Paul

    2009-01-01

    Background Climate models project that heat waves will increase in frequency and severity. Despite many studies of mortality from heat waves, few studies have examined morbidity. Objectives In this study we investigated whether any age or race/ethnicity groups experienced increased hospitalizations and emergency department (ED) visits overall or for selected illnesses during the 2006 California heat wave. Methods We aggregated county-level hospitalizations and ED visits for all causes and for 10 cause groups into six geographic regions of California. We calculated excess morbidity and rate ratios (RRs) during the heat wave (15 July to 1 August 2006) and compared these data with those of a reference period (8–14 July and 12–22 August 2006). Results During the heat wave, 16,166 excess ED visits and 1,182 excess hospitalizations occurred statewide. ED visits for heat-related causes increased across the state [RR = 6.30; 95% confidence interval (CI), 5.67–7.01], especially in the Central Coast region, which includes San Francisco. Children (0–4 years of age) and the elderly (≥ 65 years of age) were at greatest risk. ED visits also showed significant increases for acute renal failure, cardiovascular diseases, diabetes, electrolyte imbalance, and nephritis. We observed significantly elevated RRs for hospitalizations for heat-related illnesses (RR = 10.15; 95% CI, 7.79–13.43), acute renal failure, electrolyte imbalance, and nephritis. Conclusions The 2006 California heat wave had a substantial effect on morbidity, including regions with relatively modest temperatures. This suggests that population acclimatization and adaptive capacity influenced risk. By better understanding these impacts and population vulnerabilities, local communities can improve heat wave preparedness to cope with a globally warming future. PMID:19165388

  11. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    NASA Astrophysics Data System (ADS)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  12. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  13. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  14. Collision broadened resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  15. Regionally dependent summer heat wave response to increased surface temperature in the US

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.

    2017-12-01

    Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.

  16. The effect of heat waves on dairy cow mortality.

    PubMed

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. Copyright © 2015 American Dairy Science

  17. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    NASA Astrophysics Data System (ADS)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-06-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  18. Multivariate Statistical Modelling of Drought and Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A

  19. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012

    PubMed Central

    Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea

    2017-01-01

    Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264

  20. Did we see the 2011 summer heat wave coming?

    NASA Astrophysics Data System (ADS)

    Luo, Lifeng; Zhang, Yan

    2012-05-01

    A series of climate extreme events affected many parts of the US during 2011, including the severe drought in Texas, the spring tornado outbreak in the southern states, and the weeklong summer heat wave in the Central Plains. Successful prediction of these events can better inform and prepare the general public to cope with these extremes. In this study, we investigate the operational capability of the new NCEP Climate Forecast System (CFSv2) in predicting the 2011 summer heat wave. We found that starting from April 2011, the operational CFSv2 forecast consistently suggested an elevated probability of extremely hot days during the forthcoming summer over the Central Plains, and as the summer was approaching the forecast became more certain about the summer heat wave in its geographic location, intensity and timing. This study demonstrates the capability of the new seasonal forecast system and its potential usefulness in decision making process.

  1. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating.

    PubMed

    Liu, J; Chen, X; Xu, L X

    1999-04-01

    Comparative studies on the well-known Pennes' equation and the newly developed thermal wave model of bioheat transfer (TWMBT) were performed to investigate the wave like behaviors of bioheat transfer occurred in thermal injury of biological bodies. The one-dimensional TWMBT in a finite medium was solved using separation of variables and the analytical solution showed distinctive wave behaviors of bioheat transfer in skin subjected to instantaneous heating. The finite difference method was used to simulate and study practical problems involved in burn injuries in which skin was stratified as three layers with various thermal physical properties. Deviations between the TWMBT and the traditional Pennes' equation imply that, for high flux heating with extremely short duration (i.e., flash fire), the TWMBT which accounts for finite thermal wave propagation may provide realistic predictions on burn evaluation. A general heat flux criterion has been established to determine when the thermal wave propagation dominates the principal heat transfer process and the TWMBT can be used for tissue temperature prediction and burn evaluation. A preliminary interpretation on the mechanisms of the wave like behaviors of heat transfer in living tissues was conducted. The application of thermal wave theory can also be possibly extended to other medical problems which involve instantaneous heating or cooling.

  2. Solar Jets as Sources of Outflows, Heating and Waves

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.

    2013-05-01

    Recent space solar observations of the Sun, such as Hinode and SDO, have revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets, penumbral microjets and light bridge jets from sunspot umbra. It was also found that the corona is full of tiny X-ray jets. Often they are seen as helical spinning jets with Alfvenic waves in the corona. Sometimes they are seen as chromospheric jets with slow-mode magnetoacoustic waves and sometimes as unresolved jet-like events at the footpoint of recurrent outflows and waves at the edge of the active region. There is increasing evidence of magnetic reconnection in these tiny jets and its association with waves. The origin of outflows and waves is one of the issues concerning coronal heating and solar wind acceleration. To answer this question, we had a challenge to reproduce solar jets with laboratory plasma experiment and directly measured outflows and waves. As a result, we could find a propagating wave excited by magnetic reconnection, whose energy flux is 10% of the released magnetic energy. That is enough for solar wind acceleration and locally enough for coronal heating, consistent with numerical MHD simulations of solar jets. Here we would discuss recent observations with Hinode, theories and experimental results related to jets and waves by magnetic reconnection, and discuss possible implication to reconnection physics, coronal heating and solar wind acceleration.

  3. Changes in heat waves indices in Romania over the period 1961-2015

    NASA Astrophysics Data System (ADS)

    Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina

    2016-11-01

    In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.

  4. Global climate change: impact of heat waves under different definitions on daily mortality in Wuhan, China.

    PubMed

    Zhang, Yunquan; Feng, Renjie; Wu, Ran; Zhong, Peirong; Tan, Xiaodong; Wu, Kai; Ma, Lu

    2017-01-01

    There was no consistent definition for heat wave worldwide, while a limited number of studies have compared the mortality effect of heat wave as defined differently. This paper aimed to provide epidemiological evidence for policy makers to determine the most appropriate definition for local heat wave warning systems. We developed 45 heat wave definitions (HWs) combining temperature indicators and temperature thresholds with durations. We then assessed the impact of heat waves under various definitions on non-accidental mortality in hot season (May-September) in Wuhan, China during 2003-2010. Heat waves defined by HW14 (daily mean temperature ≥ 99.0th percentile and duration ≥ 3 days) had the best predictive ability in assessing the mortality effects of heat wave with the relative risk of 1.63 (95% CI : 1.43, 1.89) for total mortality. The group-specific mortality risk using official heat wave definition of Chinese Meteorological Administration was much smaller than that using HW14. We also found that women, and the elderly (age ≥ 65) were more susceptible to heat wave effects which were stronger and longer lasting. These findings suggest that region specific heat wave definitions are crucial and necessary for developing efficient local heat warning systems and for providing evidence for policy makers to protect the vulnerable population.

  5. RF wave simulation for cold edge plasmas using the MFEM library

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.; Bonoli, P. T.; Kolev, T.; Stowell, M.

    2017-10-01

    A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF solver, which was previously demonstrated in the 2D geometry [S. Shiraiwa, et. al., "HISTORIC: extending core ICRF wave simulation to include realistic SOL plasmas", Nucl. Fusion in press], to larger and more complicated simulations by including a 3D realistic antenna and integrating RF rectified sheath potential model. Such an extension requires a scalable high fidelity 3D edge plasma wave simulation. We used the MFEM [http://mfem.org], open source scalable C++ finite element method library, and developed a Python wrapper for MFEM (PyMFEM), and then a radio frequency (RF) wave physics module in Python. This approach allows for building a physics layer rapidly, while separating the physics implementation being apart from the numerical FEM implementation. An interactive modeling interface was built on pScope [S Shiraiwa, et. al. Fusion Eng. Des. 112, 835] to work with an RF simulation model in a complicated geometry.

  6. Attributing anthropogenic impact on regional heat wave events using CAM5 model large ensemble simulations

    NASA Astrophysics Data System (ADS)

    Lo, S. H.; Chen, C. T.

    2017-12-01

    Extreme heat waves have serious impacts on society. It was argued that the anthropogenic forcing might substantially increase the risk of extreme heat wave events (e.g. over western Europe in 2003 and over Russia in 2010). However, the regional dependence of such anthropogenic impact and the sensitivity of the attributed risk to the definition of heat wave still require further studies. In our research framework, the change in the frequency and severity of a heat wave event under current conditions is calculated and compared with the probability and magnitude of the event if the effects of particular external forcing, such as due to human influence, had been absent. In our research, we use the CAM5 large ensemble simulation from the CLIVAR C20C+ Detection and Attribution project (http://portal.nersc.gov/c20c/main.html, Folland et al. 2014) to detect the heat wave events occurred in both historical all forcing run and natural forcing only run. The heat wave events are identified by partial duration series method (Huth et al., 2000). We test the sensitivity of heat wave thresholds from daily maximum temperature (Tmax) in warm season (from May to September) between 1959 and 2013. We consider the anthropogenic effect on the later period (2000-2013) when the warming due to human impact is more evident. Using Taiwan and surrounding area as our preliminary research target, We found the anthropogenic effect will increase the heat wave day per year from 30 days to 75 days and make the mean starting(ending) day for heat waves events about 15-30 days earlier(later). Using the Fraction of Attribution Risk analysis to estimate the risk of frequency of heat wave day, our results show the anthropogenic forcing very likely increase the heat wave days over Taiwan by more than 50%. Further regional differences and sensitivity of the attributed risk to the definition of heat wave will be compared and discussed.

  7. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

    NASA Astrophysics Data System (ADS)

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  8. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia.

    PubMed

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  9. Techniques that Link Extreme Events to the Large Scale, Applied to California Heat Waves

    NASA Astrophysics Data System (ADS)

    Grotjahn, R.

    2015-12-01

    Understanding the mechanisms how Californian Central Valley (CCV) summer extreme hot spells develop is very important since the events have major impacts on the economy and human safety. Results from a series of CCV heat wave studies will be presented, emphasizing the techniques used. Key larger scale elements are identified statistically that are also consistent with synoptic and dynamic understanding of what must be present during extreme heat. Beyond providing a clear synoptic explanation, these key elements have high predictability, in part because soil moisture has little annual variation in the heavily-irrigated CCV. In turn, the predictability naturally leads to an effective tool to assess climate model simulation of these heat waves in historical and future climate scenarios. (Does the model develop extreme heat for the correct reasons?) Further work identified that these large scale elements arise in two quite different ways: one from expansion southwestward of a pre-existing heat wave in southwest Canada, the other formed in place from parcels traversing the North Pacific. The pre-existing heat wave explains an early result showing correlation between heat waves in Sacramento California, and other locations along the US west coast, including distant Seattle Washington. CCV heat waves can be preceded by unusually strong tropical Indian Ocean and Indonesian convection, this partial link may occur through an Asian subtropical jet wave guide. Another link revealed by diagnostics is a middle and higher latitude source of wave activity in Siberia and East Asia that also leads to the development of the CCV heat wave. This talk will address as many of these results and the tools used to obtain them as is reasonable within the available time.

  10. Acceleration and heating of two-fluid solar wind by Alfven waves

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1994-01-01

    Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.

  11. The great 2006 heat wave over California and Nevada: Signal of an increasing trend

    USGS Publications Warehouse

    Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.

    2009-01-01

    Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.

  12. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  13. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  14. In Situ Observations of Harmonic Alfvén Waves and Associated Heavy Ion Heating

    NASA Astrophysics Data System (ADS)

    Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2018-06-01

    Resonant ion heating by high-frequency Alfvén waves has long been believed to be the primary dissipation mechanism for solar coronal heating, and these high-frequency Alfvén waves are considered to be generated via cascade from low-frequency Alfvén waves. In this study, we report an unusual harmonic Alfvén event from in situ observations by the Van Allen Probes in the magnetosphere, having an environment similar to that in the solar corona. The harmonic Alfvén waves, which propagate almost along the wave vector of the fundamental waves, are considered to be generated due to the interaction between quasi-parallel Alfvén waves and plasma density fluctuations with almost identical frequency. These high-frequency harmonic Alfvén waves can then cyclotron resonantly heat the heavy ions. Our observations provide an important insight into solar corona heating by Alfvén waves.

  15. Heating by transverse waves in simulated coronal loops

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.; Antolin, P.

    2017-08-01

    Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org

  16. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants.

    PubMed

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  17. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  18. Linking Deep Astrometric Standards to the ICRF

    NASA Astrophysics Data System (ADS)

    Frey, S.; Platais, I.; Fey, A. L.

    2007-07-01

    The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.

  19. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditionsmore » is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.« less

  20. Closed-field Coronal Heating Driven by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A.; Velli, Marco

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  1. Climate change and heat waves in Paris and London metropolitan areas

    NASA Astrophysics Data System (ADS)

    Dousset, B.

    2010-12-01

    Summer warming trends in Western and Central Europe and in Mediterranean regions are increasing the incidence, intensity, and duration of heat waves. Those extreme events are especially deadly in large cities, owing to high population densities, surface characteristics, heat island effects, anthropogenic heat and pollutants. In August 2003, a persistent anticyclone over Western Europe generated a heat wave of exceptional strength and duration with an estimated death toll of 70,000, including 4678 in the Paris region. A series of NOAA-AVHRR satellite thermal images over the Paris and London metropolitan areas, were used to analyze Land Surface Temperature (LST) and its related mortality. In the Paris region, LSTs were merged with land use and cover data to identify risk areas, and thermal indicators were produced at the addresses of ~ 500 elderly people to assess diurnal heat exposure. Results indicate: (i) contrasting night time and daytime heat island patterns related to land use and surface characteristics; (ii) the relation between night-time heat islands and heat waves intensity; (iii) the impact of elevated minimal temperatures on excess mortality, with a 0.5 °C increase doubling the risk of death, (in the temperature range of the heatwave); iv) the correlation between the spatial distribution of highest night-time LSTs and that of highest mortality ratios; and v) the significant impact of urban parks in the partitioning between latent and sensible surface heat fluxes, despite a prior warm and dry spring. Near-real time satellite monitoring of heat waves in urban areas improve our understanding of the LST processes and spatial variability, and of the related heat stress and mortality. These observations provide criteria for warning systems, contingency policies and planning, and climate adaptation and mitigation strategies.

  2. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying

    2017-05-01

    Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.

  3. The role of spring precipitation deficits on European and North American summer heat wave activity

    NASA Astrophysics Data System (ADS)

    Cowan, Tim; Hegerl, Gabi

    2017-04-01

    Heat waves are relatively short-term climate phenomena with potentially severe societal impacts, particularly on health, agriculture and the natural environment. In water-limited regions, increased heat wave activity over intra-decadal periods is often associated with protracted droughts, as observed over North America's Central and Southern Great Plains in the 1930s and 1950s, highlighting the importance of land surface-atmosphere feedbacks. Here we present an analysis of the covariability of spring precipitation deficit and summer heat waves for North America and Europe, the latter having experienced an increase in summer heat wave frequency since the 1950s (Perkins et al. 2012). Over the Great Plains summer heat waves are significantly earlier, longer and hotter if following dry rather than wet springs, with the mega-heat waves of the 1930s Dust Bowl decade an extreme example (e.g. Cowan et al. 2017). Similar relationships can be found in some parts of Europe for heat wave frequency and duration, namely Southern and Eastern Europe, although the heat wave timing and amplitude (i.e. the hottest events) appear less sensitive to spring drying. Climate model results investigating the relationship between heat waves and precipitation deficit in regions in Europe and North America will also be presented. It is necessary to pinpoint the causes of large decadal variations in heat wave metrics, as seen in the 1930s over North America and more recently across Central Europe, for event attribution purposes and to improve near-decadal prediction. The tight link between spring drought and summer heat waves will also be important for understanding the impacts of these climatic events and supports the development of compound event analysis techniques. References: Cowan, T., G. Hegerl, I. Colfescu, A. Purich and G. Boshcat (2016), Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl. Journal of Climate, doi: 10.1175/JCLI-D-16

  4. Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating

    NASA Astrophysics Data System (ADS)

    Dolla, L.; Solomon, J.

    2008-05-01

    Context: Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). Aims: We propose a method to constrain both the Alfvén wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. Methods: The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfvén wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 Å line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. Results: The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 R_⊙ above the limb. This result rules out any direct evidence of damping of the Alfvén waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57´´ and 102´´ above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.

  5. Excess mortality during heat waves and cold spells in Moscow, Russia.

    PubMed

    Revich, B; Shaposhnikov, D

    2008-10-01

    To estimate excess mortality during heat waves and cold spells, and to identify vulnerable population groups by age and cause of death. Daily mortality in Moscow, Russia from all non-accidental, cardiovascular and respiratory causes between January 2000 and February 2006 was analysed. Mortality and displaced mortality during cold spells and heat waves were estimated using independent samples t tests. Cumulative excess non-accidental mortality during the 2001 heat wave was 33% (95% CI 20% to 46%), or approximately 1200 additional deaths, with short-term displaced mortality contributing about 10% of these. Mortality from coronary heart disease increased by 32% (95% CI 16% to 48%), cerebrovascular mortality by 51% (95% CI 29% to 73%) and respiratory mortality by 80% (95% CI 57% to 101%). In the 75+ age group, corresponding mortality increments were consistently higher except respiratory deaths. An estimated 560 extra deaths were observed during the three heat waves of 2002, when non-accidental mortality increased by 8.5%, 7.8% and 6.1%, respectively. About 40% of these deaths were brought forward by only a few days, bringing net mortality change down to 3.2% (95% CI 0.8% to 5.5%). The cumulative effects of the two cold spells in 2006 on mortality were significant only in the 75+ age group, for which average daily mortality from all non-accidental causes increased by 9.9% (95% CI 8.0% to 12%) and 8.9% (95% CI 6.7% to 11%), resulting in 370 extra deaths; there were also significant increases in coronary disease mortality and cerebrovascular mortality. This study confirms that daily mortality in Moscow increases during heat waves and cold spells. A considerable proportion of excess deaths during heat waves occur a short time earlier than they would otherwise have done. Harvesting, or short-term mortality displacement, may be less significant for longer periods of sustained heat stress.

  6. A novel approach for detecting heat waves: the Standardized Heat-Wave Index.

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    Extreme temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. The ability to capture the occurrence of extreme temperature events is therefore an essential property of a multi-hazard extreme climate indicator. In this paper we introduce a new index for the detection of such extreme temperature events called SHI (Standardized Heat-Wave Index), developed in the context of XCF project for the construction of a multi-hazard extreme climate indicator (ECI). SHI is a probabilistic index based on the analysis of maximum daily temperatures time series; it is standardized, enabling comparisons overs space/time and with other indices, and it is capable of describing both extreme cold and hot events. Given a particular location, SHI is constructed using the time series of local maximum daily temperatures with the following procedure: three-days cumulated maximum daily temperatures are assigned to each day of the time series; probabilities of occurrence in the same months the reference days belong to are computed for each of the previous calculated values; such probability values are thus projected on a standard normal distribution, obtaining our standardized indices. In this work we present results obtained using NCEP Reanalysis dataset for air temperature at sigma 0.995 level, which timespan ranges from 1948 to 2014. Given the specific framework of this work, the geographical focus of this study is limited to the African continent. We present a validation of the index by showing its use for monitoring heat-waves under different climate regimes.

  7. Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave

    PubMed Central

    Azhar, Gulrez Shah; Mavalankar, Dileep; Nori-Sarma, Amruta; Rajiva, Ajit; Dutta, Priya; Jaiswal, Anjali; Sheffield, Perry; Knowlton, Kim; Hess, Jeremy J.; Azhar, Gulrez Shah; Deol, Bhaskar; Bhaskar, Priya Shekhar; Hess, Jeremy; Jaiswal, Anjali; Khosla, Radhika; Knowlton, Kim; Mavalankar, Mavalankar; Rajiva, Ajit; Sarma, Amruta; Sheffield, Perry

    2014-01-01

    Introduction In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8°C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality. Methods We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1–31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations. Results The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths). In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest “summer” months of April (r = 0.69, p<0.001), May (r = 0.77, p<0.001), and June (r = 0.39, p<0.05). During a period of more intense heat (May 19–25, 2010), mortality rate ratios were 1.76 [95% CI 1.67–1.83, p<0.001] and 2.12 [95% CI 2.03–2.21] applying reference periods (May 12–18, 2010) from various years. Conclusion The May 2010 heat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot

  8. A Study of Alfven Wave Propagation and Heating the Chromosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2013-12-01

    Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of

  9. Simulated heat waves affected alpine grassland only in combination with drought.

    PubMed

    De Boeck, Hans J; Bassin, Seraina; Verlinden, Maya; Zeiter, Michaela; Hiltbrunner, Erika

    2016-01-01

    The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440-660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv /Fm , a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Heat-flow equation motivated by the ideal-gas shock wave.

    PubMed

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  11. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  12. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Pursimo, T.

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less

  13. Wave speed propagation measurements on highly attenuative heated materials

    DOE PAGES

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; ...

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) wasmore » also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.« less

  14. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.

    PubMed

    Smoyer, K E

    1998-08-01

    This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.

  15. Enzyme Activity Dynamics in Response to Climate Change: 2011 Drought-Heat Wave

    USDA-ARS?s Scientific Manuscript database

    Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...

  16. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  17. Fast wave power flow along SOL field lines in NSTX

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  18. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  19. Do Heat Waves have an Impact on Terrestrial Water Storage?

    NASA Astrophysics Data System (ADS)

    Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acuña, A.

    2014-12-01

    Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.

  20. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-05-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  1. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Wilson; R.E. Bell; S. Bernabei

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less

  2. Gravitational Collapse with Heat Flux and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Ahmad, Zahid; Ahmed, Qazi Zahoor; Awan, Abdul Sami

    2013-10-01

    In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).

  3. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009.

    PubMed

    Sherbakov, Toki; Malig, Brian; Guirguis, Kristen; Gershunov, Alexander; Basu, Rupa

    2018-01-01

    Investigators have examined how heat waves or incremental changes in temperature affect health outcomes, but few have examined both simultaneously. We utilized distributed lag nonlinear models (DLNM) to explore temperature associations and evaluate possible added heat wave effects on hospitalizations in 16 climate zones throughout California from May through October 1999-2009. We define heat waves as a period when daily mean temperatures were above the zone- and month-specific 95th percentile for at least two consecutive days. DLNMs were used to estimate climate zone-specific non-linear temperature and heat wave effects, which were then combined using random effects meta-analysis to produce an overall estimate for each. With higher temperatures, admissions for acute renal failure, appendicitis, dehydration, ischemic stroke, mental health, non-infectious enteritis, and primary diabetes were significantly increased, with added effects from heat waves observed for acute renal failure and dehydration. Higher temperatures also predicted statistically significant decreases in hypertension admissions, respiratory admissions, and respiratory diseases with secondary diagnoses of diabetes, though heat waves independently predicted an added increase in risk for both respiratory types. Our findings provide evidence that both heat wave and temperature exposures can exert effects independently. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. ICRF-edge and surface interactions

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2011-08-01

    This paper describes a number of deleterious interactions between radio-frequency (rf) waves and the boundary plasma in fusion experiments. These effects can lead to parasitic power dissipation, reduced heating efficiency, formation of hot spots at material boundaries, sputtering and self-sputtering, and arcing in the antenna structure. Minimizing these interactions is important to the success of rf heating, especially in future experiments with long-pulse or steady-state operation, higher power density, and high-Z divertor and walls. These interactions will be discussed with experimental examples. Finally, the present state of modeling and future plans will be summarized.

  5. A new perspective on the 1930s mega-heat waves across central United States

    NASA Astrophysics Data System (ADS)

    Cowan, Tim; Hegerl, Gabi

    2016-04-01

    The unprecedented hot and dry conditions that plagued contiguous United States during the 1930s caused widespread devastation for many local communities and severely dented the emerging economy. The heat extremes experienced during the aptly named Dust Bowl decade were not isolated incidences, but part of a tendency towards warm summers over the central United States in the early 1930s, and peaked in the boreal summer 1936. Using high-quality daily maximum and minimum temperature observations from more than 880 Global Historical Climate Network stations across the United States and southern Canada, we assess the record breaking heat waves in the 1930s Dust Bowl decade. A comparison is made to more recent heat waves that have occurred during the latter half of the 20th century (i.e., in a warming world), both averaged over selected years and across decades. We further test the ability of coupled climate models to simulate mega-heat waves (i.e. most extreme events) across the United States in a pre-industrial climate without the impact of any long-term anthropogenic warming. Well-established heat wave metrics based on the temperature percentile threshold exceedances over three or more consecutive days are used to describe variations in the frequency, duration, amplitude and timing of the events. Casual factors such as drought severity/soil moisture deficits in the lead up to the heat waves (interannual), as well as the concurrent synoptic conditions (interdiurnal) and variability in Pacific and Atlantic sea surface temperatures (decadal) are also investigated. Results suggest that while each heat wave summer in the 1930s exhibited quite unique characteristics in terms of their timing, duration, amplitude, and regional clustering, a common factor in the Dust Bowl decade was the high number of consecutive dry seasons, as measured by drought indicators such as the Palmer Drought Severity and Standardised Precipitation indices, that preceded the mega-heat waves. This

  6. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan

    NASA Astrophysics Data System (ADS)

    Nasim, Wajid; Amin, Asad; Fahad, Shah; Awais, Muhammad; Khan, Naeem; Mubeen, Muhammad; Wahid, Abdul; Turan, Veysel; Rehman, Muhammad Habibur; Ihsan, Muhammad Zahid; Ahmad, Shakeel; Hussain, Sajjad; Mian, Ishaq Ahmad; Khan, Bushra; Jamal, Yousaf

    2018-06-01

    Climate change has adverse effects at global, regional and local level. Heat wave events have serious contribution for global warming and natural hazards in Pakistan. Historical (1997-2015) heat wave were analyzed over different provinces (Punjab, Sindh and Baluchistan) of Pakistan to identify the maximum temperature trend. Heat accumulation in Pakistan were simulated by the General Circulation Model (GCM) combined with 3 GHG (Green House Gases) Representative Concentration Pathways (RCPs) (RCP-4.5, 6.0, and 8.5) by using SimCLIM model (statistical downscaling model for future trend projections). Heat accumulation was projected for year 2030, 2060, and 2090 for seasonal and annual analysis in Pakistan. Heat accumulation were projected to increase by the baseline year (1995) was represented in percentage change. Projection shows that Sindh and southern Punjab was mostly affected by heat accumulation. This study identified the rising trend of heat wave over the period (1997-2015) for Punjab, Sindh and Baluchistan (provinces of Pakistan), which identified that most of the meteorological stations in Punjab and Sindh are highly prone to heat waves. According to model projection; future trend of annual heat accumulation, in 2030 was increased 17%, 26%, and 32% but for 2060 the trends were reported by 54%, 49%, and 86% for 2090 showed highest upto 62%, 75%, and 140% for RCP-4.5, RCP-6.0, and RCP-8.5, respectively. While seasonal trends of heat accumulation were projected to maximum values for monsoon and followed by pre-monsoon and post monsoon. Heat accumulation in monsoon may affect the agricultural activities in the region under study.

  7. Heating and background plasma modification associated with large amplitude kinetic Alfv'en wave launch in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; Auerbach, D. W.; Brugman, B. T.

    2007-11-01

    Large amplitude kinetic Alfv'en waves (δB/B ˜1% > k/k) are generated in the Large Plasma Device (LAPD) at UCLA using loop antennas. Substantial electron heating is observed, localized to the wave current channels. The Poynting flux associated with the Alfv'en waves is substantial and the observed heating may be at least in part due to collisional and Landau damping of these waves. However, heating by antenna near inductive electric fields may also be responsible for the observations. A discussion of both possibilities will be presented, including measurements of near fields of the antenna. The heating structures the background plasma and results in the excitation of drift-Alfv'en waves. These drift waves then interact with the incident Alfv'en wave, causing sideband generation which results in a nearly broadband state at high wave power. This process may represent an alternate mechanism by which unidirectional kinetic Alfv'en waves can nonlinearly generate a turbulent spectrum. In addition to electron heating, evidence for background density modification and electron acceleration is observed and will be presented.

  8. Anisotropic ion heating and BBELF waves within the low-altitude ion upflow region

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Knudsen, D. J.; Burchill, J. K.; James, H. G.; Miles, D. M.

    2016-12-01

    Previous studies have shown that low-energy (<10 eV) ion upflow energization processes involve multiple steps. At the initial stage, contributions from transverse-to-B ion heating by wave-particle interaction (WPI) are often underestimated. The wave-generation mechanisms, the specific wave modes leading to the ion heating, and the minimum altitude where WPI takes place remain unresolved. With this in mind, we statistically investigate the relation between anisotropic ion temperature enhancements and broadband extremely low frequency (BBELF) wave emissions within the ion upflow region using data from the Suprathermal Electron imager (SEI), the Fluxgate Magnetometer (MGF), and the Radio Receiver Instrument (RRI) onboard the e-POP satellite. Initial results demonstrate that perpendicular-to-B ion temperatures can reach up to 4.3 eV in approximately 1 km wide spatial region near 410 km altitude inside an active auroral surge. Intense small-scale field-aligned currents (FACs) as well as strong BBELF wave emissions, comprising electromagnetic waves below 80 Hz and electrostatic waves above, accompany these ion heating events. The minimum altitude of potential WPI reported here is lower than as previously suggested as 520 km by Frederick-Frost et al. 2007. We measure polarization and power spectral density for specific wave modes to explore the nature of ion heating within the BBELF waves. Acknowledgement: This research is supported by an Eyes High Doctoral Recruitment Scholarship at University of Calgary.

  9. Large scale atmospheric drivers for heat waves in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pasqui, Massimiliano; Di Giuseppe, Edmondo

    2016-04-01

    West African Heat Low (WAHL) is one of the prominent dynamical components of the West African Monsoon (WAM) system playing a key role in the summer atmospheric circulation over Mediterranean as well. It is characterized by a semi-permanent low pressure system generated and maintained by surface heating over the western part of Saharan desert in summer, and a divergent flux pattern above the atmospheric boundary level. In this study we analyse the formation and occurrence of heat waves in the Mediterranean Basin connected to the WAHL regimes in combination with the subtropical anticyclone regimes over North Atlantic basin (the "Azore High") . In this work, heat waves are defined when more than 6 consecutive days with a daily temperature above 90th percentile corresponding threshold are observed. We use 1971-2000 as reference period for thresholds calculation, based on two datasets: a) the European Climate Assessment & Dataset (ECAD/E-OBS) data; b) the Berkeley-Earth Project data; the analysis period covers March-September from 1951 to 2015 and 1951 to 2011 respectively. The WAHL index is calculated following the method proposed by Chauvin et al. (2010) and based on NCAR/NCEP Reanalysis dataset, while the Azore High pressure system regimes variability are computed as in Davis et al. (1997). We show that a statistical relationship between heat waves in Western and Central Mediterranean Basin and WAHL mechanism exists, being the latter a prominent causal factor. The relationships and causal connections between WAHL and Azores High atmospheric systems are also analysed to highlight potential implications for heat waves outlooks and early warning systems.

  10. Heat Wave Vulnerability Mapping for India.

    PubMed

    Azhar, Gulrez; Saha, Shubhayu; Ganguly, Partha; Mavalankar, Dileep; Madrigano, Jaime

    2017-03-30

    Assessing geographic variability in heat wave vulnerability forms the basis for planning appropriate targeted adaptation strategies. Given several recent deadly heatwaves in India, heat is increasingly being recognized as a public health problem. However, to date there has not been a country-wide assessment of heat vulnerability in India. We evaluated demographic, socioeconomic, and environmental vulnerability factors and combined district level data from several sources including the most recent census, health reports, and satellite remote sensing data. We then applied principal component analysis (PCA) on 17 normalized variables for each of the 640 districts to create a composite Heat Vulnerability Index (HVI) for India. Of the total 640 districts, our analysis identified 10 and 97 districts in the very high and high risk categories (> 2SD and 2-1SD HVI) respectively. Mapping showed that the districts with higher heat vulnerability are located in the central parts of the country. On examination, these are less urbanized and have low rates of literacy, access to water and sanitation, and presence of household amenities. Therefore, we concluded that creating and mapping a heat vulnerability index is a useful first step in protecting the public from the health burden of heat. Future work should incorporate heat exposure and health outcome data to validate the index, as well as examine sub-district levels of vulnerability.

  11. MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Ergun, R. E.; Harada, Y.; Hara, T.; Collinson, G.; Peterson, W. K.; Espley, J.; Halekas, J.; Mcfadden, J.; Mitchell, D. L.; Mazelle, C.; Benna, M.; Jakosky, B. M.

    2018-05-01

    We present Mars Atmosphere and Volatile EvolutioN observations of large-amplitude magnetosonic waves propagating through the magnetosheath into the Martian ionosphere near the subsolar point on the dayside of the planet. The observed waves grow in amplitude as predicted for a wave propagating into a denser, charged medium, with wave amplitudes reaching 25 nT, equivalent to ˜40% of the background field strength. These waves drive significant density and temperature variations (˜20% to 100% in amplitude) in the suprathermal electrons and light ion species (H+) that correlate with compressional fronts of the magnetosonic waves. Density and temperature variations are also observed for the ionospheric electrons, and heavy ion species (O+ and O2+); however, these variations are not in phase with the magnetic field variations. Whistler waves are observed at compressional wave fronts and are thought to be produced by unstable, anistropic suprathermal electrons. The magnetosonic waves drive significant ion and electron heating down to just above the exobase region. Ion heating rates are estimated to be between 0.03 and 0.2 eVs-1 per ion, and heavier ions could thus gain escape energy if located in this heating region for ˜10-70 s. The measured ionospheric density profile indicates severe ionospheric erosion above the exobase region, and this is likely caused by substantial ion outflow that is driven by the observed heating. The effectiveness of these magnetosonic waves to energize the plasma close to the exobase could have important implications for the long-term climate evolution for unmagnetized bodies that are exposed to the solar wind.

  12. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  13. Electron Heating and Acceleration from High Amplitude Driven Alfvén Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Auerbach, David; Carter, Troy; Brugman, Brian

    2006-10-01

    High amplitude (δB/B ˜1 %) shear Alfvén waves are generated in the Large Plasma Device Upgrade (LAPD) at UCLA, and elevated electron temperatures and high energy electrons are observed using triple probes and Langmuir current traces. The Poynting flux of the observed waves is calculated, and wave power is compared to estimates of power input required to cause the observed heating. Theoretical calculations of power transfer from wave to plasma due to Landau damping and collisional heating are also presented and compared to experimental measurements. Heating by antenna near field effects is also being explored. The density and potential structures of these waves are explored using interferometer and triple probe measurements. Applications to Auroral generation and plasma heating are discussed.

  14. ICRF wall conditioning at TEXTOR-94 in the presence of a 2.25 T magnetic field

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Lyssoivan, A.; Freisinger, M.; Koch, R.; van Oost, G.; Weschenfelder, F.; Winter, J.; Textor-Icrh-Team

    1997-02-01

    To investigate alternative conditioning concepts for future fusion devices with permanent magnetic fields, plasmas produced by the coupling of ICRF power to He and gas mixtures of Helium + silane, have been analyzed in the presence of a 2.25 T toroidal magnetic field at TEXTOR-94. Their qualification for wall conditioning has been investigated for different He-pressures, PHe (1 × 10 -3 < PHe ( Pa) < 1 × 10 -1) and ICRF power, PICRF (100 < PICRF ( kW) < 800). Electron densities n e averaged along different radial lines of sight across the vacuum vessel from the top to the bottom have been obtained in the range 5 × 10 10 < ne ( cm-3) < 3 × 10 12. To study quantitatively the efficiency of hydrogen desorption from the first wall at different ICRF plasma conditions in a reproducible way, the first wall was presaturated by RG-glow discharges in H 2. The amount and the evolution of the H 2 desorption from rf discharge to rf discharge was determined by ion gauge measurements combined with mass spectrometry. To demonstrate the capability of the new method for plasma assisted thin film deposition, different amounts of silane (<50%) were added to the He gas. During the ICRF pulses, the silane molecules were dissociated in the plasma and the Si atoms stick to the wall. A good balance of the amount of Si disappearing from the gas phase and that measured by post mortem surface analyses of collector probes at the wall position was found.

  15. The 1994 heat wave in South Korea: mortality impacts and recurrence probability in a changing climate

    NASA Astrophysics Data System (ADS)

    Kysely, J.; Kim, J.

    2010-03-01

    The study deals with mortality impacts of the July-August 1994 heat wave in the population of South Korea, including the megacity of Seoul (with the population exceeding 10 million for the city and 20 million for the metropolitan area), and estimates recurrence probability of the heat wave in a changing climate in terms of simulations of daily temperature series with a stochastic model. The 1994 heat wave is found exceptional with respect to both climatological characteristics and the mortality effects: significantly elevated mortality occurred in all population groups, including children up to 14 years of age, and the total death toll exceeded 3000 in the Korean population, which ranks the 1994 heat wave among the worst weather-related disasters in East Asia. The estimate represents net excess mortality as no mortality displacement effect appeared. A comparison with other documented natural disasters shows that the death toll of the heat wave was much higher than those of the most disastrous floodings and typhoons over Korean Peninsula in the 20th century. The mortality response was stronger in males than females although males are found to be less vulnerable during average heat waves. A climatological analysis reveals that the July-August 1994 heat wave might be considered an extremely rare event with a return period in the order of hundreds of years if stationarity of temperature time series is assumed. However, under a more realistic assumption of gradual warming related to climate change, recurrence probability of an event analogous to the 1994 heat wave sharply rises for near-future time horizons. If warming of 0.04°C/year is assumed over 2001-2060, the recurrence interval of a very long spell of days with temperature exceeding a high threshold (as in the 1994 heat wave) is estimated to decrease to around 40 (10) years in the 2021-2030 (2041-2050) decade. This emphasizes the need for setting up an efficient heat-watch-warning system in this area in order to

  16. Increasing heat waves and warm spells in India, observed from a multiaspect framework

    NASA Astrophysics Data System (ADS)

    Panda, Dileep Kumar; AghaKouchak, Amir; Ambast, Sunil Kumar

    2017-04-01

    Recent heat waves have been a matter of serious concern for India because of potential impacts on agriculture, food security, and socioeconomic progress. This study examines the trends and variability in frequency, duration, and intensity of hot episodes during three time periods (1951-2013, 1981-2013 and 1998-2013) by defining heat waves based on the percentile of maximum, minimum, and mean temperatures. The study also explores heat waves and their relationships with hydroclimatic variables, such as rainfall, terrestrial water storage, Palmer drought severity index, and sea surface temperature. Results reveal that the number, frequency, and duration of daytime heat waves increased considerably during the post-1980 dry and hot phase over a large area. The densely populated and agriculturally dominated northern half of India stands out as a key region where the nighttime heat wave metrics reflected the most pronounced amplifications. Despite the recent warming hiatus in India and other parts of the world, we find that both daytime and nighttime extreme measures have undergone substantial changes during or in the year following a dry year since 2002, with the probability distribution functions manifesting a hotter-than-normal climate during 1998-2013. This study shows that a few months preceding the 2010 record-breaking heat wave in Russia, India experienced the largest hot episode in the country's history. Interestingly, both these mega events are comparable in terms of their evolution and amplification. These findings emphasize the importance of planning for strategies in the context of the rising cooccurrence of dry and hot events.

  17. Changes in Pacific Northwest Heat Waves and Associated Synoptic/Mesoscale Drivers Under Anthropogenic Global Warming

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Mass, C.

    2014-12-01

    Though western Oregon and Washington summers are typically mild due to the influence of the nearby Pacific Ocean, this region occasionally experiences heat waves with temperatures in excess of 35ºC. These heat waves can have a substantial impact on this highly populated region, particularly since the population is unaccustomed to and generally unprepared for such conditions. A comprehensive evaluation is needed of past and future heat wave trends in frequency, intensity, and duration. Furthermore, it is important to understand the physical mechanisms of Northwest heat waves and how such mechanisms might change under anthropogenic global warming. Lower-tropospheric heat waves over the west coast of North America are the result of both synoptic and mesoscale factors, the latter requiring high-resolution models (roughly 12-15 km grid spacing) to simulate. Synoptic factors include large-scale warming due to horizontal advection and subsidence, as well as reductions in large-scale cloudiness. An important mesoscale factor is the occurrence of offshore (easterly) flow, resulting in an adiabatically warmed continental air mass spreading over the western lowlands rather than the more usual cool, marine air influence. To fully understand how heat waves will change under AGW, it is necessary to determine the combined impacts of both synoptic and mesoscale effects in a warming world. General Circulation Models (GCM) are generally are too coarse to simulate mesoscale effects realistically and thus may provide unreliable estimates of the frequency and magnitudes of West Coast heat waves. Therefore, to determine the regional implications of global warming, this work made use of long-term, high-resolution WRF simulations, at 36- and 12-km resolution, produced by dynamically downscaling GCM grids. This talk will examine the predicted trends in Pacific Northwest heat wave intensity, duration, and frequency during the 21st century (through 2100). The spatial distribution in the

  18. A Protocol to Assess Insect Resistance to Heat Waves, Applied to Bumblebees (Bombus Latreille, 1802)

    PubMed Central

    Martinet, Baptiste; Lecocq, Thomas; Smet, Jérémy; Rasmont, Pierre

    2015-01-01

    Insect decline results from numerous interacting factors including climate change. One of the major phenomena related to climate change is the increase of the frequency of extreme events such as heat waves. Since heat waves are suspected to dramatically increase insect mortality, there is an urgent need to assess their potential impact. Here, we determined and compared the resistance to heat waves of insects under hyperthermic stress through their time before heat stupor (THS) when they are exposed to an extreme temperature (40°C). For this, we used a new experimental standardised device available in the field or in locations close to the field collecting sites. We applied this approach on different Arctic, Boreo-Alpine and Widespread bumblebee species in order to predict consequences of heat waves. Our results show a heat resistance gradient: the heat stress resistance of species with a centred arctic distribution is weaker than the heat resistance of the Boreo-Alpine species with a larger distribution which is itself lower than the heat stress resistance of the ubiquitous species. PMID:25738862

  19. On the Causes of and Long Term Changes in Eurasian Heat Waves

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max

    2012-01-01

    The MERRA reanalysis, other observations, and the GEOS-S model have been used to diagnose the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The results show that such extreme events are an amplification of natural patterns of atmospheric variability (in this case a particular large-scale atmospheric planetary wave) that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. Model experiments suggest that forcing from both the ocean (SST) and land playa role phase-locking the waves. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more extreme in the last thirty years as a result of the overall warming of the Asian continent.

  20. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge

    USGS Publications Warehouse

    Peterson, Thomas C.; Heim, Richard R.; Hirsch, Robert M.; Kaiser, Dale P.; Brooks, Harold; Diffenbaugh, Noah S.; Dole, Randall M.; Giovannettone, Jason P.; Guirguis, Kristen; Karl, Thomas R.; Katz, Richard W.; Kunkel, Kenneth E.; Lettenmaier, Dennis P.; McCabe, Gregory J.; Paciorek, Christopher J.; Ryberg, Karen R.; K Wolter, BS Silva; Schubert, Siegfried; Silva, Viviane B. S.; Stewart, Brooke C.; Vecchia, Aldo V.; Villarini, Gabriele; Vose, Russell S.; Walsh, John; Wehner, Michael; Wolock, David; Wolter, Klaus; Woodhouse, Connie A.; Wuebbles, Donald

    2013-01-01

    Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.

  1. Estimation and Uncertainty Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United States

    PubMed Central

    Wu, Jianyong; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent A.; Huang, Cheng; Kim, Young-Min

    2013-01-01

    Background: Climate change is anticipated to influence heat-related mortality in the future. However, estimates of excess mortality attributable to future heat waves are subject to large uncertainties and have not been projected under the latest greenhouse gas emission scenarios. Objectives: We estimated future heat wave mortality in the eastern United States (approximately 1,700 counties) under two Representative Concentration Pathways (RCPs) and investigated sources of uncertainty. Methods: Using dynamically downscaled hourly temperature projections for 2057–2059, we projected heat wave days that were defined using four heat wave metrics and estimated the excess mortality attributable to them. We apportioned the sources of uncertainty in excess mortality estimates using a variance-decomposition method. Results: Estimates suggest that excess mortality attributable to heat waves in the eastern United States would result in 200–7,807 deaths/year (mean 2,379 deaths/year) in 2057–2059. Average excess mortality projections under RCP4.5 and RCP8.5 scenarios were 1,403 and 3,556 deaths/year, respectively. Excess mortality would be relatively high in the southern states and eastern coastal areas (excluding Maine). The major sources of uncertainty were the relative risk estimates for mortality on heat wave versus non–heat wave days, the RCP scenarios, and the heat wave definitions. Conclusions: Mortality risks from future heat waves may be an order of magnitude higher than the mortality risks reported in 2002–2004, with thousands of heat wave–related deaths per year in the study area projected under the RCP8.5 scenario. Substantial spatial variability in county-level heat mortality estimates suggests that effective mitigation and adaptation measures should be developed based on spatially resolved data. Citation: Wu J, Zhou Y, Gao Y, Fu JS, Johnson BA, Huang C, Kim YM, Liu Y. 2014. Estimation and uncertainty analysis of impacts of future heat waves on mortality

  2. Effects of Simulated Heat Waves with Strong Sudden Cooling Weather on ApoE Knockout Mice

    PubMed Central

    Zhang, Shuyu; Kuang, Zhengzhong; Zhang, Xiakun

    2015-01-01

    This study analyzes the mechanism of influence of heat waves with strong sudden cooling on cardiovascular diseases (CVD) in ApoE−/− mice. The process of heat waves with strong sudden cooling was simulated with a TEM1880 meteorological-environment simulation chamber according to the data obtained at 5 a.m. of 19 June 2006 to 11 p.m. of 22 June 2006. Forty-eight ApoE−/− mice were divided into six blocks based on their weight. Two mice from each block were randomly assigned to control, heat wave, temperature drop, and rewarming temperature groups. The experimental groups were transferred into the climate simulator chamber for exposure to the simulated heat wave process with strong sudden temperature drop. After 55, 59, and 75 h of exposure, the experimental groups were successively removed from the chamber to monitor physiological indicators. Blood samples were collected by decollation, and the hearts were harvested in all groups. The levels of heat stress factors (HSP60, SOD, TNF, sICAM-1, HIF-1α), cold stress factors (NE, EPI), vasoconstrictor factors (ANGII, ET-1, NO), and four items of blood lipid (TC, TG, HDL-C, and LDL-C) were measured in each ApoE−/− mouse. Results showed that the heat waves increased the levels of heat stress factors except SOD decreased, and decreased the levels of vasoconstrictor factors and blood lipid factors except TC increased. The strong sudden temperature drop in the heat wave process increased the levels of cold stress factors, vasoconstrictor factors and four blood lipid items (except the level of HDL-C which decreased) and decreased the levels of heat stress factors (except the level of SOD which increased). The analysis showed that heat waves could enhance atherosclerosis of ApoE−/− mice. The strong sudden temperature drop during the heat wave process increased the plasma concentrations of NE and ANGII, which indicates SNS activation, and resulted in increased blood pressure. NE and ANGII are vasoconstrictors

  3. Effects of Simulated Heat Waves with Strong Sudden Cooling Weather on ApoE Knockout Mice.

    PubMed

    Zhang, Shuyu; Kuang, Zhengzhong; Zhang, Xiakun

    2015-05-26

    This study analyzes the mechanism of influence of heat waves with strong sudden cooling on cardiovascular diseases (CVD) in ApoE-/- mice. The process of heat waves with strong sudden cooling was simulated with a TEM1880 meteorological-environment simulation chamber according to the data obtained at 5 a.m. of 19 June 2006 to 11 p.m. of 22 June 2006. Forty-eight ApoE-/- mice were divided into six blocks based on their weight. Two mice from each block were randomly assigned to control, heat wave, temperature drop, and rewarming temperature groups. The experimental groups were transferred into the climate simulator chamber for exposure to the simulated heat wave process with strong sudden temperature drop. After 55, 59, and 75 h of exposure, the experimental groups were successively removed from the chamber to monitor physiological indicators. Blood samples were collected by decollation, and the hearts were harvested in all groups. The levels of heat stress factors (HSP60, SOD, TNF, sICAM-1, HIF-1α), cold stress factors (NE, EPI), vasoconstrictor factors (ANGII, ET-1, NO), and four items of blood lipid (TC, TG, HDL-C, and LDL-C) were measured in each ApoE-/- mouse. Results showed that the heat waves increased the levels of heat stress factors except SOD decreased, and decreased the levels of vasoconstrictor factors and blood lipid factors except TC increased. The strong sudden temperature drop in the heat wave process increased the levels of cold stress factors, vasoconstrictor factors and four blood lipid items (except the level of HDL-C which decreased) and decreased the levels of heat stress factors (except the level of SOD which increased). The analysis showed that heat waves could enhance atherosclerosis of ApoE-/- mice. The strong sudden temperature drop during the heat wave process increased the plasma concentrations of NE and ANGII, which indicates SNS activation, and resulted in increased blood pressure. NE and ANGII are vasoconstrictors involved in systemic

  4. Characterization and Mitigation of ICRF Antenna - Plasma Edge Interaction

    NASA Astrophysics Data System (ADS)

    Hong, Rongjie; Tynan, George; Wukitch, Steve; Lin, Yijun; Terry, Jim; Chilenski, M.; Golfinopoulos, T.; Hubbard, A.; Mumgaard, R. T.; Perkins, R.; Reinke, M. L.; Alcator C-Mod Team

    2017-10-01

    Recent experiments reveal that RF-induced potentials (VRF) in the SOL and impurity source at the antenna can be reduced to background levels via optimizing the power ratio between the inner and outer current straps, Pcent /Pout . Experiments indicate the antenna impurity source reduction for the field aligned antenna is due to geometrical alignment rather than electrical symmetry. Additional experiments performed without an optimized Pcent /Pout showed that VRF and the associated convection cells do not influence the impurity penetration or core impurity confinement. These results suggest the core impurity contamination associated with ICRF heating is dominated by an increased impurity source rather than a change in impurity transport. Further, the convective cell strength was expected to scale inversely with B-field. The observed poloidal velocity (measure of convective cell strength), however, decreased less than expected. In addition, the measured maximum VRF increased and penetrated farther into the SOL at higher B-field and plasma current. Results also suggest VRF is strongly influenced by the SOL plasma parameters rather than by RF parameters. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and DE-SC 0010720.

  5. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  6. How hard they hit? Perception, adaptation and public health implications of heat waves in urban and peri-urban Pakistan.

    PubMed

    Rauf, Sara; Bakhsh, Khuda; Abbas, Azhar; Hassan, Sarfraz; Ali, Asghar; Kächele, Harald

    2017-04-01

    Heat waves threaten human health given the fast changing climatic scenarios in the recent past. Adaptation to heat waves would take place when people perceive their impacts based on their knowledge. The present study examines perception level and its determinants resulting in adaptation to heat waves in Pakistan. The study used cross-sectional data from urban and peri-urban respondents of Faisalabad District. The study employs a health belief model to assess risk perception among the respondents. Logistic model is used to determine factors affecting level of knowledge, perception and adaptation to heat waves. Around 30% of peri-urban respondents have a low level of knowledge about the fatal impacts of heat waves. Risk perception of heat waves is very low among urban (57%) and peri-urban (66%) respondents. Households' knowledge on heat waves is significantly related to age, gender, education, wealth and access to health services. Determinants of perception include knowledge of heat waves, age and joint effect of marital status and knowledge while income level, family size, urban/peri-urban background, perceived barriers, perceived benefits and cues to action significantly affect adaptation to heat waves. To reduce deadly health impacts, mass awareness campaigns are needed to build perception and improve adaptation to heat waves.

  7. Generation of whistler-wave heated discharges with planar resonant RF networks.

    PubMed

    Guittienne, Ph; Howling, A A; Hollenstein, Ch

    2013-09-20

    Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.

  8. Closed Field Coronal Heating Models Inspired by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.

    2013-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.

  9. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China

    PubMed Central

    2013-01-01

    Background In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. Methods A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. Results This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed <4, 4–7, and >7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing <4 adaptation behaviors during heat waves had the highest risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). Conclusions There is a large room for improving health

  10. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China.

    PubMed

    Liu, Tao; Xu, Yan Jun; Zhang, Yong Hui; Yan, Qing Hua; Song, Xiu Ling; Xie, Hui Yan; Luo, Yuan; Rutherford, Shannon; Chu, Cordia; Lin, Hua Liang; Ma, Wen Jun

    2013-10-02

    In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed <4, 4-7, and >7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing <4 adaptation behaviors during heat waves had the highest risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). There is a large room for improving health risk perception and adaptation capacity to

  11. HeatWave: the next generation of thermography devices

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman; Vidas, Stephen

    2014-05-01

    Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.

  12. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    PubMed

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  14. Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl. V.; Braun, F.; Dux, R.; Herrmann, A.; Giannone, L.; Kallenbach, A.; Krivska, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, T.; Rohde, V.; Schweinzer, J.; Sips, A.; Zammuto, I.; ASDEX Upgrade Team

    2010-03-01

    The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall. The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna. An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles. In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma-antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap-box distance, e.g. by increasing the

  15. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.

  16. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  17. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  18. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.

    2013-12-01

    We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.

  19. Development and Testing of a Refractory Millimeter-Wave Absorbent Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Myrabo, Leik; Murakami, David; Parkin, Kevin

    2014-01-01

    Central to the Millimeter-Wave Thermal Launch System (MTLS) is the millimeter-wave absorbent heat exchanger. We have developed metallic and ceramic variants, with the key challenge being the millimeter-wave absorbent coatings for each. The ceramic heat exchanger came to fruition first, demonstrating for the first time 1800 K peak surface temperatures under illumination by a 110 GHz Gaussian beam. Absorption efficiencies of up to 80 are calculated for mullite heat exchanger tubes and up to 50 are calculated for alumina tubes. These are compared with estimates based on stratified layer and finite element analyses. The problem of how to connect the 1800 K end of the ceramic tubes to a graphite outlet manifold and nozzle is solved by press fitting, or by threading the ends of the ceramic tubes and screwing them into place. The problem of how to connect the ceramic tubes to a metallic or nylon inlet pipe is solved by using soft compliant PTFE and PVC tubes that accommodate thermal deformations of the ceramic tubes during startup and operation. We show the resulting heat exchangers in static tests using argon and helium as propellants.

  20. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    NASA Astrophysics Data System (ADS)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  1. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  2. Estimation and Uncertainty Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jianyong; Zhou, Ying; Gao, Yang

    Background: It is anticipated that climate change will influence heat-related mortality in the future. However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas emission scenarios. Objectives: We estimated the future heat wave impact on mortality in the eastern United States (~ 1,700 counties) under two Representative Concentration Pathways (RCPs) and analyzed the sources of uncertainties. Methods Using dynamically downscaled hourly temperature projections in 2057-2059, we calculated heat wave days and episodes based on four heat wave metrics, and estimated the excess mortality attributablemore » to them. The sources of uncertainty in estimated excess mortality were apportioned using a variance-decomposition method. Results: In the eastern U.S., the excess mortality attributable to heat waves could range from 200-7,807 with the mean of 2,379 persons/year in 2057-2059. The projected average excess mortality in RCP 4.5 and 8.5 scenarios was 1,403 and 3,556 persons/year, respectively. Excess mortality would be relatively high in the southern and eastern coastal areas. The major sources of uncertainty in the estimates are relative risk of heat wave mortality, the RCP scenarios, and the heat wave definitions. Conclusions: The estimated mortality risks from future heat waves are likely an order of magnitude higher than its current level and lead to thousands of deaths each year under the RCP8.5 scenario. The substantial spatial variability in estimated county-level heat mortality suggests that effective mitigation and adaptation measures should be developed based on spatially resolved data.« less

  3. Risk perception of heat waves and its spatial variation in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2018-05-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  4. Risk perception of heat waves and its spatial variation in Nanjing, China.

    PubMed

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2018-05-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  5. Risk perception of heat waves and its spatial variation in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2017-12-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  6. Projection of heat waves variation over a warming climate in China

    NASA Astrophysics Data System (ADS)

    Yue, X.; Wu, S.; Pan, T.

    2016-12-01

    Heat waves (HW) have adverse impacts on economies, human health, societies and environment, which have been observed around the world and are expected to increase in a warming climate. However, the variations of HW under climate change over China are not clear yet. Using the HadGEM2-ES RCP4.5 and RCP8.5 daily maximum temperature and humidity dataset, variation of heat waves in China for 2021-2050 comparing to 1991-2000 as baseline were analyzed. The CMA-HI (Heat Index standardized by China Meteorological Administration) index was used to calculate the frequency and intensity of head waves. This paper classified the HW into three intensity levels including mild HW, moderate HW and severe HW , and defined a heat wave event (HWE) as that CMA-HI are all above or equal to 2.8 and keep at a intensity level more than five consecutive days. Results show that during 2021to 2050, the distribution area, frequency and duration of each intensity level have an increasing trend over China, and those of severe HW will increase mostly. The distribution area of mild, moderate and severe HW will increase 18%, 22%, 35% respectively. Average HWE frequency of each level will concentrate on 0.5-1instead of 0-0.3 in baseline period. Maximum frequency of each intensity can reach to almost 3 times a year. During 1991-2000, the average frequency of mild HW, moderate HW and severe HW kept a downward sequence. But it will change to increase in the future, and the shift occurs during 2031-2040. In addition, only severe HW duration will increase in the future. Its average value will increase from 9days to 13days, and keep a maximum duration of 42days.While the average duration of mild HW and moderate HW just keep almost 6 days and 8 days as usual. Regionally, both the frequency and duration will keep high value in the region of eastern China, central China, southern China and central Xinjiang autonomous region in the future. And only severe HW has a great change in distribution. Under RCP 8

  7. Heat waves in Senegal : detection, characterization and associated processes.

    NASA Astrophysics Data System (ADS)

    Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.

    2017-04-01

    Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.

  8. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, R.; Landi, E.; Holst, B. van der

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening ismore » calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.« less

  9. Observation of Electron Bernstein Wave Heating in the RFP

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Goetz, John; Forest, Cary

    2017-10-01

    The first observation of RF heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) has been demonstrated on MST. Efficient mode conversion of an outboard-launched X mode wave at 5.5 GHz leads to Doppler-shifted resonant absorption (ωrf = nωce-k||v||) for a broad range (n =1-7) of harmonics. The dynamics of EBW-heated electrons are measured using a spatial distribution of solid targets with diametrically opposed x-ray detectors. EBW heating produces a clear supra-thermal electron tail in MST. Radial deposition of the EBW is controlled with |B|and is measured using the HXR flux emitted from an insertable probe. In the thick-shelled MST RFP, the radial accessibility of EBW is limited to r/a >0.8 ( 10cm) by magnetic field error induced by the porthole necessary for the antenna. Experimental measurements show EBW propagation inward through a stochastic magnetic field. EBW-heated test electrons are used as a direct probe of edge (r/a >0.9) radial transport, showing a modest transition from `standard' to reduced-tearing RFP operation. Electron loss is too fast for collisional effects and implies a large non-collisional radial diffusivity. EBW heating has been demonstrated in reduced magnetic stochasticity plasmas with β = 15-20%. Work supported by USDOE.

  10. Analysis of heat wave occurrences in the Carpathian basin using regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Bartha, E. B.; Pongracz, R.; Bartholy, J.

    2012-04-01

    Human health is very likely affected by regional consequences of global warming. One of the most severe impacts is probably associated to temperature-related climatological extremes, such as heat waves. In the coming decades hot conditions in most regions of the world are very likely to occur more frequently and more intensely than in the recent decades. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to warming climatic conditions including heat waves. In 2004, a Heat Health Watch Warning System was developed in Hungary on the basis of a retrospective analysis of mortality and meteorological data to anticipate heat waves that may result in a large excess of mortality. In the frame of this recently introduced Health Watch System, three levels of heat wave warning are applied. They are associated to the daily mean temperature values, and defined as follows: - Warning level 1 (advisory for internal use) is issued when the daily mean temperature exceeds 25 °C. - Warning level 2 (heat wave watch) is issued when the daily mean temperature for at least 3 consecutive days exceeds 25 °C. - Warning level 3 (heat wave alert) is issued when the daily mean temperature for at least 3 consecutive days exceeds 27 °C. In the present study, frequency of the above climatic conditions are analyzed using regional climate model (RCM) experiments are analyzed for the recent past and the coming decades (1961-2100) for the Carpathian basin. At the Dept. of Meteorology, Eotvos Lorand University two different RCMs have been adapted: RegCM (with 10 km horizontal resolution, originally developed by Giorgi et al., currently, available from the International Centre for Theoretical Physics, ICTP) and PRECIS (with 25 km horizontal resolution, developed at the UK Met Office, Hadley Centre). Their initial and lateral boundary conditions have been provided by global climate models ECHAM and HadCM3, respectively. For

  11. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  12. A Simulated Heat Wave Has Diverse Effects on Immune Function and Oxidative Physiology in the Corn Snake (Pantherophis guttatus).

    PubMed

    Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W

    Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.

  13. Extreme heat waves under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro; Mentaschi, Lorenzo; Fischer, Erich M.; Wyser, Klaus

    2018-05-01

    Severe, extreme, and exceptional heat waves, such as those that occurred over the Balkans (2007), France (2003), or Russia (2010), are associated with increased mortality, human discomfort and reduced labour productivity. Based on the results of a very high-resolution global model, we show that, even at 1.5 °C warming, a significant increase in heat wave magnitude is expected over Africa, South America, and Southeast Asia. Compared to a 1.5 °C world, under 2 °C warming the frequency of extreme heat waves would double over most of the globe. In a 1.5 °C world, 13.8% of the world population will be exposed to severe heat waves at least once every 5 years. This fraction becomes nearly three times larger (36.9%) under 2 °C warming, i.e. a difference of around 1.7 billion people. Limiting global warming to 1.5 °C will also result in around 420 million fewer people being frequently exposed to extreme heat waves, and ~65 million to exceptional heat waves. Nearly 700 million people (9.0% of world population) will be exposed to extreme heat waves at least once every 20 years in a 1.5 °C world, but more than 2 billion people (28.2%) in a 2 °C world. With current emission trends threatening even the 2 °C target, our study is helpful to identify regions where limiting the warming to 1.5 °C would have the strongest benefits in reducing population exposure to extreme heat.

  14. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  15. Heat Waves, Droughts, and Preferences for Environmental Policy

    ERIC Educational Resources Information Center

    Owen, Ann L.; Conover, Emily; Videras, Julio; Wu, Stephen

    2012-01-01

    Using data from a new household survey on environmental attitudes, behaviors, and policy preferences, we find that current weather conditions affect preferences for environmental regulation. Individuals who have recently experienced extreme weather (heat waves or droughts) are more likely to support laws to protect the environment. We find…

  16. The Heating of Solar Coronal Loops by Alfvén Wave Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Voss, A.

    2017-11-01

    In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MKmore » observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.« less

  17. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  18. Pre-Monsoon Drought and Heat Waves in India

    NASA Image and Video Library

    2015-09-12

    In June 2015, news organizations around the world reported on a deadly heat wave in India that killed more than 2,300 people. Prior to the arrival of the summer monsoon in India, weather conditions had been extremely hot and dry. Such conditions can lead to economic and agricultural disaster, human suffering and loss of life. NASA satellite sensors are allowing scientists to characterize pre-monsoon droughts and heat waves and postulate their scientific cause. This figure shows the longitude-time variations, averaged between 21 and 22 degrees North, across the middle of the India subcontinent from mid-April to mid-June. Longitude from the Arabian Sea to the Bay of Bengal is represented on the horizontal axis; while the vertical axis shows the timeframe. Rainfall is shown on the left, soil moisture is in the center, and surface air temperature is on the right. For both years (2012 and 2015), the summer monsoon begins in June, with sharp rises in rainfall and soil moisture, and a sharp drop in air temperature. The hottest and driest weeks occurred just before the summer monsoon onsets. Similar dry and hot periods, varying from one to a few weeks, were observed in 2013 and 2014. Soil moisture as an indication of drought as measured by NASA's Aquarius mission was first available in 2012. Rainfall data are from NASA's Tropical Rainfall Measuring Mission (TRMM), and surface air temperature is from NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite. The TRMM and Aquarius missions ended in April 2015, before the drought and heat waves. Their data were replaced by those presently available from NASA's Soil Moisture Active Passive Mission (SMAP) and Global Precipitation Mission (GPM) to show the drought and heatwave in 2015. Scientists from NASA's Jet Propulsion Laboratory, Pasadena, California, have shown that during the summer monsoon season, moisture is transported into the India Subcontinent from the Arabian Sea and out to the Bay of Bengal

  19. An approach to quantify the heat wave strength and price a heat derivative for risk hedging

    NASA Astrophysics Data System (ADS)

    Shen, Samuel S. P.; Kramps, Benedikt; Sun, Shirley X.; Bailey, Barbara

    2012-01-01

    Mitigating the heat stress via a derivative policy is a vital financial option for agricultural producers and other business sectors to strategically adapt to the climate change scenario. This study has provided an approach to identifying heat stress events and pricing the heat stress weather derivative due to persistent days of high surface air temperature (SAT). Cooling degree days (CDD) are used as the weather index for trade. In this study, a call-option model was used as an example for calculating the price of the index. Two heat stress indices were developed to describe the severity and physical impact of heat waves. The daily Global Historical Climatology Network (GHCN-D) SAT data from 1901 to 2007 from the southern California, USA, were used. A major California heat wave that occurred 20-25 October 1965 was studied. The derivative price was calculated based on the call-option model for both long-term station data and the interpolated grid point data at a regular 0.1°×0.1° latitude-longitude grid. The resulting comparison indicates that (a) the interpolated data can be used as reliable proxy to price the CDD and (b) a normal distribution model cannot always be used to reliably calculate the CDD price. In conclusion, the data, models, and procedures described in this study have potential application in hedging agricultural and other risks.

  20. Spatiotemporal characteristics of heat waves over China in regional climate simulations within the CORDEX-EA project

    NASA Astrophysics Data System (ADS)

    Wang, Pinya; Tang, Jianping; Sun, Xuguang; Liu, Jianyong; Juan, Fang

    2018-03-01

    Using the Weather Research and Forecasting (WRF) model, this paper analyzes the spatiotemporal features of heat waves in 20-year regional climate simulations over East Asia, and investigates the capability of WRF to reproduce observational heat waves in China. Within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the WRF model is driven by the ERA-Interim (ERAIN) reanalysis, and five continuous simulations are conducted from 1989 to 2008. Of these, four runs apply the interior spectral nudging (SN) technique with different wavenumbers, nudging variables and nudging coefficients. Model validations show that WRF can reasonably reproduce the spatiotemporal features of heat waves in China. Compared with the experiment without SN, the application of SN is effectie on improving the skill of the model in simulating both the spatial distributions and temporal variations of heat waves of different intensities. The WRF model shows advantages in reproducing the synoptic circulations with SN and therefore yields better representations for heat wave events. Besides, the SN method is able to preserve the variability of large-scale circulations quite well, which in turn adjusts the extreme temperature variability towards the observation. Among the four SN experiments, those with stronger nudging coefficients perform better in modulating both the spatial and temporal features of heat waves. In contrast, smaller nudging coefficients weaken the effects of SN on improving WRF's performances.

  1. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  2. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    PubMed

    Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui

    2017-01-01

    In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  3. The 2011 heat wave in Greater Houston: Effects of land use on temperature.

    PubMed

    Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai

    2014-11-01

    Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Awareness of and Attitudes towards Heat Waves within the Context of Climate Change among a Cohort of Residents in Adelaide, Australia

    PubMed Central

    Akompab, Derick A.; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A.; Augoustinos, Martha

    2012-01-01

    Heat waves are a public health concern in Australia and unprecedented heat waves have been recorded in Adelaide over recent years. The aim of this study was to examine the perception and attitudes towards heat waves in the context of climate change among a group of residents in Adelaide, an Australian city with a temperate climate. A cross-sectional study was conducted in the summer of 2012 among a sample of 267 residents. The results of the survey found that television (89.9%), radio (71.2%), newspapers (45.3%) were the main sources from which respondents received information about heat waves. The majority of the respondents (73.0%) followed news about heat waves very or somewhat closely. About 26.6% of the respondents were extremely or very concerned about the effects of heat waves on them personally. The main issues that were of personal concern for respondents during a heat wave were their personal comfort (60.7%), their garden (48.7%), and sleeping well (47.6%). Overall, respondents were more concerned about the impacts of heat waves to the society than on themselves. There was a significant association between gender (χ² = 21.2, df = 3, p = 0.000), gross annual household income (p = 0.03) and concern for the societal effects of heat waves. Less than half (43.2%) of the respondents believed that heat waves will extremely or very likely increase in Adelaide according to climate projections. Nearly half (49.3%) believed that the effects of heat waves were already being felt in Adelaide. These findings may inform the reframing and communication strategies for heat waves in Adelaide in the context of climate change. PMID:23343978

  5. Awareness of and attitudes towards heat waves within the context of climate change among a cohort of residents in Adelaide, Australia.

    PubMed

    Akompab, Derick A; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A; Augoustinos, Martha

    2012-12-20

    Heat waves are a public health concern in Australia and unprecedented heat waves have been recorded in Adelaide over recent years. The aim of this study was to examine the perception and attitudes towards heat waves in the context of climate change among a group of residents in Adelaide, an Australian city with a temperate climate. A cross-sectional study was conducted in the summer of 2012 among a sample of 267 residents. The results of the survey found that television (89.9%), radio (71.2%), newspapers (45.3%) were the main sources from which respondents received information about heat waves. The majority of the respondents (73.0%) followed news about heat waves very or somewhat closely. About 26.6% of the respondents were extremely or very concerned about the effects of heat waves on them personally. The main issues that were of personal concern for respondents during a heat wave were their personal comfort (60.7%), their garden (48.7%), and sleeping well (47.6%). Overall, respondents were more concerned about the impacts of heat waves to the society than on themselves. There was a significant association between gender (χ² = 21.2, df = 3, p = 0.000), gross annual household income (p = 0.03) and concern for the societal effects of heat waves. Less than half (43.2%) of the respondents believed that heat waves will extremely or very likely increase in Adelaide according to climate projections. Nearly half (49.3%) believed that the effects of heat waves were already being felt in Adelaide. These findings may inform the reframing and communication strategies for heat waves in Adelaide in the context of climate change.

  6. Effects of modification of the polar ionosphere with high-power short-wave extraordinary-mode HF waves produced by the spear heating facility

    NASA Astrophysics Data System (ADS)

    Borisova, T. D.; Blagoveshchenskaya, N. F.; S. Kalishin, A.; Oksavik, K.; Baddelley, L.; K. Yeoman, T.

    2012-06-01

    We present the results of modifying the F2 layer of the polar ionosphere experimentally with highpower HF extraordinary-mode waves. The experiments were performed in October 2010 using the short-wave SPEAR heating facility (Longyearbyen, Spitsbergen). To diagnose the effects of high-power HF waves by the aspect-scattering method in a network of diagnostic paths, we used the short-wave Doppler radar CUTLASS (Hankasalmi, Finland) and the incoherent scatter radar ESR (Longyearbyen, Spitsbergen). Excitation of small-scale artificial ionospheric irregularities was revealed, which were responsible for the aspect and backward scattering of the diagnostic signals. The measurements performed by the ESR incoherent scatter radar simultaneously with the heating demonstrated changes in the parameters of the ionospheric plasma, specifically, an increase in the electron density by 10-25 % and an increase in the electron temperature by 10-30 % at the altitudes of the F2 layer, as well as formation of sporadic ionization at altitudes of 140-180 km (below the F2 layer maximum). To explain the effects of ionosphere heating with HF extraordinary-mode waves, we propose a hypothesis of transformation of extraordinary electromagnetic waves to ordinary in the anisotropic, smoothly nonuniform ionosphere.

  7. Improved heat transfer modeling of the eye for electromagnetic wave exposures.

    PubMed

    Hirata, Akimasa

    2007-05-01

    This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.

  8. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafikov, Roman R., E-mail: rrr@ias.edu

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1%more » level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.« less

  9. Future changes of temperature and heat waves in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui

    2018-05-01

    Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.

  10. Thermal bioclimate in Strasbourg - the 2003 heat wave

    NASA Astrophysics Data System (ADS)

    Matzarakis, Andreas; de Rocco, Manuela; Najjar, Georges

    2009-10-01

    This case study highlights the implications of the 2003 heat wave for the city of Strasbourg, France. The urban centers of France and other European countries were particularly affected by the heat wave. In some urban areas, the mortality rate was 60% above the expected value (Institute de Veille Sanitaire, 2003). The 2003 heat wave demonstrated once again that populations in urban centers are much more affected by extreme meteorological events than people living in rural areas. The aim of this analysis is to explore differences in thermal comfort conditions of (a) the city center of Strasbourg, and (b) its hinterland. The differences in thermal conditions existing between rural and urban areas are quantified by using a bio-climatological index termed physiologically equivalent temperature (PET). This index is based on the human energy balance and builds a relevant index for the quantification of the thermal environment of humans. We calculate the PET for the years 2003 and 2004 to highlight the temporal changes in the severity of climate extremes. The spatial scope of this study is improved compared to previous works in the field through the inclusion of PET calculations for five different sites on a central place in Strasbourg (Place Kléber). The calculations are characterized by different sky view factors and are compared to the reference site, which is located in a rural area. In the rural hinterland (Entzheim), the analysis of PET indicates a strong cold thermal stress during the winter months but no significant stress in summer. In 2003, summer temperatures were sensed as warmer compared to other years, but did not reach the extreme temperatures that may cause severe heat stress. For both the rural and the urban study sites PET was higher in the summer of 2003 than in 2004, which reflects the inferior thermal conditions in the urban area during the heat wave in 2003. For the entire study period, urban and rural day-time PET reached similar maximal values

  11. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.

    PubMed

    Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2013-02-01

    The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.

  12. Interactions between urban heat islands and heat waves

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu

    2018-03-01

    Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored

  13. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  14. [Analysis of gene expression pattern in peripheral blood leukocytes during experimental heat wave].

    PubMed

    Feoktistova, E S; Skamrov, A V; Goryunova, L E; Khaspekov, G L; Osyaeva, M K; Rodnenkov, O V; Beabealashvilli, R Sh

    2017-03-01

    The conditions of Moscow 2010 summer heat wave were simulated in an accommodation module. Six healthy men aged from 22 to 46 years stayed in the module for 30 days. Measurements of gene expression in peripheral blood leukocytes before, during and 3 day after simulated heat wave were performed using qRT-PCR. We observed a shift in the expression level of certain genes after heat exposure for a long time, and rapid return to the initial level, when volunteers leaved the accommodation module. Eight genes were chosen to form the "heat expression signature". EGR2, EGR3 were upregulated in all six volunteers, EGR1, SIRT1, CYP51A1, MAPK9, BAG5, MNDA were upregulated in 5 volunteers.

  15. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    PubMed

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  16. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Treesearch

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  17. Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2014-10-01

    Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f wave driving mechanism may have important application in terrestrial radio communications by low frequency waves, which are difficult to launch directly due to their enormous wavelengths. Various heating methods involving X-mode, O-mode, and electron Bernstein mode are investigated in plasmas with controllable parameters (ne =108 ~1012 cm-3 ,Te = 0 . 1 ~ 6 eV ,Ti <waves and the subsequent structural changes of the plasma near the conversion region are also under investigation. This work is supported by an AFOSR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF.

  18. Development of a spinning wave heat engine

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Powell, E. A.; Hubbartt, J. E.

    1982-01-01

    A theoretical analysis and an experimental investigation were conducted to assess the feasibility of developing a spinning wave heat engine. Such as engine would utilize a large amplitude traveling acoustic wave rotating around a cylindrica chamber, and it should not suffer from the inefficiency, noise, and intermittent thrust which characterizes pulse jet engines. The objective of this investigation was to determine whether an artificially driven large amplitude spinning transverse wave could induce a steady flow of air through the combustion chamber under cold flow conditions. In the theoretical analysis the Maslen and Moore perturbation technique was extended to study flat cylinders (pancake geometry) with completely open side walls and a central opening. In the parallel experimental study, a test moel was used to determine resonant frequencies and radial pressure distributions, as well as oscillatory and steady flow velocities at the inner and outer peripheries. The experimental frequency was nearly the same as the theoretical acoustic value for a model of the same outer diameter but without a central hole. Although the theoretical analysis did not predict a steady velocity component, simulaneous measurements of hotwire and microphone responses have shown that the spinning wave pumps a mean flow radially outward through the cavity.

  19. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  20. Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria

    NASA Astrophysics Data System (ADS)

    Mircheva, Biliana; Tsekov, Milen; Meyer, Ulrich; Guerova, Guergana

    2017-12-01

    Heat waves have large adverse social, economic and environmental effects which include increased mortality, transport restrictions and a decreased agricultural production. The estimated economic losses of the 2007 heat wave in South-east Europe exceed 2 billion EUR with 19 000 hospitalisation in Romania only. Understanding the changes of the hydrological cycle components is essential for early forecasting of heat wave occurrence. Valuable insight of two components of the hydrological cycle, namely Integrated Water Vapour (IWV) and Terrestrial Water Storage Anomaly (TWSA), is now possible using observations from Global Navigation Satellite System (GNSS) and Gravity Recovery And Climate Experiment (GRACE) mission. In this study anomalies of temperature, precipitation, IWV and TWS in 2007 are compared to 2003-2013 period for Sofia, Bulgaria. In 2007, positive temperature anomalies are observed in January, February and July. There are negative IWV and precipitation anomalies in July 2007 that coincides with the heat wave in Bulgaria. TWSA in 2007 are negative in January, May and from July to October being largest in August. Long-term trends of: 1) temperatures have a local maximum in March 2007, 2) TWSA has a local minimum in May 2007, 3) IWV has a local minimum in September 2007, and 4) precipitation has a local maximum in July 2007. The TWSA interannual trends in Bulgaria, Hungary and Poland show similar behaviour as indicated by cross correlation coefficients of 0.9 and 0.7 between Bulgaria and Hungary and Bulgaria and Poland respectively. ALADIN-Climate describes the anomalies of temperature and IWV more successfully than those of precipitation and TWS.

  1. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    PubMed

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  2. Analysis of a Community-based Intervention to Reduce Heat-related Illness during Heat Waves in Licheng, China: a Quasi-experimental Study.

    PubMed

    Li, Jing; Xu, Xin; Wang, Jun; Zhao, Yun; Song, Xiu Ping; Liu, Zhi Dong; Cao, Li Na; Jiang, Bao Fa; Liu, Qi Yong

    2016-11-01

    To reduce health-related threats of heat waves, interventions have been implemented in many parts of the world. However, there is a lack of higher-level evidence concerning the intervention efficacy. This study aimed to determine the efficacy of an intervention to reduce the number of heat-related illnesses. A quasi-experimental design was employed by two cross-sectional surveys in the year 2014 and 2015, including 2,240 participants and 2,356 participants, respectively. Each survey was designed to include one control group and one intervention group, which conducted in Licheng, China. A representative sample was selected using a multistage sampling method. Data, collected from questionnaires about heat waves in 2014 and 2015, were analyzed using a difference-in-difference analysis and cost effectiveness analysis. Outcomes included changes in the prevalence of heat-related illnesses and cost-effectiveness variables. Relative to the control participants, the prevalence of heat-related illness in the intervention participants decreased to a greater extent in rural areas than in urban areas (OR=0.495 vs. OR=1.281). Moreover, the cost-effectiveness ratio in the intervention group was less than that in the control group (US$15.06 vs. US$15.69 per participant). Furthermore, to avoid one additional patient, the incremental cost-effectiveness ratio showed that an additional US$14.47 would be needed for the intervention compared to when no intervention was applied. The intervention program may be considered a worthwhile investment for rural areas that are more likely to experience heat waves. Meanwhile, corresponding improving measures should be presented towards urban areas. Future research should examine whether the intervention strategies could be spread out in other domestic or international regions where heat waves are usually experienced. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. [Media and public health: example of heat wave during summer 2003].

    PubMed

    Boyer, L; Robitail, S; Debensason, D; Auquier, P; San Marco, J-L

    2005-11-01

    The summer of 2003 was the hottest for France in the last 50 years with record day and nighttime temperatures. INSERM statistics estimated that 14,802 heat-related deaths occurred during August 2003 heat wave in France. In the aftermath of this crisis, we thought that it was useful to analyze how the French media dealt with public health during the period from June 1 to August 31, 2003. The objective was to analyze French coverage of public health information during the August 2003 heat wave. Manual and computerized analysis of newspaper and radio reports published from June 1 to August 31, 2003. Articles were obtained by searching the EUROPRESS database. Text analysis was performed using the ALCESTE software package. A total of 1,599 articles were analyzed. Few articles contained warnings about heat exposure and preventive measures. Public health policy was relegated to third place after business and ecology themes. The special problems of the high-risk populations were not mentioned until after the rising death toll was known and emphasis was placed on the implications of the crisis in the political process. The findings of this study show the poor performance of public health policy in France and that media must be given guidance to fulfil its role in providing public health information. This crisis discloses the absence of public health culture in France and involves the "social exclusion" related to a breakdown of social cohesion. More cooperation is needed between the media and public health professionals to avoid future heat-wave and other public health crises. France must develop a public health culture to promote involvement of both the community and individuals in public health issues.

  4. Heat wave over India during summer 2015: an assessment of real time extended range forecast

    NASA Astrophysics Data System (ADS)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2017-08-01

    Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very

  5. Application of ANNs approach for wave-like and heat-like equations

    NASA Astrophysics Data System (ADS)

    Jafarian, Ahmad; Baleanu, Dumitru

    2017-12-01

    Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.

  6. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    PubMed

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  7. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    PubMed Central

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  8. Ranking of European Capitals According to the Impact of Future Heat Waves

    NASA Astrophysics Data System (ADS)

    Smid, M.; Costa, A. C.; Russo, S.; Pebesma, E. J.; Canut, C. G.

    2017-12-01

    In warming Europe, we are witnessing a growth in urban population with aging trend, which will make the society more vulnerable to extreme heat waves. In the period 1950-2015 the occurrence of extreme heat waves increased across European capitals. As an example, Moscow was hit by the strongest heat wave of the present era, killing more than ten thousand people. Here we focus on larger metropolitan areas of European capitals. By using observations and an ensemble of eight EURO-CORDEX models under the RCP8.5 scenario, we calculate a suite of temperature based climate indices. We introduce a simple ranking procedure based on ensemble predictions using the mean of metropolitan grid cells for each capital, and population density as a proxy to quantify the future impact. Results show that the selected ensemble provides solid simulation of climate characteristics over most of the targeted metropolitan areas. All the investigated European metropolitan areas will be more vulnerable to extreme heat in the coming decades. Based on the impact ranking, the results reveal that in near, but mainly in distant future, the extreme heat events in European capitals will be not exclusive to traditionally exposed areas such as the Mediterranean and the Iberian Peninsula. The ranking of European capitals based on their vulnerability to the extreme heat could be of paramount importance to the decision makers in order to mitigate the heat related mortality, especially with the foreseen increase of global mean temperature. Acknowledgments: The authors gratefully acknowledge the support of Geoinformatics: Enabling Open Cities (GEO-C), the project funded by the European Commission within the Marie Skłodowska-Curie Actions, International Training Networks (ITN), European Joint Doctorates (EJD). Grant Agreement number 642332 — GEO-C — H2020-MSCA-ITN-2014.

  9. Evaluation of the effects of one cold wave on heating energy consumption in different regions of northern China

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Xiao, W.; Wang, J.; Wang, H.; Zhao, Y.; Wang, Y.

    2017-12-01

    The heating energy consumption per floor area (HECPA) and heating degree days (HDD) are effective indicators in quantifying the energy demand for heating with climate change. Using the heating energy consumption and meteorological data, an attempt has been made to analyse the relationship between the HECPA and HDD in different regions of northern China by the linear regression model. Based on the constructed model, the effects of one cold wave on heating energy consumption in different regions are evaluated. The results show that the HECPA and HDD in Beijing have a positive correlation with a correlation coefficient of 0.68. During the cold wave in 2016, the heating energy consumption in Beijing approximately increases 2.37 per cent compared with 2014. However, no correlation has been found between the HECPA and HDD in the relatively undeveloped regions. It seems that the cold wave has a greater effect on the developed regions than relatively undeveloped ones. It is considered that the reasons for the little effect of one cold wave on heating energy consumption in the undeveloped regions are outdated heating systems, insufficient energy supply for heating and low living standards.

  10. 3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2016-10-01

    Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.

  11. Heat Waves and Climate Change: Applying the Health Belief Model to Identify Predictors of Risk Perception and Adaptive Behaviours in Adelaide, Australia

    PubMed Central

    Akompab, Derick A.; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain A.; Augoustinos, Martha

    2013-01-01

    Heat waves are considered a health risk and they are likely to increase in frequency, intensity and duration as a consequence of climate change. The effects of heat waves on human health could be reduced if individuals recognise the risks and adopt healthy behaviours during a heat wave. The purpose of this study was to determine the predictors of risk perception using a heat wave scenario and identify the constructs of the health belief model that could predict adaptive behaviours during a heat wave. A cross-sectional study was conducted during the summer of 2012 among a sample of persons aged between 30 to 69 years in Adelaide. Participants’ perceptions were assessed using the health belief model as a conceptual frame. Their knowledge about heat waves and adaptive behaviours during heat waves was also assessed. Logistic regression analyses were performed to determine the predictors of risk perception to a heat wave scenario and adaptive behaviours during a heat wave. Of the 267 participants, about half (50.9%) had a high risk perception to heat waves while 82.8% had good adaptive behaviours during a heat wave. Multivariate models found that age was a significant predictor of risk perception. In addition, participants who were married (OR = 0.21; 95% CI, 0.07–0.62), who earned a gross annual household income of ≥$60,000 (OR = 0.41; 95% CI, 0.17–0.94) and without a fan (OR = 0.29; 95% CI, 0.11–0.79) were less likely to have a high risk perception to heat waves. Those who were living with others (OR = 2.87; 95% CI, 1.19–6.90) were more likely to have a high risk perception to heat waves. On the other hand, participants with a high perceived benefit (OR = 2.14; 95% CI, 1.00–4.58), a high “cues to action” (OR = 3.71; 95% CI, 1.63–8.43), who had additional training or education after high school (OR = 2.65; 95% CI, 1.25–5.58) and who earned a gross annual household income of ≥$60,000 (OR = 2.66; 95% CI, 1.07–6.56) were more likely to have good

  12. Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Ro, Stephen

    2018-05-01

    Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.

  13. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  14. A Complete Bank of Optical Images of the ICRF QSOs

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Taris, Francois; Anton, Sonia; Bourda, Geraldine; Damljanovic, Goran; Souchay, Jean; Vieira Martins, Roberto; Pursimo, Tapio; Barache, Christophe; Nepomuceno da Silva Neto, Dario; Fernandes Coelho, Bruno David

    2015-08-01

    We have been developing a systematic effort to collect good quality images of the optical counterpart of ICRF sources, in particular for those that have been regularly radio surveyed either for future implementation at high frequencies and/or those that will be the link sources between the ICRF and the Gaia CRF. Observations have been taken at the LNA/Brazil, CASLEO/Argentina, NOT/Spain, LFOA/Austria, Rozhen/Bulgária, and ASV/Serbia. In complement images were collected from the SDSS. As a step to implement such image data bank and make it publicly available through the IERS service we present its description, that comprises for each source the number of measurements, filter, pixel scale, size of field, and seeing at each observation. The photometry analysis is centered on the morphology, since there remain still cases in which the host galaxy is overwhelming, and many cases in which the host asks for a non-stellar PSF modeling. On basis of the neighbor stars we assign magnitudes and variability whenever possible. Finally, assisted by previous literature, the redshift and luminosity are used to derive astrophysical quantities, in special the absolute magnitude, SED and spectral index. Moreover, since Gaia will not obtain direct images of the observed sources, the morphology and magnitude becomes useful as templates onto which assembling and interpreting the one-dimensional and uncontinuous line spread function samplings that will be delivered by Gaia for each QSO.

  15. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.

    PubMed

    Ameye, Maarten; Wertin, Timothy M; Bauweraerts, Ingvar; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2012-10-01

    Here, we investigated the effect of different heat-wave intensities applied at two atmospheric CO2 concentrations ([CO2]) on seedlings of two tree species, loblolly pine (Pinus taeda) and northern red oak (Quercus rubra). Seedlings were assigned to treatment combinations of two levels of [CO2] (380 or 700 μmol mol(-1)) and four levels of air temperature (ambient, ambient +3°C, or 7-d heat waves consisting of a biweekly +6°C heat wave, or a monthly +12°C heat wave). Treatments were maintained throughout the growing season, thus receiving equal heat sums. We measured gas exchange and fluorescence parameters before, during and after a mid-summer heat wave. The +12°C heat wave, significantly reduced net photosynthesis (Anet) in both species and [CO2] treatments but this effect was diminished in elevated [CO2]. The decrease in Anet was accompanied by a decrease in Fv'/Fm' in P. taeda and ΦPSII in Q. rubra. Our findings suggest that, if soil moisture is adequate, trees will experience negative effects in photosynthetic performance only with the occurrence of extreme heat waves. As elevated [CO2] diminished these negative effects, the future climate may not be as detrimental to plant communities as previously assumed. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  17. Excess mortality related to the August 2003 heat wave in France

    PubMed Central

    Fouillet, Anne; Rey, Grégoire; Laurent, Françoise; Pavillon, Gérard; Bellec, Stéphanie; Ghihenneuc-Jouyaux, Chantal; Clavel, Jacqueline; Jougla, Eric; Hémon, Denis

    2006-01-01

    Objectives From August 1st to 20th, 2003, the mean maximum temperature in France exceeded the seasonal norm by 11 to 12°C on nine consecutive days. A major increase in mortality was then observed, which main epidemiological features are described herein. Methods The number of deaths observed from August to November, 2003 in France was compared to those expected on the basis of the mortality rates observed from 2000 to 2002 and the 2003 population estimates. Results From August 1st to 20th, 2003, 15000 excess deaths were observed. From 35 years age, the excess mortality was marked and increased with age. It was 15% higher in women than in men of comparable age as of age 45 years. Excess mortality at home and in retirement institutions was greater than that in hospitals. The mortality of widowed, single and divorced subjects was greater than that of married people. Deaths directly related to heat, heatstroke, hyperthermia and dehydration increased massively. Cardiovascular diseases, ill-defined morbid disorders, respiratory diseases and nervous system diseases also markedly contributed to the excess mortality. The geographic variations in mortality showed a clear age-dependent relationship with the number of very hot days. No harvesting effect was observed. Conclusions Heat waves must be considered as a threat to European populations living in climates that are currently temperate. While the elderly and people living alone are particularly vulnerable to heat waves, no segment of the population may be considered protected from the risks associated with heat waves. PMID:16523319

  18. The short-term effect of heat waves on mortality and its modifiers in China: an analysis from 66 communities.

    PubMed

    Ma, Wenjun; Zeng, Weilin; Zhou, Maigeng; Wang, Lijun; Rutherford, Shannon; Lin, Hualiang; Liu, Tao; Zhang, Yonghui; Xiao, Jianpeng; Zhang, Yewu; Wang, Xiaofeng; Gu, Xin; Chu, Cordia

    2015-02-01

    Many studies have reported increased mortality risk associated with heat waves. However, few have assessed the health impacts at a nation scale in a developing country. This study examines the mortality effects of heat waves in China and explores whether the effects are modified by individual-level and community-level characteristics. Daily mortality and meteorological variables from 66 Chinese communities were collected for the period 2006-2011. Heat waves were defined as ≥2 consecutive days with mean temperature ≥95th percentile of the year-round community-specific distribution. The community-specific mortality effects of heat waves were first estimated using a Distributed Lag Non-linear Model (DLNM), adjusting for potential confounders. To investigate effect modification by individual characteristics (age, gender, cause of death, education level or place of death), separate DLNM models were further fitted. Potential effect modification by community characteristics was examined using a meta-regression analysis. A total of 5.0% (95% confidence intervals (CI): 2.9%-7.2%) excess deaths were associated with heat waves in 66 Chinese communities, with the highest excess deaths in north China (6.0%, 95% CI: 1%-11.3%), followed by east China (5.2%, 95% CI: 0.4%-10.2%) and south China (4.5%, 95% CI: 1.4%-7.6%). Our results indicate that individual characteristics significantly modified heat waves effects in China, with greater effects on cardiovascular mortality, cerebrovascular mortality, respiratory mortality, the elderly, females, the population dying outside of a hospital and those with a higher education attainment. Heat wave mortality effects were also more pronounced for those living in urban cities or densely populated communities. Heat waves significantly increased mortality risk in China with apparent spatial heterogeneity, which was modified by some individual-level and community-level factors. Our findings suggest adaptation plans that target vulnerable

  19. [Physical and mechanical properties of the thermosetting resin for crown and bridge cured by micro-wave heating].

    PubMed

    Kaneko, K

    1989-09-01

    A heating method using micro-waves was utilized to obtain strong thermosetting resin for crown and bridge. The physical and mechanical properties of the thermosetting resin were examined. The resin was cured in a shorter time by the micro-waves heating method than by the conventional heat curing method and the working time was reduced markedly. The base resins of the thermosetting resin for crown and bridge for the micro-waves heating method were 2 PA and diluent 3 G. A compounding volume of 30 wt% for diluent 3 G was considered good the results of compressive strength, bending strength and diametral tensile strength. Grams of 200-230 of the filler compounded to the base resins of 2 PA-3 G system provided optimal compressive strength, bending strength and diametral tensile strength. A filler gram of 230 provided optimal hardness and curing shrinkage rate, the coefficient of thermal expansion became smaller with the increase of the compounding volume of the filler. The trial thermosetting resin for crown and bridge formed by the micro-waves heating method was not inferior to the conventional resin by the heat curing method or the light curing method.

  20. The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

    NASA Astrophysics Data System (ADS)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2018-01-01

    Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions of the plasma also affect wave dynamics. Aims: Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma. Methods: Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal behaviour of MHD waves. Results: For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important difference appears that is related with the time damping. Conclusions: Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the physical situation of the prominence plasma under study, that is, to perform prominence

  1. Impact of simulated heat waves on soybean physiology and yield

    USDA-ARS?s Scientific Manuscript database

    With increases in mean global temperatures and associated climate change, extreme temperature events are predicted to increase in both intensity and frequency. Despite the clearly documented negative public health impacts of heat waves, the impact on physiology and yields of key agricultural species...

  2. PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiansen; Tu, Chuanyi; Wang, Linghua

    Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) inmore » this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.« less

  3. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    NASA Technical Reports Server (NTRS)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  4. Land surface and atmospheric conditions associated with heat waves in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Richter, Heather

    2017-04-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (> 2.0°C) to the lower troposphere (> 1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  5. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.

    1984-08-06

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed.

  6. Extended-range forecasting of Chinese summer surface air temperature and heat waves

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Li, Tim

    2018-03-01

    Because of growing demand from agricultural planning, power management and activity scheduling, extended-range (5-30-day lead) forecasting of summer surface air temperature (SAT) and heat waves over China is carried out in the present study via spatial-temporal projection models (STPMs). Based on the training data during 1960-1999, the predictability sources are found to propagate from Europe, Northeast Asia, and the tropical Pacific, to influence the intraseasonal 10-80 day SAT over China. STPMs are therefore constructed using the projection domains, which are determined by these previous predictability sources. For the independent forecast period (2000-2013), the STPMs can reproduce EOF-filtered 30-80 day SAT at all lead times of 5-30 days over most part of China, and observed 30-80 and 10-80 day SAT at 25-30 days over eastern China. Significant pattern correlation coefficients account for more than 50% of total forecasts at all 5-30-day lead times against EOF-filtered and observed 30-80 day SAT, and at a 20-day lead time against observed 10-80 day SAT. The STPMs perform poorly in reproducing 10-30 day SAT. Forecasting for the first two modes of 10-30 day SAT only shows useful skill within a 15-day lead time. Forecasting for the third mode of 10-30 day SAT is useless after a 10-day lead time. The forecasted heat waves over China are determined by the reconstructed SAT which is the summation of the forecasted 10-80 day SAT and the lower frequency (longer than 80-day) climatological SAT. Over a large part of China, the STPMs can forecast more than 30% of heat waves within a 15-day lead time. In general, the STPMs demonstrate the promising skill for extended-range forecasting of Chinese summer SAT and heat waves.

  7. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  8. Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2018-03-01

    The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.

  9. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.

  10. ELF/VLF Wave Generation and Scattering from Modulated Heating of the Ionosphere at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.

    2017-12-01

    The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.

  11. An experimental heat wave changes immune defense and life history traits in a freshwater snail.

    PubMed

    Leicht, Katja; Jokela, Jukka; Seppälä, Otto

    2013-12-01

    The predicted increase in frequency and severity of heat waves due to climate change is expected to alter disease dynamics by reducing hosts' ability to resist infections. This could take place via two different mechanisms: (1) through general reduction in hosts' performance under harsh environmental conditions and/or (2) through altered resource allocation that reduces expression of defense traits in order to maintain other traits. We tested these alternative hypotheses by measuring the effect of an experimental heat wave (25 vs. 15°C) on the constitutive level of immune defense (hemocyte concentration, phenoloxidase [PO]-like activity, antibacterial activity of hemolymph), and life history traits (growth and number of oviposited eggs) of the great pond snail Lymnaea stagnalis. We also manipulated the exposure time to high temperature (1, 3, 5, 7, 9, or 11 days). We found that if the exposure to high temperature lasted <1 week, immune function was not affected. However, when the exposure lasted longer than that, the level of snails' immune function (hemocyte concentration and PO-like activity) was reduced. Snails' growth and reproduction increased within the first week of exposure to high temperature. However, longer exposures did not lead to a further increase in cumulative reproductive output. Our results show that short experimental heat waves do not alter immune function but lead to plastic responses that increase snails' growth and reproduction. Thus, although the relative expression of traits changes, short experimental heat waves do not impair snails' defenses. Negative effects on performance get pronounced when the heat waves are prolonged suggesting that high performance cannot be maintained over long time periods. This ultimately reduces the levels of defense traits.

  12. Evaluation of the Ability of S2S and NMME Models to Predict Heat Waves Following Drought Events in the United States

    NASA Astrophysics Data System (ADS)

    Ford, T.; Dirmeyer, P.

    2016-12-01

    The influence of antecedent drought conditions on the onset of heat waves in North America is important as the establishment of past heat wave events has been connected to both advection of warm, dry air and limitation of local moisture recycling due to dry soils. The strong connection between the land surface and subsequent extreme heat offers promise that realistic soil moisture initialization could improve model forecast skill. However, there is still a lack of consensus about the (1) the role of antecedent drought conditions in forcing heat waves over North America and (2) the ability of numerical forecast models to predict extreme heat events at sub-seasonal to seasonal time scales. For this project, we use atmospheric reanalysis datasets to establish the connection between drought and subsequent extreme heat events. The Standardized Precipitation Index (SPI), computed over 30-, 60-, and 90-day intervals, is used to identify drought events, while the excess heat factor defines subsequent heat wave events. We focus on heat waves immediately following drought periods, including events coinciding with but not beginning prior to the start of drought, as well as heat wave events beginning no more than 3 days after the demise of a drought event. Hindcasts from individual model ensemble members of the Sub-seasonal to Seasonal Prediction (S2S) Project and the Phase II of the North American Multi-Model Ensemble (NMME) are assessed with regard to heat wave prediction. Each individual S2S and NMME ensemble member is evaluated to determine if their respective hindcasts are able to capture/predict heat wave events identified in the reanalysis products.

  13. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  14. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  15. Impact of extreme high temperature on mortality and regional level definition of heat wave: a multi-city study in China.

    PubMed

    Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping

    2015-02-01

    Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Wave propagation and noncollisional heating in neutral loop and helicon discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Y.; Crintea, D. L.; Luggenhoelscher, D.

    2011-02-15

    Heating mechanisms in two types of magnetized low pressure rf (13.56 MHz) discharges are investigated: a helicon discharge and a neutral loop discharge. Radial B-dot probe measurements demonstrate that the neutral loop discharge is sustained by helicon waves as well. Axial B-dot probe measurements reveal standing wave and beat patterns depending on the dc magnetic field strength and plasma density. In modes showing a strong wave damping, the plasma refractive index attains values around 100, leading to electron-wave interactions. In strongly damped modes, the radial plasma density profiles are mainly determined by power absorption of the propagating helicon wave, whereasmore » in weakly damped modes, inductive coupling dominates. Furthermore, an azimuthal diamagnetic drift is identified. Measurements of the helicon wave phase demonstrate that initial plane wave fronts are bent during their axial propagation due to the inhomogeneous density profile. A developed analytical standing wave model including Landau damping reproduces very well the damping of the axial helicon wave field. This comparison underlines the theory whereupon Landau damping of electrons traveling along the field lines at speeds close to the helicon phase velocity is the main damping mechanism in both discharges.« less

  17. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ofman, Leon, E-mail: Leon.Ofman@nasa.gov; NASA Goddard Space Flight Center, Greenbelt, MD; Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects ofmore » background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.« less

  18. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    NASA Technical Reports Server (NTRS)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  19. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    NASA Astrophysics Data System (ADS)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  20. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2; Waves, Precipitating Ring Current Ions, and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the

  1. Climate change induced heat wave hazard in eastern Africa: Dar Es Salaam (Tanzania) and Addis Ababa (Ethiopia) case study

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Sellerino, Mariangela; Di Ruocco, Angela; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    Last decades, new records were set in the world for tornadoes, drought, wind, floods, wildfires and hot temperatures, testifying unusual weather and climate patterns with increasing frequency and intensity of extreme weather events. Extreme heat events are natural hazards affecting many regions in the world, nevertheless limited work has been done on the analysis and effects of extreme heat events in Africa, that is considered a continent particularly vulnerable to the effects of climate change. In fact, the increase of temperature expected in the African continent during the 21st century is larger than the global mean warming, being about 3° to 4° C, about 1.5 times the global temperature increase (Christensen et al., 2007; Gualdi et al., 2012), with the subtropical regions projected to warm more than the tropical regions. Observations and downscaled model simulations (RCP4.5 and RCP8.5 IPCC scenarios) are analyzed to describe heat wave characteristics in Dar es Salaam (Tanzania) and Addis Ababa (Ethiopia), spanning the last five decades as well as that projected for the 21st century. Observed data are daily maximum and minimum temperature collected in the period 1961-2011; downscaled model simulations span up to 2050. Heat waves are defined following a peak over threshold approach by statistical comparison to historical meteorological baselines (site dependent), using a fixed absolute threshold. Projected future warming in the Dar es Salaam and Addis Ababa shows a further increase in the heat waves parameters. Heat wave duration and hot days number are strictly correlated showing that the temperature rise could generate not only an increase of heat waves number but mainly a longer average duration, that can strongly affect the resilience capacity of the population, particularly the elder people. In fact, the impacts of heat waves on the society are determined also by temporal duration (Stephenson, 2008), in addition to their frequency, in fact the capacity of

  2. Thermal waves or beam heating in the 1980, November 5 flare

    NASA Technical Reports Server (NTRS)

    Smith, Dean F.

    1986-01-01

    Observations of the temporal evolution of loop BC in soft X rays in the November 5, 1980 flare are reviewed. Calculations are performed to model this evolution. The most consistent interpretation involving a minimum account of energy is the following. Thermal heating near B gives rise to a conduction front which moves out along the loop uninhibited for about 27 s. Beam heating near C gives rise to a second conduction front which moves in the opposite direction and prevents any energy reaching C by thermal conduction from B. Thus both thermal waves and beam heating are required to explain the observed evolution.

  3. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    NASA Astrophysics Data System (ADS)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  4. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  5. Assessment of the Impact of the 2003 and 2006 Heat Waves on Cattle Mortality in France

    PubMed Central

    Morignat, Eric; Perrin, Jean-Baptiste; Gay, Emilie; Vinard, Jean-Luc; Calavas, Didier; Hénaux, Viviane

    2014-01-01

    Objectives While several studies have highlighted and quantified human mortality during the major heat waves that struck Western Europe in 2003 and 2006, the impact on farm animals has been overlooked. The aim of this study was to assess the effect of these two events on cattle mortality in France, one of the most severely impacted countries. Methods Poisson regressions were used to model the national baseline for cattle mortality between 2004 and 2005 and predict the weekly number of expected deaths in 2003 and 2006 for the whole cattle population and by subpopulation based on age and type of production. Observed and estimated values were compared to identify and quantify excess mortality. The same approach was used at a departmental scale (a French department being an administrative and territorial division) to assess the spatio-temporal evolution of the mortality pattern. Results Overall, the models estimated relative excess mortality of 24% [95% confidence interval: 22–25%] for the two-week heat wave of 2003, and 12% [11–14%] for the three-week heat wave of 2006. In 2003, most cattle subpopulations were impacted during the heat wave and some in the following weeks too. In 2006, cattle subpopulations were impacted for a limited time only, with no excess mortality at the beginning or after the heat wave. No marked differences in cattle mortality were found among the different subpopulations by age and type of production. The implications of these results for risk prevention are discussed. PMID:24667835

  6. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.

    PubMed

    Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos

    2017-11-01

    Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro

    2017-07-01

    The most severe effects of global warning will be related to the frequency and severity of extreme events. We provide an analysis of projections of temperature and related extreme events for Africa based on a large ensemble of Regional Climate Models from the COordinated Regional climate Downscaling EXperiment (CORDEX). Results are presented not only by means of widely used indices but also with a recently developed Heat Wave Magnitude Index-daily (HWMId), which takes into account both heat wave duration and intensity. Results show that under RCP8.5, warming of more than 3.5 °C is projected in JFM over most of the continent, whereas in JAS temperatures over large part of Northern Africa, the Sahara and the Arabian peninsula are projected to increase up to 6 °C. Large increase in in the number of warm days (Tx90p) is found over sub equatorial Africa, with values up to more than 90 % in JAS, and more than 80 % in JFM over e.g., the gulf of Guinea, Central African Republic, South Sudan and Ethiopia. Changes in Tn90p (warm nights) are usually larger, with some models projecting Tn90p reaching 95 % starting from around 2060 even under RCP4.5 over the Gulf of Guinea and the Sahel. Results also show that the total length of heat spells projected to occur normally (i.e. once every 2 years) under RCP8.5 may be longer than those occurring once every 30 years under the lower emission scenario. By employing the recently developed HWMId index, it is possible to investigate the relationship between heat wave length ad intensity; in particular it is shown that very intense heat waves such as that occurring over the Horn of Africa may have values of HWMId larger than that of longer, but relatively weak, heat waves over West Africa.

  8. Reinstated JET ICRF ILA: Overview and Results

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Durodié, Frédéric; Blackman, Trevor; Helou, Walid; Jacquet, Philippe; Lerche, Ernesto; Monakhov, Igor; Noble, Craig; Bobkov, Volodymyr; Goulding, Richard; Kaufman, Michael; Van Eester, Dirk

    2017-10-01

    The works undertaken to reinstate the JET ICRF ILA are reviewed. The vacuum matching capacitors were replaced, an extensive calibration of all the measurements in the RF circuit was carried out, new simulation tools were created and new control algorithms were implemented for the - toroidal and poloidal - phase control of the array as well as for the matching of the second stage. A review of the contribution of the reinstated ILA to the JET programme during the last campaigns is given showing namely that the new controls allowed extending the range of the operation to lower (29MHz) and higher (51MHz) frequencies than previously achieved and allowed more flexible and reliable operation. Operation with coupled power levels up to 2.8MW and voltages up to 40kV was achieved. ILA results on plasma are discussed and emphasis is given to the features of interest for ITER.

  9. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nafari, F.; Ghoranneviss, M., E-mail: ghoranneviss@gmail.com

    2016-08-15

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperaturemore » for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.« less

  10. Changes in cause-specific mortality during heat waves in central Spain, 1975-2008

    NASA Astrophysics Data System (ADS)

    Miron, Isidro Juan; Linares, Cristina; Montero, Juan Carlos; Criado-Alvarez, Juan Jose; Díaz, Julio

    2015-09-01

    The relationship between heat waves and mortality has been widely described, but there are few studies using long daily data on specific-cause mortality. This study is undertaken in central Spain and analysing natural causes, circulatory and respiratory causes of mortality from 1975 to 2008. Time-series analysis was performed using ARIMA models, including data on specific-cause mortality and maximum and mean daily temperature and mean daily air pressure. The length of heat waves and their chronological number were analysed. Data were stratified in three decadal stages: 1975-1985, 1986-1996 and 1997-2008. Heat-related mortality was triggered by a threshold temperature of 37 °C. For each degree that the daily maximum temperature exceeded 37 °C, the percentage increase in mortality due to circulatory causes was 19.3 % (17.3-21.3) in 1975-1985, 30.3 % (28.3-32.3) in 1986-1996 and 7.3 % (6.2-8.4) in 1997-2008. The increase in respiratory cause ranged from 12.4 % (7.8-17.0) in the first period, to 16.3 % (14.1-18.4) in the second and 13.7 % (11.5-15.9) in the last. Each day of heat-wave duration explained 5.3 % (2.6-8.0) increase in respiratory mortality in the first period and 2.3 % (1.6-3.0) in the last. Decadal scale differences exist for specific-causes mortality induced by extreme heat. The impact on heat-related mortality by natural and circulatory causes increases between the first and the second period and falls significantly in the last. For respiratory causes, the increase is no reduced in the last period. These results are of particular importance for the estimation of future impacts of climate change on health.

  11. The association between consecutive days' heat wave and cardiovascular disease mortality in Beijing, China.

    PubMed

    Yin, Qian; Wang, Jinfeng

    2017-02-23

    Although many studies have examined the effects of heat waves on the excess mortality risk (ER) posed by cardiovascular disease (CVD), scant attention has been paid to the effects of various combinations of differing heat wave temperatures and durations. We investigated such effects in Beijing, a city of over 20 million residents. A generalized additive model (GAM) was used to analyze the ER of consecutive days' exposure to extreme high temperatures. A key finding was that when extremely high temperatures occur continuously, at varying temperature thresholds and durations, the adverse effects on CVD mortality vary significantly. The longer the heat wave lasts, the greater the mortality risk is. When the daily maximum temperature exceeded 35 °C from the fourth day onward, the ER attributed to consecutive days' high temperature exposure saw an increase to about 10% (p < 0.05), and at the fifth day, the ER even reached 51%. For the thresholds of 32 °C, 33 °C, and 34 °C, from the fifth day onward, the ER also rose sharply (16, 29, and 31%, respectively; p < 0.05). In addition, extreme high temperatures appeared to contribute to a higher proportion of CVD deaths among elderly persons, females and outdoor workers. When the daily maximum temperature was higher than 33 °C from the tenth consecutive day onward, the ER of CVD death among these groups was 94, 104 and 149%, respectively (p < 0.05), which is considerably higher than the ER for the overall population (87%; p < 0.05). The results of this study may assist governments in setting standards for heat waves, creating more accurate heat alerts, and taking measures to prevent or reduce temperature-related deaths, especially against the backdrop of global warming.

  12. The role of electric field in microfluidic heating induced by standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Tengfei; Wang, Chaohui; Hu, Qiao; Wei, Shoupeng

    2018-06-01

    The heating mechanism of standing surface acoustic waves (SSAWs) on a LiNbO3 substrate has been experimentally studied. Three devices with different substrates were used to heat the drops with NaCl concentrations ranging from 0 to 1 g/l, respectively. The device with a glass substrate was used to shield acoustic waves. The device with an Au layer between the LiNbO3 substrate and the droplet was used to shield the alternating current field. The results show that the thermal effect induced by SSAWs on the LiNbO3 substrate is composed of the acoustothermal effect due to SSAWs and the electric field thermal effect (Joule heat) due to the alternating current field. The electric field thermal effect which is ignored in SSAW devices previously plays an important role in the thermal effect induced by SSAWs. These results provide a meaningful insight into the mechanism of SSAW-based heating, which is of great help to guide the effective use of the SSAW-based heating technique for various applications.

  13. Urban enhancement of the heat waves in Madrid and its metropolitan area

    NASA Astrophysics Data System (ADS)

    Fernandez, F.; Rasilla, D.

    2009-04-01

    The urban heat island (UHI) is a worldwide phenomenon that causes an increase of the temperatures in the centre of the cities. The process of urbanization has developed an intense urban heat island in Madrid, with temperature differences up to 10°C higher than the surrounding rural environment. Such differences may potentially increase the magnitude and duration of heat waves within cities, exacerbating their most negative effects over human health, particularly by night, as it deprives urban residents of the cool relief found in rural areas. In this contribution we study the long term trends on warm extreme temperature episodes in the Madrid metropolitan area, and their impact at local scale, on the onw city of Madrid. For the first task, we have compared maximum and minimum temperatures from rural (Barajas and Torrejón) and urban (El Retiro, Cuatro Vientos, Getafe) stations from 1961-2008; for the second one a local network of automated meteorological stations inside the city provided hourly data from the 2002-2004 years. Finally, the 2003 heat wave is used as an example of the spatial and temporal patterns of temperature and ozone concentrations during those extreme episodes. Our results show a regional increase in the frequency and duration of those extreme warm episodes since the end of the 80´s, although their absolute magnitude remains unchanged. The urban environment exacerbates the heat load due to the persistence of the high temperatures during the night-time hours, as it is shown by the above average number of tropical nights (> 20°C) inside the urban spaces, simultaneous to the increasing trend of maximum temperatures. Besides, the diversity of urban morphologies introduces a spatial variability on the strength of this nocturnal heat load, aggravating it in the densely urbanized areas and mitigating it in the vicinities of the green areas. The regional meteorological conditions associated to these warm episodes, characterized also by low wind speed

  14. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation

    NASA Astrophysics Data System (ADS)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    Objective. While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. Approach. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. Main results. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10-3 °C) for a 0.5 s exposure. Significance. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  15. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation.

    PubMed

    Mueller, Jerel K; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10(-3) °C) for a 0.5 s exposure. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  16. Neonates in Ahmedabad, India, during the 2010 heat wave: a climate change adaptation study.

    PubMed

    Kakkad, Khyati; Barzaga, Michelle L; Wallenstein, Sylvan; Azhar, Gulrez Shah; Sheffield, Perry E

    2014-01-01

    Health effects from climate change are an international concern with urban areas at particular risk due to urban heat island effects. The burden of disease on vulnerable populations in non-climate-controlled settings has not been well studied. This study compared neonatal morbidity in a non-air-conditioned hospital during the 2010 heat wave in Ahmedabad to morbidity in the prior and subsequent years. The outcome of interest was neonatal intensive care unit (NICU) admissions for heat. During the months of April, May, and June of 2010, 24 NICU admissions were for heat versus 8 and 4 in 2009 and 2011, respectively. Both the effect of moving the maternity ward and the effect of high temperatures were statistically significant, controlling for each other. Above 42 degrees Celsius, each daily maximum temperature increase of a degree was associated with 43% increase in heat-related admissions (95% CI 9.2-88%). Lower floor location of the maternity ward within hospital which occurred after the 2010 heat wave showed a protective effect. These findings demonstrate the importance of simple surveillance measures in motivating a hospital policy change for climate change adaptation-here relocating one ward-and the potential increasing health burden of heat in non-climate-controlled institutions on vulnerable populations.

  17. Neonates in Ahmedabad, India, during the 2010 Heat Wave: A Climate Change Adaptation Study

    PubMed Central

    Kakkad, Khyati; Barzaga, Michelle L.; Wallenstein, Sylvan; Sheffield, Perry E.

    2014-01-01

    Health effects from climate change are an international concern with urban areas at particular risk due to urban heat island effects. The burden of disease on vulnerable populations in non-climate-controlled settings has not been well studied. This study compared neonatal morbidity in a non-air-conditioned hospital during the 2010 heat wave in Ahmedabad to morbidity in the prior and subsequent years. The outcome of interest was neonatal intensive care unit (NICU) admissions for heat. During the months of April, May, and June of 2010, 24 NICU admissions were for heat versus 8 and 4 in 2009 and 2011, respectively. Both the effect of moving the maternity ward and the effect of high temperatures were statistically significant, controlling for each other. Above 42 degrees Celsius, each daily maximum temperature increase of a degree was associated with 43% increase in heat-related admissions (95% CI 9.2–88%). Lower floor location of the maternity ward within hospital which occurred after the 2010 heat wave showed a protective effect. These findings demonstrate the importance of simple surveillance measures in motivating a hospital policy change for climate change adaptation—here relocating one ward—and the potential increasing health burden of heat in non-climate-controlled institutions on vulnerable populations. PMID:24734050

  18. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Liang, Ji; Lin, Yu; Johnson, Jay R.; Wang, Zheng-Xiong; Wang, Xueyi

    2017-10-01

    Our previous study on the generation and signatures of kinetic Alfvén waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfvénic. As a result of wave-particle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. The ions are heated in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the perpendicular ion temperature T⊥ and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with T⊥>T∥ . The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall

  19. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave

  20. Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...

    2017-09-04

    Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less

  1. Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.

    Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less

  2. Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2007-01-01

    This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb

  3. Quantifying impacts of heat waves on power grid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Xinda; Wu, Di; Rice, Jennie S.

    Climate change is projected to cause an increase in the severity and frequency of extreme weather events such as heat waves and droughts. Such changes present planning and operating challenges and risks to many economic sectors. In the electricity sector, statistics of extreme events in the past have been used to help plan for future peak loads, determine associated infrastructure requirements, and evaluate operational risks, but industry-standard planning tools have yet to be coupled with or informed by temperature models to explore the impacts of the "new normal" on planning studies. For example, high ambient temperatures during heat waves reducemore » the output capacity and efficiency of gas fired combustion turbines just when they are needed most to meet peak demands. This paper describes the development and application of a production cost and unit commitment model coupled to high resolution, hourly temperature data and a temperature dependent load model. The coupled system has the ability to represent the impacts of hourly temperatures on load conditions and available capacity and efficiency of combustion turbines, and therefore capture the potential impacts on system reliability and production cost. Ongoing work expands this capability to address the impacts of water availability and temperature on power grid operation.« less

  4. Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating

    NASA Astrophysics Data System (ADS)

    Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.

    2001-10-01

    A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.

  5. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    NASA Astrophysics Data System (ADS)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and

  6. Role of lower hybrid waves in ion heating at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  7. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  8. Trend analysis of regional heat wave warning using RegCM simulations

    NASA Astrophysics Data System (ADS)

    Pongracz, R.; Bartholy, J.; Bartha, E. B.; Torek, O.; Torma, Cs.

    2010-09-01

    Heat wave events are important temperature-related climatological extremes due to their impacts on human health. In the future, they are very likely to occur more frequently and more intensely not only in the Carpathian Basin, but in most regions of the world because of global warming. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to heat waves. In Hungary, three categories of heat wave warning are applied. They are associated to the daily mean temperature values. (i) Warning category 1 is issued when the daily mean temperature is larger than 25 °C. (ii) Warning category 2 is issued when the daily mean temperature for at least 3 consecutive days is larger than 25 °C. (iii) Warning category 3 is issued when the daily mean temperature for at least 3 consecutive days is larger than 27 °C. In this poster, frequency of these conditions are analyzed using regional climate model experiments of model RegCM with 10-km horizontal resolution adapted at the Department of Meteorology, Eotvos Lorand University in the frame of the CECILIA EU-project. The model RegCM is a 3-dimensional, sigma-coordinate, primitive equation model, and it was originally developed by Giorgi et al. Currently, it is available from the ICTP (International Centre for Theoretical Physics). The initial and lateral boundary conditions of the fine-resolution experiments have been provided by the global climate model ECHAM for the A1B emission scenario for three different time slices (1961-1990, 2021-2050, and 2071-2100).

  9. Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B. P.; Frumhoff, P. C.; Bowery, A.; Allen, M. R.

    2015-12-01

    Climate change is the biggest global health threat of the 21st century (Costello et al, 2009; Watts et al, 2015). Perhaps one of the clearest examples of this is the summer heat wave of 2003, which saw up to seventy thousand excess deaths across Europe (Robine et al, 2007). The extreme temperatures are now thought to be significantly enhanced due to anthropogenic climate change (Stott et al, 2004; Christidis et al, 2015). Here, we consider not only the Europe-wide temperature response of the heat wave, but the localised response using a high-resolution regional model simulating 2003 climate conditions thousands of times. For the first time, by employing end-to-end attribution, we attribute changes in mortality to the increased radiative forcing from climate change, with a specific focus on London and Paris. We show that in both cities, a sizable proportion of the excess mortality can be attributed to human emissions. With European heat waves projected to increase into the future, these results provide a worrying reality for what may lie ahead. Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change (2014). Costello, Anthony, et al. "Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission." The Lancet 373.9676 (2009): 1693-1733. Stott, Peter A., Dáithí A. Stone, and Myles R. Allen. "Human contribution to the European heatwave of 2003." Nature 432.7017 (2004): 610-614 Watts, N., et al. "Health and climate change: policy responses to protect public health." Lancet. 2015.

  10. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G.; Di Giugno, R.; Miracoli, R.

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less

  11. Simulations of the Mg II K and Ca II 8542 Lines From an Alfvén Wave-Heated Flare Chromosphere

    NASA Technical Reports Server (NTRS)

    Kerr, Graham S.; Fletcher, Lyndsay; Russell, Alexander J. B.; Allred, Joel C.

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542 A profiles that are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca II 8542 A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating inflares.

  12. Evaporation and Accompanying Isotopic Fractionation of Sulfur from FE-S Melt During Shock Wave Heating

    NASA Technical Reports Server (NTRS)

    Tachibana, S.; Huss, G. R.; Miura, H.; Nakamoto, T.

    2004-01-01

    Chondrules probably formed by melting and subsequent cooling of solid precursors. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. It is known that kinetic evaporation, especially evaporation from a melt, often leads to enrichment of heavy isotopes in an evaporation residue. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules for K, Mg, Si, and Fe (as FeO). The lack of isotopic fractionation has also been found for sulfur in troilites (FeS) within Bishunpur (LL3.1) and Semarkona (LL3.0) chondrules by an ion microprobe study. The largest fractionation, found in only one grain, was 2.7 +/- 1.4 %/amu, while all other troilite grains showed isotopic fractionations of <1 %/amu. The suppressed isotopic fractionation has been interpreted as results of (i) rapid heating of precursors at temperatures below the silicate solidus and (ii) diffusion-controlled evaporation through a surrounding silicate melt at temperatures above the silicate solidus. The kinetic evaporation model suggests that a rapid heating rate of >10(exp 4)-10(exp 6) K/h for a temperature range of 1000-1300 C is required to explain observed isotopic fractionations. Such a rapid heating rate seems to be difficult to be achieved in the X-wind model, but can be achieved in shock wave heating models. In this study, we have applied the sulfur evaporation model to the shock wave heating conditions of to evaluate evaporation of sulfur and accompanying isotopic fractionation during shock wave heating at temperatures below the silicate solidus.

  13. ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.

    2011-08-01

    Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources.Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna.Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.

  14. ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.; ASDEX Upgrade Team

    2011-08-01

    Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources. Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna. Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.

  15. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the Nationalmore » Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different

  16. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, Nicola; Jaeger, E. F.; Lau, Cornwall H

    2015-01-01

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the Nationalmore » Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to "conventional" tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different

  17. X-ray analysis of electron Bernstein wave heating in MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less

  18. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  19. Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...

    2016-07-01

    Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. Furthermore, this process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is drivingmore » these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.« less

  20. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal

  1. High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.

    1999-05-01

    A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.

  2. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  3. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.

    2016-07-01

    Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.

  4. Extending the ICRF into the Infrared: 2MASS - UCAC Astrometry

    NASA Technical Reports Server (NTRS)

    Zacharias, Norbert; McCallon, Howard L.; Kopan, Eugene; Cutri, Roc M.

    2000-01-01

    An external comparison between the infrared 2MASS and the optical UCAC positions was performed, both being on the same system, the ICRS. About 48 million sources in common were identified. Random errors of the 2MASS catalog positions are about 60 to 70 mas per coordinate for the Ks = 4 to 14 range, increasing to about 100 to 150 mas for saturated and very faint stars. Systematic position differences between the 2 catalogs are very small, about 5 to 10 mas as a function of magnitude and color, with somewhat larger errors as a function of right ascension and declination. The extension of the ICRF into the infrared has become a reality.

  5. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  6. Individual and Public-Program Adaptation: Coping with Heat Waves in Five Cities in Canada

    PubMed Central

    Alberini, Anna; Gans, Will; Alhassan, Mustapha

    2011-01-01

    Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals’ recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as “not at risk” and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions. PMID:22408596

  7. Soil enzyme activities during the 2011 Texas record drought/heat wave and implications to biogeochemical cycling and organic matter dynamics

    USDA-ARS?s Scientific Manuscript database

    Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...

  8. M-wave normalization of EMG signal to investigate heat stress and fatigue.

    PubMed

    Girard, Olivier; Bishop, David J; Racinais, Sébastien

    2018-05-01

    We examined the extent to which peripheral changes affect EMG signal adjustments during repeated sprinting in temperate and hot conditions. Randomised, crossover study. Ten males performed 10×6-s 'all-out' cycling sprints (recovery=30s) in either a temperate (24°C/30%rH) or a hot (35°C/40%rH) environment with concomitant surface EMG recordings of the vastus lateralis (VL) and rectus femoris (RF). In addition, peak-to-peak M-wave amplitudes were obtained for each muscle after each sprint (i.e., 15s into recovery). For both the VL and RF muscles RMS decreased across sprint repetitions (P<0.01), while significantly lower values for the VL (P=0.012), but not the RF (P=0.096), occurred in hot vs. temperate conditions. M-wave-normalised RMS for VL muscle decreased across sprint repetitions (P=0.030), with no condition or interaction effects (both P>0.621). M-wave-normalised RMS for the RF muscle was lower in the heat (P<0.034), with no significant sprint or interaction effects (both P>0.240). Controlling for changes in maximal M-wave amplitude of the quadriceps muscles after each bout of a repeated cycling exercise in hot and temperate conditions allows researchers to account for fatigue- and/or heat-induced neural and peripheral adjustments. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. SIMULATIONS OF ALFVÉN AND KINK WAVE DRIVING OF THE SOLAR CHROMOSPHERE: EFFICIENT HEATING AND SPICULE LAUNCHING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, C. S.; Arber, T. D., E-mail: c.s.brady@warwick.ac.uk

    2016-10-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ∼0.1 erg cm{sup −3} s{sup −1} in the lower chromosphere and drops to ∼10{sup −3} erg cm{sup −3} s{sup −1} in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ∼10–20 km s{sup −1}, for so-called Type I spicules, which reach heights of ∼3000–5000 km above the photosphere.more » A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.« less

  10. Canopy and physiological controls of GPP during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi

    2016-04-01

    Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.

  11. Measuring the effects of heat wave episodes on the human body's thermal balance

    NASA Astrophysics Data System (ADS)

    Katavoutas, George; Theoharatos, George; Flocas, Helena A.; Asimakopoulos, Dimosthenis N.

    2009-03-01

    During the peak of an extensive heat wave episode on 23-25 July 2007, simultaneous thermophysiological measurements were made in two non-acclimated healthy adults of different sex in a suburban area of Greater Athens, Greece. Based on experimental measurements of mean skin temperature and metabolic heat production, heat fluxes to and from the human body were calculated, and the biometeorological index heat load (HL) produced was determined according to the heat balance equation. Comparing experimental values with those derived from theoretical estimates revealed a great heat stress for both individuals, especially the male, while theoretical values underestimated heat stress. The study also revealed that thermophysiological factors, such as mean skin temperature and metabolic heat production, play an important role in determining heat fluxes patterns in the heat balance equation. The theoretical values of mean skin temperature as derived from an empirical equation may not be appropriate to describe the changes that take place in a non-acclimated individual. Furthermore, the changes in metabolic heat production were significant even for standard activity.

  12. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress

    USDA-ARS?s Scientific Manuscript database

    This study is the first field based experiment that uses IR heaters to study the effects of a regionally defined heat wave on soybean physiology and productivity. The heating technology was successful and all of the heat waves were maintained at the target temperature for the three day duration of t...

  13. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    NASA Astrophysics Data System (ADS)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  14. An Analysis of the Impact of Heat Waves in Labor and Crop Productivity in the Agricultural Sector in California

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Wehner, M. F.; Gilless, J. K.

    2017-12-01

    California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.

  15. Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger

    2017-10-01

    30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.

  16. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    DOE PAGES

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; ...

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less

  17. PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, Benjamin D. G.; Germaschewski, Kai; Li Bo

    We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies {omega} smaller than the ion cyclotron frequency {Omega}. We focus on plasmas in which {beta} {approx}< 1, where {beta} is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments,more » we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity {epsilon} = {delta}v {sub {rho}/}v{sub perpendicular}, where v{sub perpendicular} (v {sub ||}) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B {sub 0}, and {delta}v {sub {rho}} ({delta}B {sub {rho}}) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when {epsilon} << {epsilon}{sub crit}, where {epsilon}{sub crit} is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when {epsilon}>{epsilon}{sub crit}, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of {delta}v {sub {rho}}, and magnetic-moment conservation is violated even when {omega} << {Omega}. For the random-phase waves in our test-particle simulations, {epsilon}{sub crit} = 0.19. For protons in low-{beta} plasmas, {epsilon} {approx_equal} {beta}{sup -1/2{delta}}B{sub {rho}/}B {sub 0}, and {epsilon} can exceed

  18. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Na, Hye-Yun

    2017-11-01

    This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.

  19. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  20. Do older adults experience greater thermal strain during heat waves?

    PubMed

    Stapleton, Jill M; Larose, Joanie; Simpson, Christina; Flouris, Andreas D; Sigal, Ronald J; Kenny, Glen P

    2014-03-01

    Heat waves are the cause of many preventable deaths around the world, especially among older adults and in countries with more temperate climates. In the present study, we examined the effects of age on whole-body heat loss and heat storage during passive exposure to environmental conditions representative of the upper temperature extremes experienced in Canada. Direct and indirect calorimetry measured whole-body evaporative heat loss and dry heat exchange, as well as the change in body heat content. Twelve younger (21 ± 3 years) and 12 older (65 ± 5 years) adults with similar body weight (younger: 72.0 ± 4.4 kg; older: 80.1 ± 4.2 kg) and body surface area (younger: 1.8 ± 0.1 m(2); older: 2.0 ± 0.1 m(2)) rested for 2 h in a hot-dry [36.5 °C, 20% relative humidity (RH)] or hot-humid (36.5 °C, 60% RH) environment. In both conditions, evaporative heat loss was not significantly different between groups (dry: p = 0.758; humid: p = 0.814). However, the rate of dry heat gain was significantly greater (by approx. 10 W) for older adults relative to younger adults during the hot-dry (p = 0.032) and hot-humid exposure (p = 0.019). Consequently, the cumulative change in body heat content after 2 h of rest was significantly greater in older adults in the hot-dry (older: 212 ± 25 kJ; younger: 131 ± 27 kJ, p = 0.018) as well as the hot-humid condition (older: 426 ± 37 kJ; younger: 317 ± 45 kJ, p = 0.037). These findings demonstrate that older individuals store more heat during short exposures to dry and humid heat, suggesting that they may experience increased levels of thermal strain in such conditions than people of younger age.

  1. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  2. The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology

    NASA Astrophysics Data System (ADS)

    Matzarakis, Andreas; Mayer, Helmut

    At the end of July 1987 a heat wave came over Greece and had as a consequence an increase in the mortality to double the normal values. Predicted mean vote ( PMV), physiologically equivalent temperature ( PET), and for comparison discomfort index ( DI) as thermal indices as well as core temperature, mean skin temperature, and skin wetness as body parameters are calculated for that period based on meteorological data of the Meteorological Institute of the National Observatory in the centre of Athens and of the suburban station New Philadelphia of the Hellenic National Weather Service. The results for the thermal indices and the body parameters indicate a very high thermal stress on people. In addition, the air quality stress index ( AQSI) has been used for characterizing air quality conditions in Athens during the heat wave. The results Combined with the thermal effects of the heat wave the stress on humans due to environmental conditions has been very injurious to health.

  3. Drought and Heat Waves: The Role of SST and Land Surface Feedbacks

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.

  4. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  5. A Bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities.

    PubMed

    Bobb, Jennifer F; Dominici, Francesca; Peng, Roger D

    2011-12-01

    Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this article, we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987-2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat-wave risk estimation is sensitive to model choice. Although model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models. © 2011, The International Biometric Society.

  6. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  7. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, M.; Heinzel, P.; Švanda, M.

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra ofmore » Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.« less

  8. Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5

    PubMed Central

    Anderson, G.B.; Jones, B.; McGinnis, S.A.; Sanderson, B.

    2015-01-01

    Previous studies examining future changes in heat/cold waves using climate model ensembles have been limited to grid cell-average quantities. Here, we make use of an urban parameterization in the Community Earth System Model (CESM) that represents the urban heat island effect, which can exacerbate extreme heat but may ameliorate extreme cold in urban relative to rural areas. Heat/cold wave characteristics are derived for U.S. regions from a bias-corrected CESM 30-member ensemble for climate outcomes driven by the RCP8.5 forcing scenario and a 15-member ensemble driven by RCP4.5. Significant differences are found between urban and grid cell-average heat/cold wave characteristics. Most notably, urban heat waves for 1981–2005 are more intense than grid cell-average by 2.1°C (southeast) to 4.6°C (southwest), while cold waves are less intense. We assess the avoided climate impacts of urban heat/cold waves in 2061–2080 when following the lower forcing scenario. Urban heat wave days per year increase from 6 in 1981–2005 to up to 92 (southeast) in RCP8.5. Following RCP4.5 reduces heat wave days by about 50%. Large avoided impacts are demonstrated for individual communities; e.g., the longest heat wave for Houston in RCP4.5 is 38 days while in RCP8.5 there is one heat wave per year that is longer than a month with some lasting the entire summer. Heat waves also start later in the season in RCP4.5 (earliest are in early May) than RCP8.5 (mid-April), compared to 1981–2005 (late May). In some communities, cold wave events decrease from 2 per year for 1981–2005 to one-in-five year events in RCP4.5 and one-in-ten year events in RCP8.5. PMID:29520121

  9. Heating of the lower thermosphere by the dissipation of acoustic waves

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1977-01-01

    Infrasound of 0.2 Hz known as microbaroms, generated by interfering ocean waves, propagates into the lower thermosphere where it is dissipated between 110 and 140 km. It is shown here that under average conditions in winter the energy input into this region is of the order of 0.33 W/kg, the same as that estimated for gravity wave dissipation, and capable of producing a heating of at least 30 K/day. To arrive at this result different dissipation mechanisms are discussed, with the calculated attenuation compared to previously published observations and observations of natural infrasound at Palisades, N.Y. Increased acoustic attenuation due to the presence of turbulence is not, in general, in evidence.

  10. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  11. Alfvén Wave Reflection and Turbulent Heating in the Solar Wind from 1 Solar Radius to 1 AU: An Analytical Treatment

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.; Hollweg, Joseph V.

    2009-12-01

    We study the propagation, reflection, and turbulent dissipation of Alfvén waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfvén critical point—that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfvén-wave reflection and turbulent heating into fluid models of the solar wind.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vdovin V.L.

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magneticmore » flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with

  13. Willingness to Pay for Measures of Managing the Health Effects of Heat Wave in Beijing, China: a Cross-sectional Survey.

    PubMed

    Zhang, Yi; Chen, Chen; Ban, Jie; Zhao, Jin Hui; Xu, Dan Dan; Zhu, Peng Fei; Li, Tian Tian

    2016-09-01

    There are evidences that heat wave events cause deaths and emergency cases. This article used the contingent valuation method to find the willingness to pay for the protective measures and investigated the factors that influence the willingness to pay. A cross-sectional face-to-face household survey was completed by 637 urban long-term residents and 591 rural long-term residents aged 15-79 in Beijing, China. Binary logistic regression was used to identify factors that influenced the payment rate or payment amount for the protective measures, including independent variables for district, gender, age, education, income, air conditioner ownership, heat wave experience, and chronic non-communicable disease. The payment rate was 41.1% for protective measures provided by the government and 39.5% by measures provided by the market. Most of the respondents were willing to pay 40 CNY per capita annually for measures provided by the government or the market. The factors influencing willingness to pay were district, gender, income, air conditioner ownership, heat wave experience, and chronic non-communicable disease.. Protective measures for heat waves need to be provided immediately. More attention should be paid to the situation of vulnerable groups, such as people who live in urban areas, those without air conditioning, and those who have experienced a heat wave in the past. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    NASA Technical Reports Server (NTRS)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  15. Ion-Scale Wave Properties and Enhanced Ion Heating across the Magnetopause during Kelvin-Helmholtz Instability

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Moore, T.; Dimmock, A. P.

    2017-12-01

    In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn-sector, the cold-component ions are more abundant and hotter by 30-40 percent when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contribute to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to KHI: hot and tenuous magnetospheric, cold and dense magnetosheath and mixed [Hasegawa 2004 et al., 2004]. These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz vortex centered ion heating [Moore et al., 2016]. The statistical analysis shows that during KH events there is enhanced non-adiabatic heating calculated during (temporal) ion scale wave intervals when compared to non-KH events.

  16. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum

  17. Land surface and atmospheric conditions associated with heat waves over the Chickasaw Nation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Basara Richter, Heather

    2016-06-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (>2.0°C) to the lower troposphere (>1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  18. Ion-Scale Wave Properties and Enhanced Ion Heating Across the Low-Latitude Boundary Layer During Kelvin-Helmholtz Instability

    NASA Astrophysics Data System (ADS)

    Moore, T. W.; Nykyri, K.; Dimmock, A. P.

    2017-11-01

    In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.

  19. Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe

    PubMed Central

    Lowe, Rachel; Ballester, Joan; Creswick, James; Robine, Jean-Marie; Herrmann, François R.; Rodó, Xavier

    2015-01-01

    The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1–15 August 2003), the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution) for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1–15 January 2003), mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality predictions could

  20. Evaluating the performance of a climate-driven mortality model during heat waves and cold spells in Europe.

    PubMed

    Lowe, Rachel; Ballester, Joan; Creswick, James; Robine, Jean-Marie; Herrmann, François R; Rodó, Xavier

    2015-01-23

    The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998-2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1-15 August 2003), the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution) for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1-15 January 2003), mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality predictions could

  1. Shock wave as a probe of flux-dimited thermal transport in laser-heated solids

    NASA Astrophysics Data System (ADS)

    Smith, K.; Forsman, A.; Chiu, G.

    1996-11-01

    Laser-generated shock waves in solids result from the ablation of the target material. Where radiation transport is negligible, the ablation process is dominated by electron thermal conduction. This offers an opportunity to probe the degree of transport inhibition (compared with classical heat flow) for steep temperature gradients in a dense plasma. Using a 1-dimensional hydrodynamic code, we have examined the effect of flux-limited thermal conduction on the amplitude of the resulting shock wave.

  2. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less

  3. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  4. Effects of PM fouling on the heat exchange effectiveness of wave fin type EGR cooler for diesel engine use

    NASA Astrophysics Data System (ADS)

    Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man

    2012-06-01

    Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.

  5. Climate extremes in urban area and their impact on human health: the summer heat waves

    NASA Astrophysics Data System (ADS)

    Baldi, Marina

    2014-05-01

    In the period 1951-2012 the average global land and ocean temperature has increased by approximately 0.72°C [0.49-0.89] when described by a linear trend, and is projected to rapidly increase. Each of the past three decades has been warmer than all the previous decades, with the decade of the 2000's as the warmest, and, since 1880, nine of the ten warmest years are in the 21st century, the only exception being 1998, which was warmed by the strongest El Niño event of the past century. In parallel an increase in the frequency and intensity of extremely hot days is detected with differences at different scales, which represent an health risk specially in largely populated areas as documented for several regions in the world including the Euro-Mediterranean region. If it is still under discussion if heat wave episodes are a direct result of the warming of the lower troposphere, or if, more likely, they are a regional climate event, however heat episodes have been studied in order to define their correlation with large scale atmospheric patterns and with changes in the regional circulation. Whatever the causes and the spatio-temporal extension of the episodes, epidemiological studies show that these conditions pose increasing health risks inducing heat-related diseases including hyperthermia and heat stress, cardiovascular and respiratory illnesses in susceptible individuals with a significant increase in morbidity and mortality especially in densely populated urban areas. In several Mediterranean cities peaks of mortality associated with extremely high temperature (with simultaneous high humidity levels) have been documented showing that, in some cases, a large increase in daily mortality has been reached compared to the average for the period. The number of fatalities during the summer 2003 heat wave in Europe was estimated to largely exceed the average value of some between 22000 and 50000 cases. In the same summer it was also unusually hot across much of Asia, and

  6. A biophysical basis for patchy mortality during heat waves.

    PubMed

    Mislan, K A S; Wethey, David S

    2015-04-01

    Extreme heat events cause patchy mortality in many habitats. We examine biophysical mechanisms responsible for patchy mortality in beds of the competitively dominant ecosystem engineer, the marine mussel Mytilus californianus, on the west coast of the United States. We used a biophysical model to predict daily fluctuations in body temperature at sites from southern California to Washington and used results of laboratory experiments on thermal tolerance to determine mortality rates from body temperature. In our model, we varied the rate of thermal conduction within mussel beds and found that this factor can account for large differences in body temperature and consequent mortality during heat waves. Mussel beds provide structural habitat for other species and increase local biodiversity, but, as sessile organisms, they are particularly vulnerable to extreme weather conditions. Identifying critical biophysical mechanisms related to mortality and ecological performance will improve our ability to predict the effects of climate change on these vulnerable ecosystems.

  7. Observation of extremely strong shock waves in solids launched by petawatt laser heating

    DOE PAGES

    Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; ...

    2017-08-25

    Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. In conclusion, we discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV usingmore » a multi-layer spherical mirror.« less

  8. Planetary-scale circulations in the presence of climatological and wave-induced heating

    NASA Technical Reports Server (NTRS)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper

  9. A second-order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Winske, Dan; Gary, S. P.

    1992-01-01

    A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave-particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H(+) beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second-order exchange rates. The calculated heating and momentum loss from second-order theory is compared to the numerical simulation.

  10. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ji; Lin, Yu; Johnson, Jay R.

    In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating

  11. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    DOE PAGES

    Liang, Ji; Lin, Yu; Johnson, Jay R.; ...

    2017-09-19

    In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating

  12. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK

    PubMed Central

    Kovats, R; Hajat, S; Wilkinson, P

    2004-01-01

    Background: Epidemiological research has shown that mortality increases during hot weather and heat waves, but little is known about the effect on non-fatal outcomes in the UK. Aims and Methods: The effects of hot weather and heat waves on emergency hospital admissions were investigated in Greater London, UK, for a range of causes and age groups. Time series analyses were conducted of daily emergency hospital admissions, 1 April 1994 to 31 March 2000, using autoregressive Poisson models with adjustment for long term trend, season, day of week, public holidays, the Christmas period, influenza, relative humidity, air pollution (ozone, PM10), and overdispersion. The effects of heat were modelled using the average of the daily mean temperature over the index and previous two days. Results: There was no clear evidence of a relation between total emergency hospital admissions and high ambient temperatures, although there was evidence for heat related increases in emergency admissions for respiratory and renal disease, in children under 5, and for respiratory disease in the 75+ age group. During the heat wave of 29 July to 3 August 1995, hospital admissions showed a small non-significant increase: 2.6% (95% CI –2.2 to 7.6), while daily mortality rose by 10.8% (95% CI 2.8 to 19.3) after adjusting for time varying confounders. Conclusions: The impact of hot weather on mortality is not paralleled by similar magnitude increases in hospital admissions in the UK, which supports the hypothesis that many heat related deaths occur in people before they come to medical attention. This has evident implications for public health, and merits further enquiry. PMID:15477282

  13. Ohmic ITBs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, William L.; Bespamyatnov, Igor O.; Fiore, C. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.

    2007-11-01

    Internal transport barrier (ITB) plasmas can arise spontaneously in Ohmic Alcator C-Mod plasmas. The operational prescription for the ITB include formation of an EDA H-mode in a toroidal magnetic field that is ramping down and a subsequent increase in the toroidal magnetic field. Like ITBs generated with off-axis ICRF heating, these have peaked pressure profiles which can be suppressed by on-axis ICRF heating. Recent work on onset conditions for the ICRF generated ITB (K. Zhurovich, et al., To be published in Nuclear Fusion) demonstrates that the broadening of the ion temperature profile due to off-axis ICRF reduces the ion temperature gradient and suppreses the ITG instability driven particle flux as the primary mechanism for ITB formation. The object of this study is to examine the characteristics of Ohmic ITBs to find whether this model for onset is supported.

  14. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  15. Dependence of present and future European heat waves and cold spells on the location of atmospheric blocking

    NASA Astrophysics Data System (ADS)

    Brunner, L.; Schaller, N.; Sillmann, J.; Steiner, A. K.

    2017-12-01

    Atmospheric blocking describes stationary anti-cyclones, which weaken or reverse the climatological flow at mid-latitudes. In the northern hemisphere one of the main blocking regions is located over the North Atlantic and Northern Europe. The link between blocking and European temperature extremes, such as heat waves and cold spells, strongly depends on several aspects like season, longitudinal location of the block, and location of the extremes (particularly Northern Europe versus Southern Europe). We use a 50-member ensemble of the Canadian CanESM2 model to investigate historical (1981-2010) and future (2070-2099) blocking cases and their relationship with European temperature extremes. For the historical period the model results are also compared to those from the ERA-Interim reanalysis. Atmospheric blocking is detected on a daily basis in different 30° longitude windows between 60°W and 60°E, using a standard geopotential height-based detection index. Temperature extremes are defined by the daily Heat/Cold Wave Magnitude Index (HWMId/CWMId). The role of cold advection is found particularly important in winter conditions leading to a more than threefold increase in cold wave occurrence during blocking between 60°W and 0°. During blocking over Northern Europe (0° to 60°E) a split relationship is found with cold wave occurrence being strongly increased in Southern Europe, while it is decreased in Northern Europe. Direct, radiative effects dominate in summer, therefore blocking westward of Europe has a weaker effect, while blocking over Northern Europe leads to an increase of heat waves by at least a factor three at the location of the block and a decrease in cold wave occurrence in almost all of Europe. Comparing the historical and future period we find the link between blocking and temperature extremes in Europe to be robust, even though blocking frequency and temperatures are changing.

  16. Effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches in Pudong New Area, China: a time series analysis.

    PubMed

    Sun, Xiaoming; Sun, Qiao; Yang, Minjuan; Zhou, Xianfeng; Li, Xiaopan; Yu, Aiqing; Geng, Fuhai; Guo, Yuming

    2014-10-02

    In July 2013, an extended heat episode with extreme high temperature covered Pudong New Area, the largest district in Shanghai. The current study estimates the impacts of temperature and heat waves on emergency department visits (EDV) and emergency ambulance dispatches (EAD) using time-series approaches in Pudong, from 2011 to 2013. An over-dispersed Poisson generalized additive model was used to examine the association between temperature and EDV and EAD. Heat wave effects with different heat wave definitions considering both the intensity and durations were also estimated. Immediate effects of temperature on EDV and EAD were detected, after controlling for trends of time and day of week. The exposure-response relationships showed J-shaped curves with higher threshold temperature of EDV than that of EAD visually. When estimating risk changes on heat days compared with non-heat days using different percentiles of daily mean temperature in definition, EAD showed significant increases while non-significant or even negative associations were found for EDV. Heat wave with intensity above the 90th percentile had 2.62% (95% CI: 1.78%, 3.46%) and 0.95% (95% CI: 0.22%, 1.69%) increases in EDV for a duration of at least 2 days and 3 days respectively. The relative increase of EAD were 4.85% (95% CI: 1.42%, 8.39%) and 3.94% (95% CI: 0.88%, 7.10%). Varied effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches were investigated. This wider view of the health effect of temperature indicated that interventions for both public health education and health services management should be considered in the study region.

  17. Mortality related to air pollution with the moscow heat wave and wildfire of 2010.

    PubMed

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia; Pershagen, Göran

    2014-05-01

    Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006-2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change.

  18. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam and Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.

    2005-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.

  19. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less

  20. Resiliency of the Nation's Power Grid: Assessing Risks of Premature Failure of Large Power Transformers Under Climate Warming and Increased Heat Waves

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Gao, X.; Morgan, E.

    2017-12-01

    The aging pieces of our nation's power grid - the largest machine ever built - are at a critical time. Key assets in the transmission system, including large power transformers (LPTs), are approaching their originally designed lifetimes. Moreover, extreme weather and climate events upon which these design lifetimes are partially based are expected to change. In particular, more frequent and intense heat waves can accelerate the degradation of LPTs' insulation/cooling system. Thus, there are likely thousands of LPTs across the United States under increasing risk of premature failure - yet this risk has not been assessed. In this study, we investigate the impact of climate warming and corresponding shifts in heat waves for critical LPTs located in the Northeast corridor of the United States to assess: To what extent do changes in heat waves/events present a rising threat to the transformer network over the Northeast U.S. and to what extent can climate mitigation reduce this risk? This study focuses on a collection of LPTs with a high degree of "betweenness" - while recognizing other factors such as: connectivity, voltage rating, MVA rating, approximate price, weight, location/proximity to major transportation routes, and age. To assess the risk of future change in heat wave occurrence we use an analogue method, which detects the occurrence of heat waves based on associated large-scale atmospheric conditions. This method is compared to the more conventional approach that uses model-simulated daily maximum temperature. Under future climate warming scenarios, multi-model medians of both methods indicate strong increases in heat wave frequency during the latter half of this century. Under weak climate mitigation - the risks imposed from heat wave occurrence could quadruple, but a modest mitigation scenario cuts the increasing threat in half. As important, the analogue method substantially improves the model consensus through reduction of the interquartile range by a

  1. Assessing variability in the impacts of heat on health outcomes in New York City over time, season, and heat-wave duration.

    PubMed

    Sheridan, Scott C; Lin, Shao

    2014-12-01

    While the impacts of heat upon mortality and morbidity have been frequently studied, few studies have examined the relationship between heat, morbidity, and mortality across the same events. This research assesses the relationship between heat events and morbidity and mortality in New York City for the period 1991-2004. Heat events are defined based on oppressive weather types as determined by the Spatial Synoptic Classification. Morbidity data include hospitalizations for heat-related, respiratory, and cardiovascular causes; mortality data include these subsets as well as all-cause totals. Distributed-lag models assess the relationship between heat and health outcome for a cumulative 15-day period following exposure. To further refine analysis, subset analyses assess the differences between early- and late-season events, shorter and longer events, and earlier and later years. The strongest heat-health relationships occur with all-cause mortality, cardiovascular mortality, and heat-related hospital admissions. The impacts of heat are greater during longer heat events and during the middle of summer, when increased mortality is still statistically significant after accounting for mortality displacement. Early-season heat waves have increases in mortality that appear to be largely short-term displacement. The impacts of heat on mortality have decreased over time. Heat-related hospital admissions have increased during this time, especially during the earlier days of heat events. Given the trends observed, it suggests that a greater awareness of heat hazards may have led to increased short-term hospitalizations with a commensurate decrease in mortality.

  2. Changes in the Intensity and Frequency of Atmospheric Blocking and Associated Heat Waves During Northern Summer Over Eurasia in the CMIP5 Model Simulations

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, K. M.; Wu, H. T.; Kim, Maeng-Ki; Cho, Chunho

    2012-01-01

    The Russia heat wave and wild fires of the summer of 2010 was the most extreme weather event in the history of the country. Studies show that the root cause of the 2010 Russia heat wave/wild fires was an atmospheric blocking event which started to develop at the end of June and peaked around late July and early August. Atmospheric blocking in the summer of 2010 was anomalous in terms of the size, duration, and the location, which shifted to the east from the normal location. This and other similar continental scale severe summertime heat waves and blocking events in recent years have raised the question of whether such events are occurring more frequently and with higher intensity in a warmer climate induced by greenhouse gases. We studied the spatial and temporal distributions of the occurrence and intensity of atmospheric blocking and associated heat waves for northern summer over Eurasia based on CMIPS model simulations. To examine the global warming induced change of atmospheric blocking and heat waves, experiments for a high emissions scenario (RCP8.S) and a medium mitigation scenario (RCP4.S) are compared to the 20th century simulations (historical). Most models simulate the mean distributions of blockings reasonably well, including major blocking centers over Eurasia, northern Pacific, and northern Atlantic. However, the models tend to underestimate the number of blockings compared to MERRA and NCEPIDOE reanalysis, especially in western Siberia. Models also reproduced associated heat waves in terms of the shifting in the probability distribution function of near surface temperature. Seven out of eight models used in this study show that the frequency of atmospheric blocking over the Europe will likely decrease in a warmer climate, but slightly increase over the western Siberia. This spatial pattern resembles the blocking in the summer of 2010, indicating the possibility of more frequent occurrences of heat waves in western Siberia. In this talk, we will also

  3. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

  4. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  5. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  6. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    PubMed

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  7. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010

    PubMed Central

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia

    2014-01-01

    Background: Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. Methods: We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006–2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. Results: The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m3 on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Conclusions: Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change. PMID:24598414

  8. Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics.

    PubMed

    Xu, Yihan; Dadvand, Payam; Barrera-Gómez, Jose; Sartini, Claudio; Marí-Dell'Olmo, Marc; Borrell, Carme; Medina-Ramón, Mercè; Sunyer, Jordi; Basagaña, Xavier

    2013-06-01

    Mortality increases during heat waves have been reported worldwide. The magnitude of these increases can vary within regions according to sociodemographic and urban landscape characteristics. The objectives of this study were to explore this variation and its determinants, and to identify the most heat-vulnerable areas by mapping heat vulnerability. We conducted a time-stratified case-crossover analysis using daily mortality in the Barcelona metropolitan area during the warm seasons of 1999-2006. Temperature data on the date of death were assigned to each individual, which were assigned to their census tract of residence. Eight census tract-level variables on socioeconomic or built environment characteristics were obtained from the census. Residence surrounding greenness was obtained from satellite data. The relative risk (RR) of mortality after three consecutive hot days (defined as those exceeding the 95th percentile of maximum temperature) was calculated via conditional logistic regression. Effect modification was examined by including interaction terms. Analyses were based on 52 806 deaths. The effect of three consecutive hot days was a 30% increase in all-cause mortality (RR=1.30, 95% CI 1.24 to 1.38). Heterogeneity of this effect was observed across census tracts. The effect of heat on mortality was higher in the census tracts with a large percentage of old buildings (RR=1.21, 95% CI 1.00 to 1.46), manual workers (RR=1.25, 95% CI 0.96 to 1.64) and residents perceiving little surrounding greenness (RR=1.29, 95% CI 1.01 to 1.65). After three consecutive hot days, mortality doubled in the most heat-vulnerable census tracts. Sociodemographic and urban landscape characteristics are associated to mortality risk during heat waves and are useful to build heat vulnerability maps.

  9. Changes in heat wave characteristics over Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Acero, Francisco Javier; Fernández-Fernández, María Isabel; Carrasco, Víctor Manuel Sánchez; Parey, Sylvie; Hoang, Thi Thu Huong; Dacunha-Castelle, Didier; García, José Agustín

    2017-07-01

    Heat wave (HW) events are becoming more frequent, and they have important consequences because of the negative effects they can have not only on the human population in health terms but also on biodiversity and agriculture. This motivated a study of the trends in HW events over Extremadura, a region in the southwest of Spain, with much of its area in summer devoted to the production of irrigated crops such as maize and tomatoes. Heat waves were defined for the study as two consecutive days with temperatures above the 95th percentile of the summer (June-August) maximum temperature (T max) time series. Two datasets were used: One consisted of 13 daily temperature records uniformly distributed over the Region, and the other was the SPAIN02 gridded observational dataset, extracting just the points corresponding to Extremadura. The trends studied were in the duration, intensity and frequency of HW events, and in other parameters such as the mean, low (25th percentile) and high (75th percentile) values. In general terms, the results showed significant positive trends in those parameters over the east, the northwest and a small area in the south of the region. In order to study changes in HW characteristics (duration, frequency and intensity) considering different subperiods, a stochastic model was used to generate 1000 time series equivalent to the observed ones. The results showed that there were no significant changes in HW duration in the last 10-year subperiod in comparison with the first. But, the results were different for warm events (WE), defined with a lower threshold (the 75th percentile), which are also important for agriculture. For several sites, there were significant changes in WE duration, frequency and intensity.

  10. Impacts of heat waves with or without drought - immediate responses and legacy effects in temperate and alpine grassland

    NASA Astrophysics Data System (ADS)

    De Boeck, H. J.

    2017-12-01

    Climate change is rapidly increasing both the frequency and intensity of weather extremes such as drought spells and heat waves. Moreover, drought and heat are often coupled, and the compound effects can often not be readily derived from observations of the single-factor impacts. We here present results from experiments carried out in two distinct types of grassland, temperate and alpine, and look into both immediate and after-effects of droughts and heat waves as single factors or in conjunction. Perhaps surprisingly, both ecosystems responded very similarly in the short term (i.e. during the extreme): heat waves only caused significant physiological stress leading to senescence and productivity declines if soil water was in short supply. Warmer conditions led to faster and more intense drying, which in turn increased tissue temperatures as stomatal conductance and therefore heat dissipation decreased. The after-effects diverged significantly between the two grassland types though: whereas temperate grassland was characterised by rapid recovery and no major shifts in community composition and diversity, the harshest extremes had a more lasting impact in alpine grassland. There, it took two growing seasons for biomass production to recover, while vegetation cover was still reduced at that time. Furthermore, functional group composition had shifted, with a higher fraction of graminoid versus herbaceous species and lower overall species richness. This research demonstrates that impacts of extreme weather events can be very different when considering single-factor versus interacting events, and that similar initial responses in different ecosystems may not hold in the longer term.

  11. Modification of land-atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone

    2016-10-01

    Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.

  12. Definition of temperature thresholds: the example of the French heat wave warning system.

    PubMed

    Pascal, Mathilde; Wagner, Vérène; Le Tertre, Alain; Laaidi, Karine; Honoré, Cyrille; Bénichou, Françoise; Beaudeau, Pascal

    2013-01-01

    Heat-related deaths should be somewhat preventable. In France, some prevention measures are activated when minimum and maximum temperatures averaged over three days reach city-specific thresholds. The current thresholds were computed based on a descriptive analysis of past heat waves and on local expert judgement. We tested whether a different method would confirm these thresholds. The study was set in the six cities of Paris, Lyon, Marseille, Nantes, Strasbourg and Limoges between 1973 and 2003. For each city, we estimated the excess in mortality associated with different temperature thresholds, using a generalised additive model, controlling for long-time trends, seasons and days of the week. These models were used to compute the mortality predicted by different percentiles of temperatures. The thresholds were chosen as the percentiles associated with a significant excess mortality. In all cities, there was a good correlation between current thresholds and the thresholds derived from the models, with 0°C to 3°C differences for averaged maximum temperatures. Both set of thresholds were able to anticipate the main periods of excess mortality during the summers of 1973 to 2003. A simple method relying on descriptive analysis and expert judgement is sufficient to define protective temperature thresholds and to prevent heat wave mortality. As temperatures are increasing along with the climate change and adaptation is ongoing, more research is required to understand if and when thresholds should be modified.

  13. A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao

    2016-10-01

    A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  14. Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves.

    PubMed

    Lindemann, Ulrich; Stotz, Anja; Beyer, Nina; Oksa, Juha; Skelton, Dawn A; Becker, Clemens; Rapp, Kilian; Klenk, Jochen

    2017-02-14

    Indoor temperature is relevant with regard to mortality and heat-related self-perceived health problems. The aim of this study was to describe the association between indoor temperature and physical performance in older adults. Eighty-one older adults (84% women, mean age 80.9 years, standard deviation 6.53) were visited every four weeks from May to October 2015 and additionally during two heat waves in July and August 2015. Indoor temperature, habitual gait speed, chair-rise performance and balance were assessed. Baseline assessment of gait speed was used to create two subgroups (lower versus higher gait speed) based on frailty criteria. The strongest effect of increasing temperature on habitual gait speed was observed in the subgroup of adults with higher gait speed (-0.087 m/s per increase of 10 °C; 95% confidence interval (CI): -0.136; -0.038). The strongest effects on timed chair-rise and balance performance were observed in the subgroup of adults with lower gait speed (2.03 s per increase of 10 °C (95% CI: 0.79; 3.28) and -3.92 s per increase of 10 °C (95% CI: -7.31; -0.52), respectively). Comparing results of physical performance in absentia of a heat wave and during a heat wave, habitual gait speed was negatively affected by heat in the total group and subgroup of adults with higher gait speed, chair-rise performance was negatively affected in all groups and balance was not affected. The study provides arguments for exercise interventions in general for older adults, because a better physical fitness might alleviate impediments of physical capacity and might provide resources for adequate adaptation in older adults during heat stress.

  15. Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary

    2016-10-01

    We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.

  16. Influence of the two distinct boreal summer intraseasonal oscillation modes on extreme rainfall and heat wave occurrence in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Hsu, P. C.; Ha, K. J.; Tsou, C. H.

    2016-12-01

    How boreal summer intraseasonal oscillation (BSISO) modulates the probability and spatial distributions of extreme rainfall and heat wave occurrence in the Northern Hemisphere (NH) is examined by utilizing the real-time multivariate BSISO indices recently proposed. The BSISO1 represents the canonical northward propagating variability that often occurs in conjunction with the eastward propagating Madden-Julian Oscillation with quasi-oscillating periods of 30-60 days. The BSISO2 represents the northward/northwestward propagating variability with periods of 10-30 days during primarily the pre-monsoon and monsoon-onset season. The BSISO1 circulation cells are more Rossby wave like with a northwest to southeast slope, whereas the circulation associated with the BSISO2 is more elongated and front-like with a southwest to northeast slope. We show that the two distinct BSISO modes have strong impacts on extreme weather events in many parts of the NH depending on region and their phases for the last three decades. Although the BSISO-related convective signals tend to be weakened after reaching mid-latitude, the corresponding atmospheric circulation anomalies remain significant and propagate globally thus exerting global impacts. To better understand the linkage between the BSISO and extreme weather occurrence, we further investigate physical processes contributing to heat wave occurrence in association with the BSISO modes particularly over the four key regions that are central India (CI), Yangtze River valley (YR) in China, Japan, and Korean Peninsula (KP). It is found that a significant increase in heat wave occurrence over CI (YR) is observed during phases 2-3 (8-1) of BSISO2 when the 10-30-day anticyclonic and descending anomaly induces enhanced upward thermal heating and sensible heat flux (warm advection) around the areas. On the other hand, the northeastward propagating BSISO1 is closely connected to the increased heat wave probability over JP and KP. During phases 7

  17. The Association Between Heat Waves and Other Meteorological Parameters and Snakebites: Israel National Study.

    PubMed

    Shashar, Sagi; Yitshak-Sade, Maayan; Sonkin, Roman; Novack, Victor; Jaffe, Eli

    2018-06-01

    Published annual estimates report a global burden of 2.5 million snakebite cases and >100,000 deaths. In Israel, envenomations are the third most frequent cause of poisonings that are of moderate to major clinical severity. Most studies focus on the clinical descriptions of snakebites in tropical climates, and we sought to investigate the association between snakebite frequency and meteorological parameters. We sought to investigate the seasonality of snakebites and evaluate the association between increasingly common heat waves and other meteorological parameters and snakebite frequency in a semiarid nontropical climate. We obtained data for all medical evacuations (2008-2015) because of snakebites in Israel. Climate data included daily 24-hour average temperature (°C) and relative humidity (%). We used a time-stratified case crossover method, in which a conditional logistic regression was applied to estimate the association, and we also stratified our analysis by season and by region. We identified 1234 snakebite cases over 8 years, of which most (74.2%) occurred in hot seasons and between 6 pm and 9 pm. The risk of snakebite was positively associated with temperature >23°C (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.01-1.53) and inversely with humidity >40% (OR 0.74, 95% CI 0.57-0.97). We also found an association with heat waves both in cold (OR 1.62, 95% CI 1.01-2.60) and hot seasons (OR 1.50, 95% CI 1.18-1.92). In a semiarid nontropical climate, we observed an association between an increase in the number of snakebite cases and higher temperatures and lower humidity. Moreover, heat waves increased the frequency of snakebites in both cold and hot seasons. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Analysing the response of European ecosystems to droughts and heat waves within ISI-MIP2 simulations.

    NASA Astrophysics Data System (ADS)

    Dury, M.; Henrot, A. J.; Francois, L. M.; Munhoven, G.; Jacquemin, I.; Friend, A. D.; Rademacher, T. T.; Hacket Pain, A. J.; Hickler, T.

    2015-12-01

    With unprecedented speed and extent, the future climate change can be expected to severely impact terrestrial ecosystems due to more frequent extreme events, such as droughts or heat waves. What will be the impacts of these extreme events on ecosystem functioning and structure? How far will net primary production be reduced by such events? What will be the impact on plant mortality? Could such events trigger changes in the abundance of plant species, thus leading to biome shifts? In this contribution, we propose to use ISI-MIP2 model historical simulations from the biome sector to analyse the response of ecosystems to droughts or heat waves, trying to understand the differences between several vegetation models (e.g. CARAIB, HYBRID, LPJ). The analysis will focus on Europe. It will compare and assess the model responses for a series of well-marked drought or heat wave events in the simulated historical period, such as those that occurred in 1976, 2003 or 2010. This analysis will be performed in terms of several important environmental variables, like soil water and hydric stress, runoff, PFT abundance, net primary productivity and biomass, fire frequency, turnover of soil organic matter, etc. Whenever possible, the response of the model will be compared to available data for the most recent well-marked events. Examples of data to be used are eddy covariance, satellite data (including leaf area and fire occurrence) or tree rings.

  19. High Voltage Test-Stand Research Done on ICRF Antenna Elements of the High-Harmonic Fast-Wave System of NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J.; Ahn, J.W.; Bortolon, A.

    The twelve-strap high-harmonic fast-wave (HHFW) antenna on NSTX has exhibited a high-voltage standoff around 25 kV during previous experimental campaigns; this standoff needs to be improved for increased power coupling. During the recent NSTX-U upgrade period, a test-stand was set up with two antenna straps along with Faraday screens for testing purposes. Using a diagnostic suite consisting of a fast camera, a residual gas analyzer, a pressure gage, high-voltage probes, and an infrared camera, several interesting discoveries were made, leading to possible improvements of the antenna RF voltage operation level. First, arcing was observed outside the Faraday shields towards themore » low-voltage ("grounded") end of the straps (faraday shield box ends); this arcing was successfully eliminated by installing an additional grounding point between the Faraday shield box and the vessel wall. Second, considerable outgassing was observed during the RF pulse and the amount of outgassing was found to decrease with increasing RF power, possibly indicative of multipacting. Finally, infrared camera measurements of heating on the Faraday shield assembly suggest that the return currents on the Faraday shield box are highly localized at the box sides and possibly account for the pressure increase observed. Computations of these RF currents using Microwave Studio show qualitative agreement with the heated regions. New grounding points between the antenna box and the vessel have been implemented in NSTX-U, where future tests will be done to determine if the high-voltage standoff has improved. Further antenna improvements will be sought through future experiments on the test stand.« less

  20. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone

    PubMed Central

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-01-01

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03–1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07–1.16). Total mortality risk was higher among those aged 35–44 years than ≥65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10–1.27) than from internal causes (RR = 1.04, CI 1.02–1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01–2.48) and the southernmost zone of California’s Central Valley (RR = 1.43, CI 1.21–1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions. PMID:27005646

  1. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    PubMed

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  2. Prospects for Alpha Particle Heating in JET in the Hot Ion Regime

    NASA Astrophysics Data System (ADS)

    Cordey, J. G.; Keilhacker, M.; Watkins, M. L.

    1987-01-01

    The prospects for alpha particle heating in JET are discussed. A computational model is developed to represent adequately the neutron yield from JET plasmas heated by neutral beam injection. This neutral beam model, augmented by a simple plasma model, is then used to determine the neutron yields and fusion Q-values anticipated for different heating schemes in future operation of JET with tritium. The relative importance of beam-thermal and thermal-thermal reactions is pointed out and the dependence of the results on, for example, plasma density, temperature, energy confinement and purity is shown. Full 1½-D transport code calculations, based on models developed for ohmic, ICRF and NBI heated JET discharges, are used also to provide a power scan for JET operation in tritium in the low density, high ion temperature regime. The results are shown to be in good agreement with the estimates made using the simple plasma model and indicate that, based on present knowledge, a fusion Q-value in the plasma centre above unity should be achieved in JET.

  3. Near-field refrigeration and tunable heat exchange through four-wave mixing

    NASA Astrophysics Data System (ADS)

    Khandekar, Chinmay; Messina, Riccardo; Rodriguez, Alejandro W.

    2018-05-01

    We modify and extend a recently proposed four-wave mixing scheme [C. Khandekar and A. Rodriguez, Opt. Express 25(19), 23164 (2017)] for achieving near-field thermal upconversion and energy transfer, to demonstrate efficient thermal refrigeration at low intensities ˜ 109W/m2 over a wide range of gap sizes (from tens to hundreds of nanometers) and operational temperatures (from tens to hundreds of Kelvins). We further exploit the scheme to achieve magnitude and directional tunability of near-field heat exchange between bodies held at different temperatures.

  4. [Impact of daily mean temperature, cold spells, and heat waves on stroke mortality a multivariable Meta-analysis from 12 counties of Hubei province, China].

    PubMed

    Zhang, Y Q; Yu, C H; Bao, J Z

    2017-04-10

    Objective: To assess the acute effects of daily mean temperature, cold spells, and heat waves on stroke mortality in 12 counties across Hubei province, China. Methods: Data related to daily mortality from stroke and meteorology in 12 counties across Hubei province during 2009-2012, were gathered. Distributed lag nonlinear model (DLNM) was first used, to estimate the county-specific associations between daily mean temperature, cold spells, heat waves and stroke mortality. Multivariate Meta-analysis was then applied to pool the community-specific relationships between temperature and stroke mortality (exposure-response relationship) as well as both cold- and- heat-associated risks on mortality at different lag days (lag-response relationship). Results: During 2009-2012, a total population of 6.7 million was included in this study with 42 739 persons died of stroke. An average of 2.7 (from 0.5 to 6.0) stroke deaths occurred daily in each county, with annual average mean temperature as 16.6 ℃ (from 14.7 ℃ to 17.4 ℃) during the study period. An inverse J-shaped association between temperature and stroke mortality was observed at the provincial level. Pooled mortality effect of cold spells showed a 2-3-day delay and lasted about 10 days, while effect of heat waves appeared acute but attenuated within a few days. The mortality risks on cold-spell days ranged from 0.968 to 1.523 in 12 counties at lag 3-14, with pooled effect as 1.180 (95 %CI: 1.043-1.336). The pooled mortality risk (ranged from 0.675 to 2.066) on heat-wave days at lag 0-2 was 1.114 (95 %CI: 1.012-1.227). Conclusions: An inverse J-shaped association between temperature and stroke mortality was observed in Hubei province, China. Both cold spells and heat waves were associated with increased stroke mortality, while different lag patterns were observed in the mortality effects of heat waves and cold spells.

  5. Past analogs of recent climate anomalies and impacts in Portugal. Droughts, storms and heat waves

    NASA Astrophysics Data System (ADS)

    Alcoforado, M. J.; Nunes, M. F.

    2009-09-01

    An indexed reconstruction of precipitation variability, based on documentary and instrumental data, has been done for southern Portugal starting in 1675. The descriptions of the extreme events in the documentary sources have also supplied information about their impacts. We will compare past and recent extreme weather events in Portugal, their causes and their impacts on society. We have selected periods of winter droughts, of storms that triggered great floods and of heat waves. There are a number of documentary sources dating from 1693-94 indicating that that there was no rainfall from December 1693 to at least November 1694 with the exception of light showers in June. Several pro-pluvia rogations ceremonies took place all over the country, even in the Northwest that is generally rainy. There are numerous descriptions of the impact of droughts on agriculture, of shortage of cereals, of escalating prices and the subsequent generalised famine. An analogy will be made for the 20th century using the 1980-81 winter drought that lasted roughly the same time and which also had severe social and economic impacts. The decrease in production of hydroelectric energy (50% below average) between January and July 1981 is also pointed out. In both cases, the lack of rainfall was partly due to a ridge that stayed over the Eastern Atlantic and kept Iberia in aerologic shelter. Apart from urban flash floods there are two types of floods in Portugal: (i) floods from the big river basins (Tagus, Mondego and Douro) that are due to the frequent passage of westerly frontal depressions during days or weeks; and (ii) floods of the small river basins due to convective depressions that affect small areas. The December 1739 flood, caused by the overflow of the great rivers, will be compared with the ones that occurred in February 1978. Both were caused by intensive precipitation all over the country at a time when the soil was already saturated with water from previous rainfall. The damages

  6. Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.

    2017-10-01

    An experiment was designed to measure heat flux in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat flux affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat flux. Independent measurements of temperature and density obtained from Thomson scattering were used to infer the classical heat flux (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The flux measured through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te measurements. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat flux. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Universal heat conduction in Ce 1-xYb xCoIn 5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGES

    Xu, Y.; Petrovic, C.; Dong, J. K.; ...

    2016-02-01

    In the heavy-fermion superconductor Ce 1-xYb xCoIn 5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value x nom = 0.2). Here we present systematic thermal conductivity measurements on Ce 1-xYb xCoIn 5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ 0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce 1-xYb xCoIn 5. Similar universal heat conduction is also observed in the CeCo(Inmore » 1–yCd y) 5 system. Furthermore, these results reveal a robust nodal d-wave gap in CeCoIn 5 upon Yb or Cd doping.« less

  8. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  9. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulations (SOFI) and the Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2005-01-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  10. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    NASA Astrophysics Data System (ADS)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    ballistic regimes, from isotropic to anisotropic situations, are analyzed, thus providing a wide range of practical applications. Besides the steady-state effective thermal conductivity, the propagation of harmonic waves is also studied, motivated by the fact that vortex line density is experimentally detected via the attenuation of second sound and because it provides dynamical information on heat transport and thermal waves which complement the static information of the thermal conductivity.

  11. Life-threatening heat stroke presenting with ST elevations: a report of consecutive cases during the heat wave in Austria in July 2013.

    PubMed

    Lassnig, Elisabeth; Dinkhauser, Patrick; Maurer, Edwin; Eber, Bernd

    2014-08-01

    Heat stroke is a life-threatening condition due to an acute thermoregulatory failure during exposure to high environmental temperatures. We report a series of four cases (three exertional, one classic heat stroke) during the heat wave of July 2013 in Austria. All of them presented with a core temperature > 41 °C, central nervous dysfunction, acute respiratory and renal failure, disseminated intravascular coagulation, rhabdomyolysis, and severe electrocardiographic changes, two cases even mimicking ST-elevation myocardial infarction. The patients were cooled to normal temperature with the "Arctic sun" external cooling system within hours. Electrocardiographic changes resolved quickly. All patients primarily recovered from multiple organ dysfunction and could be discharged from intensive care unit. Unfortunately, the two elder patients died 1 week and 5 weeks later because of late complications.

  12. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  13. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  14. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  15. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George

    2011-08-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  16. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, whichmore » could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.« less

  17. Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.

    2011-10-01

    A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.

  18. Chromospheric heating

    NASA Technical Reports Server (NTRS)

    Kalkofen, Wolfgang

    1989-01-01

    The solar chromosphere is identified with the atmosphere inside magnetic flux tubes. Between the temperature minimum and the 7000 K level, the chromosphere in the bright points of the quiet sun is heated by large-amplitude, long-period, compressive waves with periods mainly between 2 and 4 minutes. These waves do not observe the cutoff condition according to which acoustic waves with periods longer than 3 minutes do not propagate vertically in the upper solar photosphere. It is concluded that the long-period waves probably supply all the energy required for the heating of the bright points in the quiet solar chromosphere.

  19. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  20. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less