Sample records for icrp lung model

  1. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms

    NASA Astrophysics Data System (ADS)

    Tat Nguyen, Thang; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Chung, Beom Sun

    2015-11-01

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  2. Comparisons of lung tumour mortality risk in the Japanese A-bomb survivors and in the Colorado Plateau uranium miners: support for the ICRP lung model.

    PubMed

    Little, M P

    2002-03-01

    assumptions as to the definition of lung cancer in the Colorado data, or by excluding miners for whom exposure estimates may be less reliable, are very similar. The absence of information on cigarette smoking in the Japanese A-bomb survivors, and the possibility that this may confound the time trends in radiation-induced lung cancer risk in that cohort, imply that these findings should be interpreted with caution. There are no statistically significant differences between the male A-bomb survivors data and the Colorado miner data in the pattern of variation of relative risk with time after exposure and age at exposure. The risk conversion factor is very close to the value suggested by the latest ICRP lung model, albeit with substantial uncertainties.

  3. An image-based skeletal tissue model for the ICRP reference newborn

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Lee, Choonsik; Watchman, Christopher; Bourke, Vincent; Aris, John; Shagina, Natalia; Harrison, John; Fell, Tim; Bolch, Wesley

    2009-07-01

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set—both male and female—that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These

  4. Adaptation of the ICRP publication 66 respiratory tract model to data on plutonium biokinetics for Mayak workers.

    PubMed

    Khokhryakov, V F; Suslova, K G; Vostrotin, V V; Romanov, S A; Eckerman, K F; Krahenbuhl, M P; Miller, S C

    2005-02-01

    The biokinetics of inhaled plutonium were analyzed using compartment models representing their behavior within the respiratory tract, the gastrointestinal tract, and in systemic tissues. The processes of aerosol deposition, particle transport, absorption, and formation of a fixed deposit in the respiratory tract were formulated in the framework of the Human Respiratory Tract Model described in ICRP Publication 66. The values of parameters governing absorption and formation of the fixed deposit were established by fitting the model to the observations in 530 autopsy cases. The influence of smoking on mechanical clearance of deposited plutonium activity was considered. The dependence of absorption on the aerosol transportability, as estimated by in vitro methods (dialysis), was demonstrated. The results of this study were compared to those obtained from an earlier model of plutonium behavior in the respiratory tract, which was based on the same set of autopsy data. That model did not address the early phases of respiratory clearance and hence underestimated the committed lung dose by about 25% for plutonium oxides. Little difference in lung dose was found for nitrate forms.

  5. Inclusion of thin target and source regions in alimentary and respiratory tract systems of mesh-type ICRP adult reference phantoms

    NASA Astrophysics Data System (ADS)

    Kim, Han Sung; Yeom, Yeon Soo; Tat Nguyen, Thang; Choi, Chansoo; Han, Min Cheol; Lee, Jai Ki; Kim, Chan Hyeong; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Qiu, Rui; Eckerman, Keith; Chung, Beom Sun

    2017-03-01

    It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.

  6. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.

    1995-12-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Althoughmore » this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.« less

  7. A DISCUSSION ON DIFFERENT APPROACHES FOR ASSESSING LIFETIME RISKS OF RADON-INDUCED LUNG CANCER.

    PubMed

    Chen, Jing; Murith, Christophe; Palacios, Martha; Wang, Chunhong; Liu, Senlin

    2017-11-01

    Lifetime risks of radon induced lung cancer were assessed based on epidemiological approaches for Canadian, Swiss and Chinese populations, using the most recent vital statistic data and radon distribution characteristics available for each country. In the risk calculation, the North America residential radon risk model was used for the Canadian population, the European residential radon risk model for the Swiss population, the Chinese residential radon risk model for the Chinese population, and the EPA/BEIR-VI radon risk model for all three populations. The results were compared with the risk calculated from the International Commission on Radiological Protection (ICRP)'s exposure-to-risk conversion coefficients. In view of the fact that the ICRP coefficients were recommended for radiation protection of all populations, it was concluded that, generally speaking, lifetime absolute risks calculated with ICRP-recommended coefficients agree reasonably well with the range of radon induced lung cancer risk predicted by risk models derived from epidemiological pooling analyses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Examples of Mesh and NURBS modelling for in vivo lung counting studies.

    PubMed

    Farah, Jad; Broggio, David; Franck, Didier

    2011-03-01

    Realistic calibration coefficients for in vivo counting installations are assessed using voxel phantoms and Monte Carlo calculations. However, voxel phantoms construction is time consuming and their flexibility extremely limited. This paper involves Mesh and non-uniform rational B-splines graphical formats, of greater flexibility, to optimise the calibration of in vivo counting installations. Two studies validating the use of such phantoms and involving geometry deformation and modelling were carried out to study the morphologic effect on lung counting efficiency. The created 3D models fitted with the reference ones, with volumetric differences of <5 %. Moreover, it was found that counting efficiency varies with the inverse of lungs' volume and that the latter primes when compared with chest wall thickness. Finally, a series of different thoracic female phantoms of various cup sizes, chest girths and internal organs' volumes were created starting from the International Commission on Radiological Protection (ICRP) adult female reference computational phantom to give correction factors for the lung monitoring of female workers.

  9. The work of the ICRP dose calculational task group: Issues in implementation of the ICRP dosimetric methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, K.F.

    Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less

  10. Human respiratory tract model for radiological protection: a revision of the ICRP Dosimetric Model for the Respiratory System.

    PubMed

    Bair, W J

    1989-01-01

    In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users. This should facilitate application of the revised human respiratory tract model to worldwide radiation protection needs.

  11. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  12. Development of skeletal system for mesh-type ICRP reference adult phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  13. Management of radon: a review of ICRP recommendations.

    PubMed

    Vaillant, Ludovic; Bataille, Céline

    2012-09-01

    This article proposes a review of past and current ICRP publications dealing with the management of radon exposures. Its main objective is to identify and discuss the driving factors that have been used by the Commission during the last 50 years so as to better appreciate current issues regarding radon exposure management. The analysis shows that major evolutions took place in very recent years. As far as the management of radon exposures is concerned, ICRP recommended, until ICRP Publication 103 (ICRP 2007 ICRP Publication 103; Ann. ICRP 37), to use action levels and to consider only exposures above these levels. The Commission has reviewed its approach and now proposes to manage any radon exposure through the application of the optimisation principle and associated reference levels. As far as the assessment of the radon risk is concerned, it appears that the successive changes made by ICRP did not have a strong impact on the values of radon gas concentration recommended as action levels either in dwellings or in workplaces. The major change occurred in late 2009 with the publication of the ICRP Statement on Radon, which acknowledged that the radon risk has been underestimated by a factor of 2, thus inducing a major revision of radon reference levels.

  14. Conversion of ICRP male reference phantom to polygon-surface phantom

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  15. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Basis for standards: ICRP activities.

    PubMed

    Vano, E

    2015-07-01

    The purpose of this chapter is to describe work achieved recently by the International Commission on Radiological Protection (ICRP) and especially by Committee 3 (Protection in Medicine) and its use for standards. In March 1960, the Board of Governors of the International Atomic Energy Agency approved the Agency's 'Health and Safety Measures', stating that the Agency's 'Basic Safety Standards' (BSS) would be based, to the extent possible, on the recommendations of the ICRP. In a similar way, the Council of the European Union took into account the new recommendations of the ICRP when adopting the new Directive 2013/59/EURATOM that laid down BSS for protection against the dangers arising from exposure to ionising radiation. The new limit for the lens of the eyes for occupational exposures has been incorporated into these international standards and several articles dealing with medical exposures: justification, optimisation, recording patient doses, the use of diagnostic reference levels, training, accidental and unintended exposures, etc. have also been included in agreement with the ICRP recommendations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. ICRP - What's happening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, C.B.

    1982-01-01

    This paper discusses the goals of the ICRP for the 1980 decade in optimizing radiation protection in the areas of workers, patients, and the public. Economic and operational concerns are expressed. (PSB)

  18. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3.

    PubMed

    Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Marsh, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Blanchardon, E; Gregoratto, D; Harrison, J D

    2017-12-01

    The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988) and Publication 68 (ICRP, 1994). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), this current publication and upcoming publications in the OIR series (Parts 4 and 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv Bq−1 intake) for inhalation and ingestion, tables of committed effective dose

  19. The recommendations of ICRP Publication 111 in the light of the ICRP dialogue initiative in Fukushima.

    PubMed

    Lochard, J

    2016-12-01

    Publication 111, published by the International Commission on Radiological Protection (ICRP) in 2009, provided the first recommendations for dealing with the long-term recovery phase after a nuclear accident. Its focus is on the protection of people living in long-term contaminated areas after a nuclear accident, drawing on the experience of the Belarus population, Cumbrian sheep farmers in the UK, and Sami reindeer herders in Norway affected by the fallout from Chernobyl. The ICRP dialogue initiative in Fukushima confirmed what had been identified after Chernobyl, namely the very strong concern for health, particularly that of children, loss of control over everyday life, apprehension about the future, disintegration of family life and of the social and economic fabric, and the threat to the autonomy and dignity of affected people. Through their testimonies and reflections, the participants of the 12 dialogue meetings shed light on this complex situation. The ICRP dialogue initiative also confirmed that the wellbeing of the affected people is at stake, and radiological protection must focus on rehabilitation of their living conditions. The challenge is to incorporate the important clarifications resulting from the ICRP dialogue initiative into the updated version of Publication 111 that is currently in development. This paper does not necessarily reflect the views of the International Commission on Radiological Protection.

  20. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    NASA Astrophysics Data System (ADS)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  1. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  2. Ethos in Fukushima and the ICRP dialogue seminars.

    PubMed

    Ando, R

    2016-12-01

    Ethos in Fukushima, a non-profit organisation, participated in 10 of the 12 International Commission on Radiological Protection (ICRP) dialogue seminars over the past 4 years. The slides and videos that were shown at the seminars are recorded on the Ethos in Fukushima website ( http://ethos-fukushima.blogspot.jp/p/icrp-dialogue.html ). I would like to introduce the activities of Ethos in Fukushima to date, and explain why the ICRP dialogue materials have come to be published on its website.

  3. Is ICRP guidance on the use of reference levels consistent?

    PubMed

    Hedemann-Jensen, Per; McEwan, Andrew C

    2011-12-01

    In ICRP 103, which has replaced ICRP 60, it is stated that no fundamental changes have been introduced compared with ICRP 60. This is true except that the application of reference levels in emergency and existing exposure situations seems to be applied inconsistently, and also in the related publications ICRP 109 and ICRP 111. ICRP 103 emphasises that focus should be on the residual doses after the implementation of protection strategies in emergency and existing exposure situations. If possible, the result of an optimised protection strategy should bring the residual dose below the reference level. Thus the reference level represents the maximum acceptable residual dose after an optimised protection strategy has been implemented. It is not an 'off-the-shelf item' that can be set free of the prevailing situation. It should be determined as part of the process of optimising the protection strategy. If not, protection would be sub-optimised. However, in ICRP 103 some inconsistent concepts have been introduced, e.g. in paragraph 279 which states: 'All exposures above or below the reference level should be subject to optimisation of protection, and particular attention should be given to exposures above the reference level'. If, in fact, all exposures above and below reference levels are subject to the process of optimisation, reference levels appear superfluous. It could be considered that if optimisation of protection below a fixed reference level is necessary, then the reference level has been set too high at the outset. Up until the last phase of the preparation of ICRP 103 the concept of a dose constraint was recommended to constrain the optimisation of protection in all types of exposure situations. In the final phase, the term 'dose constraint' was changed to 'reference level' for emergency and existing exposure situations. However, it seems as if in ICRP 103 it was not fully recognised that dose constraints and reference levels are conceptually different. The

  4. ICRP Publication 134: Occupational Intakes of Radionuclides: Part 2.

    PubMed

    Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Ansoborlo, E; Giussani, A; Bolch, W E; Harrison, J D

    2016-12-01

    The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. Part 1 of the OIR series has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. The following publications in the OIR series (Parts 2–5) will provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq

  5. An age dependent model for radium metabolism in man.

    PubMed

    Johnson, J R

    1983-01-01

    The model developed by a Task Group of Committee 2 of ICRP to describe Alkaline Earth Metabolism in Adult Man (ICRP Publication 20) has been modified so that recycling is handled explicitly, and retention in mineral bone is represented by second compartments rather than by the product of a power function and an exponential. This model has been extended to include all ages from birth to adult man, and has been coupled with modified "ICRP" lung and G.I. tract models so that activity in organs can be calculated as functions of time during or after exposures. These activities, and age dependent "specific effective energy" factors, are then used to calculate age dependent dose rates, and dose commitments. This presentation describes this work, with emphasis on the model parameters and results obtained for radium.

  6. Lung-clearance classification of radionuclides in calcined phosphate rock dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkwarf, D.R.; Jackson, P.O.

    1984-08-01

    Lung-clearance classifications for /sup 210/Pb and /sup 210/Po in airborne dust from elemental phosphorus plants were estimated for use with the lung clearance model proposed by the ICRP Task Group on Lung Dynamics. Estimates were based on measurements of dissolution rates for these radionuclides from sized dust samples into simulated lung fluid at 37/sup 0/C. The estimates were expressed in the classification terms of the model, i.e., D, W and Y, indicating lung clearance half-times of 0 to 10 days, 11 to 100 days and more than 100 days. Dust samples were obtained from two plants in the western Unitedmore » States, and dissolution trials were conducted on fractions containing particles with aerodynamic equivalent diameters (AED) of 0 to 3 ..mu..m and of 3 to 10 ..mu..m. The /sup 210/Pb and /sup 210/Po in each of these fractions were classified 100% Class Y. The specific activities of both radionuclides increased with decreasing AED of the particles. 11 references, 1 figure, 4 tables.« less

  7. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    NASA Astrophysics Data System (ADS)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  8. Use of the ICRP system for the protection of marine ecosystems.

    PubMed

    Telleria, D; Cabianca, T; Proehl, G; Kliaus, V; Brown, J; Bossio, C; Van der Wolf, J; Bonchuk, I; Nilsen, M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) recently reinforced the international system of radiological protection, initially focused on humans, by identifying principles of environmental protection and proposing a framework for assessing impacts of ionising radiation on non-human species, based on a reference flora and fauna approach. For this purpose, ICRP developed dosimetric models for a set of Reference Animals and Plants, which are representative of flora and fauna in different environments (terrestrial, freshwater, marine), and produced criteria based on information on radiation effects, with the aim of evaluating the level of potential or actual radiological impacts, and as an input for decision making. The approach developed by ICRP for flora and fauna is consistent with the approach used to protect humans. The International Atomic Energy Agency (IAEA) includes considerations on the protection of the environment in its safety standards, and is currently developing guidelines to assess radiological impacts based on the aforementioned ICRP approach. This paper presents the method developed by IAEA, in a series of meetings with international experts, to enable assessment of the radiological impact to the marine environment in connection with the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter 1972 (London Convention 1972). This method is based on IAEA's safety standards and ICRP's recommendations, and was presented in 2013 for consideration by representatives of the contracting parties of the London Convention 1972; it was approved for inclusion in its procedures, and is in the process of being incorporated into guidelines. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. The mandate and work of ICRP Committee 3 on radiological protection in medicine.

    PubMed

    Miller, D L; Martin, C J; Rehani, M M

    2018-01-01

    The mandate of Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with the protection of persons and unborn children when ionising radiation is used in medical diagnosis, therapy, and biomedical research. Protection in veterinary medicine has been newly added to the mandate. Committee 3 develops recommendations and guidance in these areas. The most recent documents published by ICRP that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (ICRP Publication 129) and 'Radiological protection in ion beam radiotherapy' (ICRP Publication 127). A report in cooperation with ICRP Committee 2 entitled 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (ICRP Publication 128) has also been published. 'Diagnostic reference levels in medical imaging' (ICRP Publication 135), published in 2017, provides specific advice on the setting and use of diagnostic reference levels for diagnostic and interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and multi-modality procedures. 'Occupational radiological protection in interventional procedures' was published in March 2018 as ICRP Publication 139. A document on radiological protection in therapy with radiopharmaceuticals is likely to be published in 2018. Work is in progress on several other topics, including appropriate use of effective dose in collaboration with the other ICRP committees, guidance for occupational radiological protection in brachytherapy, justification in medical imaging, and radiation doses to patients from radiopharmaceuticals (an update to ICRP Publication 128). Committee 3 is also considering the development of guidance on radiological protection in medicine related to individual radiosusceptibility, in collaboration with ICRP Committee 1.

  10. Current activities in the ICRP concerning estimation of radiation doses to patients from radiopharmaceuticals for diagnostic use

    NASA Astrophysics Data System (ADS)

    Mattsson, S.; Johansson, L.; Leide-Svegborn, S.; Liniecki, J.; Nosske, D.; Riklund, K.; Stabin, M.; Taylor, D.

    2011-09-01

    A Task Group within the ICRP Committees 2 and 3 is continuously working to improve absorbed dose estimates to patients investigated with radiopharmaceuticals. The work deals with reviews of the literature, initiation of new or complementary studies of the biokinetics of a compound and dose estimates. Absorbed dose calculations for organs and tissues have up to now been carried out using the MIRD formalism. There is still a lack of necessary biokinetic data from measurements in humans. More time series obtained by nuclear medicine imaging techniques such as whole-body planar gamma-camera imaging, SPECT or PET are highly desirable for this purpose. In 2008, a new addendum to ICRP Publication 53 was published under the name of ICRP Publication 106 containing biokinetic data and absorbed dose information to organs and tissues of patients of various ages for radiopharmaceuticals in common use. That report also covers a number of generic models and realistic maximum models covering other large groups of substances (e.g. "123I-brain receptor substances"). Together with ICRP Publication 80, most radiopharmaceuticals in clinical use at the time of publication were covered except the radioiodine labeled compounds for which the ICRP dose estimates are still found in Publication 53. There is an increasing use of new radiopharmaceuticals, especially PET-tracers and the TG has recently finished its work with biokinetic and dosimetric data for 18F-FET, 18F-FLT and 18F-choline. The work continues now with new data for 11C-raclopride, 11C-PiB and 123I-ioflupan as well as re-evaluation of published data for 82Rb-chloride, 18F-fluoride and radioiodide. This paper summarises published ICRP-information on dose to patients from radiopharmaceuticals and gives some preliminary data for substances under review.

  11. Radiological Protection in Space: Indication from the ICRP Task Group

    NASA Astrophysics Data System (ADS)

    Dietze, Günther

    In 2007 the International Commission on Radiological Protection (ICRP) has established a Task Group (Radiation Protection in Space) dealing with the problems of radiation protection of astronauts in space missions. Its first task is a report on "Assessment of Radiation Exposure of Astronauts in Space". When the ICRP published its general recommendations for radiological protection in 2007 (ICRP Publication 103 following ICRP Publication 60 (1991)) it was obvious that these recommendations do not really consider the special situation of astronauts in space. The radiation field with its high content of charged particles of very high energies strongly differs from usual radiation fields on ground. For example, this has consequences for the assessment of doses in the body of astronauts. The ICRP Task Group has discussed this situation and the presentation will deal with some consequences for the concept of radiation dosimetry and radiological protection in space. This includes e. g. the assessment of organ doses and the application of the effective dose concept with its definition of radiation weighting factors. Radiation quality of high energy heavy ions may be defined different than usually performed on ground. An approach of using the quality factor concept in the definition of an "effective dose" is favored for application in space missions similar to the method proposed in NCRP Report 142. New data calculated on the basis of the reference anthropomorphic voxel phantoms recommended by ICRP support this procedure. Individual dosimetry is a further subject of discussion in the Task Group. While the operational dose equivalent quantities generally in use in radiation protection on ground are not helpful for applications in space, different procedures of the assessment of organ and effective doses are applied. The Task Group is dealing with this situation.

  12. Comparison of observed lung retention and urinary excretion of thorium workers and members of the public in India with the values predicted by the ICRP biokinetic model.

    PubMed

    Jaiswal, D D; Singh, I S; Nair, Suma; Dang, H S; Garg, S P; Pradhan, A S

    2004-01-01

    The daily intake of natural Th and its contents in lungs, skeleton and liver of an Indian adult population group were estimated using radiochemical neutron activation analysis (RNAA) technique. These data on daily intake (through inhalation and ingestion) were used to compute Th contents in lungs and other systemic organs such as skeleton and liver using the new human respiratory tract model (HRTM) and the new biokinetic model of Th. The theoretically computed Th contents in lungs, skeleton and liver of an average Indian adult are 2.56, 4.00 and 0.17 microg, respectively which are comparable with the corresponding experimentally measured values of 4.31, 3.45 and 0.14 microg in an urban population group living in Mumbai. The measured lung contents of Th in a group of five occupational workers were used to compute their total body Th contents and the corresponding daily urinary excretions. The computed total body contents and daily urinary excretions of Th in the five subjects compared favourably with their measured values. These studies, thus, validate the new biokinetic model of Th in natural as well as in occupational exposures in Indian conditions.

  13. The role of the ICRP in radiation protection--a view from industry.

    PubMed

    Henrichs, K

    2003-01-01

    It is the objective of this paper to discuss some aspects concerning the role and importance of the ICRP. Here, this is done with a background of practical radiation protection in industry. The author organises and controls radiation protection for a worldwide operating company, for which efficiently realised radiation safety is as relevant for its workplaces as for its products and services. According to the author's subjective observation, the ICRP has a decreasing importance in operational radiation protection. However, there are growing demands on the ICRP as it is the only basis for internationally compatible regulations and standards. It is the merit of the ICRP that an international comparison of legal protection systems and concepts should give a much more homogeneous picture than that for any other safety and protection issue. The most valuable asset of the ICRP is its credibility as a scientific authority solely committed to the effective protection of people. But its success also brings with it an obligation: there is an increasing need for more effective communication to non-experts. This and other expectations for the future are briefly discussed.

  14. Lung tumor motion prediction during lung brachytherapy using finite element model

    NASA Astrophysics Data System (ADS)

    Shirzadi, Zahra; Sadeghi Naini, Ali; Samani, Abbas

    2012-02-01

    A biomechanical model is proposed to predict deflated lung tumor motion caused by diaphragm respiratory motion. This model can be very useful for targeting the tumor in tumor ablative procedures such as lung brachytherapy. To minimize motion within the target lung, these procedures are performed while the lung is deflated. However, significant amount of tissue deformation still occurs during respiration due to the diaphragm contact forces. In the absence of effective realtime image guidance, biomechanical models can be used to estimate tumor motion as a function of diaphragm's position. To develop this model, Finite Element Method (FEM) was employed. To demonstrate the concept, we conducted an animal study of an ex-vivo porcine deflated lung with a tumor phantom. The lung was deformed by compressing a diaphragm mimicking cylinder against it. Before compression, 3D-CT image of this lung was acquired, which was segmented and turned into FE mesh. The lung tissue was modeled as hyperelastic material with a contact loading to calculate the lung deformation and tumor motion during respiration. To validate the results from FE model, the motion of a small area on the surface close to the tumor was tracked while the lung was being loaded by the cylinder. Good agreement was demonstrated between the experiment results and simulation results. Furthermore, the impact of tissue hyperelastic parameters uncertainties in the FE model was investigated. For this purpose, we performed in-silico simulations with different hyperelastic parameters. This study demonstrated that the FEM was accurate and robust for tumor motion prediction.

  15. Development of a computer code to calculate the distribution of radionuclides within the human body by the biokinetic models of the ICRP.

    PubMed

    Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki

    2015-03-01

    This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Animal Models of Fibrotic Lung Disease

    PubMed Central

    Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.

    2013-01-01

    Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222

  17. Impact of the new nuclear decay data of ICRP publication 107 on inhalation dose coefficients for workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manabe, K.; Endo, Akira; Eckerman, Keith F

    2010-03-01

    The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was foundmore » that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.« less

  18. Micromechanical model of lung parenchyma hyperelasticity

    NASA Astrophysics Data System (ADS)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic

  19. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

    NASA Astrophysics Data System (ADS)

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-01

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  20. On a PCA-based lung motion model

    PubMed Central

    Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B

    2014-01-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772–81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921–9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within

  1. On a PCA-based lung motion model

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve B.

    2011-09-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  2. Annual limits on intake (ALI) values in ICRP 61 and 10 CFR Part 20 (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, M.; Kearfott, K.J.

    The newest major revision of Nuclear Regulatory Commission`s 10 CFR Part 20 (1991) incorporates the new dose methodology system, revised limits, and improved internal dose computations presented in International Commission on Radiation Protection (ICRP) Publication 30 (1979). A year before the issue of this revised 10 CFR Part 20, the ICRP dispatched Publication 61 (1990). This new ICRP report employed different dose limits, in addition to incorporating more recent biological information and variations in physiological and different tissue weighing factors for various organs. An investigation of the numerical differences in the Annual Limit on Intake (ALI) reported in this moremore » recent international regulations and those of the new regulations was thus undertaken. Overall means, medians, modes, maximum, minimum, and ranges of the percent changes are almost identical for ingestion and inhalation, although the percent difference between 10 CFR and ICRP Publication 61 showed minor differences for individual radionuclides. Approximately 334 of 1,351 radionuclides for inhalation and 173 of 771 radionuclides for ingestion have much less restrictive ALIs in the new ICRP recommendations than in the old, with some of those limits increased by at least a factor of two. Approximately 51% of the radionuclides for ingestion intake and 48% of radionuclides for inhalation intake showed changes of greater than 25%. The radionuclides observed to have much less restrictive ALIs are primarily the radionuclides of thorium, mercury, plutonium, uranium, and americium which have short effective clearance rates. While many countries have already applied the ICRP 61 recommendations to their radiation protection standards, using the ICRP 30 recommendation in the United States does not match the international standards even when the values of the ALIs are adjusted for differences in dose limits.« less

  3. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

  4. KDEP: A resource for calculating particle deposition in the respiratory tract

    DOE PAGES

    Klumpp, John A.; Bertelli, Luiz

    2017-08-01

    This study presents KDEP, an open-source implementation of the ICRP lung deposition model developed by the authors. KDEP, which is freely available to the public, can be used to calculate lung deposition values under a variety of different conditions using the ICRP methodology. The paper describes how KDEP implements this model and discusses some key points of the implementation. The published lung deposition values for intakes by workers were reproduced, and new deposition values were calculated for intakes by members of the public. KDEP can be obtained for free at github.com or by emailing the authors directly.

  5. Biomechanical interpretation of a free-breathing lung motion model

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; White, Benjamin; Moore, Kevin L.; Lamb, James; Yang, Deshan; Lu, Wei; Mutic, Sasa; Low, Daniel A.

    2011-12-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress-strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921-9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  6. Dosimetric assessment from 212Pb inhalation at a thorium purification plant.

    PubMed

    Campos, M P; Pecequilo, B R S

    2004-01-01

    At the Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, Brazil, there is a facility (thorium purification plant) where materials with high thorium concentrations are manipulated. In order to estimate afterwards the lung cancer risk for the workers, the thoron daughter (212Pb) levels were assessed and the committed effective and lung committed equivalent doses for workers in place. A total of 28 air filter samples were measured by total alpha counting through the modified Kusnetz method, to determine the 212Pb concentraion. The committed effective dose and lung committed equivalent dose due to 212Pb inhalation were derived from compartmental analysis following the ICRP 66 lung compartmental model, and ICRP 67 lead metabolic model.

  7. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons

    PubMed Central

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri

    2017-01-01

    Abstract Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. PMID:28077627

  8. Linear dimensions and volumes of human lungs

    DOE PAGES

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  9. Lung dosimetry for inhaled long-lived radionuclides and radon progeny.

    PubMed

    Hussain, M; Winkler-Heil, R; Hofmann, W

    2011-05-01

    The current version of the stochastic lung dosimetry model IDEAL-DOSE considers deposition in the whole tracheobronchial (TB) and alveolar airway system, while clearance is restricted to TB airways. For the investigation of doses produced by inhaled long-lived radionuclides (LLR) together with short-lived radon progeny, alveolar clearance has to be considered. Thus, present dose calculations are based on the average transport rates proposed for the revision of the ICRP human respiratory tract model. The results obtained indicate that LLR cleared from the alveolar region can deliver up to two to six times higher doses to the TB region when compared with the doses from directly deposited particles. Comparison of LLR doses with those of short-lived radon progeny indicates that LLR in uranium mines can deliver up to 5 % of the doses predicted for the short-lived radon daughters.

  10. ICRP draft publication on 'radiological protection against radon exposure'.

    PubMed

    Lecomte, J-F

    2014-07-01

    To control the main part of radon exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) recommends an integrated approach focused as far as possible on the management of the building or location in which radon exposure occurs whatever the purpose of the building and the types of its occupants. This approach is based on the optimisation principle and a graded approach according to the degree of responsibilities at stake, notably in workplace, as well as the level of ambition of the national authorities. The report which is being developed by the Committee 4 is considering the recently consolidated ICRP general recommendations, the new scientific knowledge about the radon risk and the experience gained by many organisations and countries in the control of radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  12. WORKER INHALATION DOSE COEFFICIENTS FOR RADIONUCLIDES NOT PREVIOUSLY IDENTIFIED IN ICRP PUBLICATION 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, David A; Schwahn, Scott O

    2011-01-01

    While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.

  13. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons.

    PubMed

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat

    2017-05-01

    Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to <1%. In addition, the results obtained indicated that the discrepancy in the lung-absorbed dose varied from 0.6% to 8% for neutron beam exposure. Consequently, the relationship between absorbed dose and organ volume was found to be significant for low-energy photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Dose conversion factors for radon: recent developments.

    PubMed

    Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot

    2010-10-01

    Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.

  15. Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study.

    PubMed

    Muller, David C; Johansson, Mattias; Brennan, Paul

    2017-03-10

    Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.

  16. ICRP Publication 132: Radiological Protection from Cosmic Radiation in Aviation.

    PubMed

    Lochard, J; Bartlett, D T; Rühm, W; Yasuda, H; Bottollier-Depois, J-F

    2016-06-01

    In this publication, the International Commission on Radiological Protection (ICRP) provides updated guidance on radiological protection from cosmic radiation in aviation, taking into account the current ICRP system of radiological protection, the latest available data on exposures in aviation, and experience gained worldwide in the management of exposures in aviation. The publication describes the origins of cosmic radiation, how it exposes passengers and aircraft crew, the basic radiological protection principles that apply to this existing exposure situation, and the available protective actions. For implementation of the optimisation principle, the Commission recommends a graded approach proportionate to the level of exposure that may be received by individuals. The objective is to keep the exposure of the most exposed individuals to a reasonable level. The Commission also recommends that information be disseminated to raise awareness about cosmic radiation, and to support informed decisions among concerned stakeholders.

  17. The computation of ICRP dose coefficients for intakes of radionuclides with PLEIADES: biokinetic aspects.

    PubMed

    Fell, T P

    2007-01-01

    The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.

  18. Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop.

    PubMed

    Lama, Vibha N; Belperio, John A; Christie, Jason D; El-Chemaly, Souheil; Fishbein, Michael C; Gelman, Andrew E; Hancock, Wayne W; Keshavjee, Shaf; Kreisel, Daniel; Laubach, Victor E; Looney, Mark R; McDyer, John F; Mohanakumar, Thalachallour; Shilling, Rebecca A; Panoskaltsis-Mortari, Angela; Wilkes, David S; Eu, Jerry P; Nicolls, Mark R

    2017-05-04

    Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models.

  19. Chapter 12: Yale lung cancer model.

    PubMed

    Holford, Theodore R; Ebisu, Keita; McKay, Lisa; Oh, Cheongeun; Zheng, Tongzhang

    2012-07-01

    The age-period-cohort model is known to provide an excellent description of the temporal trends in lung cancer incidence and mortality. This analytic approach is extended to include the contribution of carcinogenesis models for smoking. Usefulness of this strategy is that it offers a way to temporally calibrate a model that is fitted to population data and it can be readily adopted for the consideration of many different models. In addition, it provides diagnostics that can suggest temporal limitations of a particular carcinogenesis model in describing population rates. Alternative carcinogenesis models can be embedded within this framework. The two-stage clonal expansion model is implemented here. The model was used to estimate the impact of tobacco control after dissemination of knowledge of the harmful effects of cigarette smoking by comparing the observed number of lung cancer deaths to those expected if there had been no control compared to an ideal of complete control in 1965. Results indicate that 35.2% and 26.5% of lung cancer deaths that could have been avoided actually were for males and females, respectively. © 2011 Society for Risk Analysis.

  20. ICRP Publication 107. Nuclear decay data for dosimetric calculations.

    PubMed

    Eckerman, K; Endo, A

    2008-01-01

    In this report, the Commission provides an electronic database of the physical data needed in calculations of radionuclide-specific protection and operational quantities. This database supersedes the data of Publication 38 (ICRP, 1983), and will be used in future ICRP publications of dose coefficients for the intake of or exposure to radionuclides in the workplace and the environment.The database contains information on the half-lives, decay chains, and yields and energies of radiations emitted in nuclear transformations of 1252 radionuclides of 97 elements. The CD accompanying the publication provides electronic access to complete tables of the emitted radiations, as well as the beta and neutron spectra. The database has been constructed such that user-developed software can extract the data needed for further calculations of a radionuclide of interest. A Windows-based application is provided to display summary information on a user-specified radionuclide, as well as the general characterisation of the nuclides contained in the database. In addition, the application provides a means by which the user can export the emissions of a specified radionuclide for use in subsequent calculations.

  1. INDOS: conversational computer codes to implement ICRP-10-10A models for estimation of internal radiation dose to man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killough, G.G.; Rohwer, P.S.

    1974-03-01

    INDOS1, INDOS2, and INDOS3 (the INDOS codes) are conversational FORTRAN IV programs, implemented for use in time-sharing mode on the ORNL PDP-10 System. These codes use ICRP10-10A models to estimate the radiation dose to an organ of the body of Reference Man resulting from the ingestion or inhalation of any one of various radionuclides. Two patterns of intake are simulated: intakes at discrete times and continuous intake at a constant rate. The IND0S codes provide tabular output of dose rate and dose vs time, graphical output of dose vs time, and punched-card output of organ burden and dose vs time.more » The models of internal dose calculation are discussed and instructions for the use of the INDOS codes are provided. The INDOS codes are available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830. (auth)« less

  2. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  3. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, A; Bostani, M; McMillan, K

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America

  4. Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop

    PubMed Central

    Lama, Vibha N.; Belperio, John A.; Christie, Jason D.; El-Chemaly, Souheil; Fishbein, Michael C.; Gelman, Andrew E.; Hancock, Wayne W.; Keshavjee, Shaf; Kreisel, Daniel; Looney, Mark R.; McDyer, John F.; Shilling, Rebecca A.; Panoskaltsis-Mortari, Angela; Wilkes, David S.; Eu, Jerry P.; Nicolls, Mark R.

    2017-01-01

    Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models. PMID:28469087

  5. Computer modeling of lung cancer diagnosis-to-treatment process

    PubMed Central

    Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick

    2015-01-01

    We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181

  6. Multi-scale lung modeling.

    PubMed

    Tawhai, Merryn H; Bates, Jason H T

    2011-05-01

    Multi-scale modeling of biological systems has recently become fashionable due to the growing power of digital computers as well as to the growing realization that integrative systems behavior is as important to life as is the genome. While it is true that the behavior of a living organism must ultimately be traceable to all its components and their myriad interactions, attempting to codify this in its entirety in a model misses the insights gained from understanding how collections of system components at one level of scale conspire to produce qualitatively different behavior at higher levels. The essence of multi-scale modeling thus lies not in the inclusion of every conceivable biological detail, but rather in the judicious selection of emergent phenomena appropriate to the level of scale being modeled. These principles are exemplified in recent computational models of the lung. Airways responsiveness, for example, is an organ-level manifestation of events that begin at the molecular level within airway smooth muscle cells, yet it is not necessary to invoke all these molecular events to accurately describe the contraction dynamics of a cell, nor is it necessary to invoke all phenomena observable at the level of the cell to account for the changes in overall lung function that occur following methacholine challenge. Similarly, the regulation of pulmonary vascular tone has complex origins within the individual smooth muscle cells that line the blood vessels but, again, many of the fine details of cell behavior average out at the level of the organ to produce an effect on pulmonary vascular pressure that can be described in much simpler terms. The art of multi-scale lung modeling thus reduces not to being limitlessly inclusive, but rather to knowing what biological details to leave out.

  7. ICRP special radiation protection issues in interventional radiology, digital and cardiac imaging.

    PubMed

    Vano, E; Faulkner, K

    2005-01-01

    The International Commission on Radiological Protection (ICRP) has published two reports giving recommendations dealing with the avoidance of deterministic injuries in interventional radiology and the management of patient dose in digital radiology in 2001 and 2004, respectively. Another document, on radiation protection for cardiologists performing fluoroscopically guided procedures, will be produced during 2005. This paper highlights some of the topics of the published reports, their relevance to European legislation on medical exposures and the importance of radiation protection research in underpinning the ICRP task groups' work in to producing these documents. It is also anticipated that the results, obtained in the cardiology work package of the European research project, will be used in the new document on radiation protection for cardiologists.

  8. A poroelastic model coupled to a fluid network with applications in lung modelling.

    PubMed

    Berger, Lorenz; Bordas, Rafel; Burrowes, Kelly; Grau, Vicente; Tavener, Simon; Kay, David

    2016-01-01

    We develop a lung ventilation model based on a continuum poroelastic representation of lung parenchyma that is strongly coupled to a pipe network representation of the airway tree. The continuous system of equations is discretized using a low-order stabilised finite element method. The framework is applied to a realistic lung anatomical model derived from computed tomography data and an artificially generated airway tree to model the conducting airway region. Numerical simulations produce physiologically realistic solutions and demonstrate the effect of airway constriction and reduced tissue elasticity on ventilation, tissue stress and alveolar pressure distribution. The key advantage of the model is the ability to provide insight into the mutual dependence between ventilation and deformation. This is essential when studying lung diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis. Thus the model can be used to form a better understanding of integrated lung mechanics in both the healthy and diseased states. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and

  10. Integrated computational model of the bioenergetics of isolated lung mitochondria

    PubMed Central

    Zhang, Xiao; Jacobs, Elizabeth R.; Camara, Amadou K. S.; Clough, Anne V.

    2018-01-01

    Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from

  11. Integrated computational model of the bioenergetics of isolated lung mitochondria.

    PubMed

    Zhang, Xiao; Dash, Ranjan K; Jacobs, Elizabeth R; Camara, Amadou K S; Clough, Anne V; Audi, Said H

    2018-01-01

    Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from

  12. A comprehensive computational model of sound transmission through the porcine lung

    PubMed Central

    Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2014-01-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  13. A comprehensive computational model of sound transmission through the porcine lung.

    PubMed

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

  14. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    PubMed

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  15. Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation.

    PubMed

    Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves

    2015-01-01

    Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.

  16. Hypo-Elastic Model for Lung Parenchyma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freed, Alan D.; Einstein, Daniel R.

    2012-03-01

    A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less

  17. A 4DCT imaging-based breathing lung model with relative hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less

  18. Development of a Guinea Pig Lung Deposition Model

    DTIC Science & Technology

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  19. Animal model of grain worker's lung.

    PubMed Central

    Stepner, N; Broder, I; Baumal, R

    1986-01-01

    We examined the light microscopic changes in the lungs of rabbits exposed to grain dust for variable periods of time, to determine whether an animal model of grain worker's lung could be developed. Experimental animals were exposed to grain dust at a concentration of 20 mg/m3 for 7 hr/day, 5 days/week, for up to 6 months. The lungs of these rabbits demonstrated a granulomatous interstitial pneumonitis associated with exudation of mononuclear cells into the alveoli and conducting airways. These changes appeared within 5 days of the onset of exposure and reached a peak at 3 weeks but were sustained through the longest exposure interval. No abnormalities were observed in the lungs of control rabbits. These results show three points of consistency with those obtained in epidemiologic studies of grain elevator workers. First, the rapid appearance of the experimental changes suggests that the mechanism of tissue injury may not be immunologic. Second, the occurrence of the histopathologic alterations in the interstitium, alveoli, and airways corresponds with the combined restrictive and obstructive ventilatory defect described in the human epidemiologic studies. Third, the absence of lung fibrosis in rabbits exposed to dust for 6 months suggests that the pneumonitis is reversible. Thus this experimental model shows promise of helping to clarify the nature and mechanism of the adverse pulmonary effects of grain dust. Images FIGURE 1. FIGURE 2. PMID:3709485

  20. Predictive Accuracy of the Liverpool Lung Project Risk Model for Stratifying Patients for Computed Tomography Screening for Lung Cancer

    PubMed Central

    Raji, Olaide Y.; Duffy, Stephen W.; Agbaje, Olorunshola F.; Baker, Stuart G.; Christiani, David C.; Cassidy, Adrian; Field, John K.

    2013-01-01

    Background External validation of existing lung cancer risk prediction models is limited. Using such models in clinical practice to guide the referral of patients for computed tomography (CT) screening for lung cancer depends on external validation and evidence of predicted clinical benefit. Objective To evaluate the discrimination of the Liverpool Lung Project (LLP) risk model and demonstrate its predicted benefit for stratifying patients for CT screening by using data from 3 independent studies from Europe and North America. Design Case–control and prospective cohort study. Setting Europe and North America. Patients Participants in the European Early Lung Cancer (EUELC) and Harvard case–control studies and the LLP population-based prospective cohort (LLPC) study. Measurements 5-year absolute risks for lung cancer predicted by the LLP model. Results The LLP risk model had good discrimination in both the Harvard (area under the receiver-operating characteristic curve [AUC], 0.76 [95% CI, 0.75 to 0.78]) and the LLPC (AUC, 0.82 [CI, 0.80 to 0.85]) studies and modest discrimination in the EUELC (AUC, 0.67 [CI, 0.64 to 0.69]) study. The decision utility analysis, which incorporates the harms and benefit of using a risk model to make clinical decisions, indicates that the LLP risk model performed better than smoking duration or family history alone in stratifying high-risk patients for lung cancer CT screening. Limitations The model cannot assess whether including other risk factors, such as lung function or genetic markers, would improve accuracy. Lack of information on asbestos exposure in the LLPC limited the ability to validate the complete LLP risk model. Conclusion Validation of the LLP risk model in 3 independent external data sets demonstrated good discrimination and evidence of predicted benefits for stratifying patients for lung cancer CT screening. Further studies are needed to prospectively evaluate model performance and evaluate the optimal population

  1. A fully synthetic lung model for wound-ballistic experiments-First results.

    PubMed

    Bolliger, S A; Poschmann, S A; Thali, M J; Eggert, S

    2017-06-01

    Today, synthetic models have all but replaced animal and corpse models in examining damage to soft-tissues and skeletal structures by ballistic trauma. As, however, non-solid organs such as the lungs, have not been able to be replaced by a fully synthetic model we attempted to create such a model. 20% ordnance gelatine was frothed with a household mixer and cooled to stable foam. Several of these foam blocks were then stuck together with liquid gelatine and placed between 10% gelatine blocks. As controls, we embedded pig lungs in gelatine and compared the wound channels seen in computed tomography created upon shooting with 9mm Luger. The fully synthetic models displayed radiological and physical densities comparable to real lungs. The wound profile characteristics of the fully synthetic lung models were very similar to the semisynthetic swine-gelatine models regarding the permanent wound cavity. Furthermore, in both semi- and fully synthetic models we detected a ring surrounding the permanent wound channel, most likely representing the remnants of the temporary wound cavity. Our results indicate that this fully synthetic lung model is a viable substitute for ballistic experiments on lungs. We believe that further research on the temporary wound channel in lungs is possible with this model in order to provide more insight into the effect of ballistic trauma to the lungs not seen otherwise. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Models to teach lung sonopathology and ultrasound-guided thoracentesis.

    PubMed

    Wojtczak, Jacek A

    2014-12-01

    Lung sonography allows rapid diagnosis of lung emergencies such as pulmonary edema, hemothorax or pneumothorax. The ability to timely diagnose an intraoperative pneumothorax is an important skill for the anesthesiologist. However, lung ultrasound exams require an interpretation of not only real images but also complex acoustic artifacts such as A-lines and B-lines. Therefore, appropriate training to gain proficiency is important. Simulated environment using ultrasound phantom models allows controlled, supervised learning. We have developed hybrid models that combine dry or wet polyurethane foams, porcine rib cages and human hand simulating a rib cage. These models simulate fairly accurately pulmonary sonopathology and allow supervised teaching of lung sonography with the immediate feedback. In-vitro models can also facilitate learning of procedural skills, improving transducer and needle positioning and movement, rapid recognition of thoracic anatomy and hand - eye coordination skills. We described a new model to teach an ultrasound guided thoracentesis. This model consists of the experimenter's hand placed on top of the water-filled container with a wet foam. Metacarpal bones of the human hand simulate a rib cage and a wet foam simulates a diseased lung immersed in the pleural fluid. Positive fluid flow offers users feedback when a simulated pleural effusion is accurately assessed.

  3. Effects of vascular flow and PEEP in a multiple hit model of lung injury in isolated perfused rabbit lungs.

    PubMed

    Piacentini, Enrique; López-Aguilar, Josefina; García-Martín, Carolina; Villagrá, Ana; Saenz-Valiente, Alicia; Murias, Gastón; Fernández-Segoviano, Pilar; Hotchkiss, John R; Blanch, Lluis

    2008-07-01

    High vascular flow aggravates lung damage in animal models of ventilator-induced lung injury. Positive end-expiratory pressure (PEEP) can attenuate ventilator-induced lung injury, but its continued effectiveness in the setting of antecedent lung injury is unclear. The objective of the present study was to evaluate whether the application of PEEP diminishes lung injury induced by concurrent high vascular flow and high alveolar pressures in normal lungs and in a preinjury lung model. Two series of experiments were performed. Fifteen sets of isolated rabbit lungs were randomized into three groups (n = 5): low vascular flow/low PEEP; high vascular flow/low PEEP, and high vascular flow/high PEEP. Subsequently, the same protocol was applied in an additional 15 sets of isolated rabbit lungs in which oleic acid was added to the vascular perfusate to produce mild to moderate lung injury. All lungs were ventilated with peak airway pressure of 30 cm H2O for 30 minutes. Outcome measures included frequency of gross structural failure, pulmonary hemorrhage, edema formation, changes in static compliance, pulmonary vascular resistance, and pulmonary ultrafiltration coefficient. In the context of high vascular flow, application of a moderate level of PEEP reduced pulmonary rupture, edema formation, and lung hemorrhage. The protective effects of PEEP were not observed in lungs concurrently injured with oleic acid. Under these experimental conditions, PEEP attenuates lung injury in the setting of high vascular flow. The protective effect of PEEP is lost in a two-hit model of lung injury.

  4. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  5. The evolution of the international system of radiological protection: stakeholder views from the 1st and 2nd NEA/ICRP fora.

    PubMed

    Lazo, Ted

    2003-12-01

    The Nuclear Energy Agency's (NEA's) Committee on Radiological Protection and Public Health (CRPPH) has collaborated closely with the ICRP in its efforts to develop new recommendations for radiological protection at the start of the 21st century. As part of this effort, the NEA organised, in collaboration with the ICRP, two fora to discuss the radiological protection of the environment (Taormina, February 2002) and the future policy for radiological protection (Lanzarote, April 2003). Both these meetings were attended by a broad representation of stakeholders. The CRPPH and other stakeholders universally appreciated the opportunity to speak directly with the ICRP on these important subjects. This report summarises the main conclusions made during these two meetings to advance the deliberations of the ICRP to create a new set of recommendations responsive to stakeholder needs, firmly rooted in science, and that can be implemented in a timely, efficient and cost-effective manner.

  6. Modeling of the Nitric Oxide Transport in the Human Lungs.

    PubMed

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  7. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.

    PubMed

    Ehrhardt, Jan; Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz

    2011-02-01

    Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory

  8. Chapter 7: Description of MISCAN-lung, the Erasmus MC Lung Cancer microsimulation model for evaluating cancer control interventions.

    PubMed

    Schultz, F W; Boer, R; de Koning, H J

    2012-07-01

    The MISCAN-lung model was designed to simulate population trends in lung cancer (LC) for comprehensive surveillance of the disease, to relate past exposure to risk factors to (observed) LC incidence and mortality, and to estimate the impact of cancer-control interventions. MISCAN-lung employs the technique of stochastic microsimulation of life histories affected by risk factors. It includes the two-stage clonal expansion model for carcinogenesis and a detailed LC progression model; the latter is specifically intended for the evaluation of screenings. This article elucidates further the principles of MISCAN-lung and describes its application to a comparative study within the CISNET Lung Working Group on the impact of tobacco control on U.S. LC mortality. MISCAN-lung yields an estimate of the number of LC deaths avoided during 1975-2000. The potential number of avoidable LC deaths, had everybody quit smoking in 1965, is 2.2 million; 750,000 deaths (30%) were avoided in the United States due to actual tobacco control interventions. The model fits in the actual tobacco-control scenario, providing credibility to the estimates of other scenarios, although considering survey-reported smoking trends alone has limitations. © 2012 Society for Risk Analysis.

  9. Modeling of weak blast wave propagation in the lung.

    PubMed

    D'yachenko, A I; Manyuhina, O V

    2006-01-01

    Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load.

  10. THE HUMAN FETAL LUNG XENOGRAFT: VALIDATION AS MODEL OF MICROVASCULAR REMODELING IN THE POSTGLANDULAR LUNG

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu

    2012-01-01

    Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288

  11. Lung cancer in never smokers Epidemiology and risk prediction models

    PubMed Central

    McCarthy, William J.; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh

    2012-01-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/ nonsmokers and describe the never smoker lung cancer risk models used by CISNET modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model. PMID:22882894

  12. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research

    PubMed Central

    Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.

    2017-01-01

    Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262

  13. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    PubMed

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  14. Radiation safety concerns for pregnant or breast feeding patients. The positions of the NCRP and the ICRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, C.B.

    For many years, protecting the fetus has been a concern of the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). Early recommendations focused on the possibility of a wide variety of detrimental developmental effects while later recommendations focused on the potential for severe mental retardation and/or reduction in the intelligence quotient (I.Q.). The latest recommendations also note that the risk of cancer for the fetus is probably two to three times greater per Sv than in the adult. For all these reasons, the NCRP and the ICRP have provided guidance to physiciansmore » on taking all reasonable steps to ascertain whether any woman requiring a radiological or nuclear medicine procedure is pregnant or nursing a child. The NCRP and the ICRP also advise the clinician to postpone such procedures until after delivery or cessation of nursing, if possible.« less

  15. Lung lobe modeling and segmentation with individualized surface meshes

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael

    2008-03-01

    An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.

  16. A Lung Segmental Model of Chronic Pseudomonas Infection in Sheep

    PubMed Central

    Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry

    2013-01-01

    Background Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Methodology/Principal Findings Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>104 cfu/g). Conclusions/Significance The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches. PMID:23874438

  17. Lung Cancer Risk Prediction Models

    Cancer.gov

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  18. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.

    PubMed

    Judge, Eoin P; Hughes, J M Lynne; Egan, Jim J; Maguire, Michael; Molloy, Emer L; O'Dea, Shirley

    2014-09-01

    The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.

  19. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  20. Report of ICRP Task Group 80: 'radiological protection in geological disposal of long-lived solid radioactive waste'.

    PubMed

    Weiss, W

    2012-01-01

    The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.

  1. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    PubMed Central

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the Neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  2. Animal Models in Carotenoids Research and Lung Cancer Prevention1

    PubMed Central

    Kim, Jina; Kim, Yuri

    2011-01-01

    Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis. PMID:21966544

  3. Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system.

    PubMed

    Burrowes, K S; Swan, A J; Warren, N J; Tawhai, M H

    2008-09-28

    The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.

  4. Optimal flow conditions of a tracheobronchial model to reengineer lung structures

    NASA Astrophysics Data System (ADS)

    Casarin, Stefano; Aletti, Federico; Baselli, Giuseppe; Garbey, Marc

    2017-04-01

    The high demand for lung transplants cannot be matched by an adequate number of lungs from donors. Since fully ex-novo lungs are far from being feasible, tissue engineering is actively considering implantation of engineered lungs where the devitalized structure of a donor is used as scaffold to be repopulated by stem cells of the receiving patient. A decellularized donated lung is treated inside a bioreactor where transport through the tracheobronchial tree (TBT) will allow for both deposition of stem cells and nourishment for their subsequent growth, thus developing new lung tissue. The key concern is to set optimally the boundary conditions to utilize in the bioreactor. We propose a predictive model of slow liquid ventilation, which combines a one-dimensional (1-D) mathematical model of the TBT and a solute deposition model strongly dependent on fluid velocity across the tree. With it, we were able to track and drive the concentration of a generic solute across the airways, looking for its optimal distribution. This was given by properly adjusting the pumps' regime serving the bioreactor. A feedback system, created by coupling the two models, allowed us to derive the optimal pattern. The TBT model can be easily invertible, thus yielding a straightforward flow/pressure law at the inlet to optimize the efficiency of the bioreactor.

  5. A 4DCT imaging-based breathing lung model with relative hysteresis

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-12-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.

  6. A 4DCT imaging-based breathing lung model with relative hysteresis

    PubMed Central

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-01-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811

  7. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  8. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Reilly, S; Maynard, M; Marshall, E

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletalmore » regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)« less

  9. RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory

    RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...

  10. A human lung xenograft mouse model of Nipah virus infection.

    PubMed

    Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry

    2014-04-01

    Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7) TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  11. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  12. The conversion of exposures due to radon into the effective dose: the epidemiological approach.

    PubMed

    Beck, T R

    2017-11-01

    The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year -1 per 100 Bq m -3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used.

  13. A tree-parenchyma coupled model for lung ventilation simulation.

    PubMed

    Pozin, Nicolas; Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Vignon-Clementel, Irene; Grandmont, Céline

    2017-11-01

    In this article, we develop a lung ventilation model. The parenchyma is described as an elastic homogenized media. It is irrigated by a space-filling dyadic resistive pipe network, which represents the tracheobronchial tree. In this model, the tree and the parenchyma are strongly coupled. The tree induces an extra viscous term in the system constitutive relation, which leads, in the finite element framework, to a full matrix. We consider an efficient algorithm that takes advantage of the tree structure to enable a fast matrix-vector product computation. This framework can be used to model both free and mechanically induced respiration, in health and disease. Patient-specific lung geometries acquired from computed tomography scans are considered. Realistic Dirichlet boundary conditions can be deduced from surface registration on computed tomography images. The model is compared to a more classical exit compartment approach. Results illustrate the coupling between the tree and the parenchyma, at global and regional levels, and how conditions for the purely 0D model can be inferred. Different types of boundary conditions are tested, including a nonlinear Robin model of the surrounding lung structures. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models.

    PubMed

    Salgia, Ravi; Mambetsariev, Isa; Hewelt, Blake; Achuthan, Srisairam; Li, Haiqing; Poroyko, Valeriy; Wang, Yingyu; Sattler, Martin

    2018-05-25

    Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.

  15. Development and validation of risk models to select ever-smokers for CT lung-cancer screening

    PubMed Central

    Katki, Hormuzd A.; Kovalchik, Stephanie A.; Berg, Christine D.; Cheung, Li C.; Chaturvedi, Anil K.

    2016-01-01

    Importance The US Preventive Services Task Force (USPSTF) recommends computed-tomography (CT) lung-cancer screening for ever-smokers ages 55-80 years who smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung-cancer risk calculations may be more effective and efficient than current USPSTF recommendations. Objective Comparison of modeled outcomes from risk-based CT lung-screening strategies versus USPSTF recommendations. Design/Setting/Participants Empirical risk models for lung-cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age, education, sex, race, smoking intensity/duration/quit-years, Body Mass Index, family history of lung-cancer, and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the US. Models applied to US ever-smokers ages 50-80 (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung-screening, assuming screening for all ever-smokers yields the percent changes in lung-cancer detection and death observed in the NLST. Exposure Annual CT lung-screening for 3 years. Main Outcomes and Measures Model validity: calibration (number of model-predicted cases divided by number of observed cases (Estimated/Observed)) and discrimination (Area-Under-Curve (AUC)). Modeled screening outcomes: estimated number of screen-avertable lung-cancer deaths, estimated screening effectiveness (number needed to screen (NNS) to prevent 1 lung-cancer death). Results Lung-cancer incidence and death risk models were well-calibrated in PLCO and NLST. The lung-cancer death model calibrated and

  16. Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening.

    PubMed

    Katki, Hormuzd A; Kovalchik, Stephanie A; Berg, Christine D; Cheung, Li C; Chaturvedi, Anil K

    2016-06-07

    The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations. Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations. Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST. Annual CT lung screening for 3 years beginning at age 50 years. For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death). Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US

  17. Bayesian modelling of lung function data from multiple-breath washout tests.

    PubMed

    Mahar, Robert K; Carlin, John B; Ranganathan, Sarath; Ponsonby, Anne-Louise; Vuillermin, Peter; Vukcevic, Damjan

    2018-05-30

    Paediatric respiratory researchers have widely adopted the multiple-breath washout (MBW) test because it allows assessment of lung function in unsedated infants and is well suited to longitudinal studies of lung development and disease. However, a substantial proportion of MBW tests in infants fail current acceptability criteria. We hypothesised that a model-based approach to analysing the data, in place of traditional simple empirical summaries, would enable more efficient use of these tests. We therefore developed a novel statistical model for infant MBW data and applied it to 1197 tests from 432 individuals from a large birth cohort study. We focus on Bayesian estimation of the lung clearance index, the most commonly used summary of lung function from MBW tests. Our results show that the model provides an excellent fit to the data and shed further light on statistical properties of the standard empirical approach. Furthermore, the modelling approach enables the lung clearance index to be estimated by using tests with different degrees of completeness, something not possible with the standard approach. Our model therefore allows previously unused data to be used rather than discarded, as well as routine use of shorter tests without significant loss of precision. Beyond our specific application, our work illustrates a number of important aspects of Bayesian modelling in practice, such as the importance of hierarchical specifications to account for repeated measurements and the value of model checking via posterior predictive distributions. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    PubMed

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  19. Computational models for the study of heart-lung interactions in mammals.

    PubMed

    Ben-Tal, Alona

    2012-01-01

    The operation and regulation of the lungs and the heart are closely related. This is evident when examining the anatomy within the thorax cavity, in the brainstem and in the aortic and carotid arteries where chemoreceptors and baroreceptors, which provide feedback affecting the regulation of both organs, are concentrated. This is also evident in phenomena such as respiratory sinus arrhythmia where the heart rate increases during inspiration and decreases during expiration, in other types of synchronization between the heart and the lungs known as cardioventilatory coupling and in the association between heart failure and sleep apnea where breathing is interrupted periodically by periods of no-breathing. The full implication and physiological significance of the cardiorespiratory coupling under normal, pathological, or extreme physiological conditions are still unknown and are subject to ongoing investigation both experimentally and theoretically using mathematical models. This article reviews mathematical models that take heart-lung interactions into account. The main ideas behind low dimensional, phenomenological models for the study of the heart-lung synchronization and sleep apnea are described first. Higher dimensions, physiology-based models are described next. These models can vary widely in detail and scope and are characterized by the way the heart-lung interaction is taken into account: via gas exchange, via the central nervous system, via the mechanical interactions, and via time delays. The article emphasizes the need for the integration of the different sources of heart-lung coupling as well as the different mathematical approaches. Copyright © 2011 Wiley Periodicals, Inc.

  20. Computational modeling of the obstructive lung diseases asthma and COPD

    PubMed Central

    2014-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway obstruction and airflow limitation and pose a huge burden to society. These obstructive lung diseases impact the lung physiology across multiple biological scales. Environmental stimuli are introduced via inhalation at the organ scale, and consequently impact upon the tissue, cellular and sub-cellular scale by triggering signaling pathways. These changes are propagated upwards to the organ level again and vice versa. In order to understand the pathophysiology behind these diseases we need to integrate and understand changes occurring across these scales and this is the driving force for multiscale computational modeling. There is an urgent need for improved diagnosis and assessment of obstructive lung diseases. Standard clinical measures are based on global function tests which ignore the highly heterogeneous regional changes that are characteristic of obstructive lung disease pathophysiology. Advances in scanning technology such as hyperpolarized gas MRI has led to new regional measurements of ventilation, perfusion and gas diffusion in the lungs, while new image processing techniques allow these measures to be combined with information from structural imaging such as Computed Tomography (CT). However, it is not yet known how to derive clinical measures for obstructive diseases from this wealth of new data. Computational modeling offers a powerful approach for investigating this relationship between imaging measurements and disease severity, and understanding the effects of different disease subtypes, which is key to developing improved diagnostic methods. Gaining an understanding of a system as complex as the respiratory system is difficult if not impossible via experimental methods alone. Computational models offer a complementary method to unravel the structure-function relationships occurring within a multiscale, multiphysics system such as this. Here we review the current

  1. Applying Risk Prediction Models to Optimize Lung Cancer Screening: Current Knowledge, Challenges, and Future Directions.

    PubMed

    Sakoda, Lori C; Henderson, Louise M; Caverly, Tanner J; Wernli, Karen J; Katki, Hormuzd A

    2017-12-01

    Risk prediction models may be useful for facilitating effective and high-quality decision-making at critical steps in the lung cancer screening process. This review provides a current overview of published lung cancer risk prediction models and their applications to lung cancer screening and highlights both challenges and strategies for improving their predictive performance and use in clinical practice. Since the 2011 publication of the National Lung Screening Trial results, numerous prediction models have been proposed to estimate the probability of developing or dying from lung cancer or the probability that a pulmonary nodule is malignant. Respective models appear to exhibit high discriminatory accuracy in identifying individuals at highest risk of lung cancer or differentiating malignant from benign pulmonary nodules. However, validation and critical comparison of the performance of these models in independent populations are limited. Little is also known about the extent to which risk prediction models are being applied in clinical practice and influencing decision-making processes and outcomes related to lung cancer screening. Current evidence is insufficient to determine which lung cancer risk prediction models are most clinically useful and how to best implement their use to optimize screening effectiveness and quality. To address these knowledge gaps, future research should be directed toward validating and enhancing existing risk prediction models for lung cancer and evaluating the application of model-based risk calculators and its corresponding impact on screening processes and outcomes.

  2. Application of a neutral community model to assess structuring of the human lung microbiome.

    PubMed

    Venkataraman, Arvind; Bassis, Christine M; Beck, James M; Young, Vincent B; Curtis, Jeffrey L; Huffnagle, Gary B; Schmidt, Thomas M

    2015-01-20

    DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. Copyright © 2015 Venkataraman et al.

  3. Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study

    PubMed Central

    ten Haaf, Kevin; Tammemägi, Martin C.; Han, Summer S.; Kong, Chung Yin; Plevritis, Sylvia K.; de Koning, Harry J.; Steyerberg, Ewout W.

    2017-01-01

    Background Selection of candidates for lung cancer screening based on individual risk has been proposed as an alternative to criteria based on age and cumulative smoking exposure (pack-years). Nine previously established risk models were assessed for their ability to identify those most likely to develop or die from lung cancer. All models considered age and various aspects of smoking exposure (smoking status, smoking duration, cigarettes per day, pack-years smoked, time since smoking cessation) as risk predictors. In addition, some models considered factors such as gender, race, ethnicity, education, body mass index, chronic obstructive pulmonary disease, emphysema, personal history of cancer, personal history of pneumonia, and family history of lung cancer. Methods and findings Retrospective analyses were performed on 53,452 National Lung Screening Trial (NLST) participants (1,925 lung cancer cases and 884 lung cancer deaths) and 80,672 Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) ever-smoking participants (1,463 lung cancer cases and 915 lung cancer deaths). Six-year lung cancer incidence and mortality risk predictions were assessed for (1) calibration (graphically) by comparing the agreement between the predicted and the observed risks, (2) discrimination (area under the receiver operating characteristic curve [AUC]) between individuals with and without lung cancer (death), and (3) clinical usefulness (net benefit in decision curve analysis) by identifying risk thresholds at which applying risk-based eligibility would improve lung cancer screening efficacy. To further assess performance, risk model sensitivities and specificities in the PLCO were compared to those based on the NLST eligibility criteria. Calibration was satisfactory, but discrimination ranged widely (AUCs from 0.61 to 0.81). The models outperformed the NLST eligibility criteria over a substantial range of risk thresholds in decision curve analysis, with a higher

  4. A biokinetic model for systemic nickel

    DOE PAGES

    Melo, Dunstana; Leggett, Richard Wayne

    2017-01-01

    The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less

  5. A biokinetic model for systemic nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, Dunstana; Leggett, Richard Wayne

    The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less

  6. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  7. The porcine lung as a potential model for cystic fibrosis

    PubMed Central

    Rogers, Christopher S.; Abraham, William M.; Brogden, Kim A.; Engelhardt, John F.; Fisher, John T.; McCray, Paul B.; McLennan, Geoffrey; Meyerholz, David K.; Namati, Eman; Ostedgaard, Lynda S.; Prather, Randall S.; Sabater, Juan R.; Stoltz, David Anthony; Zabner, Joseph; Welsh, Michael J.

    2008-01-01

    Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF. PMID:18487356

  8. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  9. Tracking boundary movement and exterior shape modelling in lung EIT imaging.

    PubMed

    Biguri, A; Grychtol, B; Adler, A; Soleimani, M

    2015-06-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT.

  10. Turing mechanism underlying a branching model for lung morphogenesis.

    PubMed

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  11. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model.

    PubMed

    Romero, A; Moreno, A; García, J; Sánchez, C; Santos, M; García, J

    2016-01-01

    Ventilator-induced lung injury (VILI) causes a systemic inflammatory response in tissues, with an increase in IL-1, IL-6 and TNF-α in blood and tissues. Cytoprotective effects of sevoflurane in different experimental models are well known, and this protective effect can also be observed in VILI. The objective of this study was to assess the effects of sevoflurane in VILI. A prospective, randomized, controlled study was designed. Twenty female rats were studied. The animals were mechanically ventilated, without sevoflurane in the control group and sevoflurane 3% in the treated group (SEV group). VILI was induced applying a maximal inspiratory pressure of 35 cmH2O for 20 min without any positive end-expiratory pressure for 20 min (INJURY time). The animals were then ventilated 30 min with a maximal inspiratory pressure of 12 cmH2O and 3 cmH2O positive end-expiratory pressure (time 30 min POST-INJURY), at which time the animals were euthanized and pathological and biomarkers studies were performed. Heart rate, invasive blood pressure, pH, PaO2, and PaCO2 were recorded. The lung wet-to-dry weight ratio was used as an index of lung edema. No differences were found in the blood gas analysis parameters or heart rate between the 2 groups. Blood pressure was statistically higher in the control group, but still within the normal clinical range. The percentage of pulmonary edema and concentrations of TNF-α and IL-6 in lung tissue in the SEV group were lower than in the control group. Sevoflurane attenuates VILI in a previous healthy lung in an experimental subclinical model in rats. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Application of Markov chain Monte Carlo analysis to biomathematical modeling of respirable dust in US and UK coal miners

    PubMed Central

    Sweeney, Lisa M.; Parker, Ann; Haber, Lynne T.; Tran, C. Lang; Kuempel, Eileen D.

    2015-01-01

    A biomathematical model was previously developed to describe the long-term clearance and retention of particles in the lungs of coal miners. The model structure was evaluated and parameters were estimated in two data sets, one from the United States and one from the United Kingdom. The three-compartment model structure consists of deposition of inhaled particles in the alveolar region, competing processes of either clearance from the alveolar region or translocation to the lung interstitial region, and very slow, irreversible sequestration of interstitialized material in the lung-associated lymph nodes. Point estimates of model parameter values were estimated separately for the two data sets. In the current effort, Bayesian population analysis using Markov chain Monte Carlo simulation was used to recalibrate the model while improving assessments of parameter variability and uncertainty. When model parameters were calibrated simultaneously to the two data sets, agreement between the derived parameters for the two groups was very good, and the central tendency values were similar to those derived from the deterministic approach. These findings are relevant to the proposed update of the ICRP human respiratory tract model with revisions to the alveolar-interstitial region based on this long-term particle clearance and retention model. PMID:23454101

  13. Electroporation-mediated Delivery of Genes in Rodent Models of Lung Contusion

    PubMed Central

    Machado-Aranda, David; Raghavendran, Krishnan

    2015-01-01

    Several of the biological processes involved in the pathogenesis of acute lung injury and acute respiratory distress syndrome after lung contusion are regulated at a genetic and epigenetic level. Thus, strategies to manipulate gene expression in this context are highly desirable not only to elucidate the mechanisms involved but also to look for potential therapies. In the present chapter, we describe mouse and rat models of inducing blunt thoracic injury followed by electroporation-mediated gene delivery to the lung. Electroporation is a highly efficient and easily reproducible technique that allows circumvention of several of lung gene delivery challenges and safety issues present with other forms of lung gene therapy. PMID:24510825

  14. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    NASA Astrophysics Data System (ADS)

    Zhang, Juying; Hum Na, Yong; Caracappa, Peter F.; Xu, X. George

    2009-10-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  15. A fluorescence model of the murine lung for optical detection of pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Durkee, Madeleine S.; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2017-07-01

    We present a computer model of intravital excitation and external fluorescence detection in the murine lungs validated with a three-dimensional lung tissue phantom. The model is applied to optical detection of pulmonary tuberculosis infection.

  16. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  17. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    PubMed Central

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-01-01

    ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human

  18. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    PubMed

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  19. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    PubMed

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  20. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury.

    PubMed

    Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A

    2016-12-01

    improved lung functions in a lavage model of ALI. These findings suggest a potential of therapy with inhaled budesonide also for patients with ARDS.

  1. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    PubMed

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  2. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model

    PubMed Central

    Sato, Kazuhide; Nagaya, Tadanobu; Nakamura, Yuko; Harada, Toshiko; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies with the acute toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in preventing lung metastases in a mouse model. Lung is one of the most common sites for developing metastases, but it also has the deepest tissue light penetration. Thus, lung is the ideal site for treating early metastases by using a light-based strategy. In vitro NIR-PIT cytotoxicity was assessed with dead cell staining, luciferase activity, and a decrease in cytoplasmic GFP fluorescence in 3T3/HER2-luc-GFP cells incubated with an anti-HER2 antibody photosensitizer conjugate. Cell-specific killing was demonstrated in mixed 2D/3D cell cultures of 3T3/HER2-luc-GFP (target) and 3T3-RFP (non-target) cells. In vivo NIR-PIT was performed in the left lung in a mouse model of lung metastases, and the number of metastasis nodules, tumor fluorescence, and luciferase activity were all evaluated. All three evaluations demonstrated that the NIR-PIT-treated lung had significant reductions in metastatic disease (*p < 0.0001, Mann-Whitney U-test) and that NIR-PIT did not damage non-target tumors or normal lung tissue. Thus, NIR-PIT can specifically prevent early metastases and is a promising anti-metastatic therapy. PMID:25992770

  3. NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction.

    PubMed

    Wennberg, Berit M; Baumann, Pia; Gagliardi, Giovanna; Nyman, Jan; Drugge, Ninni; Hoyer, Morten; Traberg, Anders; Nilsson, Kristina; Morhed, Elisabeth; Ekberg, Lars; Wittgren, Lena; Lund, Jo-Åsmund; Levin, Nina; Sederholm, Christer; Lewensohn, Rolf; Lax, Ingmar

    2011-05-01

    In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D(0) = 1.0 Gy, [Formula: see text] = 10, α = 0.206 Gy(-1) and d(T) = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether "high doses to small volumes" or "low doses to large volumes" are most important for lung toxicity. NTCP analysis with the LKB-model using parameters m = 0.4, D(50) = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D(50) = 20 Gy n = 0.93 with LQ correction and n = 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling.

  4. Risk Estimation for Lung Cancer in Libya: Analysis Based on Standardized Morbidity Ratio, Poisson-Gamma Model, BYM Model and Mixture Model

    PubMed Central

    Alhdiri, Maryam Ahmed; Samat, Nor Azah; Mohamed, Zulkifley

    2017-01-01

    Cancer is the most rapidly spreading disease in the world, especially in developing countries, including Libya. Cancer represents a significant burden on patients, families, and their societies. This disease can be controlled if detected early. Therefore, disease mapping has recently become an important method in the fields of public health research and disease epidemiology. The correct choice of statistical model is a very important step to producing a good map of a disease. Libya was selected to perform this work and to examine its geographical variation in the incidence of lung cancer. The objective of this paper is to estimate the relative risk for lung cancer. Four statistical models to estimate the relative risk for lung cancer and population censuses of the study area for the time period 2006 to 2011 were used in this work. They are initially known as Standardized Morbidity Ratio, which is the most popular statistic, which used in the field of disease mapping, Poisson-gamma model, which is one of the earliest applications of Bayesian methodology, Besag, York and Mollie (BYM) model and Mixture model. As an initial step, this study begins by providing a review of all proposed models, which we then apply to lung cancer data in Libya. Maps, tables and graph, goodness-of-fit (GOF) were used to compare and present the preliminary results. This GOF is common in statistical modelling to compare fitted models. The main general results presented in this study show that the Poisson-gamma model, BYM model, and Mixture model can overcome the problem of the first model (SMR) when there is no observed lung cancer case in certain districts. Results show that the Mixture model is most robust and provides better relative risk estimates across a range of models. PMID:28440974

  5. Risk Estimation for Lung Cancer in Libya: Analysis Based on Standardized Morbidity Ratio, Poisson-Gamma Model, BYM Model and Mixture Model

    PubMed

    Alhdiri, Maryam Ahmed; Samat, Nor Azah; Mohamed, Zulkifley

    2017-03-01

    Cancer is the most rapidly spreading disease in the world, especially in developing countries, including Libya. Cancer represents a significant burden on patients, families, and their societies. This disease can be controlled if detected early. Therefore, disease mapping has recently become an important method in the fields of public health research and disease epidemiology. The correct choice of statistical model is a very important step to producing a good map of a disease. Libya was selected to perform this work and to examine its geographical variation in the incidence of lung cancer. The objective of this paper is to estimate the relative risk for lung cancer. Four statistical models to estimate the relative risk for lung cancer and population censuses of the study area for the time period 2006 to 2011 were used in this work. They are initially known as Standardized Morbidity Ratio, which is the most popular statistic, which used in the field of disease mapping, Poisson-gamma model, which is one of the earliest applications of Bayesian methodology, Besag, York and Mollie (BYM) model and Mixture model. As an initial step, this study begins by providing a review of all proposed models, which we then apply to lung cancer data in Libya. Maps, tables and graph, goodness-of-fit (GOF) were used to compare and present the preliminary results. This GOF is common in statistical modelling to compare fitted models. The main general results presented in this study show that the Poisson-gamma model, BYM model, and Mixture model can overcome the problem of the first model (SMR) when there is no observed lung cancer case in certain districts. Results show that the Mixture model is most robust and provides better relative risk estimates across a range of models. Creative Commons Attribution License

  6. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    EPA Science Inventory


    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  8. Intersections of lung progenitor cells, lung disease and lung cancer.

    PubMed

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  9. Lung and Intestine: A Specific Link in an Ulcerative Colitis Rat Model

    PubMed Central

    Liu, Yuan; Wang, Xin-Yue; Yang, Xue; Jing, Shan; Zhu, Li; Gao, Si-Hua

    2013-01-01

    Background. To investigate the link and mechanisms between intestine and lung in the ulcerative colitis (UC) rat model. Materials and Methods. We used the UC rat model by immunological sensitization combined with local 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) in 50% ethanol enema, observed dynamically animal general state and body weight, examined the histological and functional changes in the colon, lung, liver, and kidney tissues, and detected microvascular endothelium response towards inflammation characterized with the expression of iNOS, TXB2, P-selectin, ICAM-1, and vascular endothelial growth factor A (VEGF-A) in the colon and lung tissue. Results. Pulmonary function results suggested ventilator disorder, and pathological findings showed interstitial pneumonia. There were no significant changes in the liver and kidney function and histopathology. The colon and lung tissue iNOS, TXB2, P-selectin, ICAM-1, and VEGF-A expression of the model rats was significantly higher than the normal rats at both time points. Conclusions. Our study is the first to demonstrate the close association between the large intestine and lung in the immune-TNBS-ethanol-induced UC rat model. Different organs and tissues with the same embryonic origin may share the same pathological specificities in a disease. The present study provided a new way of thinking for pathological changes in clinical complex diseases manifested with multiorgan damage. PMID:23606829

  10. A computer simulation model of the cost-effectiveness of routine Staphylococcus aureus screening and decolonization among lung and heart-lung transplant recipients.

    PubMed

    Clancy, C J; Bartsch, S M; Nguyen, M H; Stuckey, D R; Shields, R K; Lee, B Y

    2014-06-01

    Our objective was to model the cost-effectiveness and economic value of routine peri-operative Staphylococcus aureus screening and decolonization of lung and heart-lung transplant recipients from hospital and third-party payer perspectives. We used clinical data from 596 lung and heart-lung transplant recipients to develop a model in TreeAge Pro 2009 (Williamsport, MA, USA). Sensitivity analyses varied S. aureus colonization rate (5-15 %), probability of infection if colonized (10-30 %), and decolonization efficacy (25-90 %). Data were collected from the Cardiothoracic Transplant Program at the University of Pittsburgh Medical Center. Consecutive lung and heart-lung transplant recipients from January 2006 to December 2010 were enrolled retrospectively. Baseline rates of S. aureus colonization, infection and decolonization efficacy were 9.6 %, 36.7 %, and 31.9 %, respectively. Screening and decolonization was economically dominant for all scenarios tested, providing more cost savings and health benefits than no screening. Savings per case averted (2012 $US) ranged from $73,567 to $133,157 (hospital perspective) and $10,748 to $16,723 (third party payer perspective), varying with the probability of colonization, infection, and decolonization efficacy. Using our clinical data, screening and decolonization led to cost savings per case averted of $240,602 (hospital perspective) and averted 6.7 S. aureus infections (4.3 MRSA and 2.4 MSSA); 89 patients needed to be screened to prevent one S. aureus infection. Our data support routine S. aureus screening and decolonization of lung and heart-lung transplant patients. The economic value of screening and decolonization was greater than in previous models of other surgical populations.

  11. Glycine ameliorates lung reperfusion injury after cold preservation in an ex vivo rat lung model.

    PubMed

    Omasa, Mitsugu; Fukuse, Tatsuo; Toyokuni, Shinya; Mizutani, Yoichi; Yoshida, Hiroshi; Ikeyama, Kazuyuki; Hasegawa, Seiki; Wada, Hiromi

    2003-03-15

    The role of glycine has not been investigated in lung ischemia-reperfusion injury after cold preservation. Furthermore, the role of apoptosis after reperfusion following cold preservation has not been fully understood. Lewis rats were divided into three groups (n=6 each). In the GLY(-) and GLY(+) groups, isolated lungs were preserved for 15 hr at 4 degrees C after a pulmonary artery (PA) flush using our previously developed preservation solution (ET-K; extracellular-type trehalose containing Kyoto), with or without the addition of glycine (5 mM). In the Fresh group, isolated lungs were reperfused immediately after a PA flush with ET-K. They were reperfused for 60 min with an ex vivo perfusion model. Pulmonary function, oxidative stress, apoptosis, and tumor necrosis factor (TNF)-alpha expression were assessed after reperfusion. Shunt fraction and peak inspiratory pressure after reperfusion in the GLY(-) group were significantly higher than those in the GLY(+) and Fresh groups. Oxidative damage and apoptosis in the alveolar epithelial cells of the GLY(-) group, assessed by immunohistochemical staining and quantification of 8-hydroxy-2'-deoxyguanosine and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling method, were significantly higher than those of the GLY(+) and Fresh groups. There were correlations among shunt fraction, oxidative damage, and apoptosis. There was no expression of TNF-alpha messenger RNA in all groups evaluated by the reverse transcription-polymerase chain reaction. Glycine attenuates ischemia/reperfusion injury after cold preservation by reducing oxidative damage and suppressing apoptosis independent of TNF-alpha in this model. The suppression of apoptosis might ameliorate lung function after reperfusion.

  12. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  13. Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a “Lung Physiome”

    PubMed Central

    Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.

    2011-01-01

    Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236

  14. Ferret lung transplant: an orthotopic model of obliterative bronchiolitis.

    PubMed

    Sui, H; Olivier, A K; Klesney-Tait, J A; Brooks, L; Tyler, S R; Sun, X; Skopec, A; Kline, J; Sanchez, P G; Meyerholz, D K; Zavazava, N; Iannettoni, M; Engelhardt, J F; Parekh, K R

    2013-02-01

    Obliterative bronchiolitis (OB) is the primary cause of late morbidity and mortality following lung transplantation. Current animal models do not reliably develop OB pathology. Given the similarities between ferret and human lung biology, we hypothesized an orthotopic ferret lung allograft would develop OB. Orthotopic left lower lobe transplants were successfully performed in 22 outbred domestic ferrets in the absence of immunosuppression (IS; n = 5) and presence of varying IS protocols (n = 17). CT scans were performed to evaluate the allografts. At intervals between 3-6 months the allografts were examined histologically for evidence of acute/chronic rejection. IS protects allografts from acute rejection and early graft loss. Reduction of IS dosage by 50% allowed development of controlled rejection. Allografts developed infiltrates on CT and classic histologic acute rejection and lymphocytic bronchiolitis. Cycling of IS, to induce repeated episodes of controlled rejection, promoted classic histologic hallmarks of OB including fibrosis-associated occlusion of the bronchiolar airways in all allografts of long-term survivors. In conclusion, we have developed an orthotopic lung transplant model in the ferret with documented long-term functional allograft survival. Allografts develop acute rejection and lymphocytic bronchiolitis, similar to humans. Long-term survivors develop histologic changes in the allografts that are hallmarks of OB. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. ICRP Publication 138: Ethical Foundations of the System of Radiological Protection.

    PubMed

    Cho, K-W; Cantone, M-C; Kurihara-Saio, C; Le Guen, B; Martinez, N; Oughton, D; Schneider, T; Toohey, R; ZöLzer, F

    2018-02-01

    Despite a longstanding recognition that radiological protection is not only a matter of science, but also ethics, ICRP publications have rarely addressed the ethical foundations of the system of radiological protection explicitly. The purpose of this publication is to describe how the Commission has relied on ethical values, either intentionally or indirectly, in developing the system of radiological protection with the objective of presenting a coherent view of how ethics is part of this system. In so doing, it helps to clarify the inherent value judgements made in achieving the aim of the radiological protection system as underlined by the Commission in Publication 103. Although primarily addressed to the radiological protection community, this publication is also intended to address authorities, operators, workers, medical professionals, patients, the public, and its representatives (e.g. NGOs) acting in the interest of the protection of people and the environment. This publication provides the key steps concerning the scientific, ethical, and practical evolutions of the system of radiological protection since the first ICRP publication in 1928. It then describes the four core ethical values underpinning the present system: beneficence/ non-maleficence, prudence, justice, and dignity. It also discusses how these core ethical values relate to the principles of radiological protection, namely justification, optimisation, and limitation. The publication finally addresses key procedural values that are required for the practical implementation of the system, focusing on accountability, transparency, and inclusiveness. The Commission sees this publication as a founding document to be elaborated further in different situations and circumstances.

  16. Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study.

    PubMed

    Tammemagi, Martin C; Schmidt, Heidi; Martel, Simon; McWilliams, Annette; Goffin, John R; Johnston, Michael R; Nicholas, Garth; Tremblay, Alain; Bhatia, Rick; Liu, Geoffrey; Soghrati, Kam; Yasufuku, Kazuhiro; Hwang, David M; Laberge, Francis; Gingras, Michel; Pasian, Sergio; Couture, Christian; Mayo, John R; Nasute Fauerbach, Paola V; Atkar-Khattra, Sukhinder; Peacock, Stuart J; Cressman, Sonya; Ionescu, Diana; English, John C; Finley, Richard J; Yee, John; Puksa, Serge; Stewart, Lori; Tsai, Scott; Haider, Ehsan; Boylan, Colm; Cutz, Jean-Claude; Manos, Daria; Xu, Zhaolin; Goss, Glenwood D; Seely, Jean M; Amjadi, Kayvan; Sekhon, Harmanjatinder S; Burrowes, Paul; MacEachern, Paul; Urbanski, Stefan; Sin, Don D; Tan, Wan C; Leighl, Natasha B; Shepherd, Frances A; Evans, William K; Tsao, Ming-Sound; Lam, Stephen

    2017-11-01

    Results from retrospective studies indicate that selecting individuals for low-dose CT lung cancer screening on the basis of a highly predictive risk model is superior to using criteria similar to those used in the National Lung Screening Trial (NLST; age, pack-year, and smoking quit-time). We designed the Pan-Canadian Early Detection of Lung Cancer (PanCan) study to assess the efficacy of a risk prediction model to select candidates for lung cancer screening, with the aim of determining whether this approach could better detect patients with early, potentially curable, lung cancer. We did this single-arm, prospective study in eight centres across Canada. We recruited participants aged 50-75 years, who had smoked at some point in their life (ever-smokers), and who did not have a self-reported history of lung cancer. Participants had at least a 2% 6-year risk of lung cancer as estimated by the PanCan model, a precursor to the validated PLCOm2012 model. Risk variables in the model were age, smoking duration, pack-years, family history of lung cancer, education level, body-mass index, chest x-ray in the past 3 years, and history of chronic obstructive pulmonary disease. Individuals were screened with low-dose CT at baseline (T0), and at 1 (T1) and 4 (T4) years post-baseline. The primary outcome of the study was incidence of lung cancer. This study is registered with ClinicalTrials.gov, number NCT00751660. 7059 queries came into the study coordinating centre and were screened for PanCan risk. 15 were duplicates, so 7044 participants were considered for enrolment. Between Sept 24, 2008, and Dec 17, 2010, we recruited and enrolled 2537 eligible ever-smokers. After a median follow-up of 5·5 years (IQR 3·2-6·1), 172 lung cancers were diagnosed in 164 individuals (cumulative incidence 0·065 [95% CI 0·055-0·075], incidence rate 138·1 per 10 000 person-years [117·8-160·9]). There were ten interval lung cancers (6% of lung cancers and 6% of individuals with cancer

  17. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    PubMed

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of

  18. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer.

    PubMed

    Maier, Colleen R; Hollander, M Christine; Hobbs, Evthokia A; Dogan, Irem; Linnoila, R Ilona; Dennis, Phillip A

    2011-11-01

    Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiologic levels of nicotine on lung tumor formation, tumor growth, or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Tumors that develop in this model have mutations in K-ras, which is commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size and did not affect overall survival. Likewise, in a syngeneic model using lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable with those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiologic data showing that NRT does not enhance lung cancer risk in former smokers.

  19. [Economic impact of lung cancer screening in France: A modeling study].

    PubMed

    Gendarme, S; Perrot, É; Reskot, F; Bhoowabul, V; Fourre, G; Souquet, P-J; Milleron, B; Couraud, S

    2017-09-01

    The National Lung Screening Trial found that, in a selected population with a high risk of lung cancer, an annual low-dose CT-scan decreased lung cancer mortality by 20% and overall mortality by 7% compared to annual chest X-Ray. In France, a work group stated that individual screening should be considered in this setting. However, the economic impact of an organized and generalized (to all eligible individuals) screening in France was never reported. This is a modeling study using French population demographic data and published data from randomized screening trials. We used the same selection criteria as NLST: 55-74-year-old smokers for at least 30 pack-years, current smoker or quit less than 15 years. We computed a second model including also 50-54-year-old individuals. Then, we used different participation rates: 65%, 45%, and 32%. According to the considered model, there would be 1,650,588 to 2,283,993 subjects eligible to screening in France. According to the model and participation rate, lung cancer screening would diagnose 3600 to 10,118 stages 1/2 lung cancer each year. There would be 5991 to 16,839 false-positives, of whom 1416 to 3981 would undergo unnecessary surgery. Screening policy would cost 105 to 215 € million per year. However, increasing the price of a cigarette pack by 0.05 to 0.10 € would fully cover the screening costs. Participation rate is a key point for screening impact. Screening could be easily funded by a small increase in cigarette prices. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  20. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-04-23

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.

  1. Which risk models perform best in selecting ever-smokers for lung cancer screening?

    Cancer.gov

    A new analysis by scientists at NCI evaluates nine different individualized lung cancer risk prediction models based on their selections of ever-smokers for computed tomography (CT) lung cancer screening.

  2. Role of inflammatory cells and adenosine in lung ischemia reoxygenation injury using a model of lung donation after cardiac death.

    PubMed

    Smail, Hassiba; Baste, Jean-Marc; Gay, Arnaud; Begueret, Hugues; Noël, Romain; Morin, Jean-Paul; Litzler, Pierre-Yves

    2016-04-01

    The objective of this study is to analyze the role of inflammation in the lung ischemia reperfusion (IR) injury and determine the protective role of adenosine in an in vitro lung transplantation model. We used a hybrid model of lung donor after cardiac death, with warm ischemia in corpo of varying duration (2 h, 4 h) followed by in vitro lung slices culture for reoxygenation (1 h, 4 h and 24 h), in the presence or not of lymphocytes and of adenosine. To quantify the inflammatory lesions, we performed TNFα, IL2 assays, and histological analysis. In this model of a nonblood perfused system, the addition of lymphocytes during reoxygenation lead to higher rates of TNFα and IL2 after 4 h than after 2 h of warm ischemia (P < .05). These levels increased with the duration of reoxygenation and were maximum at 24 h (P < .05). In the presence of adenosine TNFα and IL2 decreased. After 2 h of warm ischemia, we observed a significant inflammatory infiltration, alveolar thickening and a necrosis of the bronchiolar cells. After 4 h of warm ischemia, alveolar cells necrosis was associated. This model showed that lymphocytes increased the inflammatory response and the histological lesions after 4 h of warm ischemia and that adenosine could have an anti-inflammatory role with potential reconditioning action when used in the pneumoplegia solution.

  3. Simvastatin attenuates neutrophil recruitment in one-lung ventilation model in rats.

    PubMed

    Leite, Camila Ferreira; Marangoni, Fábio André; Camargo, Enilton Aparecido; Braga, Angélica de Fátima de Assunção; Toro, Ivan Felizardo Contrera; Antunes, Edson; Landucci, Elen Cristina Tiezem; Mussi, Ricardo Kalaf

    2013-04-01

    To investigate the anti-inflammatory effects of simvastatin in rats undergoing one-lung ventilation (OLV) followed by lung re-expansion. Male Wistar rats (n=30) were submitted to 1-h OLV followed by 1-h lung re-expansion. Treated group received simvastatin (40 mg/kg for 21 days) previous to OLV protocol. Control group received no treatment or surgical/ventilation interventions. Measurements of pulmonary myeloperoxidase (MPO) activity, pulmonary protein extravasation, and serum levels of cytokines and C-reactive protein (CRP) were performed. OLV significantly increased the MPO activity in the collapsed and continuously ventilated lungs (31% and 52% increase, respectively) compared with control (p<0.05). Treatment with simvastatin significantly reduced the MPO activity in the continuously ventilated lung but had no effect on lung edema after OLV. The serum IL-6 and CRP levels were markedly higher in OLV group, but simvastatin treatment failed to affect the production of these inflammatory markers. Serum levels of IL-1β, TNF-α and IL-10 remained below the detection limit in all groups. In an experimental one-lung ventilation model pre-operative treatment with simvastatin reduces remote neutrophil infiltration in the continuously ventilated lung. Our findings suggest that simvastatin may be of therapeutic value in OLV-induced pulmonary inflammation deserving clinical investigations.

  4. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  5. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  6. A three-dimensional model of human lung development and disease from pluripotent stem cells.

    PubMed

    Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem

    2017-05-01

    Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.

  7. A three-dimensional model of human lung development and disease from pluripotent stem cells

    PubMed Central

    Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F.; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem

    2017-01-01

    Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modeling, drug discovery and regenerative medicine1. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants2, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs3. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis4,5, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease. PMID:28436965

  8. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  9. COMPUTER SIMULATIONS OF LUNG AIRWAY STRUCTURES USING DATA-DRIVEN SURFACE MODELING TECHNIQUES

    EPA Science Inventory

    ABSTRACT

    Knowledge of human lung morphology is a subject critical to many areas of medicine. The visualization of lung structures naturally lends itself to computer graphics modeling due to the large number of airways involved and the complexities of the branching systems...

  10. Three-dimensional pulmonary model using rapid-prototyping in patient with lung cancer requiring segmentectomy.

    PubMed

    Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya

    2014-01-01

    Thoracoscopic pulmonary segmentectomy of the lung is sometime adopted for the lung cancer, but a problem with segmentectomy is variable anatomy. Recently, we are exploring the impact of three-dimensional models using rapid-prototyping technique. It is useful for decision making, surgical planning, and intraoperative orientation for surgical treatment in patient with lung cancer who underwent pulmonary segmentectomy. These newly created models allow us to clearly identify the surgical margin and the intersegmental plane, vessels, and bronchi related to the cancer in the posterior segment. To the best of our knowledge, there are few reports describing a pulmonary model so far.

  11. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  12. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle; Summer, Ross

    2014-01-01

    Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5'-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI.

  13. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle

    2013-01-01

    Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5′-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI. PMID:24285266

  14. Radiation-induced cataracts: the Health Protection Agency's response to the ICRP statement on tissue reactions and recommendation on the dose limit for the eye lens.

    PubMed

    Bouffler, Simon; Ainsbury, Elizabeth; Gilvin, Phil; Harrison, John

    2012-12-01

    This paper presents the response of the Health Protection Agency (HPA) to the 2011 statement from the International Commission on Radiological Protection (ICRP) on tissue reactions and recommendation of a reduced dose limit for the lens of the eye. The response takes the form of a brief review of the most recent epidemiological and mechanistic evidence. This is presented together with a discussion of dose limits in the context of the related risk and the current status of eye dosimetry, which is relevant for implementation of the limits. It is concluded that although further work is desirable to quantify better the risk at low doses and following protracted exposures, along with research into the mechanistic basis for radiation cataractogenesis to inform selection of risk projection models, the HPA endorses the conclusion reached by the ICRP in their 2011 statement that the equivalent dose limit for the lens of the eye should be reduced from 150 to 20 mSv per year, averaged over a five year period, with no year's dose exceeding 50 mSv.

  15. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    PubMed

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  16. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  17. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM.

  18. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to generate an animal model of lung SCC, which is critical for understanding the biology of the disease and for identifying novel therapeutic targets.

  19. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs

    PubMed Central

    Tawhai, Merryn H; Hoffman, Eric A

    2013-01-01

    Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation

  20. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    PubMed

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  1. The protective effect of dexmedetomidine in a rat ex vivo lung model of ischemia-reperfusion injury.

    PubMed

    Zhou, Yan; Zhou, Xinqiao; Zhou, Wenjuan; Pang, Qingfeng; Wang, Zhiping

    2018-01-01

    To investigate the effect of dexmedetomidine (Dex) in a rat ex vivo lung model of ischemia-reperfusion injury. An IL-2 ex vivo lung perfusion system was used to establish a rat ex vivo lung model of ischemia-reperfusion injury. Drugs were added to the perfusion solution for reperfusion. Lung injury was assessed by histopathological changes, airway pressure (Res), lung compliance (Compl), perfusion flow (Flow), pulmonary venous oxygen partial pressure (PaO2), and lung wet/dry (W/D) weight ratio. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), 78 kDa glucose-regulated protein (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured, respectively. The introduction of Dex attenuated the post-ischemia-reperfusion lung damage and MDA level, improved lung histology, W/D ratio, lung injury scores and SOD activity. Decreased mRNA and protein levels of GRP78 and CHOP compared with the IR group were observed after Dex treatment. The effect of Dex was dosage-dependence and a high dose of Dex (10 nM) was shown to confer the strongest protective effect against lung damage (P<0.05). Yohimbine, an α2 receptor antagonist, significantly reversed the protective effect of Dex in lung tissues (P<0.05). Dex reduced ischemia-reperfusion injury in rat ex vivo lungs.

  2. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease

    PubMed Central

    Jobe, Alan H.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD. PMID:26301222

  3. Ex vivo administration of trimetazidine improves post-transplant lung function in pig model.

    PubMed

    Cosgun, Tugba; Iskender, Ilker; Yamada, Yoshito; Arni, Stephan; Lipiski, Miriam; van Tilburg, Koen; Weder, Walter; Inci, Ilhan

    2017-07-01

    Ex vivo lung perfusion (EVLP) is not only used to assess marginal donor lungs but is also used as a platform to deliver therapeutic agents outside the body. We previously showed the beneficial effects of trimetazidine (TMZ) on ischaemia reperfusion (IR) injury in a rat model. This study evaluated the effects of TMZ in a pig EVLP transplant model. Pig lungs were retrieved and stored for 24 h at 4°C, followed by 4 h of EVLP. Allografts were randomly allocated to 2 groups ( n  = 5 each). TMZ (5 mg/kg) was added to the prime solution prior to EVLP. After EVLP, left lungs were transplanted and recipients were observed for 4 h. Allograft gas exchange function and lung mechanics were recorded hourly throughout reperfusion. Microscopic lung injury and inflammatory and biochemical parameters were assessed. There was a trend towards better oxygenation during EVLP in the TMZ group ( P  = 0.06). After transplantation, pulmonary gas exchange was significantly better during the 4-h reperfusion period and after isolation of the allografts for 10 min ( P  < 0.05). Tissue thiobarbituric acid levels, myeloperoxidase activity and protein concentrations in bronchoalveolar lavage samples were significantly lower in the TMZ group at the end of EVLP ( P  < 0.05). Ex vivo treatment of donor lungs with TMZ significantly improved immediate post-transplant lung function. Further studies are warranted to understand the effect of this strategy on long-term lung function. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. Copyright © 2015 the American Physiological Society.

  5. Decreased lung compliance increases preload dynamic tests in a pediatric acute lung injury model.

    PubMed

    Erranz, Benjamín; Díaz, Franco; Donoso, Alejandro; Salomón, Tatiana; Carvajal, Cristóbal; Torres, María Fernanda; Cruces, Pablo

    2015-01-01

    Preload dynamic tests, pulse pressure variation (PPV) and stroke volume variation (SVV) have emerged as powerful tools to predict response to fluid administration. The influence of factors other than preload in dynamic preload test is currently poorly understood in pediatrics. The aim of our study was to assess the effect of tidal volume (VT) on PPV and SVV in the context of normal and reduced lung compliance in a piglet model. Twenty large-white piglets (5.2±0.4kg) were anesthetized, paralyzed and monitored with pulse contour analysis. PPV and SVV were recorded during mechanical ventilation with a VT of 6 and 12mL/kg (low and high VT, respectively), both before and after tracheal instillation of polysorbate 20. Before acute lung injury (ALI) induction, modifications of VT did not significantly change PPV and SVV readings. After ALI, PPV and SVV were significantly greater during ventilation with a high VT compared to a low VT (PPV increased from 8.9±1.2 to 12.4±1.1%, and SVV from 8.5±1.0 to 12.7±1.2%, both P<0.01). This study found that a high VT and reduced lung compliance due to ALI increase preload dynamic tests, with a greater influence of the latter. In subjects with ALI, lung compliance should be considered when interpreting the preload dynamic tests. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    PubMed Central

    Lai, Tian-Shun; Wang, Zhi-Hong; Cai, Shao-Xi

    2015-01-01

    Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg). MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation. PMID:25635432

  7. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    PubMed Central

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  8. Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification

    NASA Astrophysics Data System (ADS)

    Vo, Kiet T.; Sowmya, Arcot

    A directional multi-scale modeling scheme based on wavelet and contourlet transforms is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. Generalized Gaussian density parameters are used to represent the detail sub-band features obtained by wavelet and contourlet transforms. In addition, support vector machines (SVMs) with excellent performance in a variety of pattern classification problems are used as classifier. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs of those slices marked by experienced radiologists. We employ this technique at different wavelet and contourlet transform scales for diffuse lung disease classification. The technique presented here has best overall sensitivity 93.40% and specificity 98.40%.

  9. Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial.

    PubMed

    Maisonneuve, Patrick; Bagnardi, Vincenzo; Bellomi, Massimo; Spaggiari, Lorenzo; Pelosi, Giuseppe; Rampinelli, Cristiano; Bertolotti, Raffaella; Rotmensz, Nicole; Field, John K; Decensi, Andrea; Veronesi, Giulia

    2011-11-01

    Screening with low-dose helical computed tomography (CT) has been shown to significantly reduce lung cancer mortality but the optimal target population and time interval to subsequent screening are yet to be defined. We developed two models to stratify individual smokers according to risk of developing lung cancer. We first used the number of lung cancers detected at baseline screening CT in the 5,203 asymptomatic participants of the COSMOS trial to recalibrate the Bach model, which we propose using to select smokers for screening. Next, we incorporated lung nodule characteristics and presence of emphysema identified at baseline CT into the Bach model and proposed the resulting multivariable model to predict lung cancer risk in screened smokers after baseline CT. Age and smoking exposure were the main determinants of lung cancer risk. The recalibrated Bach model accurately predicted lung cancers detected during the first year of screening. Presence of nonsolid nodules (RR = 10.1, 95% CI = 5.57-18.5), nodule size more than 8 mm (RR = 9.89, 95% CI = 5.84-16.8), and emphysema (RR = 2.36, 95% CI = 1.59-3.49) at baseline CT were all significant predictors of subsequent lung cancers. Incorporation of these variables into the Bach model increased the predictive value of the multivariable model (c-index = 0.759, internal validation). The recalibrated Bach model seems suitable for selecting the higher risk population for recruitment for large-scale CT screening. The Bach model incorporating CT findings at baseline screening could help defining the time interval to subsequent screening in individual participants. Further studies are necessary to validate these models.

  10. Meta-markers for the differential diagnosis of lung cancer and lung disease.

    PubMed

    Kim, Yong-In; Ahn, Jung-Mo; Sung, Hye-Jin; Na, Sang-Su; Hwang, Jaesung; Kim, Yongdai; Cho, Je-Yoel

    2016-10-04

    Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients. Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Neonatal lungs--can absolute lung resistivity be determined non-invasively?

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-07-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Conditions such as pulmonary oedema and emphysema have been shown to change lung resistivity. However, direct access to the lungs to enable resistivity to be measured is very difficult. We have developed a new method of using electrical impedance tomographic (EIT) measurements on a group of 142 normal neonates to determine the absolute resistivity of lung tissue. The methodology involves comparing the measured EIT data with that from a finite difference model of the thorax in which lung tissue resistivity can be changed. A mean value of 5.7 +/- 1.7 omega(m) was found over the frequency range 4 kHz to 813 kHz. This value is lower than that usually given for adult lung tissue but consistent with the literature on the composition of the neonatal lung and with structural modelling.

  12. Current risk estimates based on the A-bomb survivors data - a discussion in terms of the ICRP recommendations on the neutron weighting factor.

    PubMed

    Rühm, W; Walsh, L

    2007-01-01

    Currently, most analyses of the A-bomb survivors' solid tumour and leukaemia data are based on a constant neutron relative biological effectiveness (RBE) value of 10 that is applied to all survivors, independent of their distance to the hypocentre at the time of bombing. The results of these analyses are then used as a major basis for current risk estimates suggested by the International Commission on Radiological Protection (ICRP) for use in international safety guidelines. It is shown here that (i) a constant value of 10 is not consistent with weighting factors recommended by the ICRP for neutrons and (ii) it does not account for the hardening of the neutron spectra in Hiroshima and Nagasaki, which takes place with increasing distance from the hypocentres. The purpose of this paper is to present new RBE values for the neutrons, calculated as a function of distance from the hypocentres for both cities that are consistent with the ICRP60 neutron weighting factor. If based on neutron spectra from the DS86 dosimetry system, these calculations suggest values of about 31 at 1000 m and 23 at 2000 m ground range in Hiroshima, while the corresponding values for Nagasaki are 24 and 22. If the neutron weighting factor that is consistent with ICRP92 is used, the corresponding values are about 23 and 21 for Hiroshima and 21 and 20 for Nagasaki, respectively. It is concluded that the current risk estimates will be subject to some changes in view of the changed RBE values. This conclusion does not change significantly if the new doses from the Dosimetry System DS02 are used.

  13. Predicting Survival within the Lung Cancer Histopathological Hierarchy Using a Multi-Scale Genomic Model of Development

    PubMed Central

    Liu, Hongye; Kho, Alvin T; Kohane, Isaac S; Sun, Yao

    2006-01-01

    Background The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. Methods and Findings Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. Conclusions From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome. PMID:16800721

  14. Lung ultrasound accurately detects pneumothorax in a preterm newborn lamb model.

    PubMed

    Blank, Douglas A; Hooper, Stuart B; Binder-Heschl, Corinna; Kluckow, Martin; Gill, Andrew W; LaRosa, Domenic A; Inocencio, Ishmael M; Moxham, Alison; Rodgers, Karyn; Zahra, Valerie A; Davis, Peter G; Polglase, Graeme R

    2016-06-01

    Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x-ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model. This was a prospective, observational study using newborn Border-Leicester lambs at gestational age = 126 days (equivalent to gestational age = 26 weeks in humans) receiving mechanical ventilation from birth to 2 h of life. At the conclusion of the experiment, LUS was performed, the lambs were then euthanised and a post-mortem exam was immediately performed. We used previously published ultrasound techniques to identify pneumothorax. Test characteristics of LUS to detect pneumothorax were calculated, using the post-mortem exam as the 'gold standard' test. Nine lambs (18 lungs) were examined. Four lambs had a unilateral pneumothorax, all of which were identified by LUS with no false positives. This was the first study to use post-mortem findings to test the efficacy of LUS to detect pneumothorax in a newborn animal model. Lung ultrasound accurately detected pneumothorax, verified by post-mortem exam, in premature, newborn lambs. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  15. A model for morbidity after lung resection in octogenarians.

    PubMed

    Berry, Mark F; Onaitis, Mark W; Tong, Betty C; Harpole, David H; D'Amico, Thomas A

    2011-06-01

    Age is an important risk factor for morbidity after lung resection. This study was performed to identify specific risk factors for complications after lung resection in octogenarians. A prospective database containing patients aged 80 years or older, who underwent lung resection at a single institution between January 2000 and June 2009, was reviewed. Preoperative, histopathologic, perioperative, and outcome variables were assessed. Morbidity was measured as a patient having any perioperative event as defined by the Society of Thoracic Surgeons General Thoracic Surgery Database. A multivariable risk model for morbidity was developed using a panel of established preoperative and operative variables. Survival was calculated using the Kaplan-Meier method. During the study period, 193 patients aged 80 years or older (median age 82 years) underwent lung resection: wedge resection in 77, segmentectomy in 13, lobectomy in 96, bilobectomy in four, and pneumonectomy in three. Resection was accomplished via thoracoscopy in 149 patients (77%). Operative mortality was 3.6% (seven patients) and morbidity was 46% (89 patients). A total of 181 (94%) patients were discharged directly home. Postoperative events included atrial arrhythmia in 38 patients (20%), prolonged air leak in 24 patients (12%), postoperative transfusion in 22 patients (11%), delirium in 16 patients (8%), need for bronchoscopy in 14 patients (7%), and pneumonia in 10 patients (5%). Significant predictors of morbidity by multivariable analysis included resection greater than wedge (odds ratio 2.98, p=0.006), thoracotomy as operative approach (odds ratio 2.6, p=0.03), and % predicted forced expiratory volume in 1s (odds ratio 1.28 for each 10% decrement, p=0.01). Octogenarians can undergo lung resection with low mortality. Extent of resection, use of a thoracotomy, and impaired lung function increase the risk of complications. Careful evaluation is necessary to select the most appropriate approach in

  16. In vitro dissolution of strontium titanate to estimate clearance rates in human lungs

    NASA Astrophysics Data System (ADS)

    Anderson, Jeri Lynn

    At the In-Tank Precipitation facility (ITP) of the Savannah River Site, strontium and other radionuclides are removed from high-level radioactive waste and sent to the Defense Waste Processing Facility (DWPF). Strontium removal is accomplished by ion-exchange using monosodium titanate slurry which creates a form of strontium titanate with unknown solubility characteristics. In the case of accidental inhalation of a compound containing radioactive strontium, the ICRP, in Publication 66, recommends using default values for rates of absorption into body fluids at the lungs in the absence of reliable human or animal data. The default value depends on whether the absorption is considered to be fast, moderate, or slow (Type F, M, or S). Current dose assessment for an individual upon inadvertent exposure to airborne radioactive strontium assumes that all strontium compounds are Type F (soluble) or Type S (insoluble). Pure high-fired strontium titanate (SrTiOsb3) is considered Type S. The purpose of this project was to determine the solubility of strontium titanate in the form created at the ITP facility. An in vitro dissolution study was done with a precipitate simulant and with several types of strontium titanate and the results were compared. An in vivo study was also performed with high-fired SrTiOsb3 in rats. The data from both studies were used independently to assign the compounds to absorption type based on criteria specified in ICRP 71. Results of the in vitro studies showed that the DWPF simulant should be assigned to Type M and the strontium titanate should be assigned to Type S. It is possible the difference in the DWPF simulant is due to the other chemicals present. Results of the in vivo study verified that SrTiOsb3 should be assigned to Type S. Lung clearance data of SrTiOsb3 from rats showed that 85% cleared within the first 24 hours and the remaining 15% with a half-time of 130 days. The initial rapid clearance is attributed to deposition in airways as

  17. IMPACT OF VENTILATION FREQUENCY AND PARENCHYMAL STIFFNESS ON FLOW AND PRESSURE DISTRIBUTION IN A CANINE LUNG MODEL

    PubMed Central

    Amini, Reza; Kaczka, David W.

    2013-01-01

    To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936

  18. Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening.

    PubMed

    Katki, Hormuzd A; Kovalchik, Stephanie A; Petito, Lucia C; Cheung, Li C; Jacobs, Eric; Jemal, Ahmedin; Berg, Christine D; Chaturvedi, Anil K

    2018-05-15

    Lung cancer screening guidelines recommend using individualized risk models to refer ever-smokers for screening. However, different models select different screening populations. The performance of each model in selecting ever-smokers for screening is unknown. To compare the U.S. screening populations selected by 9 lung cancer risk models (the Bach model; the Spitz model; the Liverpool Lung Project [LLP] model; the LLP Incidence Risk Model [LLPi]; the Hoggart model; the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model 2012 [PLCOM2012]; the Pittsburgh Predictor; the Lung Cancer Risk Assessment Tool [LCRAT]; and the Lung Cancer Death Risk Assessment Tool [LCDRAT]) and to examine their predictive performance in 2 cohorts. Population-based prospective studies. United States. Models selected U.S. screening populations by using data from the National Health Interview Survey from 2010 to 2012. Model performance was evaluated using data from 337 388 ever-smokers in the National Institutes of Health-AARP Diet and Health Study and 72 338 ever-smokers in the CPS-II (Cancer Prevention Study II) Nutrition Survey cohort. Model calibration (ratio of model-predicted to observed cases [expected-observed ratio]) and discrimination (area under the curve [AUC]). At a 5-year risk threshold of 2.0%, the models chose U.S. screening populations ranging from 7.6 million to 26 million ever-smokers. These disagreements occurred because, in both validation cohorts, 4 models (the Bach model, PLCOM2012, LCRAT, and LCDRAT) were well-calibrated (expected-observed ratio range, 0.92 to 1.12) and had higher AUCs (range, 0.75 to 0.79) than 5 models that generally overestimated risk (expected-observed ratio range, 0.83 to 3.69) and had lower AUCs (range, 0.62 to 0.75). The 4 best-performing models also had the highest sensitivity at a fixed specificity (and vice versa) and similar discrimination at a fixed risk threshold. These models showed better agreement on size of the

  19. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    PubMed

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  20. Irreversible Electroporation in a Swine Lung Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuy, Damian E., E-mail: ddupuy@lifespan.org; Aswad, Bassam, E-mail: baswad@lifespan.org; Ng, Thomas, E-mail: tng@usasurg.org

    2011-04-15

    Purpose: This study was designed to evaluate the safety and tissue effects of IRE in a swine lung model. Methods: This study was approved by the institutional animal care committee. Nine anesthetized domestic swine underwent 15 percutaneous irreversible electroporation (IRE) lesion creations (6 with bipolar and 3 with 3-4 monopolar electrodes) under fluoroscopic guidance and with pancuronium neuromuscular blockade and EKG gating. IRE electrodes were placed into the central and middle third of the right mid and lower lobes in all animals. Postprocedure PA and lateral chest radiographs were obtained to evaluate for pneumothorax. Three animals were sacrificed at 2more » weeks and six at 4 weeks. Animals underwent high-resolution CT scanning and PA and lateral radiographs 1 h before sacrifice. The treated lungs were removed en bloc, perfused with formalin, and sectioned. Gross pathologic and microscopic changes after standard hematoxylin and eosin staining were analyzed within the areas of IRE lesion creation. Results: No significant adverse events were identified. CT showed focal areas of spiculated high density ranging in greatest diameter from 1.1-2.2 cm. On gross inspection of the sectioned lung, focal areas of tan discoloration and increased density were palpated in the areas of IRE. Histological analysis revealed focal areas of diffuse alveolar damage with fibrosis and inflammatory infiltration that respected the boundaries of the interlobular septae. No pathological difference could be discerned between the 2- and 4-week time points. The bronchioles and blood vessels within the areas of IRE were intact and did not show signs of tissue injury. Conclusion: IRE creates focal areas of diffuse alveolar damage without creating damage to the bronchioles or blood vessels. Short-term safety in a swine model appears to be satisfactory.« less

  1. Florida Red Tides, Manatee Brevetoxicosis, and Lung Models

    PubMed Central

    Kirkpatrick, Barbara; Colbert, Debborah E.; Dalpra, Dana; Newton, Elizabeth A. C.; Gaspard, Joseph; Littlefield, Brandi; Manire, Charles

    2010-01-01

    In 1996, 149 Florida manatees, Trichechus manatus latirostris, died along the southwest coast of Florida. Necropsy pathology results of these animals indicated that brevetoxin from the Florida red tide, Karenia brevis, caused their death. A red tide bloom had been previously documented in the area where these animals stranded. The necropsy data suggested the mortality occurred from chronic inhalation and/or ingestion. Inhalation theories include high doses of brevetoxin deposited/stored in the manatee lung or significant manatee sensitivity to the brevetoxin. Laboratory models of the manatee lungs can be constructed from casts of necropsied animals for further studies; however, it is necessary to define the breathing pattern in the manatee, specifically the volumes and flow rates per breath to estimate toxin deposition in the lung. To obtain this information, two captive-born Florida manatees, previously trained for husbandry and research behaviors, were trained to breathe into a plastic mask placed over their nares. The mask was connected to a spirometer that measured volumes and flows in situ. Results reveal high volumes, short inspiratory and expiratory times and high flow rates, all consistent with observed breathing patterns. PMID:26448968

  2. In vivo evaluating skin doses for lung cancer patients undergoing volumetric modulated arc therapy treatment.

    PubMed

    Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi

    2015-01-01

    This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.

  3. Patterns of lung cancer mortality in 23 countries: application of the age-period-cohort model.

    PubMed

    Liaw, Yung-Po; Huang, Yi-Chia; Lien, Guang-Wen

    2005-03-05

    Smoking habits do not seem to be the main explanation of the epidemiological characteristics of female lung cancer mortality in Asian countries. However, Asian countries are often excluded from studies of geographical differences in trends for lung cancer mortality. We thus examined lung cancer trends from 1971 to 1995 among men and women for 23 countries, including four in Asia. International and national data were used to analyze lung cancer mortality from 1971 to 1995 in both sexes. Age-standardized mortality rates (ASMR) were analyzed in five consecutive five-year periods and for each five-year age group in the age range 30 to 79. The age-period-cohort (APC) model was used to estimate the period effect (adjusted for age and cohort effects) for mortality from lung cancer. The sex ratio of the ASMR for lung cancer was lower in Asian countries, while the sex ratio of smoking prevalence was higher in Asian countries. The mean values of the sex ratio of the ASMR from lung cancer in Taiwan, Hong Kong, Singapore, and Japan for the five 5-year period were 2.10, 2.39, 3.07, and 3.55, respectively. These values not only remained quite constant over each five-year period, but were also lower than seen in the western countries. The period effect, for lung cancer mortality as derived for the 23 countries from the APC model, could be classified into seven patterns. Period effects for both men and women in 23 countries, as derived using the APC model, could be classified into seven patterns. Four Asian countries have a relatively low sex ratio in lung cancer mortality and a relatively high sex ratio in smoking prevalence. Factors other than smoking might be important, especially for women in Asian countries.

  4. Patterns of lung cancer mortality in 23 countries: Application of the Age-Period-Cohort model

    PubMed Central

    Liaw, Yung-Po; Huang, Yi-Chia; Lien, Guang-Wen

    2005-01-01

    Background Smoking habits do not seem to be the main explanation of the epidemiological characteristics of female lung cancer mortality in Asian countries. However, Asian countries are often excluded from studies of geographical differences in trends for lung cancer mortality. We thus examined lung cancer trends from 1971 to 1995 among men and women for 23 countries, including four in Asia. Methods International and national data were used to analyze lung cancer mortality from 1971 to 1995 in both sexes. Age-standardized mortality rates (ASMR) were analyzed in five consecutive five-year periods and for each five-year age group in the age range 30 to 79. The age-period-cohort (APC) model was used to estimate the period effect (adjusted for age and cohort effects) for mortality from lung cancer. Results The sex ratio of the ASMR for lung cancer was lower in Asian countries, while the sex ratio of smoking prevalence was higher in Asian countries. The mean values of the sex ratio of the ASMR from lung cancer in Taiwan, Hong Kong, Singapore, and Japan for the five 5-year period were 2.10, 2.39, 3.07, and 3.55, respectively. These values not only remained quite constant over each five-year period, but were also lower than seen in the western countries. The period effect, for lung cancer mortality as derived for the 23 countries from the APC model, could be classified into seven patterns. Conclusion Period effects for both men and women in 23 countries, as derived using the APC model, could be classified into seven patterns. Four Asian countries have a relatively low sex ratio in lung cancer mortality and a relatively high sex ratio in smoking prevalence. Factors other than smoking might be important, especially for women in Asian countries. PMID:15748289

  5. Multiscale Airflow Model and Aerosol Deposition in Healthy and Emphysematous Rat Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica; Marsden, Alison; Grandmont, Celine; Darquenne, Chantal; Vignon-Clementel, Irene

    2012-11-01

    The fate of aerosol particles in healthy and emphysematic lungs is needed to determine the toxic or therapeutic effects of inhalable particles. In this study we used a multiscale numerical model that couples a 0D resistance and capacitance model to 3D airways generated from MR images. Airflow simulations were performed using an in-house 3D finite element solver (SimVascular, simtk.org). Seven simulations were performed; 1 healthy, 1 uniform emphysema and 5 different cases of heterogeneous emphysema. In the heterogeneous emphysema cases the disease was confined to a single lobe. As a post processing step, 1 micron diameter particles were tracked in the flow field using Lagrangian particle tracking. The simulation results showed that the inhaled flow distribution was equal for the healthy and uniform emphysema cases. However, in the heterogeneous emphysema cases the delivery of inhaled air was larger in the diseased lobe. Additionally, there was an increase in delivery of aerosol particles to the diseased lobe. This suggests that as the therapeutic particles would reach the diseased areas of the lung, while toxic particles would increasingly harm the lung. The 3D-0D model described here is the first of its kind to be used to study healthy and emphysematic lungs. NSF Graduate Fellowship (Oakes), Burroughs Wellcome Fund (Marsden, Oakes) 1R21HL087805-02 from NHLBI at NIH, INRIA Team Grant.

  6. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    PubMed

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results

  7. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  8. Scenarios of future lung cancer incidence by educational level: Modelling study in Denmark.

    PubMed

    Menvielle, Gwenn; Soerjomataram, Isabelle; de Vries, Esther; Engholm, Gerda; Barendregt, Jan J; Coebergh, Jan Willem; Kunst, Anton E

    2010-09-01

    To model future trends in lung cancer incidence in Denmark by education under different scenarios for cigarette smoking. Lung cancer incidence until 2050 was modelled using Prevent software. We estimated lung cancer incidence under a baseline scenario and under four alternative scenarios for smoking reduction: decreasing initiation rates among the young, increasing cessation rates among smokers, a scenario combining both changes and a levelling-up scenario in which people with low and medium levels of education acquired the smoking prevalence of the highly educated. Danish National Health Interview Surveys (1987-2005) and cancer registry data combined with individual education status from Statistics Denmark were used for empirical input. Under the baseline scenario, lung cancer rates are expected to decrease for most educational groups during the next few decades, but educational inequalities will increase further. Under the alternative scenarios, an additional decrease in lung cancer rates will be observed from 2030 onwards, but only from 2050 onwards it will be observed under the initiation scenario. The cessation and the combined scenarios show the largest decrease in lung cancer rates for all educational groups. However, in none of these scenarios would the relative differences between educational groups be reduced. A modest decrease in these inequalities will be observed under the levelling-up scenario. Our analyses show that relative inequalities in lung cancer incidence rates will tend to increase. They may be reduced to a small extent if the smoking prevalence of people with a low level of education was to converge towards those more highly educated people. An important decrease in lung cancer rates will be observed in all educational groups, however, especially when focusing on both initiation and cessation strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model.

    PubMed

    Di Bernardo, Julie; Maiden, Michael M; Hershenson, Marc B; Kunisaki, Shaun M

    2014-06-01

    Recent experimental work suggests the therapeutic role of mesenchymal stromal cells (MSCs) during lung morphogenesis. The purpose of this study was to investigate the potential paracrine effects of amniotic fluid-derived MSCs (AF-MSCs) on fetal lung growth in a nitrofen explant model. Pregnant Sprague-Dawley dams were gavage fed nitrofen on gestational day 9.5 (E9.5). E14.5 lung explants were subsequently harvested and cultured ex vivo for three days on filter membranes in conditioned media from rat AF-MSCs isolated from control (AF-Ctr) or nitrofen-exposed (AF-Nitro) dams. The lungs were analyzed morphometrically and by quantitative gene expression. Although there were no significant differences in total lung surface area among hypoplastic lungs, there were significant increases in terminal budding among E14.5+3 nitrofen explants exposed to AF-Ctr compared to explants exposed to medium alone (58.8±8.4 vs. 39.0±10.0 terminal buds, respectively; p<0.05). In contrast, lungs cultured in AF-Nitro medium failed to augment terminal budding. Nitrofen explants exposed to AF-Ctr showed significant upregulation of surfactant protein C to levels observed in normal fetal lungs. AF-MSCs can augment branching morphogenesis and lung epithelial maturation in a fetal explant model of pulmonary hypoplasia. Cell therapy using donor-derived AF-MSCs may represent a novel strategy for the treatment of fetal congenital diaphragmatic hernia. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Establishment of an orthotopic lung cancer model in nude mice and its evaluation by spiral CT.

    PubMed

    Liu, Xiang; Liu, Jun; Guan, Yubao; Li, Huiling; Huang, Liyan; Tang, Hailing; He, Jianxing

    2012-04-01

    To establish a simple and highly efficient orthotopic animal model of lung cancer cell line A549 and evaluate the growth pattern of intrathoracic tumors by spiral CT. A549 cells (5×10(6) mL(-1)) were suspended and inoculated into the right lung of BALB/c nude mice via intrathoracic injection. Nude mice were scanned three times each week by spiral CT after inoculation of lung cancer cell line A549. The survival time and body weight of nude mice as well as tumor invasion and metastasis were examined. Tissue was collected for subsequent histological assay after autopsia of mice. The tumor-forming rate of the orthotopic lung cancer model was 90%. The median survival time was 30.7 (range, 20-41) days. The incidence of tumor metastasis was 100%. The mean tumor diameter and the average CT value gradually increased in a time-dependent manner. The method of establishing the orthotopic lung cancer model through transplanting A549 cells into the lung of nude mice is simple and highly successful. Spiral CT can be used to evaluate intrathoracic tumor growth in nude mice vividly and dynamically.

  11. Establishment of an orthotopic lung cancer model in nude mice and its evaluation by spiral CT

    PubMed Central

    Liu, Xiang; Liu, Jun; Guan, Yubao; Li, Huiling; Huang, Liyan; Tang, Hailing

    2012-01-01

    Objective To establish a simple and highly efficient orthotopic animal model of lung cancer cell line A549 and evaluate the growth pattern of intrathoracic tumors by spiral CT. Methods A549 cells (5×106 mL-1) were suspended and inoculated into the right lung of BALB/c nude mice via intrathoracic injection. Nude mice were scanned three times each week by spiral CT after inoculation of lung cancer cell line A549. The survival time and body weight of nude mice as well as tumor invasion and metastasis were examined. Tissue was collected for subsequent histological assay after autopsia of mice. Results The tumor-forming rate of the orthotopic lung cancer model was 90%. The median survival time was 30.7 (range, 20-41) days. The incidence of tumor metastasis was 100%. The mean tumor diameter and the average CT value gradually increased in a time-dependent manner. Conclusions The method of establishing the orthotopic lung cancer model through transplanting A549 cells into the lung of nude mice is simple and highly successful. Spiral CT can be used to evaluate intrathoracic tumor growth in nude mice vividly and dynamically. PMID:22833819

  12. Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Burgos, Carmen Mesas; Uggla, Andreas Ringman; Fagerström-Billai, Fredrik; Eklöf, Ann-Christine; Frenckner, Björn; Nord, Magnus

    2010-07-01

    Pulmonary hypoplasia and persistent pulmonary hypertension are the main causes of mortality and morbidity in newborns with congenital diaphragmatic hernia (CDH). Nitrofen is well known to induce CDH and lung hypoplasia in a rat model, but the mechanism remains unknown. To increase the understanding of the underlying pathogenesis of CDH, we performed a global gene expression analysis using microarray technology. Pregnant rats were given 100 mg nitrofen on gestational day 9.5 to create CDH. On day 21, fetuses after nitrofen administration and control fetuses were removed; and lungs were harvested. Global gene expression analysis was performed using Affymetrix Platform and the RAE 230 set arrays. For validation of microarray data, we performed real-time polymerase chain reaction and Western blot analysis. Significantly decreased genes after nitrofen administration included several growth factors and growth factors receptors involved in lung development, transcription factors, water and ion channels, and genes involved in angiogenesis and extracellular matrix. These results could be confirmed with real-time polymerase chain reaction and protein expression studies. The pathogenesis of lung hypoplasia and CDH in the nitrofen model includes alteration at a molecular level of several pathways involved in lung development. The complexity of the nitrofen mechanism of action reminds of human CDH; and the picture is consistent with lung hypoplasia and vascular disease, both important contributors to the high mortality and morbidity in CDH. Increased understanding of the molecular mechanisms that control lung growth may be the key to develop novel therapeutic techniques to stimulate pre- and postnatal lung growth. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Modeling pressure relationships of inspired air into the human lung bifurcations through simulations

    NASA Astrophysics Data System (ADS)

    Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana

    2018-03-01

    Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.

  14. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth.

    PubMed

    Martin, Michelle D; Fingleton, Barbara; Lynch, Conor C; Wells, Sam; McIntyre, J Oliver; Piston, David W; Matrisian, Lynn M

    2008-01-01

    The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.

  15. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.

  16. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    PubMed

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  17. Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation.

    PubMed

    Vock, David M; Durheim, Michael T; Tsuang, Wayne M; Finlen Copeland, C Ashley; Tsiatis, Anastasios A; Davidian, Marie; Neely, Megan L; Lederer, David J; Palmer, Scott M

    2017-02-01

    Lung transplantation is an accepted and increasingly employed treatment for advanced lung diseases, but the anticipated survival benefit of lung transplantation is poorly understood. To determine whether and for which patients lung transplantation confers a survival benefit in the modern era of U.S. lung allocation. Data on 13,040 adults listed for lung transplantation between May 2005 and September 2011 were obtained from the United Network for Organ Sharing. A structural nested accelerated failure time model was used to model the survival benefit of lung transplantation over time. The effects of patient, donor, and transplant center characteristics on the relative survival benefit of transplantation were examined. Overall, 73.8% of transplant recipients were predicted to achieve a 2-year survival benefit with lung transplantation. The survival benefit of transplantation varied by native disease group (P = 0.062), with 2-year expected benefit in 39.2 and 98.9% of transplants occurring in those with obstructive lung disease and cystic fibrosis, respectively, and by lung allocation score at the time of transplantation (P < 0.001), with net 2-year benefit in only 6.8% of transplants occurring for lung allocation score less than 32.5 and in 99.9% of transplants for lung allocation score exceeding 40. A majority of adults undergoing transplantation experience a survival benefit, with the greatest potential benefit in those with higher lung allocation scores or restrictive native lung disease or cystic fibrosis. These results provide novel information to assess the expected benefit of lung transplantation at an individual level and to enhance lung allocation policy.

  18. A novel method for right one-lung ventilation modeling in rabbits.

    PubMed

    Xu, Ze-Ping; Gu, Lian-Bing; Bian, Qing-Ming; Li, Peng-Yi; Wang, Li-Jun; Chen, Xiao-Xiang; Zhang, Jing-Yuan

    2016-08-01

    There is no standard method by which to establish a right one-lung ventilation (OLV) model in rabbits. In the present study, a novel method is proposed to compare with two other methods. After 0.5 h of baseline two-lung ventilation (TLV), 40 rabbits were randomly divided into sham group (TLV for 3 h as a contrast) and three right-OLV groups (right OLV for 3 h with different methods): Deep intubation group, clamp group and blocker group (deeply intubate the self-made bronchial blocker into the left main bronchus, the novel method). These three methods were compared using a number of variables: Circulation by heart rate (HR), mean arterial pressure (MAP); oxygenation by arterial blood gas analysis; airway pressure; lung injury by histopathology; and time, blood loss, success rate of modeling. Following OLV, compared with the sham group, arterial partial pressure of oxygen and arterial hemoglobin oxygen saturation decreased, peak pressure increased and lung injury scores were higher in three OLV groups at 3 h of OLV. All these indexes showed no differences between the three OLV groups. During right-OLV modeling, less time was spent in the blocker group (6±2 min), compared with the other two OLV groups (13±4 min in deep intubation group, P<0.05; 33±9 min in clamp group, P<0.001); more blood loss was observed in clamp group (11.7±2.8 ml), compared with the other two OLV groups (2.3±0.5 ml in deep intubation group, P<0.001; 2.1±0.6 ml in blocker group, P<0.001). The first-time and final success rate of modeling showed no differences among the three OLV groups. Deep intubation of the self-made bronchial blocker into the left main bronchus is an easy, effective and reliable method to establish a right-OLV model in rabbits.

  19. A novel method for right one-lung ventilation modeling in rabbits

    PubMed Central

    Xu, Ze-Ping; Gu, Lian-Bing; Bian, Qing-Ming; Li, Peng-Yi; Wang, Li-Jun; Chen, Xiao-Xiang; Zhang, Jing-Yuan

    2016-01-01

    There is no standard method by which to establish a right one-lung ventilation (OLV) model in rabbits. In the present study, a novel method is proposed to compare with two other methods. After 0.5 h of baseline two-lung ventilation (TLV), 40 rabbits were randomly divided into sham group (TLV for 3 h as a contrast) and three right-OLV groups (right OLV for 3 h with different methods): Deep intubation group, clamp group and blocker group (deeply intubate the self-made bronchial blocker into the left main bronchus, the novel method). These three methods were compared using a number of variables: Circulation by heart rate (HR), mean arterial pressure (MAP); oxygenation by arterial blood gas analysis; airway pressure; lung injury by histopathology; and time, blood loss, success rate of modeling. Following OLV, compared with the sham group, arterial partial pressure of oxygen and arterial hemoglobin oxygen saturation decreased, peak pressure increased and lung injury scores were higher in three OLV groups at 3 h of OLV. All these indexes showed no differences between the three OLV groups. During right-OLV modeling, less time was spent in the blocker group (6±2 min), compared with the other two OLV groups (13±4 min in deep intubation group, P<0.05; 33±9 min in clamp group, P<0.001); more blood loss was observed in clamp group (11.7±2.8 ml), compared with the other two OLV groups (2.3±0.5 ml in deep intubation group, P<0.001; 2.1±0.6 ml in blocker group, P<0.001). The first-time and final success rate of modeling showed no differences among the three OLV groups. Deep intubation of the self-made bronchial blocker into the left main bronchus is an easy, effective and reliable method to establish a right-OLV model in rabbits. PMID:27446346

  20. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome

    PubMed Central

    Uriarte, Juan J.; Meirelles, Thayna; Gorbenko del Blanco, Darya; Nonaka, Paula N.; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  1. Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses.

    PubMed

    Abbasi, Akbar

    2017-01-01

    Due to increasing occurrences of lung cancer, radon exhalation rates, radon concentrations, and lung cancer risks in several types of commonly used granite stone, samples used for flooring in buildings, have been investigated. We measured the radon exhalation rates due to granite stones by means of an AlphaGUARD Model PQ2000 in a cube container with changeable floor by various granite stones. The lung cancer risk and percentage of lung cancer deaths (LCRn) due to those conditions were calculated using Darby's model. The radon exhalation rates ranged from 1.59 ± 0.41 to 9.43 ± 0.74 Bq/m 2/h. The radon concentrations in the standard room with poor and normal ventilation were calculated 20.10-71.09 Bq/m 3 and 16.12-47.01 Bq/m 3, respectively. The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33%) and 103 (2.37%) for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.

  2. Segmentation of lung fields using Chan-Vese active contour model in chest radiographs

    NASA Astrophysics Data System (ADS)

    Sohn, Kiwon

    2011-03-01

    A CAD tool for chest radiographs consists of several procedures and the very first step is segmentation of lung fields. We develop a novel methodology for segmentation of lung fields in chest radiographs that can satisfy the following two requirements. First, we aim to develop a segmentation method that does not need a training stage with manual estimation of anatomical features in a large training dataset of images. Secondly, for the ease of implementation, it is desirable to apply a well established model that is widely used for various image-partitioning practices. The Chan-Vese active contour model, which is based on Mumford-Shah functional in the level set framework, is applied for segmentation of lung fields. With the use of this model, segmentation of lung fields can be carried out without detailed prior knowledge on the radiographic anatomy of the chest, yet in some chest radiographs, the trachea regions are unfavorably segmented out in addition to the lung field contours. To eliminate artifacts from the trachea, we locate the upper end of the trachea, find a vertical center line of the trachea and delineate it, and then brighten the trachea region to make it less distinctive. The segmentation process is finalized by subsequent morphological operations. We randomly select 30 images from the Japanese Society of Radiological Technology image database to test the proposed methodology and the results are shown. We hope our segmentation technique can help to promote of CAD tools, especially for emerging chest radiographic imaging techniques such as dual energy radiography and chest tomosynthesis.

  3. Modeling tuberculosis pathogenesis through ex vivo lung tissue infection.

    PubMed

    Carranza-Rosales, Pilar; Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Lozano-Garza, Gerardo; Villarreal-Treviño, Licet; Molina-Torres, Carmen; Villarreal, Javier Vargas; Vera-Cabrera, Lucio; Castro-Garza, Jorge

    2017-12-01

    Tuberculosis (TB) is one of the top 10 causes of death worldwide. Several in vitro and in vivo experimental models have been used to study TB pathogenesis and induction of immune response during Mycobacterium tuberculosis infection. Precision cut lung tissue slices (PCLTS) is an experimental model, in which all the usual cell types of the organ are found, the tissue architecture and the interactions amongst the different cells are maintained. PCLTS in good physiological conditions, monitored by MTT assay and histology, were infected with either virulent Mycobacterium tuberculosis strain H37Rv or the TB vaccine strain Mycobacterium bovis BCG. Histological analysis showed that bacilli infecting lung tissue slices were observed in the alveolar septa, alveolar light spaces, near to type II pneumocytes, and inside macrophages. Mycobacterial infection of PCLTS induced TNF-α production, which is consistent with previous M. tuberculosis in vitro and in vivo studies. This is the first report of using PCLTS as a system to study M. tuberculosis infection. The PCLTS model provides a useful tool to evaluate the innate immune responses and other aspects during the early stages of mycobacterial infection. Copyright © 2017. Published by Elsevier Ltd.

  4. Sirt1 restrains lung inflammasome activation in a murine model of sepsis.

    PubMed

    Gao, Rong; Ma, Zhongsen; Hu, Yuxin; Chen, Jiao; Shetty, Sreerama; Fu, Jian

    2015-04-15

    Excessive inflammation is a major cause of organ damage during sepsis. The elderly are highly susceptible to sepsis-induced organ injury. Sirt1 expression is reduced during aging. In the present study, we investigated the role of Sirt1, a histone deacetylase, in controlling inflammatory responses in a murine sepsis model induced by cecal ligation and puncture (CLP). We examined lung inflammatory signaling in inducible Sirt1 knockout (Sirt1(-/-)) mice and wild-type littermates (Sirt1(+/+)) after CLP. Our results demonstrated that Sirt1 deficiency led to severe lung inflammatory injury. To further investigate molecular mechanisms of Sirt1 regulation of lung inflammatory responses in sepsis, we conducted a series of experiments to assess lung inflammasome activation after CLP. We detected increased lung inflammatory signaling including NF-κB, signal transducer and activator of transcription 3, and ERK1/2 activation in Sirt1(-/-) mice after CLP. Furthermore, inflammasome activity was increased in Sirt1(-/-) mice after CLP, as demonstrated by increased IL-1β and caspase-7 cleavage and activation. Aggravated inflammasome activation in Sirt1(-/-) mice was associated with the increased production of lung proinflammatory mediators, including ICAM-1 and high-mobility group box 1, and further disruption of tight junctions and adherens junctions, as demonstrated by dramatic reduction of lung claudin-1 and vascular endothelial-cadherin expression, which was associated with the upregulation of matrix metallopeptidase 9 expression. In summary, our results suggest that Sirt1 suppresses acute lung inflammation during sepsis by controlling inflammasome activation pathway. Copyright © 2015 the American Physiological Society.

  5. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was

  6. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.

    PubMed

    Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R

    2015-10-05

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

  7. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer.

    PubMed

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin; Xue, Christine; LeBlanc, Justin; Glenn, Shonna; Shukla, Gaurav; Yu, Yan; Dicker, Adam P; Leeper, Dennis B; Lu, You; Lu, Bo

    2016-11-01

    To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics. Copyright © 2016. Published by Elsevier Inc.

  8. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer.

    PubMed

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-Pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections. The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery.

  9. WE-H-BRA-02: Radiobiological Modeling of Tumor Control Probability (TCP) and Radiation-Induced Pneumonitis (RP) for Lung Cancer Patients Treated with Monte Carlo-Based Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Shen, X

    2016-06-15

    Purpose: To present radiobiological modeling of TCP using tumor size-adjusted BED(s-BED)and PTV(D99) to lung SBRT patients treated with X-ray Voxel Monte Carlo(XVMC) algorithm, apply parameterized Lyman-NTCP model to predict grade-2 RP and subsequently, compare with clinical outcomes/observations. Methods: Dosimetric parameters and clinical follow-up for XVMC-based lung-SBRT patients were retrospectively evaluated. Patients were treated at Novalis-TX with hybrid(2 non-coplanar partial-arcs plus 3–6 static-beams)plan using HD-MLC/6MV-SRS-beam.For TCP,s-BED modelling was utilized: TCP=EXP[sBED-TCD50]/k/(1.0+EXP[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy and s-BED was defined as BED10 minus 10 times the tumor diameter(in centimeters)by Ohri et al.(IJROBP,2012). For 2-yr local-control, we used more-realistic MC-computed PTVD99 as amore » predictive parameter, s-BED(D99).Due to relatively shorter median follow-up interval(12-months),Kaplan-Meier curves were generated to estimate 2-yr observed local-control and compared to predicted-rate by TCP modeling. For NTCP, we employed parameterized Lyman-NTCP model utilizing normal-lung DVH and α/β=3Gy fitted to predict grade-2 RP after lung-SBRT. Results: Total 108 patients (137 tumors) treated for 35–70Gy in 3–5 fractions, either primary-lung(n=74)or metastatic-lung(n=53)tumors were included.F or the given prescription dose with MC-computed MUs, 2-yr local-control rates with s-BED(D99) was 87±8%. Kaplan-Meier generated observed local-control rate at 2-yr was 87.5%,suggesting that PTV(D99) could be a potential predictor (p-value=0.38). Observed vs predicted TCP for primary-lung tumors and metastatic tumors were 97% vs 88±7% and 94% vs 86±9%.NTCP model predicted well for symptomatic-RP with predicted vs observed (3±5% vs 2%). Radiographic and clinically significant RP was observed in 13% and 2% of patients. Higher rates of radiographic change were observed in patients who received >50Gy compared to

  10. Validating Lung Models Using the ASL 5000 Breathing Simulator.

    PubMed

    Dexter, Amanda; McNinch, Neil; Kaznoch, Destiny; Volsko, Teresa A

    2018-04-01

    This study sought to validate pediatric models with normal and altered pulmonary mechanics. PubMed and CINAHL databases were searched for studies directly measuring pulmonary mechanics of healthy infants and children, infants with severe bronchopulmonary dysplasia and neuromuscular disease. The ASL 5000 was used to construct models using tidal volume (VT), inspiratory time (TI), respiratory rate, resistance, compliance, and esophageal pressure gleaned from literature. Data were collected for a 1-minute period and repeated three times for each model. t tests compared modeled data with data abstracted from the literature. Repeated measures analyses evaluated model performance over multiple iterations. Statistical significance was established at a P value of less than 0.05. Maximum differences of means (experimental iteration mean - clinical standard mean) for TI and VT are the following: term infant without lung disease (TI = 0.09 s, VT = 0.29 mL), severe bronchopulmonary dysplasia (TI = 0.08 s, VT = 0.17 mL), child without lung disease (TI = 0.10 s, VT = 0.17 mL), and child with neuromuscular disease (TI = 0.09 s, VT = 0.57 mL). One-sample testing demonstrated statistically significant differences between clinical controls and VT and TI values produced by the ASL 5000 for each iteration and model (P < 0.01). The greatest magnitude of differences was negligible (VT < 1.6%, TI = 18%) and not clinically relevant. Inconsistencies occurred with the models constructed on the ASL 5000. It was deemed accurate for the study purposes. It is therefore essential to test models and evaluate magnitude of differences before use.

  11. Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation

    PubMed Central

    Tsuang, Wayne M.; Copeland, C. Ashley Finlen; Tsiatis, Anastasios A.; Davidian, Marie; Neely, Megan L.; Lederer, David J.; Palmer, Scott M.

    2017-01-01

    Rationale: Lung transplantation is an accepted and increasingly employed treatment for advanced lung diseases, but the anticipated survival benefit of lung transplantation is poorly understood. Objectives: To determine whether and for which patients lung transplantation confers a survival benefit in the modern era of U.S. lung allocation. Methods: Data on 13,040 adults listed for lung transplantation between May 2005 and September 2011 were obtained from the United Network for Organ Sharing. A structural nested accelerated failure time model was used to model the survival benefit of lung transplantation over time. The effects of patient, donor, and transplant center characteristics on the relative survival benefit of transplantation were examined. Measurements and Main Results: Overall, 73.8% of transplant recipients were predicted to achieve a 2-year survival benefit with lung transplantation. The survival benefit of transplantation varied by native disease group (P = 0.062), with 2-year expected benefit in 39.2 and 98.9% of transplants occurring in those with obstructive lung disease and cystic fibrosis, respectively, and by lung allocation score at the time of transplantation (P < 0.001), with net 2-year benefit in only 6.8% of transplants occurring for lung allocation score less than 32.5 and in 99.9% of transplants for lung allocation score exceeding 40. Conclusions: A majority of adults undergoing transplantation experience a survival benefit, with the greatest potential benefit in those with higher lung allocation scores or restrictive native lung disease or cystic fibrosis. These results provide novel information to assess the expected benefit of lung transplantation at an individual level and to enhance lung allocation policy. PMID:27779905

  12. Interleukin-6 Contributes to Inflammation and Remodeling in a Model of Adenosine Mediated Lung Injury

    PubMed Central

    Pedroza, Mesias; Schneider, Daniel J.; Karmouty-Quintana, Harry; Coote, Julie; Shaw, Stevan; Corrigan, Rebecca; Molina, Jose G.; Alcorn, Joseph L.; Galas, David; Gelinas, Richard; Blackburn, Michael R.

    2011-01-01

    Background Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated. Methodology/Principal Findings We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells. Conclusions/Significance These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction. PMID:21799929

  13. Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy.

    PubMed

    Guckenberger, Matthias; Klement, Rainer J; Allgäuer, Michael; Andratschke, Nicolaus; Blanck, Oliver; Boda-Heggemann, Judit; Dieckmann, Karin; Duma, Marciana; Ernst, Iris; Ganswindt, Ute; Hass, Peter; Henkenberens, Christoph; Holy, Richard; Imhoff, Detlef; Kahl, Henning K; Krempien, Robert; Lohaus, Fabian; Nestle, Ursula; Nevinny-Stickel, Meinhard; Petersen, Cordula; Semrau, Sabine; Streblow, Jan; Wendt, Thomas G; Wittig, Andrea; Flentje, Michael; Sterzing, Florian

    2016-03-01

    To evaluate whether local tumor control probability (TCP) in stereotactic body radiotherapy (SBRT) varies between lung metastases of different primary cancer sites and between primary non-small cell lung cancer (NSCLC) and secondary lung tumors. A retrospective multi-institutional (n=22) database of 399 patients with stage I NSCLC and 397 patients with 525 lung metastases was analyzed. Irradiation doses were converted to biologically effective doses (BED). Logistic regression was used for local tumor control probability (TCP) modeling and the second-order bias corrected Akaike Information Criterion was used for model comparison. After median follow-up of 19 months and 16 months (n.s.), local tumor control was observed in 87.7% and 86.7% of the primary and secondary lung tumors (n.s.), respectively. A strong dose-response relationship was observed in the primary NSCLC and metastatic cohort but dose-response relationships were not significantly different: the TCD90 (dose to achieve 90% TCP; BED of maximum planning target volume dose) estimates were 176 Gy (151-223) and 160 Gy (123-237) (n.s.), respectively. The dose-response relationship was not influenced by the primary cancer site within the metastatic cohort. Dose-response relationships for local tumor control in SBRT were not different between lung metastases of various primary cancer sites and between primary NSCLC and lung metastases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Ex Vivo Lung Perfusion Rehabilitates Sepsis-Induced Lung Injury

    PubMed Central

    Mehaffey, J. Hunter; Charles, Eric J.; Sharma, Ashish K.; Salmon, Morgan; Money, Dustin; Schubert, Sarah; Stoler, Mark H; Tribble, Curtis G.; Laubach, Victor E.; Roeser, Mark E.; Kron, Irving L.

    2017-01-01

    Objective Sepsis is the number one cause of lung injury in adults. Ex vivo lung perfusion (EVLP) is gaining clinical acceptance for donor lung evaluation and rehabilitation, and may expand the use of marginal organs for transplantation. We hypothesized that four hours of normothermic EVLP would improve compliance and oxygenation in a porcine model of sepsis-induced lung injury. Methods We utilized a porcine lung injury model using intravenous lipopolysaccharide (LPS) to induce a systemic inflammatory response. Two groups (n=4 animals/group) received a 2-hour infusion of LPS via the external jugular vein. Serial blood gases were performed every 30 min until the PO2/FiO2 ratio dropped below 150 on two consecutive readings. Lungs were then randomized to treatment with 4 hours of normothermic EVLP with Steen solution or 4 additional hours of in vivo perfusion (Control). Airway pressures and blood gases were recorded for calculation of dynamic lung compliance and PO2/FiO2 ratios. EVLP was performed according to the NOVEL trial protocol with hourly recruitment maneuvers and oxygen challenge. Results All animals reached a PO2/FiO2 ratio < 150 mmHg within 3 hours after start of LPS infusion. Animals in the Control group had continued decline of oxygenation and compliance during the 4-hour in vivo perfusion period with three of the four animals dying within 4 hours due to severe hypoxia. The EVLP group demonstrated significant improvements in oxygenation and dynamic compliance from hour 1 to hour 4 (365.8±53.0 vs 584.4±21.0 mmHg, p=0.02; 9.0±2.8 vs 15.0±3.6, p=0.02 mL/cmH2O). Conclusions EVLP can successfully rehabilitate LPS-induced lung injury in this preclinical porcine model. Thus EVLP may provide a means to rehabilitate many types of acute lung injury. PMID:28434548

  15. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  16. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  17. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid

    PubMed Central

    Rizk, Matthew L.; Lala, Mallika; Chavez‐Eng, Cynthia; Visser, Sandra A. G.; Kerbusch, Thomas; Danhof, Meindert; Rao, Gauri; van der Graaf, Piet H.

    2016-01-01

    Aims Several clinical trials have confirmed the therapeutic benefit of imipenem for treatment of lung infections. There is however no knowledge of the penetration of imipenem into the lung epithelial lining fluid (ELF), the site of action relevant for lung infections. Furthermore, although the plasma pharmacokinetics (PK) of imipenem has been widely studied, most studies have been based on selected patient groups. The aim of this analysis was to characterize imipenem plasma PK across populations and to quantify imipenem ELF penetration. Methods A population model for imipenem plasma PK was developed using data obtained from healthy volunteers, elderly subjects and subjects with renal impairment, in order to identify predictors for inter‐individual variability (IIV) of imipenem PK. Subsequently, a clinical study which measured plasma and ELF concentrations of imipenem was included in order to quantify lung penetration. Results A two compartmental model best described the plasma PK of imipenem. Creatinine clearance and body weight were included as subject characteristics predictive for IIV on clearance. Typical estimates for clearance, central and peripheral volume, and inter‐compartmental clearance were 11.5 l h–1, 9.37 l, 6.41 l, 13.7 l h–1, respectively (relative standard error (RSE) <8%). The distribution of imipenem into ELF was described using a time‐independent penetration coefficient of 0.44 (RSE 14%). Conclusion The identified lung penetration coefficient confirms the clinical relevance of imipenem for treatment of lung infections, while the population PK model provided insights into predictors of IIV for imipenem PK and may be of relevance to support dose optimization in various subject groups. PMID:26852277

  18. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid.

    PubMed

    van Hasselt, J G Coen; Rizk, Matthew L; Lala, Mallika; Chavez-Eng, Cynthia; Visser, Sandra A G; Kerbusch, Thomas; Danhof, Meindert; Rao, Gauri; van der Graaf, Piet H

    2016-06-01

    Several clinical trials have confirmed the therapeutic benefit of imipenem for treatment of lung infections. There is however no knowledge of the penetration of imipenem into the lung epithelial lining fluid (ELF), the site of action relevant for lung infections. Furthermore, although the plasma pharmacokinetics (PK) of imipenem has been widely studied, most studies have been based on selected patient groups. The aim of this analysis was to characterize imipenem plasma PK across populations and to quantify imipenem ELF penetration. A population model for imipenem plasma PK was developed using data obtained from healthy volunteers, elderly subjects and subjects with renal impairment, in order to identify predictors for inter-individual variability (IIV) of imipenem PK. Subsequently, a clinical study which measured plasma and ELF concentrations of imipenem was included in order to quantify lung penetration. A two compartmental model best described the plasma PK of imipenem. Creatinine clearance and body weight were included as subject characteristics predictive for IIV on clearance. Typical estimates for clearance, central and peripheral volume, and inter-compartmental clearance were 11.5 l h(-1) , 9.37 l, 6.41 l, 13.7 l h(-1) , respectively (relative standard error (RSE) <8%). The distribution of imipenem into ELF was described using a time-independent penetration coefficient of 0.44 (RSE 14%). The identified lung penetration coefficient confirms the clinical relevance of imipenem for treatment of lung infections, while the population PK model provided insights into predictors of IIV for imipenem PK and may be of relevance to support dose optimization in various subject groups. © 2016 The British Pharmacological Society.

  19. Off-the-job training for VATS employing anatomically correct lung models.

    PubMed

    Obuchi, Toshiro; Imakiire, Takayuki; Miyahara, Sou; Nakashima, Hiroyasu; Hamanaka, Wakako; Yanagisawa, Jun; Hamatake, Daisuke; Shiraishi, Takeshi; Moriyama, Shigeharu; Iwasaki, Akinori

    2012-02-01

    We evaluated our simulated major lung resection employing anatomically correct lung models as "off-the-job training" for video-assisted thoracic surgery trainees. A total of 76 surgeons voluntarily participated in our study. They performed video-assisted thoracic surgical lobectomy employing anatomically correct lung models, which are made of sponges so that vessels and bronchi can be cut using usual surgical techniques with typical forceps. After the simulation surgery, participants answered questionnaires on a visual analogue scale, in terms of their level of interest and the reality of our training method as off-the-job training for trainees. We considered that the closer a score was to 10, the more useful our method would be for training new surgeons. Regarding the appeal or level of interest in this simulation surgery, the mean score was 8.3 of 10, and regarding reality, it was 7.0. The participants could feel some of the real sensations of the surgery and seemed to be satisfied to perform the simulation lobectomy. Our training method is considered to be suitable as an appropriate type of surgical off-the-job training.

  20. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.

    PubMed

    Poli, Jonathan A; Richardson, C Peter; DiBlasi, Robert M

    2015-03-01

    High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P < .05). The Fisher & Paykel Healthcare and Babi.Plus systems generally provided ΔV at lower frequencies than the other bubble CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems. Copyright © 2015 by Daedalus Enterprises.

  1. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  2. Pediatric Artificial Lung: A Low-Resistance Pumpless Artificial Lung Alleviates an Acute Lamb Model of Increased Right Ventricle Afterload.

    PubMed

    Alghanem, Fares; Bryner, Benjamin S; Jahangir, Emilia M; Fernando, Uditha P; Trahanas, John M; Hoffman, Hayley R; Bartlett, Robert H; Rojas-Peña, Alvaro; Hirschl, Ronald B

    Lung disease in children often results in pulmonary hypertension and right heart failure. The availability of a pediatric artificial lung (PAL) would open new approaches to the management of these conditions by bridging to recovery in acute disease or transplantation in chronic disease. This study investigates the efficacy of a novel PAL in alleviating an animal model of pulmonary hypertension and increased right ventricle afterload. Five juvenile lambs (20-30 kg) underwent PAL implantation in a pulmonary artery to left atrium configuration. Induction of disease involved temporary, reversible occlusion of the right main pulmonary artery. Hemodynamics, pulmonary vascular input impedance, and right ventricle efficiency were measured under 1) baseline, 2) disease, and 3) disease + PAL conditions. The disease model altered hemodynamics variables in a manner consistent with pulmonary hypertension. Subsequent PAL attachment improved pulmonary artery pressure (p = 0.018), cardiac output (p = 0.050), pulmonary vascular input impedance (Z.0 p = 0.028; Z.1 p = 0.058), and right ventricle efficiency (p = 0.001). The PAL averaged resistance of 2.3 ± 0.8 mm Hg/L/min and blood flow of 1.3 ± 0.6 L/min. This novel low-resistance PAL can alleviate pulmonary hypertension in an acute animal model and demonstrates potential for use as a bridge to lung recovery or transplantation in pediatric patients with significant pulmonary hypertension refractory to medical therapies.

  3. Osthole prevents intestinal ischemia-reperfusion-induced lung injury in a rodent model.

    PubMed

    Mo, Li-Qun; Chen, Ye; Song, Li; Wu, Gang-Ming; Tang, Ni; Zhang, Ying-Ying; Wang, Xiao-Bin; Liu, Ke-Xuan; Zhou, Jun

    2014-06-15

    Intestinal ischemia-reperfusion (II/R) is associated with high morbidity and mortality. The aim of this study was to investigate the effects of osthole on lung injury and mortality induced by II/R. A rat model of II/R was induced by clamping the superior mesenteric artery for 90 min followed by reperfusion for 240 min. Osthole was administrated intraperitoneally at 30 min before intestinal ischemia (10 or 50 mg/kg). The survival rate and mean arterial pressure were observed. Blood samples were obtained for blood gas analyses. Lung injury was assessed by the histopathologic changes (hematoxylin and eosin staining), lung wet-to-dry weight ratio, and pulmonary permeability index. The levels of reactive oxygen species, malondialdehyde, interleukin 6, and tumor necrosis factor α, as well as the activities of superoxide dismutase and myeloperoxidase in lung were measured. The survival rate, ratio of arterial oxygen tension to fraction of inspired oxygen, and mean arterial pressure decreased significantly after II/R. Results also indicated that II/R-induced severe lung injury evidenced by increase in pathologic scores, lung wet-to-dry weight ratio, and pulmonary permeability index, which was accompanied by increases in the levels of pulmonary reactive oxygen species, malondialdehyde, interleukin 6, tumor necrosis factor α, and the pulmonary myeloperoxidase activity and a decrease in superoxide dismutase activity. Osthole could significantly ameliorate lung injury and improve the previously mentioned variables. These findings indicated that osthole could attenuate the lung injury induced by II/R in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models.

    PubMed

    Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Bilecz, Agnes; Daley, Frances; Kostaras, Eleftherios; Nathan, Mark R; Wan, Elaine; Frentzas, Sophia; Schweiger, Thomas; Hegedus, Balazs; Hoetzenecker, Konrad; Renyi-Vamos, Ferenc; Kuczynski, Elizabeth A; Vasudev, Naveen S; Larkin, James; Gore, Martin; Dvorak, Harold F; Paku, Sandor; Kerbel, Robert S; Dome, Balazs; Reynolds, Andrew R

    2017-02-01

    Anti-angiogenic therapies have shown limited efficacy in the clinical management of metastatic disease, including lung metastases. Moreover, the mechanisms via which tumours resist anti-angiogenic therapies are poorly understood. Importantly, rather than utilizing angiogenesis, some metastases may instead incorporate pre-existing vessels from surrounding tissue (vessel co-option). As anti-angiogenic therapies were designed to target only new blood vessel growth, vessel co-option has been proposed as a mechanism that could drive resistance to anti-angiogenic therapy. However, vessel co-option has not been extensively studied in lung metastases, and its potential to mediate resistance to anti-angiogenic therapy in lung metastases is not established. Here, we examined the mechanism of tumour vascularization in 164 human lung metastasis specimens (composed of breast, colorectal and renal cancer lung metastasis cases). We identified four distinct histopathological growth patterns (HGPs) of lung metastasis (alveolar, interstitial, perivascular cuffing, and pushing), each of which vascularized via a different mechanism. In the alveolar HGP, cancer cells invaded the alveolar air spaces, facilitating the co-option of alveolar capillaries. In the interstitial HGP, cancer cells invaded the alveolar walls to co-opt alveolar capillaries. In the perivascular cuffing HGP, cancer cells grew by co-opting larger vessels of the lung. Only in the pushing HGP did the tumours vascularize by angiogenesis. Importantly, vessel co-option occurred with high frequency, being present in >80% of the cases examined. Moreover, we provide evidence that vessel co-option mediates resistance to the anti-angiogenic drug sunitinib in preclinical lung metastasis models. Assuming that our interpretation of the data is correct, we conclude that vessel co-option in lung metastases occurs through at least three distinct mechanisms, that vessel co-option occurs frequently in lung metastases, and that vessel

  5. Animal models of asthma: innovative methods of lung research and new pharmacological targets.

    PubMed

    Braun, Armin; Tschernig, Thomas

    2006-06-01

    Allergic diseases like bronchial asthma are increasing in societies with western lifestyle. In the last years substantial progress was made in the understanding of the underlying mechanisms and explanations like the hygiene hypothesis were developed. However the exact mechanisms of the physiological and immunological events in the lung leading to bronchial asthma are still not fully understood. Therefore, animal models of asthma have been established and improved to study the complex cellular interactions in vivo. Since mice became the most frequently used animal species the methods for detecting lung physiology, e.g. lung function measurements were adapted to the small size of the murine lung. Laser-dissection and precision cut lung slices have become common techniques to get a view into distinct lung compartments and cells. In addition genomic and proteomic approaches are now used widely. On the other hand a major conclusion of the workshop stated that more than one species is necessary in research and for pharmacological screening in asthma and COPD. The resulting new understanding in the mechanisms of asthma pathogenesis has lead to a rapid identification of novel pharmaceutical targets for treatment of the disease.

  6. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  7. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    PubMed Central

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections Results The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Conclusion Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery. PMID:27584018

  8. Application of artificial neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer.

    PubMed

    Duan, Xiaoran; Yang, Yongli; Tan, Shanjuan; Wang, Sihua; Feng, Xiaolei; Cui, Liuxin; Feng, Feifei; Yu, Songcheng; Wang, Wei; Wu, Yongjun

    2017-08-01

    The purpose of the study was to explore the application of artificial neural network model in the auxiliary diagnosis of lung cancer and compare the effects of back-propagation (BP) neural network with Fisher discrimination model for lung cancer screening by the combined detections of four biomarkers of p16, RASSF1A and FHIT gene promoter methylation levels and the relative telomere length. Real-time quantitative methylation-specific PCR was used to detect the levels of three-gene promoter methylation, and real-time PCR method was applied to determine the relative telomere length. BP neural network and Fisher discrimination analysis were used to establish the discrimination diagnosis model. The levels of three-gene promoter methylation in patients with lung cancer were significantly higher than those of the normal controls. The values of Z(P) in two groups were 2.641 (0.008), 2.075 (0.038) and 3.044 (0.002), respectively. The relative telomere lengths of patients with lung cancer (0.93 ± 0.32) were significantly lower than those of the normal controls (1.16 ± 0.57), t = 4.072, P < 0.001. The areas under the ROC curve (AUC) and 95 % CI of prediction set from Fisher discrimination analysis and BP neural network were 0.670 (0.569-0.761) and 0.760 (0.664-0.840). The AUC of BP neural network was higher than that of Fisher discrimination analysis, and Z(P) was 0.76. Four biomarkers are associated with lung cancer. BP neural network model for the prediction of lung cancer is better than Fisher discrimination analysis, and it can provide an excellent and intelligent diagnosis tool for lung cancer.

  9. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  10. Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest.

    PubMed

    Ryu, Dong Hyun; Jung, Yong Hun; Jeung, Kyung Woon; Lee, Byung Kook; Jeong, Young Won; Yun, Jong Geun; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-01-01

    Unrecognized endobronchial intubation frequently occurs after emergency intubation. However, no study has evaluated the effect of one-lung ventilation on end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR). We compared the hemodynamic parameters, blood gases, and ETCO2 during one-lung ventilation with those during conventional two-lung ventilation in a pig model of CPR, to determine the effect of the former on ETCO2. A randomized crossover study was conducted in 12 pigs intubated with double-lumen endobronchial tube to achieve lung separation. During CPR, the animals underwent three 5-min ventilation trials based on a randomized crossover design: left-lung, right-lung, or two-lung ventilation. Arterial blood gases were measured at the end of each ventilation trial. Ventilation was provided using the same tidal volume throughout the ventilation trials. Comparison using generalized linear mixed model revealed no significant group effects with respect to aortic pressure, coronary perfusion pressure, and carotid blood flow; however, significant group effect in terms of ETCO2 was found (P < 0.001). In the post hoc analyses, ETCO2 was lower during the right-lung ventilation than during the two-lung (P = 0.006) or left-lung ventilation (P < 0.001). However, no difference in ETCO2 was detected between the left-lung and two-lung ventilations. The partial pressure of arterial carbon dioxide (PaCO2), partial pressure of arterial oxygen (PaO2), and oxygen saturation (SaO2) differed among the three types of ventilation (P = 0.003, P = 0.001, and P = 0.001, respectively). The post hoc analyses revealed a higher PaCO2, lower PaO2, and lower SaO2 during right-lung ventilation than during two-lung or left-lung ventilation. However, the levels of these blood gases did not differ between the left-lung and two-lung ventilations. In a pig model of CPR, ETCO2 was significantly lower during right-lung ventilation than during two-lung ventilation. However

  11. Design of a numerical model of lung by means of a special boundary condition in the truncated branches.

    PubMed

    Tena, Ana F; Fernández, Joaquín; Álvarez, Eduardo; Casan, Pere; Walters, D Keith

    2017-06-01

    The need for a better understanding of pulmonary diseases has led to increased interest in the development of realistic computational models of the human lung. To minimize computational cost, a reduced geometry model is used for a model lung airway geometry up to generation 16. Truncated airway branches require physiologically realistic boundary conditions to accurately represent the effect of the removed airway sections. A user-defined function has been developed, which applies velocities mapped from similar locations in fully resolved airway sections. The methodology can be applied in any general purpose computational fluid dynamics code, with the only limitation that the lung model must be symmetrical in each truncated branch. Unsteady simulations have been performed to verify the operation of the model. The test case simulates a spirometry because the lung is obliged to rapidly perform both inspiration and expiration. Once the simulation was completed, the obtained pressure in the lower level of the lung was used as a boundary condition. The output velocity, which is a numerical spirometry, was compared with the experimental spirometry for validation purposes. This model can be applied for a wide range of patient-specific resolution levels. If the upper airway generations have been constructed from a computed tomography scan, it would be possible to quickly obtain a complete reconstruction of the lung specific to a specific person, which would allow individualized therapies. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations

    PubMed Central

    Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-01-01

    Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261

  13. Orthotopic lung cancer murine model by nonoperative transbronchial approach.

    PubMed

    Nakajima, Takahiro; Anayama, Takashi; Matsuda, Yasushi; Hwang, David M; McVeigh, Patrick Z; Wilson, Brian C; Zheng, Gang; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2014-05-01

    The aim of this work was to establish a novel orthotopic human non-small cell lung cancer (NSCLC) murine xenograft model by a nonsurgical, transbronchial approach. Male athymic nude mice and human NSCLC cell lines, including A549, H460, and H520 were used. Under direct visualization of the vocal cords, a 23-gauge blunt-tip slightly curved metal catheter was introduced into the trachea to the bronchus, and 2.5×10(5) tumor cells mixed with Matrigel (BD Biosciences, Mississauga, Ontario, Canada) were administered into the lung. Mice were monitored using weekly microcomputed tomography scans for tumor formation. When the tumor size reached more than 4 mm in diameter, the animals were euthanized, and the tumor tissue was evaluated histopathologically. Of 37 mice studied, 34 were confirmed to have tumor formation: 29 developed solitary tumors and 5 had multifocal lesions. There was no evidence of extrapleural dissemination or effusion. Transbronchial delivery of tumor cells enabled the establishment of a novel orthotopic human NSCLC murine xenograft model. This clinically relevant preclinical model bearing a solitary nodule is of value for a variety of in vivo research studies. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  15. Toward the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction

    PubMed Central

    Mauroy, Benjamin; Flaud, Patrice; Pelca, Dominique; Fausser, Christian; Merckx, Jacques; Mitchell, Barrett R.

    2015-01-01

    Chest physiotherapy is an empirical technique used to help secretions to get out of the lung whenever stagnation occurs. Although commonly used, little is known about the inner mechanisms of chest physiotherapy and controversies about its use are coming out regularly. Thus, a scientific validation of chest physiotherapy is needed to evaluate its effects on secretions. We setup a quasi-static numerical model of chest physiotherapy based on thorax and lung physiology and on their respective biophysics. We modeled the lung with an idealized deformable symmetric bifurcating tree. Bronchi and their inner fluids mechanics are assumed axisymmetric. Static data from the literature is used to build a model for the lung's mechanics. Secretions motion is the consequence of the shear constraints apply by the air flow. The input of the model is the pressure on the chest wall at each time, and the output is the bronchi geometry and air and secretions properties. In the limit of our model, we mimicked manual and mechanical chest physiotherapy techniques. We show that for secretions to move, air flow has to be high enough to overcome secretion resistance to motion. Moreover, the higher the pressure or the quicker it is applied, the higher is the air flow and thus the mobilization of secretions. However, pressures too high are efficient up to a point where airways compressions prevents air flow to increase any further. Generally, the first effects of manipulations is a decrease of the airway tree hydrodynamic resistance, thus improving ventilation even if secretions do not get out of the lungs. Also, some secretions might be pushed deeper into the lungs; this effect is stronger for high pressures and for mechanical chest physiotherapy. Finally, we propose and tested two a dimensional numbers that depend on lung properties and that allow to measure the efficiency and comfort of a manipulation. PMID:26300780

  16. The rabbit as a model for studying lung disease and stem cell therapy.

    PubMed

    Kamaruzaman, Nurfatin Asyikhin; Kardia, Egi; Kamaldin, Nurulain 'Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham

    2013-01-01

    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.

  17. The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy

    PubMed Central

    Kamaruzaman, Nurfatin Asyikhin; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham

    2013-01-01

    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy. PMID:23653896

  18. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  19. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling

    PubMed Central

    Campbell, Jerry; Franzen, Allison; Van Landingham, Cynthia; Lumpkin, Michael; Crowell, Susan; Meredith, Clive; Loccisano, Anne; Gentry, Robinan; Clewell, Harvey

    2016-01-01

    Abstract Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities. PMID:27569524

  20. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    PubMed

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  1. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    NASA Astrophysics Data System (ADS)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  2. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung

    PubMed Central

    Guo, Shengwen; Fei, Baowei

    2013-01-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs. PMID:24386531

  3. Lung Cancer Risk Models for Screening (R package: lcrisks)

    Cancer.gov

    In both the absence and presence of screening, the R package lcrisks, calculates individual risks of lung cancer and lung cancer death based on covariates: age, education, sex, race, smoking intensity/duration/quit-years, Body Mass Index, family history of lung-cancer, and self-reported emphysema. In the presence of CT screening akin to the NLST (3 yearly screens, 5 years of follow-up), it uses the covariates to estimate risk of false-positive CT screen as well as the reduction in risk of lung cancer death and increase in risk of lung cancer screening.

  4. SU-F-R-44: Modeling Lung SBRT Tumor Response Using Bayesian Network Averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamant, A; Ybarra, N; Seuntjens, J

    2016-06-15

    Purpose: The prediction of tumor control after a patient receives lung SBRT (stereotactic body radiation therapy) has proven to be challenging, due to the complex interactions between an individual’s biology and dose-volume metrics. Many of these variables have predictive power when combined, a feature that we exploit using a graph modeling approach based on Bayesian networks. This provides a probabilistic framework that allows for accurate and visually intuitive predictive modeling. The aim of this study is to uncover possible interactions between an individual patient’s characteristics and generate a robust model capable of predicting said patient’s treatment outcome. Methods: We investigatedmore » a cohort of 32 prospective patients from multiple institutions whom had received curative SBRT to the lung. The number of patients exhibiting tumor failure was observed to be 7 (event rate of 22%). The serum concentration of 5 biomarkers previously associated with NSCLC (non-small cell lung cancer) was measured pre-treatment. A total of 21 variables were analyzed including: dose-volume metrics with BED (biologically effective dose) correction and clinical variables. A Markov Chain Monte Carlo technique estimated the posterior probability distribution of the potential graphical structures. The probability of tumor failure was then estimated by averaging the top 100 graphs and applying Baye’s rule. Results: The optimal Bayesian model generated throughout this study incorporated the PTV volume, the serum concentration of the biomarker EGFR (epidermal growth factor receptor) and prescription BED. This predictive model recorded an area under the receiver operating characteristic curve of 0.94(1), providing better performance compared to competing methods in other literature. Conclusion: The use of biomarkers in conjunction with dose-volume metrics allows for the generation of a robust predictive model. The preliminary results of this report demonstrate that it is

  5. In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana

    2013-02-15

    To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less

  6. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    NASA Astrophysics Data System (ADS)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p < 0.05). We conclude that the concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  7. An individual risk prediction model for lung cancer based on a study in a Chinese population.

    PubMed

    Wang, Xu; Ma, Kewei; Cui, Jiuwei; Chen, Xiao; Jin, Lina; Li, Wei

    2015-01-01

    Early detection and diagnosis remains an effective yet challenging approach to improve the clinical outcome of patients with cancer. Low-dose computed tomography screening has been suggested to improve the diagnosis of lung cancer in high-risk individuals. To make screening more efficient, it is necessary to identify individuals who are at high risk. We conducted a case-control study to develop a predictive model for identification of such high-risk individuals. Clinical data from 705 lung cancer patients and 988 population-based controls were used for the development and evaluation of the model. Associations between environmental variants and lung cancer risk were analyzed with a logistic regression model. The predictive accuracy of the model was determined by calculating the area under the receiver operating characteristic curve and the optimal operating point. Our results indicate that lung cancer risk factors included older age, male gender, lower education level, family history of cancer, history of chronic obstructive pulmonary disease, lower body mass index, smoking cigarettes, a diet with less seafood, vegetables, fruits, dairy products, soybean products and nuts, a diet rich in meat, and exposure to pesticides and cooking emissions. The area under the curve was 0.8851 and the optimal operating point was obtained. With a cutoff of 0.35, the false positive rate, true positive rate, and Youden index were 0.21, 0.87, and 0.66, respectively. The risk prediction model for lung cancer developed in this study could discriminate high-risk from low-risk individuals.

  8. Reliability of a new biokinetic model of zirconium in internal dosimetry: part I, parameter uncertainty analysis.

    PubMed

    Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph

    2011-12-01

    The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a

  9. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak. Copyright © 2015 the American Physiological Society.

  10. Modeling accumulations of particles in lung during chronic inhalation exposures that lead to impaired clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, R.K.; Griffith, W.C. Jr.; Cuddihy, R.G.

    Chronic inhalation of insoluble particles of low toxicity that produce substantial lung burdens of particles, or inhalation of particles that are highly toxic to the lung, can impair clearance. This report describes model calculations of accumulations in lung of inhaled low-toxicity diesel exhaust soot and high-toxicity Ga2O3 particles. Lung burdens of diesel soot were measured periodically during a 24-mo exposure to inhaled diesel exhaust at soot concentrations of 0, 0.35, 3.5, and 7 mg m-3, 7 h d-1, 5 d wk-1. Lung burdens of Ga2O3 were measured for 1 y after a 4-wk exposure to 23 mg Ga2O3 m-3, 2more » h d-1, 5 d wk-1. Lung burdens of Ga2O3 were measured for 1 y both studies using inhaled radiolabeled tracer particles. Simulation models fit the observed lung burdens of diesel soot in rats exposed to the 3.5- and 7-mg m-3 concentrations of soot only if it was assumed that clearance remained normal for several months, then virtually stopped. Impaired clearance from high-toxicity particles occurred early after accumulations of a low burden, but that from low-toxicity particles was evident only after months of exposure, when high burdens had accumulated in lung. The impairment in clearances of Ga2O3 particles and radiolabeled tracers was similar, but the impairment in clearance of diesel soot and radiolabeled tracers differed in magnitude. This might have been related to differences in particle size and composition between the tracers and diesel soot. Particle clearance impairment should be considered both in the design of chronic exposures of laboratory animals to inhaled particles and in extrapolating the results to people.« less

  11. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  12. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment.

    PubMed

    Winkler-Heil, R; Hussain, M; Hofmann, W

    2015-05-01

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

  13. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  14. Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.

    PubMed

    Zhou, Boran; Zhang, Xiaoming

    2018-05-23

    Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density by using the DNN model together with the surface wave speed and lung stiffness measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A Graphical Model of Smoking-Induced Global Instability in Lung Cancer.

    PubMed

    Wang, Yanbo; Qian, Weikang; Yuan, Bo

    2018-01-01

    Smoking is the major cause of lung cancer and the leading cause of cancer-related death in the world. The most current view about lung cancer is no longer limited to individual genes being mutated by any carcinogenic insults from smoking. Instead, tumorigenesis is a phenotype conferred by many systematic and global alterations, leading to extensive heterogeneity and variation for both the genotypes and phenotypes of individual cancer cells. Thus, strategically it is foremost important to develop a methodology to capture any consistent and global alterations presumably shared by most of the cancerous cells for a given population. This is particularly true that almost all of the data collected from solid cancers (including lung cancers) are usually distant apart over a large span of temporal or even spatial contexts. Here, we report a multiple non-Gaussian graphical model to reconstruct the gene interaction network using two previously published gene expression datasets. Our graphical model aims to selectively detect gross structural changes at the level of gene interaction networks. Our methodology is extensively validated, demonstrating good robustness, as well as the selectivity and specificity expected based on our biological insights. In summary, gene regulatory networks are still relatively stable during presumably the early stage of neoplastic transformation. But drastic structural differences can be found between lung cancer and its normal control, including the gain of functional modules for cellular proliferations such as EGFR and PDGFRA, as well as the lost of the important IL6 module, supporting their roles as potential drug targets. Interestingly, our method can also detect early modular changes, with the ALDH3A1 and its associated interactions being strongly implicated as a potential early marker, whose activations appear to alter LCN2 module as well as its interactions with the important TP53-MDM2 circuitry. Our strategy using the graphical model to

  16. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of

  17. MAG-EPA resolves lung inflammation in an allergic model of asthma.

    PubMed

    Morin, C; Fortin, S; Cantin, A M; Rousseau, É

    2013-09-01

    Asthma is a chronic disease characterized by airways hyperresponsiveness, inflammation and airways remodelling involving reversible bronchial obstruction. Omega-3 fatty acids and their derivatives are known to reduce inflammation in several tissues including lung. The effects of eicosapentaenoic acid monoacylglyceride (MAG-EPA), a newly synthesized EPA derivative, were determined on the resolution of lung inflammation and airway hyperresponsiveness in an in vivo model of allergic asthma. Ovalbumin (OVA)-sensitized guinea-pigs were treated or not with MAG-EPA administered per os. Isometric tension measurements, histological analyses, homogenate preparation for Western blot experiments or total RNA extraction for RT-PCR were performed to assess the effect of MAG-EPA treatments. Mechanical tension measurements revealed that oral MAG-EPA treatments reduced methacholine (MCh)-induced bronchial hyperresponsiveness in OVA-sensitized guinea-pigs. Moreover, MAG-EPA treatments also decreased Ca(2+) hypersensitivity of bronchial smooth muscle. Histological analyses and leucocyte counts in bronchoalveolar lavages revealed that oral MAG-EPA treatments led to less inflammatory cell recruitment in the lung of OVA-sensitized guinea-pigs when compared with lungs from control animals. Results also revealed a reduction in mucin production and MUC5AC expression level in OVA-sensitized animals treated with MAG-EPA. Following MAG-EPA treatments, the transcript levels of pro-inflammatory markers such as IL-5, eotaxin, IL-13 and IL-4 were markedly reduced. Moreover, per os MAG-EPA administrations reduced COX2 over-expression in OVA-sensitized animals. We demonstrate that MAG-EPA reduces airway hyperresponsiveness and lung inflammation in OVA-sensitized animals, a finding consistent with a decrease in IL-4, IL-5, IL-13, COX-2 and MUC5AC expression levels in the lung. The present data suggest that MAG-EPA represents a new potential therapeutic strategy for resolving inflammation in allergic

  18. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  19. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  20. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    NASA Astrophysics Data System (ADS)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  1. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  2. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  3. The European Thoracic Surgery Database project: modelling the risk of in-hospital death following lung resection.

    PubMed

    Berrisford, Richard; Brunelli, Alessandro; Rocco, Gaetano; Treasure, Tom; Utley, Martin

    2005-08-01

    To identify pre-operative factors associated with in-hospital mortality following lung resection and to construct a risk model that could be used prospectively to inform decisions and retrospectively to enable fair comparisons of outcomes. Data were submitted to the European Thoracic Surgery Database from 27 units in 14 countries. We analysed data concerning all patients that had a lung resection. Logistic regression was used with a random sample of 60% of cases to identify pre-operative factors associated with in-hospital mortality and to build a model of risk. The resulting model was tested on the remaining 40% of patients. A second model based on age and ppoFEV1% was developed for risk of in-hospital death amongst tumour resection patients. Of the 3426 adult patients that had a first lung resection for whom mortality data were available, 66 died within the same hospital admission. Within the data used for model development, dyspnoea (according to the Medical Research Council classification), ASA (American Society of Anaesthesiologists) score, class of procedure and age were found to be significantly associated with in-hospital death in a multivariate analysis. The logistic model developed on these data displayed predictive value when tested on the remaining data. Two models of the risk of in-hospital death amongst adult patients undergoing lung resection have been developed. The models show predictive value and can be used to discern between high-risk and low-risk patients. Amongst the test data, the model developed for all diagnoses performed well at low risk, underestimated mortality at medium risk and overestimated mortality at high risk. The second model for resection of lung neoplasms was developed after establishing the performance of the first model and so could not be tested robustly. That said, we were encouraged by its performance over the entire range of estimated risk. The first of these two models could be regarded as an evaluation based on

  4. Development of an Ex Vivo Porcine Lung Model for Studying Growth, Virulence, and Signaling of Pseudomonas aeruginosa

    PubMed Central

    Muruli, Aneesha; Higgins, Steven; Diggle, Stephen P.

    2014-01-01

    Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment. PMID:24866798

  5. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  6. Airways, vasculature, and interstitial tissue: anatomically informed computational modeling of human lungs for virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan

    2017-03-01

    This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.

  7. Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress.

    PubMed

    Bible, Letitia E; Pasupuleti, Latha V; Gore, Amy V; Sifri, Ziad C; Kannan, Kolenkode B; Mohr, Alicia M

    2015-09-01

    Propranolol has been shown previously to decrease the mobilization of hematopoietic progenitor cells (HPCs) after acute injury in rodent models; however, this acute injury model does not reflect the prolonged period of critical illness after severe trauma. Using our novel lung contusion/hemorrhagic shock/chronic restraint stress model, we hypothesize that daily administration of propranolol will decrease prolonged mobilization of HPCs without worsening lung healing. Male Sprague-Dawley rats underwent 6 days of restraint stress after undergoing lung contusion or lung contusion/hemorrhagic shock. Restraint stress consisted of a daily 2-hour period of restraint interrupted every 30 minutes by alarms and repositioning. Each day after the period of restraint stress, the rats received intraperitoneal propranolol (10 mg/kg). On day 7, peripheral blood was analyzed for granulocyte-colony stimulating factor (G-CSF) and stromal cell-derived factor 1 via enzyme-linked immunosorbent assay and for mobilization of HPCs using c-kit and CD71 flow cytometry. The lungs were examined histologically to grade injury. Seven days after lung contusion and lung contusion/hemorrhagic shock, the addition of chronic restraint stress significantly increased the mobilization of HPC, which was associated with persistently increased levels of G-CSF and increased lung injury scores. The addition of propranolol to lung contusion/chronic restraint stress and lung contusion/hemorrhagic shock/chronic restraint stress models greatly decreased HPC mobilization and restored G-CSF levels to that of naïve animals without worsening lung injury scores. The daily administration of propranolol after both lung contusion and lung contusion/hemorrhagic shock subjected to chronic restraint stress decreased the prolonged mobilization of HPC from the bone marrow and decreased plasma G-CSF levels. Despite the decrease in mobilization of HPC, lung healing did not worsen. Alleviating chronic stress with propranolol

  8. Lung function and airway inflammation in rats following exposure to combustion products of carbon-graphite/epoxy composite material: comparison to a rodent model of acute lung injury.

    PubMed

    Whitehead, Gregory S; Grasman, Keith A; Kimmel, Edgar C

    2003-02-01

    Pulmonary function and inflammation in the lungs of rodents exposed by inhalation to carbon/graphite/epoxy advanced composite material (ACM) combustion products were compared to that of a rodent model of acute lung injury (ALI) produced by pneumotoxic paraquat dichloride. This investigation was undertaken to determine if short-term exposure to ACM smoke induces ALI; and to determine if smoke-related responses were similar to the pathogenic mechanisms of a model of lung vascular injury. We examined the time-course for mechanical lung function, infiltration of inflammatory cells into the lung, and the expression of three inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Male Fischer-344 rats were either exposed to 26.8-29.8 g/m(3) nominal concentrations of smoke or were given i.p. injections of paraquat dichloride. Measurements were determined at 1, 2, 3, and 7 days post exposure. In the smoke-challenged rats, there were no changes in lung function indicative of ALI throughout the 7-day observation period, despite the acute lethality of the smoke atmosphere. However, the animals showed signs of pulmonary inflammation. The expression of TNF-alpha was significantly increased in the lavage fluid 1 day following exposure, which preceded the maximum leukocyte infiltration. MIP-2 levels were significantly increased in lavage fluid at days 2, 3, and 7. This followed the leukocyte infiltration. IFN-gamma was significantly increased in the lung tissue at day 7, which occurred during the resolution of the inflammatory response. The paraquat, which was also lethal to a small percentage of the animals, caused several physiologic changes characteristic of ALI, including significant decreases in lung compliance, lung volumes/capacities, distribution of ventilation, and gas exchange capacity. The expression of TNF-alpha and MIP-2 increased significantly in the lung tissue as well as in the

  9. Stochastic dosimetry model for radon progeny in the rat lung.

    PubMed

    Winkler-HeiI, R; Hofmann, W; Hussain, M

    2014-07-01

    The stochastic dosimetry model presented here considers the distinctly asymmetric, stochastic branching pattern reported in morphometric measurements. This monopodial structure suggests that an airway diameter is a more appropriate morphometric parameter to classify bronchial dose distributions for inhaled radon progeny than the commonly assigned airway generation numbers. Bronchial doses were calculated for the typical exposure conditions reported for the Pacific Northwest National Laboratory rat inhalation studies, yielding an average bronchial dose of 7.75 mGy WLM(-1). If plotted as functions of airway generations, the resulting dose distributions are highest in the central bronchial airways, while significantly decreasing towards peripheral generations. However, if plotted as functions of airway diameters, doses are much more uniformly distributed among bronchial airways. The comparison between rat and human lungs indicates that dose conversion coefficients for the rat lung are higher than the corresponding values for the human lung by a factor of 1.34 for the experimental PNNL exposure conditions, and of 1.25 for typical human indoor conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    PubMed

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; P<0.001) and a lower percentage of emphysema defined by lung-attenuation thresholds of -950 Hounsfield units (-3%; 95% CI, -4 to -2; P<0.001) and -910 Hounsfield units (-10%; 95% CI, -12 to -8; P<0.001). As compared with participants without interstitial lung abnormalities, those with abnormalities were more likely to have a restrictive lung deficit (total lung capacity <80% of the predicted value; odds ratio, 2.3; 95% CI, 1.4 to 3.7; P<0.001) and were less likely to meet the diagnostic criteria for chronic obstructive pulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation

  11. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs.

    PubMed

    Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C

    2017-07-01

    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Respiratory Tract Lung Geometry and Dosimetry Model for Male Sprague-Dawley Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.

    2015-07-24

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract modelmore » for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague-Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.« less

  13. Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.

    2014-08-26

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract modelmore » for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague- Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.« less

  14. US Transuranium and Uranium Registries case study on accidental exposure to uranium hexafluoride.

    PubMed

    Avtandilashvili, Maia; Puncher, Matthew; McComish, Stacey L; Tolmachev, Sergei Y

    2015-03-01

    The United States Transuranium and Uranium Registries' (USTUR) whole-body donor (Case 1031) was exposed to an acute inhalation of uranium hexafluoride (UF6) produced from an explosion at a uranium processing plant 65 years prior to his death. The USTUR measurements of tissue samples collected at the autopsy indicated long-term retention of inhaled slightly enriched uranium material (0.85% (235)U) in the deep lungs and thoracic lymph nodes. In the present study, the authors combined the tissue measurement results with historical bioassay data, and analysed them with International Commission on Radiological Protection (ICRP) respiratory tract models and the ICRP Publication 69 systemic model for uranium using maximum likelihood and Bayesian statistical methods. The purpose of the analysis was to estimate intakes and model parameter values that best describe the data, and evaluate their effect on dose assessment. The maximum likelihood analysis, which used the ICRP Publication 66 human respiratory tract model, resulted in a point estimate of 79 mg of uranium for the occupational intake composed of 86% soluble, type F material and 14% insoluble, type S material. For the Bayesian approach, the authors applied the Markov Chain Monte Carlo method, but this time used the revised human respiratory tract model, which is currently being used by ICRP to calculate new dose coefficients for workers. The Bayesian analysis estimated that the mean uranium intake was 160 mg, and calculated the case-specific lung dissolution parameters with their associated uncertainties. The parameters were consistent with the inhaled uranium material being predominantly soluble with a small but significant insoluble component. The 95% posterior range of the rapid dissolution fraction (the fraction of deposited material that is absorbed to blood rapidly) was 0.12 to 0.91 with a median of 0.37. The remaining fraction was absorbed slowly, with a 95% range of 0.000 22 d(-1) to 0.000 36

  15. Characterization and validation of the thorax phantom Lungman for dose assessment in chest radiography optimization studies.

    PubMed

    Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde

    2018-01-01

    This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.

  16. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, Wesley

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less

  17. [Development of the lung cancer diagnostic system].

    PubMed

    Lv, You-Jiang; Yu, Shou-Yi

    2009-07-01

    To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.

  18. A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing

    NASA Astrophysics Data System (ADS)

    Nordebo, Sven; Dalarsson, Mariana; Khodadad, Davood; Müller, Beat; Waldmann, Andreas D.; Becher, Tobias; Frerichs, Inez; Sophocleous, Louiza; Sjöberg, Daniel; Seifnaraghi, Nima; Bayford, Richard

    2018-05-01

    Classical homogenization theory based on the Hashin–Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples based on realistic parameter values and frequency ranges used with electrical impedance tomography (EIT). The theory may be potentially useful for imaging and clinical evaluations in connection with lung EIT for respiratory management and control.

  19. Anti-sFlt-1 Therapy Preserves Lung Alveolar and Vascular Growth in Antenatal Models of Bronchopulmonary Dysplasia.

    PubMed

    Wallace, Bradley; Peisl, Amelie; Seedorf, Gregory; Nowlin, Taylor; Kim, Christina; Bosco, Jennifer; Kenniston, Jon; Keefe, Dennis; Abman, Steven H

    2018-03-15

    Pregnancies complicated by antenatal stress, including preeclampsia (PE) and chorioamnionitis (CA), increase the risk for bronchopulmonary dysplasia (BPD) in preterm infants, but biologic mechanisms linking prenatal factors with BPD are uncertain. Levels of sFlt-1 (soluble fms-like tyrosine kinase 1), an endogenous antagonist to VEGF (vascular endothelial growth factor), are increased in amniotic fluid and maternal blood in PE and associated with CA. Because impaired VEGF signaling has been implicated in the pathogenesis of BPD, we hypothesized that fetal exposure to sFlt-1 decreases lung growth and causes abnormal lung structure and pulmonary hypertension during infancy. To test this hypothesis, we studied the effects of anti-sFlt-1 monoclonal antibody (mAb) treatment on lung growth in two established antenatal models of BPD that mimic PE and CA induced by intraamniotic (i.a.) injections of sFlt-1 or endotoxin, respectively. In experimental PE, mAb was administered by three different approaches, including antenatal treatment by either i.a. instillation or maternal uterine artery infusion, or by postnatal intraperitoneal injections. With each strategy, mAb therapy improved infant lung structure as assessed by radial alveolar count, vessel density, right ventricular hypertrophy, and lung function. As found in the PE model, the adverse lung effects of i.a. endotoxin were also reduced by antenatal or postnatal mAb therapy. We conclude that treatment with anti-sFlt-1 mAb preserves lung structure and function and prevents right ventricular hypertrophy in two rat models of BPD of antenatal stress and speculate that early mAb therapy may provide a novel strategy for the prevention of BPD.

  20. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice.

    PubMed

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu

    2016-12-01

    Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

  1. A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.

    PubMed

    Vaish, Mayank; Kleinstreuer, Clement

    2015-09-01

    Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).

  2. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  3. Predicting survival across chronic interstitial lung disease: the ILD-GAP model.

    PubMed

    Ryerson, Christopher J; Vittinghoff, Eric; Ley, Brett; Lee, Joyce S; Mooney, Joshua J; Jones, Kirk D; Elicker, Brett M; Wolters, Paul J; Koth, Laura L; King, Talmadge E; Collard, Harold R

    2014-04-01

    Risk prediction is challenging in chronic interstitial lung disease (ILD) because of heterogeneity in disease-specific and patient-specific variables. Our objective was to determine whether mortality is accurately predicted in patients with chronic ILD using the GAP model, a clinical prediction model based on sex, age, and lung physiology, that was previously validated in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis (n=307), chronic hypersensitivity pneumonitis (n=206), connective tissue disease-associated ILD (n=281), idiopathic nonspecific interstitial pneumonia (n=45), or unclassifiable ILD (n=173) were selected from an ongoing database (N=1,012). Performance of the previously validated GAP model was compared with novel prediction models in each ILD subtype and the combined cohort. Patients with follow-up pulmonary function data were used for longitudinal model validation. The GAP model had good performance in all ILD subtypes (c-index, 74.6 in the combined cohort), which was maintained at all stages of disease severity and during follow-up evaluation. The GAP model had similar performance compared with alternative prediction models. A modified ILD-GAP Index was developed for application across all ILD subtypes to provide disease-specific survival estimates using a single risk prediction model. This was done by adding a disease subtype variable that accounted for better adjusted survival in connective tissue disease-associated ILD, chronic hypersensitivity pneumonitis, and idiopathic nonspecific interstitial pneumonia. The GAP model accurately predicts risk of death in chronic ILD. The ILD-GAP model accurately predicts mortality in major chronic ILD subtypes and at all stages of disease.

  4. Prenatal administration of neuropeptide bombesin promotes lung development in a rat model of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Sakai, Kohei; Kimura, Osamu; Furukawa, Taizo; Fumino, Shigehisa; Higuchi, Koji; Wakao, Junko; Kimura, Koseki; Aoi, Shigeyoshi; Masumoto, Kouji; Tajiri, Tatsuro

    2014-12-01

    Fetal medical treatment to improve lung hypoplasia in congenital diaphragmatic hernia (CDH) has yet to be established. The neuropeptide bombesin (BBS) might play an important role in lung development. The present study aims to determine whether prenatally administered BBS could be useful to promote fetal lung development in a rat model of nitrofen-induced CDH. Pregnant rats were administered with nitrofen (100mg) on gestation day 9.5 (E9.5). BBS (50mg/kg/day) was then daily infused intraperitoneally from E14, and fetal lungs were harvested on E21. The expression of PCNA was assessed by both immunohistochemical staining and RT-PCR to determine the amount of cell proliferation. Lung maturity was assessed as the expression of TTF-1, a marker of alveolar epithelial cell type II. The lung-body-weight ratio was significantly increased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.05). The number of cells stained positive for PCNA and TTF-1 was significantly decreased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.01). The TTF-1 mRNA expression levels were significantly decreased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.05). Prenatally administered BBS promotes lung development in a rat model of nitrofen-induced CDH. Neuropeptide BBS could help to rescue lung hypoplasia in fetal CDH. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A newly developed solution enhances thirty-hour preservation in a canine lung transplantation model.

    PubMed

    Liu, C J; Ueda, M; Kosaka, S; Hirata, T; Yokomise, H; Inui, K; Hitomi, S; Wada, H

    1996-09-01

    Ischemia and reperfusion cause the production of oxygen free radicals. These damage grafts or disrupt normal vascular homeostatic mechanisms, with a parallel reduction in endothelial nitric oxide and adenosine 3',5'-cyclic monophosphate levels. We hypothesized that lung preservation failure may be related to these events. To improve lung preservation, we prepared a new ET-Kyoto solution, which contains N-acetylcysteine (a radical scavenger), nitroglycerin (to elevate the nitric oxide level), and dibutyryl adenosine 3',5'-cyclic monophosphate (to elevate the adenosine 3',5'-cyclic monophosphate level) and examined its efficacy in a canine single-lung transplantation model. Lungs were flushed with new ET-Kyoto solution (group I, n = 9), basal ET-Kyoto solution (group II, n = 6), basal ET-Kyoto solution plus ethanol and propylene glycol (solvents of nitroglycerin; group III, n = 6), or low-potassium dextran glucose solution (group IV, n = 6), and stored at 4 degrees C for 30 hours. After left single-lung transplantation, the right main bronchus and right pulmonary artery were ligated and the functions of the transplanted lung were assessed for 6 hours. Arterial oxygen tension was significantly higher in group I than in groups II, III, and IV (p < 0.05). Peak inspiratory pressure and wet-to-dry lung weight ratio were significantly lower in group I than in groups II and IV (p < 0.01). Histologic and ultrastructural studies showed better preservation in group I than in groups II, III, and IV. We conclude that the new ET-Kyoto solution provides enhanced 30-hour lung preservation.

  6. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  7. A comprehensive computational human lung model incorporating inter-acinar dependencies: Application to spontaneous breathing and mechanical ventilation.

    PubMed

    Roth, Christian J; Ismail, Mahmoud; Yoshihara, Lena; Wall, Wolfgang A

    2017-01-01

    In this article, we propose a comprehensive computational model of the entire respiratory system, which allows simulating patient-specific lungs under different ventilation scenarios and provides a deeper insight into local straining and stressing of pulmonary acini. We include novel 0D inter-acinar linker elements to respect the interplay between neighboring alveoli, an essential feature especially in heterogeneously distended lungs. The model is applicable to healthy and diseased patient-specific lung geometries. Presented computations in this work are based on a patient-specific lung geometry obtained from computed tomography data and composed of 60,143 conducting airways, 30,072 acini, and 140,135 inter-acinar linkers. The conducting airways start at the trachea and end before the respiratory bronchioles. The acini are connected to the conducting airways via terminal airways and to each other via inter-acinar linkers forming a fully coupled anatomically based respiratory model. Presented numerical examples include simulation of breathing during a spirometry-like test, measurement of a quasi-static pressure-volume curve using a supersyringe maneuver, and volume-controlled mechanical ventilation. The simulations show that our model incorporating inter-acinar dependencies successfully reproduces physiological results in healthy and diseased states. Moreover, within these scenarios, a deeper insight into local pressure, volume, and flow rate distribution in the human lung is investigated and discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  9. Double-hit mouse model of cigarette smoke priming for acute lung injury.

    PubMed

    Sakhatskyy, Pavlo; Wang, Zhengke; Borgas, Diana; Lomas-Neira, Joanne; Chen, Yaping; Ayala, Alfred; Rounds, Sharon; Lu, Qing

    2017-01-01

    Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS). C57BL/6 and AKR mice were preexposed to CS briefly (3 h) or subacutely (3 wk) before intratracheal instillation of LPS and ALI was assessed 18 h after LPS administration by measuring lung static compliance, lung edema, vascular permeability, inflammation, and alveolar apoptosis. We found that as little as 3 h of exposure to CS enhanced LPS-induced ALI in both strains of mice. Similar exacerbating effects were observed after 3 wk of preexposure to CS. However, there was a strain difference in susceptibility to CS priming for ALI, with a greater effect in AKR mice. The key features we observed suggest that 3 wk of CS preexposure of AKR mice is a reproducible, clinically relevant animal model that is useful for studying mechanisms and treatment of CS priming for a second-hit-induced ALI. Our data also support the concept that increased susceptibility to ALI/ARDS is an important adverse health consequence of CS exposure that needs to be taken into consideration when treating critically ill individuals.

  10. Double-hit mouse model of cigarette smoke priming for acute lung injury

    PubMed Central

    Sakhatskyy, Pavlo; Wang, Zhengke; Borgas, Diana; Lomas-Neira, Joanne; Chen, Yaping; Ayala, Alfred; Rounds, Sharon

    2016-01-01

    Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS). C57BL/6 and AKR mice were preexposed to CS briefly (3 h) or subacutely (3 wk) before intratracheal instillation of LPS and ALI was assessed 18 h after LPS administration by measuring lung static compliance, lung edema, vascular permeability, inflammation, and alveolar apoptosis. We found that as little as 3 h of exposure to CS enhanced LPS-induced ALI in both strains of mice. Similar exacerbating effects were observed after 3 wk of preexposure to CS. However, there was a strain difference in susceptibility to CS priming for ALI, with a greater effect in AKR mice. The key features we observed suggest that 3 wk of CS preexposure of AKR mice is a reproducible, clinically relevant animal model that is useful for studying mechanisms and treatment of CS priming for a second-hit-induced ALI. Our data also support the concept that increased susceptibility to ALI/ARDS is an important adverse health consequence of CS exposure that needs to be taken into consideration when treating critically ill individuals. PMID:27864287

  11. Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.

    PubMed

    Parker, J C; Miniati, M; Pitt, R; Taylor, A E

    1987-01-01

    A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.

  12. The Effects of Smoking on the Developing Lung: Insights from a Biologic Model for Lung Development, Homeostasis, and Repair

    PubMed Central

    Asotra, Kamlesh; Torday, John S.

    2010-01-01

    There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)γ, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPARγ expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations. PMID:19641967

  13. Creation of Lung-Targeted Dexamethasone Immunoliposome and Its Therapeutic Effect on Bleomycin-Induced Lung Injury in Rats

    PubMed Central

    Li, Nan; Hu, Yang; Zhang, Yuan; Xu, Jin-Fu; Li, Xia; Ren, Jie; Su, Bo; Yuan, Wei-Zhong; Teng, Xin-Rong; Zhang, Rong-Xuan; Jiang, Dian-hua; Mulet, Xavier; Li, Hui-Ping

    2013-01-01

    Objective Acute lung injury (ALI), is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM)-loaded immunoliposome (NLP) functionalized with pulmonary surfactant protein A (SP-A) antibody (SPA-DXM-NLP) in an animal model. Methods DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. Results The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. Conclusions The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice. PMID:23516459

  14. Maternal inflammation modulates infant immune response patterns to viral lung challenge in a murine model.

    PubMed

    Gleditsch, Dorothy D; Shornick, Laurie P; Van Steenwinckel, Juliette; Gressens, Pierre; Weisert, Ryan P; Koenig, Joyce M

    2014-07-01

    Chorioamnionitis, an inflammatory gestational disorder, commonly precedes preterm delivery. Preterm infants may be at particular risk for inflammation-related morbidity related to infection, although the pathogenic mechanisms are unclear. We hypothesized that maternal inflammation modulates immune programming to drive postnatal inflammatory processes. We used a novel combined murine model to treat late gestation dams with low-dose lipopolysaccharide (LPS) and to secondarily challenge exposed neonates or weanlings with Sendai virus (SeV) lung infection. Multiple organs were analyzed to characterize age-specific postnatal immune and inflammatory responses. Maternal LPS treatment enhanced innate immune populations in the lungs, livers, and/or spleens of exposed neonates or weanlings. Secondary lung SeV infection variably affected neutrophil, macrophage, and dendritic cell proportions in multiple organs of exposed pups. Neonatal lung infection induced brain interleukin (IL)-4 expression, although this response was muted in LPS-exposed pups. Adaptive immune cells, including lung, lymph node, and thymic lymphocytes and lung CD4 cells expressing FoxP3, interferon (IFN)-γ, or IL-17, were variably prominent in LPS-exposed pups. Maternal inflammation modifies postnatal immunity and augments systemic inflammatory responses to viral lung infection in an age-specific manner. We speculate that inflammatory modulation of the developing immune system contributes to chronic morbidity and mortality in preterm infants.

  15. Controlled lung reperfusion to reduce pulmonary ischaemia/reperfusion injury after cardiopulmonary bypass in a porcine model.

    PubMed

    Slottosch, Ingo; Liakopoulos, Oliver; Kuhn, Elmar; Deppe, Antje; Lopez-Pastorini, Alberto; Schwarz, David; Neef, Klaus; Choi, Yeong-Hoon; Sterner-Kock, Anja; Jung, Kristina; Mühlfeld, Christian; Wahlers, Thorsten

    2014-12-01

    Ischaemia/reperfusion (I/R) injury of the lungs contributes to pulmonary dysfunction after cardiac surgery with cardiopulmonary bypass (CPB), leading to increased morbidity and mortality of patients. This study investigated the value of controlled lung reperfusion strategies on lung ischaemia-reperfusion injury in a porcine CPB model. Pigs were subjected to routine CPB for 120 min with 60 min of blood cardioplegic cardiac arrest (CCA). Following CCA, the uncontrolled reperfusion (UR, n = 6) group was conventionally weaned from CPB. Two groups underwent controlled lung reperfusion strategies (CR group: controlled reperfusion conditions, n = 6; MR group: controlled reperfusion conditions and modified reperfusate, n = 6) via the pulmonary artery before CPB weaning. Sham-operated pigs (n = 7) served as controls. Animals were followed up until 4 h after CPB. Pulmonary function, haemodynamics, markers of inflammation, endothelial injury and oxidative stress as well as morphological lung alterations were analysed. CPB (UR group) induced deterioration of pulmonary function (lung mechanics, oxygenation index and lung oedema). Also, controlled lung reperfusion groups (CR and MR) presented with pulmonary dysfunction after CPB. However, compared with UR, controlled lung reperfusion strategies (CR and MR) improved lung mechanics and reduced markers of oxidative stress, but without alteration of haemodynamics, oxygenation, inflammation, endothelial injury and lung morphology. Both controlled reperfusion groups were similar without relevant differences. Controlled lung reperfusion strategies attenuated a decrease in lung mechanics and an increase in oxidative stress, indicating an influence on CPB-related pulmonary injury. However, they failed to avoid completely CPB-related lung injury, implying the need for additional strategies given the multifactorial pathophysiology of postoperative pulmonary dysfunction. © The Author 2014. Published by Oxford University Press on behalf of

  16. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    PubMed

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  17. Human fetal lung morphometry at autopsy with new modeling to quantitate structural maturity.

    PubMed

    Lipsett, Jill

    2017-06-01

    To demonstrate a simplified morphometric procedure, including a new model for acinar structural maturity, applicable to autopsy fetal lung and present reference values for these parameters. Cases with autopsy consent for research were studied. To simplify analysis only critical morphometric parameters were measured to allow calculation of gas-exchange surface area. A total of 58 fetuses, 16-40 weeks were included. Subjects were rejected with any condition predisposing to pulmonary hypo/hyperplasia, significant maceration, or if lung weight/bodyweight or microscopy identified pulmonary hypoplasia or lung growth disorders. Lungs were inflation fixed, weights and volumes determined, sampled, then returned to the body. Volume densities (V V ) of parenchyma/non-parenchyma and air-space/gas-exchange tissue, gas-exchange surface density (S V ), and total surface area (SA) were determined. The number, mean radius, and septal thickness of modeled airspace-spheres were calculated. Equations were generated for each parameter function of gestation and bodyweight. From 16 to 40-week weights and volumes increased as power functions from ∼4 g/mL to ∼90 g/mL. Parenchyma/non-parenchyma changed little-75:25 (16 weeks) to 71:29 (term). Parenchyma was 10% airspace:90% tissue early and 50:50 by term. Gas-exchange S V increased from 175 to 450 cm 2 /cm 3 and total SA increased from 0.059 to 4.793 m 2 . There were 3.31 × 10 6 airspace-spheres, 12 µ radius, septal thickness 30 µ at 16 weeks, increasing to 56.92 × 10 6 , 26 µ radius, septal thickness 13 µ by term. Morphometry can feasibly be performed at autopsy, providing more informative quantitative data on lung structural development than current methods utilized. This reference data set compares well with published data. © 2017 Wiley Periodicals, Inc.

  18. Shrinking lung syndrome as a manifestation of pleuritis: a new model based on pulmonary physiological studies.

    PubMed

    Henderson, Lauren A; Loring, Stephen H; Gill, Ritu R; Liao, Katherine P; Ishizawar, Rumey; Kim, Susan; Perlmutter-Goldenson, Robin; Rothman, Deborah; Son, Mary Beth F; Stoll, Matthew L; Zemel, Lawrence S; Sandborg, Christy; Dellaripa, Paul F; Nigrovic, Peter A

    2013-03-01

    The pathophysiology of shrinking lung syndrome (SLS) is poorly understood. We sought to define the structural basis for this condition through the study of pulmonary mechanics in affected patients. Since 2007, most patients evaluated for SLS at our institutions have undergone standardized respiratory testing including esophageal manometry. We analyzed these studies to define the physiological abnormalities driving respiratory restriction. Chest computed tomography data were post-processed to quantify lung volume and parenchymal density. Six cases met criteria for SLS. All presented with dyspnea as well as pleurisy and/or transient pleural effusions. Chest imaging results were free of parenchymal disease and corrected diffusing capacities were normal. Total lung capacities were 39%-50% of predicted. Maximal inspiratory pressures were impaired at high lung volumes, but not low lung volumes, in 5 patients. Lung compliance was strikingly reduced in all patients, accompanied by increased parenchymal density. Patients with SLS exhibited symptomatic and/or radiographic pleuritis associated with 2 characteristic physiological abnormalities: (1) impaired respiratory force at high but not low lung volumes; and (2) markedly decreased pulmonary compliance in the absence of identifiable interstitial lung disease. These findings suggest a model in which pleural inflammation chronically impairs deep inspiration, for example through neural reflexes, leading to parenchymal reorganization that impairs lung compliance, a known complication of persistently low lung volumes. Together these processes could account for the association of SLS with pleuritis as well as the gradual symptomatic and functional progression that is a hallmark of this syndrome.

  19. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  20. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  1. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.

    PubMed

    Wang, Shuo; Zhou, Mu; Liu, Zaiyi; Liu, Zhenyu; Gu, Dongsheng; Zang, Yali; Dong, Di; Gevaert, Olivier; Tian, Jie

    2017-08-01

    Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach combines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where training samples are selected according to their degree of segmentation difficulty. The proposed method has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, showing a difference in average dice score of only 1.98%. Copyright © 2017. Published by Elsevier B.V.

  2. Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery.

    PubMed

    Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi

    2013-01-01

    The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.

  3. Determination of the solubility and size distribution of radioactive aerosols in the uranium processing plant at NRCN.

    PubMed

    Kravchik, T; Oved, S; Paztal-Levy, O; Pelled, O; Gonen, R; German, U; Tshuva, A

    2008-01-01

    Inhalation is the main route of internal exposure to radioactive aerosols in the nuclear industry. To assess the radiation dose from the intake of these aerosols, it is necessary to know their physical (aerodynamic diameter distribution) and chemical (dissolution rate in extracellular lung fluid) characteristics. Air samples were taken from the uranium processing plant at the Nuclear Research Center, Negev. Measurements of aerodynamic diameter distribution using a cascade impactor indicated an average activity median aerodynamic diameter value close to 5 microm, in accordance with the recent recommended values of International Commission on Radiological Protection (ICRP) model. Solubility profiles of these aerosols were determined by performing in vitro solubility tests over 100 d in a simultant solution of the extracellular fluid. The tests indicated that the uranium aerosols should be assigned to an absorption between Types M and S (as defined by the ICRP Publication 66 model).

  4. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  5. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  6. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    PubMed

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  7. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    PubMed Central

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  8. The Emulsified PFC Oxycyte® Improved Oxygen Content and Lung Injury Score in a Swine Model of Oleic Acid Lung Injury (OALI).

    PubMed

    Haque, Ashraful; Scultetus, Anke H; Arnaud, Francoise; Dickson, Leonora J; Chun, Steve; McNamee, George; Auker, Charles R; McCarron, Richard M; Mahon, Richard T

    2016-12-01

    Perfluorocarbons (PFCs) can transport 50 times more oxygen than human plasma. Their properties may be advantageous in preservation of tissue viability in oxygen-deprived states, such as in acute lung injury. We hypothesized that an intravenous dose of the PFC emulsion Oxycyte ® would improve tissue oxygenation and thereby mitigate the effects of acute lung injury. Intravenous oleic acid (OA) was used to induce lung injury in anesthetized and instrumented Yorkshire swine assigned to three experimental groups: (1) PFC post-OA received Oxycyte ® (5 ml/kg) 45 min after oleic acid-induced lung injury (OALI); (2) PFC pre-OA received Oxycyte ® 45 min before OALI; and (3) Controls which received equivalent dose of normal saline. Animals were observed for 3 h after OALI began, and then euthanized. The median survival times for PFC post-OA, PFC pre-OA, and control were 240, 87.5, and 240 min, respectively (p = 0.001). Mean arterial pressure and mean pulmonary arterial pressure were both higher in the PFC post-OA (p < 0.001 for both parameters). Oxygen content was significantly different between PFC post-OA and the control (p = 0.001). Histopathological grading of lung injury indicated that edema and congestion was significantly less severe in the PFC post-OA compared to control (p = 0.001). The intravenous PFC Oxycyte ® improves blood oxygen content and lung histology when used as a treatment after OALI, while Oxycyte ® used prior to OALI was associated with increased mortality. Further exploration in other injury models is indicated.

  9. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    NASA Astrophysics Data System (ADS)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  10. Potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2014-03-01

    In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.

  11. Immunomodulatory Effects of Mixed Hematopoietic Chimerism: Immune Tolerance in Canine Model of Lung Transplantation

    PubMed Central

    Nash;, Richard A.; Yunosov;, Murad; Abrams;, Kraig; Hwang;, Billanna; Castilla-Llorente;, Cristina; Chen;, Peter; Farivar;, Alexander S.; Georges;, George E.; Hackman;, Robert C.; Lamm;, Wayne J.E.; Lesnikova;, Marina; Ochs;, Hans D.; Randolph-Habecker;, Julie; Ziegler;, Stephen F.; Storb;, Rainer; Storer;, Barry; Madtes;, David K.; Glenny;, Robb; Mulligan, Michael S.

    2010-01-01

    Long-term survival after lung transplantation is limited by acute and chronic graft rejection. Induction of immune tolerance by first establishing mixed hematopoietic chimerism (MC) is a promising strategy to improve outcomes. In a preclinical canine model, stable MC was established in recipients after reduced-intensity conditioning and hematopoietic cell transplantation from a DLA-identical donor. Delayed lung transplantation was performed from the stem cell donor without pharmacological immunosuppression. Lung graft survival without loss of function was prolonged in chimeric (n=5) vs. nonchimeric (n=7) recipients (p≤0.05, Fisher’s test). There were histological changes consistent with low grade rejection in 3/5 of the lung grafts in chimeric recipients at ≥1 year. Chimeric recipients after lung transplantation had a normal immune response to a T-dependent antigen. Compared to normal dogs, there were significant increases of CD4+INFγ+, CD4+IL-4+ and CD8+ INFγ+ T-cell subsets in the blood (p <0.0001 for each of the 3 T-cell subsets). Markers for regulatory T-cell subsets including foxP3, IL10 and TGFβ were also increased in CD3+ T cells from the blood and peripheral tissues of chimeric recipients after lung transplantation. Establishing MC is immunomodulatory and observed changes were consistent with activation of both the effector and regulatory immune response. PMID:19422333

  12. [Water-cooled laser sealing of lung tissue in an ex-vivo ventilated porcine lung model].

    PubMed

    Tonoyan, T; Prisadov, G; Menges, P; Herrmann, K; Bobrov, P; Linder, A

    2014-06-01

    Laser resections of lung metastases are followed by air leaks from the parenchymal defect. Large surfaces after metastasectomy are closed by sutures or sealants while smaller areas are frequently sealed thermally by cautery or laser. In this study two different techniques of thermal sealing of lung tissue with laser light are investigated. Carbonisation of lung tissue during thermal sealing appears at temperatures higher than 180 °C. Hypothetically this is contraproductive to haemo- as well as to pneumostasis. In this experimental study thermal laser sealing with and without carbonisation is investigated. In one series tissue temperatures higher than 100 °C are avoided by water dropping from the tip of the light guide onto the parenchymal leak. In the other series carbonisation appeared because the laser light was applied in the non-contact mode without tissue cooling. The characteristics of the laser were 40 W, 1350 nm continuous mode. Air leaks (Vt) were measured with a simple and fast technique with high precision. The sealing effect of either series was defined as S = (1-Vt/V0) and the difference of S was statistically examined. The basic values V0 before sealing were about the same in both series. The air leaks Vt after 15, 30 and 45 s of sealing varied significantly in both series (p = 0.03). During simultaneous cooling the sealing effect was increasing with the duration of laser application, while it became worse in the series without cooling. Histological examination of the sealing zone showed only coagulation of the tissue, while ruptured alveolae could be seen more often in the non-cooled sealing area. It could be shown in the ex-vivo lung model that laser sealing of parenchymal leaks is improved by simultaneous cooling during laser application. Non cooled laser sealing seems to heat up the tissue abruptly and create carbonisation followed by multiple ruptures of alveola and small airways. In accordance with our clinical experience this

  13. Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2

    DOE PAGES

    Leggett, Richard W.

    2017-03-02

    Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less

  14. Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard W.

    Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less

  15. Computed tomography screening for lung cancer: results of ten years of annual screening and validation of cosmos prediction model.

    PubMed

    Veronesi, G; Maisonneuve, P; Rampinelli, C; Bertolotti, R; Petrella, F; Spaggiari, L; Bellomi, M

    2013-12-01

    It is unclear how long low-dose computed tomographic (LDCT) screening should continue in populations at high risk of lung cancer. We assessed outcomes and the predictive ability of the COSMOS prediction model in volunteers screened for 10 years. Smokers and former smokers (>20 pack-years), >50 years, were enrolled over one year (2000-2001), receiving annual LDCT for 10 years. The frequency of screening-detected lung cancers was compared with COSMOS and Bach risk model estimates. Among 1035 recruited volunteers (71% men, mean age 58 years) compliance was 65% at study end. Seventy-one (6.95%) lung cancers were diagnosed, 12 at baseline. Disease stage was: IA in 48 (66.6%); IB in 6; IIA in 5; IIB in 2; IIIA in 5; IIIB in 1; IV in 5; and limited small cell cancer in 3. Five- and ten-year survival were 64% and 57%, respectively, 84% and 65% for stage I. Ten (12.1%) received surgery for a benign lesion. The number of lung cancers detected during the first two screening rounds was close to that predicted by the COSMOS model, while the Bach model accurately predicted frequency from the third year on. Neither cancer frequency nor proportion at stage I decreased over 10 years, indicating that screening should not be discontinued. Most cancers were early stage, and overall survival was high. Only a limited number of invasive procedures for benign disease were performed. The Bach model - designed to predict symptomatic cancers - accurately predicted cancer frequency from the third year, suggesting that overdiagnosis is a minor problem in lung cancer screening. The COSMOS model - designed to estimate screening-detected lung cancers - accurately predicted cancer frequency at baseline and second screening round. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    PubMed Central

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  17. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    USDA-ARS?s Scientific Manuscript database

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  18. Neonatal lungs: maturational changes in lung resistivity spectra.

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-09-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Electrical impedance tomographic measurements have been used on 155 normal children over the first three years of life and 25 pre-term infants, to determine the absolute resistivity of lung tissue as a function of frequency. The results show consistent changes with increasing age in both lung tissue resistivity (5.8 ohm m at birth to 20.9 ohm m at 3 years of age) and in the changes of resistivity with frequency (Cole parameter ratio R/S=0.41 at birth and 0.84 at 3 years of age). Comparison with a lung model showed that the measurements are consistent with maturational changes in the number and size of alveoli, the extracapillary blood volume and the size of the extracapillary vessels. However, the results show that the process of maturation is not complete at the age of three years.

  19. A three-compartment model of osmotic water exchange in the lung microvasculature.

    PubMed

    Seale, K T; Harris, T R

    2000-08-01

    A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.

  20. A one-dimensional model for the propagation of transient pressure waves through the lung.

    PubMed

    Grimal, Quentin; Watzky, Alexandre; Naili, Salah

    2002-08-01

    The propagation of pressure waves in the lung has been investigated by many authors concerned with respiratory physiology, ultrasound medical techniques or thoracic impact injuries. In most of the theoretical studies, the lung has been modeled as an isotropic and homogeneous medium, and by using Hooke's constitutive law (see e.g. Ganesan et al. Respir. Physiol. 110 (1997) 19; Jahed et al. J. Appl. Physiol. 66 (1989) 2675; Grimal et al. C.R. Acad. Sci., Paris 329 (IIb) (2001) 655-662), or more elaborated material laws (see, e.g. Bush and Challener (Proceedings of the International Research Council on Biokinetics Impacts (IRCOBI), Bergish-gladbach, 1988); Stuhmiller et al. J. Trauma 28 (1988) S132; Yang and Wang, Finite element modeling of the human thorax. Web page: http://wwwils.nlm.nih.gov/research/visible/vhpconf98/AUTHORS/YANG/YANG.HTM.). The hypothesis of homogeneous medium may be inappropriate for certain problems. Because of its foam-like structure, the behavior of the lung-even if the air and the soft tissue are assumed to behave like linearly elastic materials-is susceptible to be frequency dependent. In the present study, the lung is viewed as a one-dimensional stack of air and soft tissue layers; wave propagation in such a stack can be investigated in an equivalent mass-spring chain (El-Raheb (J. Acoust. Soc. Am. 94 (1993) 172; Int. J. Solids Struct. 34 (1997) 2969), where the masses and springs, respectively, represent the alveolar walls and alveolar gas. Results are presented in the time and frequency domains. The frequency dependence (cutoff frequency, variations in phase velocity) of the lung model is found to be highly dependent on the mean alveolar size. We found that short pulses induced by high velocity impacts (bullet stopped by a bulletproof jacket) can be highly distorted during the propagation. The pressure differential between two alveoli is discussed as a possible injury criterion.

  1. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    PubMed

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  3. Cost-effectiveness of gemcitabine in stage IV non-small cell lung cancer: an estimate using the Population Health Model lung cancer module.

    PubMed

    Evans, W K

    1997-04-01

    Statistics Canada (Ottawa, Ontario, Canada) is in the process of developing the Population Health Model to simulate the health and common illnesses of Canadians. The Population Health Model incorporates a lung cancer module that is based on contemporary Canadian practice. This microsimulation model can be used to estimate the total direct care costs of treating all lung cancer cases diagnosed in Canada and to evaluate the cost and cost-effectiveness of new therapeutic interventions as they are introduced into practice. Gemcitabine, a new nucleoside analogue with a broad spectrum of antitumor activity, is about to be introduced on the Canadian market. The Population Health Model has been used to estimate the cost-effectiveness of gemcitabine in the management of lung cancer over a range of drug doses per treatment cycle starting at 1,000 mg/m2 weekly x 3, as well as potential survival benefits. The survival of stage IV non-small cell lung cancer (NSCLC) patients treated on an international trial of gemcitabine (EO-18) was used to estimate the potential survival gain relative to the survival of stage IV NSCLC patients managed with best supportive care on a randomized trial conducted by the National Cancer Institute of Canada (BR 5). Sensitivity analyses were performed assuming that the survival gain was 25% or 50% less than that reported in the EO-18 trial. The perspective of the economic analysis is that of the government as payer in a universal health care system, and all costs are expressed in 1993 Canadian dollars. Based on the apparent survival advantage of the EO-18 trial in comparison to best supportive care, the cost per life-year gained ranged from $632 to $9,285, depending on the dose per treatment cycle. At the highest dose per cycle (2,000 mg/m2) and with survival reduced by 50% as compared with the EO-18 result, the cost per life-year gained was estimated to be $17,390. From these estimates of direct care costs in the Canadian health care system

  4. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection.

    PubMed

    Song, Z; Johansen, H K; Moser, C; Høiby, N

    1996-05-01

    The aim of the study was to evaluate the effects of two kinds of Chinese medicinal herbs, Isatis tinctoria L (ITL) and Daphne giraldii Nitsche (DGN), on a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF). Compared to the control group, both drugs were able to reduce the incidence of lung abscess (p < 0.05) and to decrease the severity of the macroscopic pathology in lungs (p < 0.05). In the great majority of the rats, the herbs altered the inflammatory response in the lungs from an acute type inflammation, dominated by polymorphonuclear leukocytes (PMN), to a chronic type inflammation, dominated by mononuclear leukocytes (MN). DGN also improved the clearance of P. aeruginosa from the lungs (p < 0.03) compared with the control group. There were no significant differences between the control group and the two herbal groups with regard to serum IgG and IgA anti-P. aeruginosa sonicate antibodies. However, the IgM concentration in the ITL group was significantly lower than in the control group (p < 0.03). These results suggest that the two medicinal herbs might be helpful to CF patients with chronic P. aeruginosa lung infection, DGN being the most favorable.

  5. Can Stem Cells be Used to Generate New Lungs? Ex Vivo Lung Bioengineering with Decellularized Whole Lung Scaffolds

    PubMed Central

    Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.

    2013-01-01

    For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471

  6. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less

  7. Rebuilding the Injured Lung

    PubMed Central

    2015-01-01

    The 57th annual Thomas L. Petty Aspen Lung Conference, entitled “Rebuilding the Injured Lung,” was held from June 4 to 7, 2014 at the Gant Conference Center in Aspen, Colorado. Investigators from a wide range of disciplines and perspectives convened to discuss the biology of lung injury, how the lung repairs itself, how and why repair fails, and how the repair process can be enhanced. Among the challenges identified in the course of the conference was how to develop more predictive experimental models that capture the multidimensional complexity of lung injury and repair in a tractable manner. From such approaches that successfully fuse the biological and physical sciences, the group envisioned that new therapies for acute and chronic lung injury would emerge. The discussion of experimental therapeutics ranged from pharmaceuticals and cells that interdict fibrosis and enhance repair to a de novo lung derived from stem cells repopulating a decellularized matrix. PMID:25830839

  8. Radiobiological modeling of two stereotactic body radiotherapy schedules in patients with stage I peripheral non-small cell lung cancer.

    PubMed

    Huang, Bao-Tian; Lin, Zhu; Lin, Pei-Xian; Lu, Jia-Yang; Chen, Chuang-Zhen

    2016-06-28

    This study aims to compare the radiobiological response of two stereotactic body radiotherapy (SBRT) schedules for patients with stage I peripheral non-small cell lung cancer (NSCLC) using radiobiological modeling methods. Volumetric modulated arc therapy (VMAT)-based SBRT plans were designed using two dose schedules of 1 × 34 Gy (34 Gy in 1 fraction) and 4 × 12 Gy (48 Gy in 4 fractions) for 19 patients diagnosed with primary stage I NSCLC. Dose to the gross target volume (GTV), planning target volume (PTV), lung and chest wall (CW) were converted to biologically equivalent dose in 2 Gy fraction (EQD2) for comparison. Five different radiobiological models were employed to predict the tumor control probability (TCP) value. Three additional models were utilized to estimate the normal tissue complication probability (NTCP) value for the lung and the modified equivalent uniform dose (mEUD) value to the CW. Our result indicates that the 1 × 34 Gy dose schedule provided a higher EQD2 dose to the tumor, lung and CW. Radiobiological modeling revealed that the TCP value for the tumor, NTCP value for the lung and mEUD value for the CW were 7.4% (in absolute value), 7.2% (in absolute value) and 71.8% (in relative value) higher on average, respectively, using the 1 × 34 Gy dose schedule.

  9. [The efficacy of traditional Chinese medicin in animal model of lung injury induced by paraquat: a meta-analysis].

    PubMed

    Wang, Lei; Hong, Guangliang; Li, Dong; Chen, Xiao; Han, Wenwen; Lu, Zhongqiu

    2014-06-01

    To systematically review the effect of traditional Chinese medicine (TCM) in an animal model of lung injury induced by paraquat (PQ), and to provide a theoretical basis for future clinical trials. The Wanfang, CNKI, VIP, PubMed/MEDLINE, EMBASE database (from January 1979 to September 2012) were searched. All papers concerning TCM in animal model of lung injury induced by PQ were retrieved. Study selection and data extraction were performed on the basis of Cochrane systematic review methods. Weighted mean difference (WMD) and 95% confidence interval (95%CI) with random effects model was adopted to investigate the effect of TCM on lung injury induced by PQ. Eighteen papers involving 1 188 rats met our criteria. Meta-analysis showed that TCM could improve the lung coefficiency (WMD -0.07, 95%CI -0.14 to -0.01, P=0.03), reduce lung wet/dry weight ratio (WMD -1.15, 95%CI -2.03 to -0.27, P=0.01), increase the serum superoxide dismutase (SOD) activity (WMD 56.08, 95%CI 23.46 to 88.70, P=0.000 8), improve plasma glutathione peroxidase (GSH-Px) level (WMD 26.64, 95%CI 18.95 to 34.33, P<0.000 01), and lower serum malondialdehyde(MDA) level (WMD -0.65, 95%CI -1.00 to -0.30, P=0.000 2), however there was no significant difference in the level of serum tumor necrosis factor-α (TNF-α) and hydroxyproline(HYP) level between TCM and controls (TNF-α: WMD -25.15, 95%CI -54.87 to 4.57, P=0.10; HYP: WMD -0.11, 95%CI -2.71 to 0.48, P=0.17). These findings demonstrate the efficacy of TCM in animal models of lung injury induced by PQ. However taking account of heterogeneity, the efficacy should be interpreted with caution.

  10. Aerobic Exercise Decreases Lung Inflammation by IgE Decrement in an OVA Mice Model.

    PubMed

    Camargo Hizume-Kunzler, Deborah; Greiffo, Flavia R; Fortkamp, Bárbara; Ribeiro Freitas, Gabriel; Keller Nascimento, Juliana; Regina Bruggemann, Thayse; Melo Avila, Leonardo; Perini, Adenir; Bobinski, Franciane; Duarte Silva, Morgana; Rocha Lapa, Fernanda; Paula Vieira, Rodolfo; Vargas Horewicz, Verônica; Soares Dos Santos, Adair Roberto; Cattelan Bonorino, Kelly

    2017-06-01

    Aerobic exercise (AE) reduces lung function decline and risk of exacerbations in asthmatic patients. However, the inflammatory lung response involved in exercise during the sensitization remains unclear. Therefore, we evaluated the effects of exercise for 2 weeks in an experimental model of sensitization and single ovalbumin-challenge. Mice were divided into 4 groups: mice non-sensitized and not submitted to exercise (Sedentary, n=10); mice non-sensitized and submitted to exercise (Exercise, n=10); mice sensitized and exposed to ovalbumin (OVA, n=10); and mice sensitized, submitted to exercise and exposed to OVA (OVA+Exercise, n=10). 24 h after the OVA/saline exposure, we counted inflammatory cells from bronchoalveolar fluid (BALF), lung levels of total IgE, IL-4, IL-5, IL-10 and IL-1ra, measurements of OVA-specific IgG1 and IgE, and VEGF and NOS-2 expression via western blotting. AE reduced cell counts from BALF in the OVA group (p<0.05), total IgE, IL-4 and IL-5 lung levels and OVA-specific IgE and IgG1 titers (p<0.05). There was an increase of NOS-2 expression, IL-10 and IL-1ra lung levels in the OVA groups (p<0.05). Our results showed that AE attenuated the acute lung inflammation, suggesting immunomodulatory properties on the sensitization process in the early phases of antigen presentation in asthma. © Georg Thieme Verlag KG Stuttgart · New York.

  11. A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features

    PubMed Central

    Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying

    2016-01-01

    Aims To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. Methods and Results We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Conclusions Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases. PMID:27648828

  12. A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features.

    PubMed

    Zhou, Jianya; Zhao, Jing; Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying

    2016-01-01

    To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases.

  13. A Validated Clinical Risk Prediction Model for Lung Cancer in Smokers of All Ages and Exposure Types: A HUNT Study.

    PubMed

    Markaki, Maria; Tsamardinos, Ioannis; Langhammer, Arnulf; Lagani, Vincenzo; Hveem, Kristian; Røe, Oluf Dimitri

    2018-05-01

    Lung cancer causes >1·6 million deaths annually, with early diagnosis being paramount to effective treatment. Here we present a validated risk assessment model for lung cancer screening. The prospective HUNT2 population study in Norway examined 65,237 people aged >20years in 1995-97. After a median of 15·2years, 583 lung cancer cases had been diagnosed; 552 (94·7%) ever-smokers and 31 (5·3%) never-smokers. We performed multivariable analyses of 36 candidate risk predictors, using multiple imputation of missing data and backwards feature selection with Cox regression. The resulting model was validated in an independent Norwegian prospective dataset of 45,341 ever-smokers, in which 675 lung cancers had been diagnosed after a median follow-up of 11·6years. Our final HUNT Lung Cancer Model included age, pack-years, smoking intensity, years since smoking cessation, body mass index, daily cough, and hours of daily indoors exposure to smoke. External validation showed a 0·879 concordance index (95% CI [0·866-0·891]) with an area under the curve of 0·87 (95% CI [0·85-0·89]) within 6years. Only 22% of ever-smokers would need screening to identify 81·85% of all lung cancers within 6years. Our model of seven variables is simple, accurate, and useful for screening selection. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  15. Local Origin of Mesenchymal Cells in a Murine Orthotopic Lung Transplantation Model of Bronchiolitis Obliterans

    PubMed Central

    Mimura, Takeshi; Walker, Natalie; Aoki, Yoshiro; Manning, Casey M.; Murdock, Benjamin J.; Myers, Jeffery L.; Lagstein, Amir; Osterholzer, John J.; Lama, Vibha N.

    2016-01-01

    Bronchiolitis obliterans is the leading cause of chronic graft failure and long-term mortality in lung transplant recipients. Here, we used a novel murine model to characterize allograft fibrogenesis within a whole-lung microenvironment. Unilateral left lung transplantation was performed in mice across varying degrees of major histocompatibility complex mismatch combinations. B6D2F1/J (a cross between C57BL/6J and DBA/2J) (Haplotype H2b/d) lungs transplanted into DBA/2J (H2d) recipients were identified to show histopathology for bronchiolitis obliterans in all allogeneic grafts. Time course analysis showed an evolution from immune cell infiltration of the bronchioles and vessels at day 14, consistent with acute rejection and lymphocytic bronchitis, to subepithelial and intraluminal fibrotic lesions of bronchiolitis obliterans by day 28. Allografts at day 28 showed a significantly higher hydroxyproline content than the isografts (33.21 ± 1.89 versus 22.36 ± 2.33 μg/mL). At day 40 the hydroxyproline content had increased further (48.91 ± 7.09 μg/mL). Flow cytometric analysis was used to investigate the origin of mesenchymal cells in fibrotic allografts. Collagen I–positive cells (89.43% ± 6.53%) in day 28 allografts were H2Db positive, showing their donor origin. This novel murine model shows consistent and reproducible allograft fibrogenesis in the context of single-lung transplantation and represents a major step forward in investigating mechanisms of chronic graft failure. PMID:25848843

  16. Development of New Mouse Lung Tumor Models Expressing EGFR T790M Mutants Associated with Clinical Resistance to Kinase Inhibitors

    PubMed Central

    Regales, Lucia; Balak, Marissa N.; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A.; Solit, David B.; Rosen, Neal; Zakowski, Maureen F.; Pao, William

    2007-01-01

    Background The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. Methodology/Principal Findings To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFRT790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFRL858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFRT790M-expressing animals develop tumors with longer latency than EGFRL858R+T790M-bearing mice and in the absence of additional kinase domain mutations. Conclusions/Significance These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFRT790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations. PMID:17726540

  17. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    PubMed

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  18. The effects of exogenous surfactant treatment in a murine model of two-hit lung injury.

    PubMed

    Zambelli, Vanessa; Bellani, Giacomo; Amigoni, Maria; Grassi, Alice; Scanziani, Margherita; Farina, Francesca; Latini, Roberto; Pesenti, Antonio

    2015-02-01

    Because pulmonary endogenous surfactant is altered during acute respiratory distress syndrome, surfactant replacement may improve clinical outcomes. However, trials of surfactant use have had mixed results. We designed this animal model of unilateral (right) lung injury to explore the effect of exogenous surfactant administered to the injured lung on inflammation in the injured and noninjured lung. Mice underwent hydrochloric acid instillation (1.5 mL/kg) into the right bronchus and prolonged (7 hours) mechanical ventilation (25 mL/kg). After 3 hours, mice were treated with 1 mL/kg exogenous surfactant (Curosurf®) (surf group) or sterile saline (NaCl 0.9%) (vehicle group) in the injured (right) lung or did not receive any treatment (hydrochloric acid, ventilator-induced lung injury). Gas exchange, lung compliance, and bronchoalveolar inflammation (cells, albumin, and cytokines) were evaluated. After a significant analysis of variance (ANOVA) test, Tukey post hoc test was used for statistical analysis. At least 8 to 10 mice in each group were analyzed for each evaluated variable. Surfactant treatment significantly increased both the arterial oxygen tension to fraction of inspired oxygen ratio and respiratory system static compliance (P = 0.027 and P = 0.007, respectively, for surf group versus vehicle). Surfactant therapy increased indices of inflammation in the acid-injured lung compared with vehicle: inflammatory cells (685 [602-773] and 216 [125-305] × 1000/mL, respectively; P < 0.001) and albumin in bronchoalveolar lavage (BAL) (1442 ± 588 and 743 ± 647 μg/mL, respectively; P = 0.027). These differences were not found (P = 0.96 and P = 0.54) in the contralateral (uninjured) lung (inflammatory cells 131 [78-195] and 119 [87-149] × 1000/mL and albumin 135 ± 100 and 173 ± 115 μg/mL). Exogenous surfactant administration to an acid-injured right lung improved gas exchange and whole respiratory system compliance. However, markers of inflammation increased in

  19. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    PubMed

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  20. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model.

    PubMed

    Liu, Xiaoyu; Ma, Cuiqing; Wang, Xiaoyu; Wang, Wenjing; Li, Zhu; Wang, Xiansheng; Wang, Pengyu; Sun, Wuzhuang; Xue, Baojian

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of

  1. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model

    PubMed Central

    Liu, Xiaoyu; Ma, Cuiqing; Wang, Xiaoyu; Wang, Wenjing; Li, Zhu; Wang, Xiansheng; Wang, Pengyu; Sun, Wuzhuang; Xue, Baojian

    2017-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. Methods A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. Results The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. Conclusion These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke

  2. Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury

    PubMed Central

    Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.

    2009-01-01

    Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280

  3. miR‐34b‐5p inhibition attenuates lung inflammation and apoptosis in an LPS‐induced acute lung injury mouse model by targeting progranulin

    PubMed Central

    Xie, Wang; Lu, Qingchun; Wang, Kailing; Lu, Jingjing; Gu, Xia; Zhu, Dongyi; Liu, Fanglei

    2018-01-01

    Inflammation and apoptosis play important roles in the initiation and progression of acute lung injury (ALI). Our previous study has shown that progranulin (PGRN) exerts lung protective effects during LPS‐induced ALI. Here, we have investigated the potential roles of PGRN‐targeting microRNAs (miRNAs) in regulating inflammation and apoptosis in ALI and have highlighted the important role of PGRN. LPS‐induced lung injury and the protective roles of PGRN in ALI were first confirmed. The function of miR‐34b‐5p in ALI was determined by transfection of a miR‐34b‐5p mimic or inhibitor in intro and in vivo. The PGRN level gradually increased and subsequently significantly decreased, reaching its lowest value by 24 hr; PGRN was still elevated compared to the control. The change was accompanied by a release of inflammatory mediators and accumulation of inflammatory cells in the lungs. Using bioinformatics analysis and RT‐PCR, we demonstrated that, among 12 putative miRNAs, the kinetics of the miR‐34b‐5p levels were closely associated with PGRN expression in the lung homogenates. The gain‐ and loss‐of‐function analysis, dual‐luciferase reporter assays, and rescue experiments confirmed that PGRN was the functional target of miR‐34b‐5p. Intravenous injection of miR‐34b‐5p antagomir in vivo significantly inhibited miR‐34b‐5p up‐regulation, reduced inflammatory cytokine release, decreased alveolar epithelial cell apoptosis, attenuated lung inflammation, and improved survival by targeting PGRN during ALI. miR‐34b‐5p knockdown attenuates lung inflammation and apoptosis in an LPS‐induced ALI mouse model by targeting PGRN. This study shows that miR‐34b‐5p and PGRN may be potential targets for ALI treatments. PMID:29150939

  4. Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration.

    PubMed

    Potvin, J; Goldbogen, J A; Shadwick, R E

    2010-12-07

    Rorqual whales (Balaenopteridae) obtain their food by lunge feeding, a dynamic process that involves the intermittent engulfment and filtering of large amounts of water and prey. During a lunge, whales accelerate to high speed and open their mouth wide, thereby exposing a highly distensible buccal cavity to the flow and facilitating its inflation. Unsteady hydrodynamic models suggest that the muscles associated with the ventral groove blubber undergo eccentric contraction in order to stiffen and control the inflation of the buccal cavity; in doing so the engulfed water mass is accelerated forward as the whale's body slows down. Although the basic mechanics of lunge feeding are relatively well known, the scaling of this process remains poorly understood, particularly with regards to its duration (from mouth opening to closure). Here we formulate a new theory of engulfment time which integrates prey escape behavior with the mechanics of the whale's body, including lunge speed and acceleration, gape angle dynamics, and the controlled inflation of the buccal cavity. Given that the complex interaction between these factors must be highly coordinated in order to maximize engulfment volume, the proposed formulation rests on the scenario of Synchronized Engulfment, whereby the filling of the cavity (posterior to the temporomandibular joint) coincides with the moment of maximum gape. When formulated specifically for large rorquals feeding on krill, our analysis predicts that engulfment time increases with body size, but in amounts dictated by the specifics of krill escape and avoidance kinematics. The predictions generated by the model are corroborated by limited empirical data on a species-specific basis, particularly for humpback and blue whales chasing krill. A sensitivity analysis applied to all possible sized fin whales also suggests that engulfment duration and lunge speed will increase intra-specifically with body size under a wide range of predator-prey scenarios

  5. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    PubMed

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  6. A model of mechanical interactions between heart and lungs.

    PubMed

    Fontecave Jallon, Julie; Abdulhay, Enas; Calabrese, Pascale; Baconnier, Pierre; Gumery, Pierre-Yves

    2009-12-13

    To study the mechanical interactions between heart, lungs and thorax, we propose a mathematical model combining a ventilatory neuromuscular model and a model of the cardiovascular system, as described by Smith et al. (Smith, Chase, Nokes, Shaw & Wake 2004 Med. Eng. Phys.26, 131-139. (doi:10.1016/j.medengphy.2003.10.001)). The respiratory model has been adapted from Thibault et al. (Thibault, Heyer, Benchetrit & Baconnier 2002 Acta Biotheor. 50, 269-279. (doi:10.1023/A:1022616701863)); using a Liénard oscillator, it allows the activity of the respiratory centres, the respiratory muscles and rib cage internal mechanics to be simulated. The minimal haemodynamic system model of Smith includes the heart, as well as the pulmonary and systemic circulation systems. These two modules interact mechanically by means of the pleural pressure, calculated in the mechanical respiratory system, and the intrathoracic blood volume, calculated in the cardiovascular model. The simulation by the proposed model provides results, first, close to experimental data, second, in agreement with the literature results and, finally, highlighting the presence of mechanical cardiorespiratory interactions.

  7. A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice.

    PubMed

    Schirm, Sibylle; Ahnert, Peter; Wienhold, Sandra; Mueller-Redetzky, Holger; Nouailles-Kursar, Geraldine; Loeffler, Markus; Witzenrath, Martin; Scholz, Markus

    2016-01-01

    Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

  8. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures.

    PubMed

    Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M

    2015-06-01

    Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    PubMed

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.

  10. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b

  11. Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation

    PubMed Central

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.

    2016-01-01

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141

  12. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line

    PubMed Central

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-01-01

    EML4-ALK lung cancer accounts for approximately 3–7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments. PMID:25581823

  14. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    PubMed Central

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  15. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study

    PubMed Central

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-01-01

    Objective While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Setting Computer-based simulation model. Participants Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Interventions Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary and secondary outcome measures Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Results Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Conclusions Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. PMID:26928026

  16. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    PubMed

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  17. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    PubMed

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.

    PubMed

    Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin

    2014-09-01

    Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.

  19. Dexpanthenol therapy reduces lung damage in a hyperoxic lung injury in neonatal rats.

    PubMed

    Ozdemir, Ramazan; Demirtas, Gulsum; Parlakpinar, Hakan; Polat, Alaadin; Tanbag, Kevser; Taslidere, Elif; Karadag, Ahmet

    2016-01-01

    Dexpanthenol (Dxp) plays a major role in cellular defense and in repair systems against oxidative stress and inflammatory response and it has not yet been evaluated in treatment of bronchopulmonary dysplasia (BPD). We tested the hypothesis that proposes whether Dxp decreases the severity of lung injury in an animal model of BPD. Forty rat pups were divided into four groups: control, control + Dxp, hyperoxia and hyperoxia + Dxp. All animals were processed for lung histology and tissue analysis. The degree of lung inflammation, oxidative and antioxidant capacity was assessed from lung homogenates. Lung injury score and alveol diameter increased in the hyperoxia group (p < 0.001). Median level of malondialdehyde, total oxidant status and oxidative stress indexes was significantly higher in the hyperoxia group compared to the other groups. The median superoxide dismutase activity in the hyperoxia group was notably less than those of control + Dxp and hyperoxia + Dxp groups (p < 0.01). Similarly, lung catalase, glutathione (GSH) peroxidase and reduced GSH activities in the hyperoxia group were significantly lower than other groups. Furthermore, the hyperoxia + Dxp group had lower tumor necrosis factor-α and interleukin-1β median levels compared to the hyperoxia group (p = 0.007). Dxp treatment results in less emphysematous change as well as decrease in inflammation and oxidative stress markers in an animal model of BPD.

  20. A Bayesian network approach for modeling local failure in lung cancer

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hun; Craft, Jeffrey; Lozi, Rawan Al; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2011-03-01

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  1. Effect of shape and size of lung and chest wall on stresses in the lung

    NASA Technical Reports Server (NTRS)

    Vawter, D. L.; Matthews, F. L.; West, J. B.

    1975-01-01

    To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).

  2. A review of lung-to-blood absorption rates for radon progeny.

    PubMed

    Marsh, J W; Bailey, M R

    2013-12-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.

  3. Humidification of base flow gas during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Shiba, Naoki; Nagano, Osamu; Hirayama, Takahiro; Ichiba, Shingo; Ujike, Yoshihito

    2012-01-01

    In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patient's lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10 Hz, maximum stroke volumes (SV) of 285, 205, and 160 ml at the respective frequencies, and, BFs of 20, 30, 40 l/min using an original lung model. The R100 device was equipped with a heated humidifier, Hummax Ⅱ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50 cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another Hummax Ⅱ. The lung model temperature was controlled at 37℃. The Hummax Ⅱ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6 Hz (SV 285 ml) and BF 20 l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100.

  4. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes

    PubMed Central

    Hunt, William R.; Zughaier, Susu M.; Guentert, Dana E.; Shenep, Melissa A.; Koval, Michael; McCarty, Nael A.

    2013-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1–5 × 106 cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  5. Age-specific inhalation radiation dose commitment factors for selected radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strenge, D.L.; Peloquin, R.A.; Baker, D.A.

    Inhalation dose commitment factors are presented for selected radionuclides for exposure of individuals in four age groups: infant, child, teen and adult. Radionuclides considered are /sup 35/S, /sup 36/Cl, /sup 45/Ca, /sup 67/Ga, /sup 75/Se, /sup 85/Sr, /sup 109/Cd, /sup 113/Sn, /sup 125/I, /sup 133/Ba, /sup 170/Tm, /sup 169/Yb, /sup 182/Ta, /sup 192/Ir, /sup 198/Au, /sup 201/Tl, /sup 204/Tl, and /sup 236/Pu. The calculational method is based on the human metabolic model of ICRP as defined in Publication 2 (ICRP 1959) and as used in previous age-specific dose factor calculations by Hoenes and Soldat (1977). Dose commitment factors are presentedmore » for the following organs of reference: total body, bone, liver, kidney, thyroid, lung and lower large intestine.« less

  6. Development of an experimental model of brain tissue heterotopia in the lung

    PubMed Central

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  7. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    PubMed

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure.

    PubMed

    Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D

    2014-09-06

    Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an

  9. Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance.

    PubMed

    Ferrando, Carlos; Suárez-Sipmann, Fernando; Gutierrez, Andrea; Tusman, Gerardo; Carbonell, Jose; García, Marisa; Piqueras, Laura; Compañ, Desamparados; Flores, Susanie; Soro, Marina; Llombart, Alicia; Belda, Francisco Javier

    2015-01-13

    The stress index (SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n = 11) or to a SI between 0.95 and 1.05 (SI-group, n = 11). Respiratory rate was adjusted to maintain a 'normal' PaCO2 (35 to 65 mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. PaCO2 was significantly higher in the Pplat-group (82 versus 53 mmHg, P = 0.01), with a resulting lower pH (7.19 versus 7.34, P = 0.01). We observed significant differences in VT (7.3 versus 5.4 mlKg(-1), P = 0.002) and Pplat values (30 versus 35 cmH2O, P = 0.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P = 0.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P = 0.42) were similar in the Pplat- and SI-groups respectively, without differences in overinflated lung areas at end- inspiration in both groups. Cytokines and histopathology showed no differences. Setting tidal volume to a non-injurious stress index in an open lung condition improves

  10. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion.

    PubMed

    Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Pelosi, Paolo; Silva, Pedro L; de Abreu, Marcelo Gama; Rocco, Patricia R M

    2017-01-01

    Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV ( n = 6/group) [tidal volume (V T ) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH 2 O, fraction of inspired oxygen (FiO 2 ) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V T values ( n = 1200; mean V T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH 2 0/ml and 2.0 ± 0.8 cmH 2 0/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and

  11. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

    PubMed Central

    Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S.; Santos, Cintia L.; Huhle, Robert; Capelozzi, Vera L.; Pelosi, Paolo; Silva, Pedro L.; de Abreu, Marcelo Gama; Rocco, Patricia R. M.

    2017-01-01

    Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH2O, fraction of inspired oxygen (FiO2) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular

  12. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma

    PubMed Central

    Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Shizuko, Kagawa; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M.; Betsuyaku, Tomoko

    2014-01-01

    Fibroblast growth factor (FGF) 9 is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumors. We show that prolonged FGF9 overexpression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumor cells harbored tumor-propagating cells that were able to form secondary tumors in recipient mice regardless of FGF9 expression. However, the highest degree of tumor propagation was observed when unfractionated tumor cells were coadministered with autologous, tumor-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9/FGF receptor (FGFR) 3 signaling axis, maintenance and propagation of the tumor was independent of this signaling. Activation of an alternative FGF/FGFR and the interaction with tumor stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF/FGFR signaling in the initiation, growth, and propagation of lung cancer. Our findings suggest that analyzing the expressions of FGFs/FGFRs in human lung cancer will be a useful tool for guiding customized therapy. PMID:25413587

  13. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study.

    PubMed

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-02-29

    While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Computer-based simulation model. Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Home energy efficiency and radon related risk of lung cancer: modelling study

    PubMed Central

    Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael

    2014-01-01

    Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of

  15. SU-E-J-163: A Biomechanical Lung Model for Respiratory Motion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Grelewicz, Z

    2015-06-15

    Purpose: This work presents a biomechanical model to investigate the complex respiratory motion for the lung tumor tracking in radiosurgery by computer simulation. Methods: The models include networked massspring-dampers to describe the tumor motion, different types of surrogate signals, and the force generated by the diaphragm. Each mass-springdamper has the same mechanical structure and each model can have different numbers of mass-spring-dampers. Both linear and nonlinear stiffness parameters were considered, and the damping ratio was tuned in a range so that the tumor motion was over-damped (no natural tumor oscillation occurs without force from the diaphragm). The simulation was runmore » by using ODE45 (ordinary differential equations by Runge-Kutta method) in MATLAB, and all time courses of motions and inputs (force) were generated and compared. Results: The curvature of the motion time courses around their peaks was sensitive to the damping ratio. Therefore, the damping ratio can be determined based on the clinical data of a high sampling rate. The peak values of different signals and the time the peaks occurred were compared, and it was found that the diaphragm force had a time lead over the tumor motion, and the lead time (0.1–0.4 seconds) depended on the distance between the tumor and the diaphragm. Conclusion: We reported a model based analysis approach for the spatial and temporal relation between the motion of the lung tumor and the surrogate signals. Due to the phase lead of the diaphragm in comparing with the lung tumor motion, the measurement of diaphragm motion (or its electromyography signal) can be used as a beam gating signal in radiosurgery, and it can also be an additional surrogate signal for better tumor motion tracking. The research is funded by the American Cancer Society (ACS) grant. The grant name is: Frameless SRS Based on Robotic Head Motion Cancellation. The grant number is: RSG-13-313-01-CCE.« less

  16. [Expression of HIF1-alpha on myocardium and lung in rats model of asphyxia death].

    PubMed

    Zhang, Geng-qian; Zhou, Bin; Du, Bing; Yang, Zhi-hui; Zhang, Bei-lei; Zhu, Yin-hua; Zhang, Lin

    2006-12-01

    To investigate the expression of HIF1-alpha in heart and lung tissue died from asphyxia. The rats model of asphyxia death was constructed by hanging, different asphyxia groups and control group sets were made according the postmortem time (0,2,6,24 h), immunohistochemistry and half-quantitative RT-PCR methods were used to investigate expression of HIF1-alpha and mRNA changes on heart and lung tissue. The positive staining of HIF1-alpha could be observed in the myocardium and lung tissue. Significant differences were found between the groups of asphyxia and their corresponding control group. HIF1-alpha expression was found in all the asphyxia groups while it was only expressed in the control groups of 2 h, 6 h and 24 h. Nucleic positive staining could be detected in all the asphyxia groups but none was found in the control groups. RT-PCR showed that the expression of mRNA between 0 h asphyxia group and 0 h control group were equal in both cardic muscle and lung, but elevated expression in groups of 2,6,24h compared to their control groups. The nuclear positive staining of HIF1-alpha in heart and lung can be a special character of suffocation death.

  17. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line.

    PubMed

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-03-01

    EML4-ALK lung cancer accounts for approximately 3-7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  18. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.

    PubMed

    Kolanjiyil, Arun V; Kleinstreuer, Clement

    2016-12-01

    Computational predictions of aerosol transport and deposition in the human respiratory tract can assist in evaluating detrimental or therapeutic health effects when inhaling toxic particles or administering drugs. However, the sheer complexity of the human lung, featuring a total of 16 million tubular airways, prohibits detailed computer simulations of the fluid-particle dynamics for the entire respiratory system. Thus, in order to obtain useful and efficient particle deposition results, an alternative modeling approach is necessary where the whole-lung geometry is approximated and physiological boundary conditions are implemented to simulate breathing. In Part I, the present new whole-lung-airway model (WLAM) represents the actual lung geometry via a basic 3-D mouth-to-trachea configuration while all subsequent airways are lumped together, i.e., reduced to an exponentially expanding 1-D conduit. The diameter for each generation of the 1-D extension can be obtained on a subject-specific basis from the calculated total volume which represents each generation of the individual. The alveolar volume was added based on the approximate number of alveoli per generation. A wall-displacement boundary condition was applied at the bottom surface of the first-generation WLAM, so that any breathing pattern due to the negative alveolar pressure can be reproduced. Specifically, different inhalation/exhalation scenarios (rest, exercise, etc.) were implemented by controlling the wall/mesh displacements to simulate realistic breathing cycles in the WLAM. Total and regional particle deposition results agree with experimental lung deposition results. The outcomes provide critical insight to and quantitative results of aerosol deposition in human whole-lung airways with modest computational resources. Hence, the WLAM can be used in analyzing human exposure to toxic particulate matter or it can assist in estimating pharmacological effects of administered drug-aerosols. As a practical

  19. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  20. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  1. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  2. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  3. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  4. Antitumor immune activity by chemokine CX3CL1 in an orthotopic implantation of lung cancer model in vivo.

    PubMed

    Kee, Ji-Ye; Arita, Yoshihisa; Shinohara, Kanna; Ohashi, Yasukata; Sakurai, Hiroaki; Saiki, Ikuo; Koizumi, Keiichi

    2013-01-01

    Due to their chemoattractant properties stimulating the accumulation of infiltrating immune cells in tumors, chemokines are known to have antitumor effects. Fractalkine, a unique CX3C chemokine, is expressed in activated endothelial cells, while its receptor, CX3CR1, is expressed in cytolytic immune cells, such as natural killer cells, monocytes and some CD8 + T cells. The biological properties of cancer cells are affected by the implantation organ and differences in immune systems, requiring cancer implantation in orthotopic organs in an in vivo experiment. To develop new therapy strategies for lung cancer, an animal model reflecting the clinical features of lung cancer was previously established. This study aimed to determine whether CX3CL1-induced biological functions should be used for immune cell-based gene therapy of lung cancer in the orthotopic implantation model. An orthotopic intrapulmonary implantation of CX3CL1-stable expression in mouse lung cancer (LLC-CX3CL1) was performed to analyze growth. Results showed a significant decrease in tumor growth in the lung compared to the control cells (LLC-mock). Furthermore, the antitumor effects of CX3CL1 were derived from natural killer cell activities in the depletion experiment in vivo . Therefore, CX3CL1 has the potential of a useful therapeutic target in lung cancer.

  5. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury.

    PubMed

    Verbrugge, S J; Vazquez de Anda, G; Gommers, D; Neggers, S J; Sorm, V; Böhm, S H; Lachmann, B

    1998-08-01

    Changes in pulmonary edema infiltration and surfactant after intermittent positive pressure ventilation with high peak inspiratory lung volumes have been well described. To further elucidate the role of surfactant changes, the authors tested the effect of different doses of exogenous surfactant preceding high peak inspiratory lung volumes on lung function and lung permeability. Five groups of Sprague-Dawley rats (n = 6 per group) were subjected to 20 min of high peak inspiratory lung volumes. Before high peak inspiratory lung volumes, four of these groups received intratracheal administration of saline or 50, 100, or 200 mg/kg body weight surfactant; one group received no intratracheal administration. Gas exchange was measured during mechanical ventilation. A sixth group served as nontreated, nonventilated controls. After death, all lungs were excised, and static pressure-volume curves and total lung volume at a transpulmonary pressure of 5 cm H2O were recorded. The Gruenwald index and the steepest part of the compliance curve (Cmax) were calculated. A bronchoalveolar lavage was performed; surfactant small and large aggregate total phosphorus and minimal surface tension were measured. In a second experiment in five groups of rats (n = 6 per group), lung permeability for Evans blue dye was measured. Before 20 min of high peak inspiratory lung volumes, three groups received intratracheal administration of 100, 200, or 400 mg/ kg body weight surfactant; one group received no intratracheal administration. A fifth group served as nontreated, nonventilated controls. Exogenous surfactant at a dose of 200 mg/kg preserved total lung volume at a pressure of 5 cm H2O, maximum compliance, the Gruenwald Index, and oxygenation after 20 min of mechanical ventilation. The most active surfactant was recovered in the group that received 200 mg/kg surfactant, and this dose reduced minimal surface tension of bronchoalveolar lavage to control values. Alveolar influx of Evans blue dye

  6. The application of the sinusoidal model to lung cancer patient respiratory motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, R.; Vedam, S.S.; Chung, T.D.

    2005-09-15

    Accurate modeling of the respiratory cycle is important to account for the effect of organ motion on dose calculation for lung cancer patients. The aim of this study is to evaluate the accuracy of a respiratory model for lung cancer patients. Lujan et al. [Med. Phys. 26(5), 715-720 (1999)] proposed a model, which became widely used, to describe organ motion due to respiration. This model assumes that the parameters do not vary between and within breathing cycles. In this study, first, the correlation of respiratory motion traces with the model f(t) as a function of the parameter n(n=1,2,3) was undertakenmore » for each breathing cycle from 331 four-minute respiratory traces acquired from 24 lung cancer patients using three breathing types: free breathing, audio instruction, and audio-visual biofeedback. Because cos{sup 2} and cos{sup 4} had similar correlation coefficients, and cos{sup 2} and cos{sup 1} have a trigonometric relationship, for simplicity, the cos{sup 1} value was consequently used for further analysis in which the variations in mean position (z{sub 0}), amplitude of motion (b) and period ({tau}) with and without biofeedback or instructions were investigated. For all breathing types, the parameter values, mean position (z{sub 0}), amplitude of motion (b), and period ({tau}) exhibited significant cycle-to-cycle variations. Audio-visual biofeedback showed the least variations for all three parameters (z{sub 0}, b, and {tau}). It was found that mean position (z{sub 0}) could be approximated with a normal distribution, and the amplitude of motion (b) and period ({tau}) could be approximated with log normal distributions. The overall probability density function (pdf) of f(t) for each of the three breathing types was fitted with three models: normal, bimodal, and the pdf of a simple harmonic oscillator. It was found that the normal and the bimodal models represented the overall respiratory motion pdfs with correlation values from 0.95 to 0.99, whereas

  7. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    PubMed

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  8. Retention and clearance of inhaled ceramic fibres in rat lungs and development of a dissolution model.

    PubMed Central

    Yamato, H; Hori, H; Tanaka, I; Higashi, T; Morimoto, Y; Kido, M

    1994-01-01

    Male Wistar rats were exposed to aluminium silicate ceramic fibres by inhalation to study pulmonary deposition, clearance, and dissolution of the fibres. Rats were killed at one day, one month, three months, and six months after the termination of exposure. After exposure, fibres greater than 50 microns in length were seen with a scanning electron microscope in the alveolar region of the lung. Fibres were recovered from the lungs with a low temperature ashing technique and their number, diameter, and length were measured by scanning electron microscopy. The number of fibres remaining in the lungs declined exponentially with time after exposure and their silicon content also fell. The geometric median diameter of fibres decreased linearly with time. By six months after exposure, the surface of fibres recovered from the lungs had an eroded appearance. The results suggest that ceramic fibres are physically cleared from the lung and that they show signs of dissolution. Finally, the results were used to develop a theoretical model of fibre dissolution that gives a satisfactory fit to the experimental data. Images Figure 1 Figure 2 Figure 5 PMID:8199672

  9. Improved biochemical preservation of lung slices during cold storage.

    PubMed

    Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V

    2000-05-15

    Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P < 0.0001). Protein synthesis was significantly higher in the lung slices stored in NPS compared with all other solutions at 6, 12, and 18 h of preservation (P < 0.05). This lung slice model allows the rapid and efficient screening of lung preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel solution that improves the biochemical preservation of lung slices during cold storage. Copyright 2000 Academic Press.

  10. A simple analogue of lung mechanics.

    PubMed

    Sherman, T F

    1993-12-01

    A model of the chest and lungs can be easily constructed from a bottle of water, a balloon, a syringe, a rubber stopper, glass and rubber tubing, and clamps. The model is a more exact analogue of the body than the classic apparatus of Hering in two respects: 1) the pleurae and intrapleural fluid are represented by water rather than air, and 2) the subatmospheric "intrapleural" pressure is created by the elasticity of the "lung" (balloon) rather than by a vacuum pump. With this model, students can readily see how the lung is inflated and deflated by movements of the "diaphragm and chest" (syringe plunger) and how intrapleural pressures change as this is accomplished.

  11. Lung transplantation and interstitial lung disease.

    PubMed

    Alalawi, Raed; Whelan, Timothy; Bajwa, Ravinder S; Hodges, Tony N

    2005-09-01

    Interstitial lung disease includes a heterogeneous group of disorders that leads to respiratory insufficiency and death in a significant number of patients. Lung transplantation is a therapeutic option in select candidates. The indications, transplant procedure options, and outcomes continue to evolve. Various recipient comorbidities influence the choice of procedure in patients with interstitial lung disease. Single lung transplants are used as the procedure of choice and bilateral transplants are reserved for patients with suppurative lung disease and patients with pulmonary hypertension. Issues unique to patients with interstitial lung disease affect the morbidity, mortality and recurrence of the disease. Lung transplantation is an effective therapy for respiratory failure in interstitial lung disease with survival following transplant being similar to that achieved in transplant recipients with other diseases.

  12. Impact of endotracheal tube shortening on work of breathing in neonatal and pediatric in vitro lung models.

    PubMed

    Mohr, Rebecca; Thomas, Jörg; Cannizzaro, Vincenzo; Weiss, Markus; Schmidt, Alexander R

    2017-09-01

    Work of breathing accounts for a significant proportion of total oxygen consumption in neonates and infants. Endotracheal tube inner diameter and length significantly affect airflow resistance and thus work of breathing. While endotracheal tube shortening reduces endotracheal tube resistance, the impact on work of breathing in mechanically ventilated neonates and infants remains unknown. The objective of this in vitro study was to quantify the effect of endotracheal tube shortening on work of breathing in simulated pediatric lung settings. We hypothesized that endotracheal tube shortening significantly reduces work of breathing. We used the Active-Servo-Lung 5000 to simulate different clinical scenarios in mechanically ventilated infants and neonates under spontaneous breathing with and without pressure support. Endotracheal tube size, lung resistance, and compliance, as well as respiratory settings such as respiratory rate and tidal volume were weight and age adapted for each lung model. Work of breathing was measured before and after maximal endotracheal tube shortening and the reduction of the daily energy demand calculated. Tube shortening with and without pressure support decreased work of breathing to a maximum of 10.1% and 8.1%, respectively. As a result, the calculated reduction of total daily energy demand by endotracheal tube shortening was between 0.002% and 0.02%. In this in vitro lung model, endotracheal tube shortening had minimal effects on work of breathing. Moreover, the calculated percentage reduction of the total daily energy demand after endotracheal tube shortening was minimal. © 2017 John Wiley & Sons Ltd.

  13. A completely automated processing pipeline for lung and lung lobe segmentation and its application to the LIDC-IDRI data base

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Wiemker, Rafael; Barschdorf, Hans; Kabus, Sven; Klinder, Tobias; Lorenz, Cristian; Schadewaldt, Nicole; Dharaiya, Ekta

    2010-03-01

    Automated segmentation of lung lobes in thoracic CT images has relevance for various diagnostic purposes like localization of tumors within the lung or quantification of emphysema. Since emphysema is a known risk factor for lung cancer, both purposes are even related to each other. The main steps of the segmentation pipeline described in this paper are the lung detector and the lung segmentation based on a watershed algorithm, and the lung lobe segmentation based on mesh model adaptation. The segmentation procedure was applied to data sets of the data base of the Image Database Resource Initiative (IDRI) that currently contains over 500 thoracic CT scans with delineated lung nodule annotations. We visually assessed the reliability of the single segmentation steps, with a success rate of 98% for the lung detection and 90% for lung delineation. For about 20% of the cases we found the lobe segmentation not to be anatomically plausible. A modeling confidence measure is introduced that gives a quantitative indication of the segmentation quality. For a demonstration of the segmentation method we studied the correlation between emphysema score and malignancy on a per-lobe basis.

  14. Proposed biokinetic model for phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne

    2014-06-04

    This paper reviews data related to the biokinetics of phosphorus in the human body and proposes a biokinetic model for systemic phosphorus for use in updated International Commission on Radiological Protection (ICRP) guidance on occupational intake of radionuclides. Compared with the ICRP s current occupational model for phosphorus (Publication 68, 1994) the proposed model provides a more realistic description of the paths of movement of phosphorus in the body and improved consistency with experimental, medical, and environmental data on the time-dependent distribution and retention of phosphorus following uptake to blood. For acute uptake of 32P to blood, the proposed modelmore » yields roughly a 50% decrease in dose estimates for bone surface and red marrow and a 6-fold increase in estimates for liver and kidney compared with the biokinetic model of Publication 68 (applying Publication 68 dosimetric models in both sets of calculations). For acute uptake of 33P to blood, the proposed model yields roughly a 50% increase in dose estimates for bone surface and red marrow and a 7-fold increase in estimates for liver and kidney compared with the model of Publication 68.« less

  15. Lung Cancer and Lung Transplantation.

    PubMed

    Brand, Timothy; Haithcock, Benjamin

    2018-02-01

    Lung transplantation remains a viable option for patients with endstage pulmonary disease. Despite removing the affected organ and replacing both lungs, the risk of lung malignancies still exists. Regardless of the mode of entry, lung cancer affects the prognosis in these patients and diligence is required. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  17. Modelling of cardiac-related changes in lung resistivity measured with EITS.

    PubMed

    Zhao, T X; Brown, B H; Nopp, P; Wang, W; Leathard, A D; Lu, L Q

    1996-11-01

    Resistivity data from 9.6 kHZ to 1.2 MHz were recorded from eight normal subjects using an electrical impedance tomographic spectroscopy (EITS) system and then averaged to a mean cardiac cycle using the ECG gating technique. The Cole-Cole model, that is, extracellular resistance R connected in parallel with intracellular resistance S and membrane capacitance C in series, with a distribution parameter a, was applied to model the frequency characteristics and to produce parametric images. During systole, SC and RC were found to decrease and FR increase. The changes in R/S were not consistent among the subjects. We estimated the peak changes in R, S and C to be -2.5%, -3.3% and -7.6% respectively. The results can be explained by considering the blood vessels as spheres of different sizes with blood inside them. The decrease in R during systole might be caused by the increased blood content in relatively large vessels, whereas that in S by the increased blood volume in relatively small vessels. The capacitance of blood is normally smaller than that of lung tissue, whereas FR blood is higher than that of lung tissue. Hence, as blood content increases, C should decrease and FR increase.

  18. Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology.

    PubMed

    Burrowes, Kelly S; Iravani, Amin; Kang, Wendy

    2018-01-12

    The lung is a delicately balanced and highly integrated mechanical system. Lung tissue is continuously exposed to the environment via the air we breathe, making it susceptible to damage. As a consequence, respiratory diseases present a huge burden on society and their prevalence continues to rise. Emergent function is produced not only by the sum of the function of its individual components but also by the complex feedback and interactions occurring across the biological scales - from genes to proteins, cells, tissue and whole organ - and back again. Computational modeling provides the necessary framework for pulling apart and putting back together the pieces of the body and organ systems so that we can fully understand how they function in both health and disease. In this review, we discuss models of lung tissue mechanics spanning from the protein level (the extracellular matrix) through to the level of cells, tissue and whole organ, many of which have been developed in isolation. This is a vital step in the process but to understand the emergent behavior of the lung, we must work towards integrating these component parts and accounting for feedback across the scales, such as mechanotransduction. These interactions will be key to unlocking the mechanisms occurring in disease and in seeking new pharmacological targets and improving personalized healthcare. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    PubMed

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  20. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

    PubMed

    Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T

    2017-05-01

    Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of

  1. Green tea polyphenol extract attenuates lung injury in experimental model of carrageenan-induced pleurisy in mice

    PubMed Central

    Di Paola, Rosanna; Mazzon, Emanuela; Muià, Carmelo; Genovese, Tiziana; Menegazzi, Marta; Zaffini, Raffaela; Suzuki, Hisanory; Cuzzocrea, Salvatore

    2005-01-01

    Here we investigate the effects of the green tea extract in an animal model of acute inflammation, carrageenan-induced pleurisy. We report here that green tea extract (given at 25 mg/kg i.p. bolus 1 h prior to carrageenan), exerts potent anti-inflammatory effects in an animal model of acute inflammation in vivo. Injection of carrageenan (2%) into the pleural cavity of mice elicited an acute inflammatory response characterized by fluid accumulation in the pleural cavity that contained many neutrophils (PMNs), an infiltration of PMNs in lung tissues and increased production of nitrite/nitrate, tumour necrosis factor alpha. All parameters of inflammation were attenuated by green tea extract treatment. Furthermore, carrageenan induced an up-regulation of the adhesion molecule ICAM-1, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) formation, as determined by immunohistochemical analysis of lung tissues. Staining for the ICAM-1, nitrotyrosine, and PARS was reduced by green tea extract. Our results clearly demonstrate that treatment with green tea extract exerts a protective effect and offers a novel therapeutic approach for the management of lung injury. PMID:15987519

  2. Analysis of point-to-point lung motion with full inspiration and expiration CT data using non-linear optimization method: optimal geometric assumption model for the effective registration algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Heo, Jeong Nam; Kang, Suk-Ho

    2007-03-01

    The study was conducted to develop a simple model for more robust lung registration of volumetric CT data, which is essential for various clinical lung analysis applications, including the lung nodule matching in follow up CT studies, semi-quantitative assessment of lung perfusion, and etc. The purpose of this study is to find the most effective reference point and geometric model based on the lung motion analysis from the CT data sets obtained in full inspiration (In.) and expiration (Ex.). Ten pairs of CT data sets in normal subjects obtained in full In. and Ex. were used in this study. Two radiologists were requested to draw 20 points representing the subpleural point of the central axis in each segment. The apex, hilar point, and center of inertia (COI) of each unilateral lung were proposed as the reference point. To evaluate optimal expansion point, non-linear optimization without constraints was employed. The objective function is sum of distances from the line, consist of the corresponding points between In. and Ex. to the optimal point x. By using the nonlinear optimization, the optimal points was evaluated and compared between reference points. The average distance between the optimal point and each line segment revealed that the balloon model was more suitable to explain the lung expansion model. This lung motion analysis based on vector analysis and non-linear optimization shows that balloon model centered on the center of inertia of lung is most effective geometric model to explain lung expansion by breathing.

  3. A Risk Stratification Model for Lung Cancer Based on Gene Coexpression Network and Deep Learning

    PubMed Central

    2018-01-01

    Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could predict patients' survival independent of clinicopathological variables. Five networks were significantly associated with patients' survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for input of the model. The output of the model was significantly associated with patients' survival in two test sets and training set (p < 0.00001, p < 0.0001 and p = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated with patients' prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science for prognosis prediction. PMID:29581968

  4. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models.

    PubMed

    Baker, Amanda F; Hanke, Neale T; Sands, Barbara J; Carbajal, Liliana; Anderl, Janet L; Garland, Linda L

    2014-12-31

    Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.

  5. High-frequency percussive ventilation attenuates lung injury in a rabbit model of gastric juice aspiration.

    PubMed

    Allardet-Servent, Jérôme; Bregeon, Fabienne; Delpierre, Stéphane; Steinberg, Jean-Guillaume; Payan, Marie-José; Ravailhe, Sylvie; Papazian, Laurent

    2008-01-01

    To test the effects of high-frequency percussive ventilation (HFPV) compared with high-frequency oscillatory ventilation (HFOV) and low-volume conventional mechanical ventilation (LVCMV), on lung injury course in a gastric juice aspiration model. Prospective, randomized, controlled, in-vivo animal study. University animal research laboratory. Forty-three New Zealand rabbits. Lung injury was induced by intratracheal instillation of human gastric juice in order to achieve profound hypoxaemia (PaO2/FIO2< or =50). Animals were ventilated for 4h after randomization in one of the following four groups: HFPV (median pressure 15cmH2O); LVCMV (VT 6mlkg(-1) and PEEP set to reach 15cmH2O plateau pressure); HFOV (mean pressure 15cmH2O); and a high-volume control group HVCMV (VT 12ml kg(-1) and ZEEP). Static respiratory compliance increased after the ventilation period in the HFPV, LVMCV and HFOV groups, in contrast with the HVCMV group. PaO2/FIO2 improved similarly in the HFPV, LVCMV and HFOV groups, and remained lower in the HVCMV group than in the three others. Lung oedema, myeloperoxidase and histological lung injury score were higher in the HVCMV group, but not different among all others. Arterial lactate markedly increased after 4h of ventilation in the HVCMV group, while lower but similar levels were observed in the three other groups. HFPV, like HFOV and protective CMV, improves respiratory mechanics and oxygenation, and attenuates lung damage. The HFPV provides attractive lung protection, but further studies should confirm these results before introducing HFPV into the clinical arena.

  6. SU-F-R-46: Predicting Distant Failure in Lung SBRT Using Multi-Objective Radiomics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z; Folkert, M; Iyengar, P

    2016-06-15

    Purpose: To predict distant failure in lung stereotactic body radiation therapy (SBRT) in early stage non-small cell lung cancer (NSCLC) by using a new multi-objective radiomics model. Methods: Currently, most available radiomics models use the overall accuracy as the objective function. However, due to data imbalance, a single object may not reflect the performance of a predictive model. Therefore, we developed a multi-objective radiomics model which considers both sensitivity and specificity as the objective functions simultaneously. The new model is used to predict distant failure in lung SBRT using 52 patients treated at our institute. Quantitative imaging features of PETmore » and CT as well as clinical parameters are utilized to build the predictive model. Image features include intensity features (9), textural features (12) and geometric features (8). Clinical parameters for each patient include demographic parameters (4), tumor characteristics (8), treatment faction schemes (4) and pretreatment medicines (6). The modelling procedure consists of two steps: extracting features from segmented tumors in PET and CT; and selecting features and training model parameters based on multi-objective. Support Vector Machine (SVM) is used as the predictive model, while a nondominated sorting-based multi-objective evolutionary computation algorithm II (NSGA-II) is used for solving the multi-objective optimization. Results: The accuracy for PET, clinical, CT, PET+clinical, PET+CT, CT+clinical, PET+CT+clinical are 71.15%, 84.62%, 84.62%, 85.54%, 82.69%, 84.62%, 86.54%, respectively. The sensitivities for the above seven combinations are 41.76%, 58.33%, 50.00%, 50.00%, 41.67%, 41.67%, 58.33%, while the specificities are 80.00%, 92.50%, 90.00%, 97.50%, 92.50%, 97.50%, 97.50%. Conclusion: A new multi-objective radiomics model for predicting distant failure in NSCLC treated with SBRT was developed. The experimental results show that the best performance can be obtained by

  7. Hand ultrasound: a high-fidelity simulation of lung sliding.

    PubMed

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  8. Improvements of the surgical technique on the established mouse model of orthotopic single lung transplantation.

    PubMed

    Zheng, Zhikun; Wang, Jianjun; Huang, Xia; Jiang, Ke; Nie, Jun; Qiao, Xinwei; Li, Jinsong

    2013-01-01

    A wide range of knockout and transgenic murine models for the study of nonimmune and immune mechanisms in lung transplants are available nowadays, but the microsurgical techniques are difficult to learn. We describe methods to simplify techniques and facilitate learning. Traditional procedures were implemented to perform lung transplants in 30 cases (group 1). Improved techniques which included cuff without tail, broadening of the cuff diameter for bronchus, establishment of one tunnel between three structures, innovative technology of the vascular anastomosis and placement of the chest tube post-operation were used to perform lung transplants in 30 cases (group 2). The improved techniques considerably shorten operative times (96.75 ± 6.16 min and 85.32 ± 6.98 min in groups 1 and 2, respectively). The survival rates in the recipient animals were 86.7% and 96.7% in groups 1 and 2, respectively. Chest X-rays and macroscopic changes of transplanted recipients showed that grafts were well inflated on postoperative day 30. There was no significant difference of the arterial oxygen tension (PaO2) between two groups (115.9 ± 7.11 mm Hg and 116.3 ± 6.87 mm Hg in groups 1 and 2, respectively). Histologically, no lung injury was seen in grafts. We described the modified procedures of orthotopic left lung transplants in mice, which could shorten operative time and increase survival rate.

  9. Sivelestat sodium hydrate attenuates acute lung injury by decreasing systemic inflammation in a rat model of severe burns.

    PubMed

    Xiao, X-G; Zu, H-G; Li, Q-G; Huang, P

    2016-01-01

    Patients with severe burns often develop acute lung injury (ALI), systemic inflammatory response syndrome (SIRS) often complicates with ALI. Sivelestat sodium hydrate is an effective drug against ALI. However, the mechanisms of this beneficial effect are still poorly understood. In the current study, we evaluate the effects of sivelestat sodium hydrate on systemic and local inflammatory parameters (neutrophil elastase [NE], interleukin [IL]-8, matrix metalloproteinase [MMP] 2 and 9) in a rat model of severe burns and ALI. And to analyze the correlations between expression of NE and IL-8 and acute lung injury. 48 Sprague-Dawley (SD) rats were divided into 3 groups: normal control group, severe burns injury group and severe burns treated with sivelestat sodium hydrate group (SSI). The lung water content and PaO2 were detected in each group. Pathological manifestations in each group were observed for pathology scoring in SD rats with acute lung injury. ELISA was used for detecting expression of NE and IL-8 in serum and BAL specimens of SD rats in each group. RT-PCR was used to detect mRNA expression of NE and IL-8 in lung tissues of each group. Western blotting was used for detecting protein expression of MMP-2 and MMP-9 in lung tissues of each group. SPSS 18.0 was used for statistical analysis. The PaO2 was significantly increased after sivelestat sodium hydrate intravenous injection. Pathological score and water content of lung tissue were significantly decreased in SSI group compared with severe burns injury group, slightly higher than that normal control group. NE and IL-8 levels significantly decreased in serum, BAL and lung tissue specimens after sivelestat sodium hydrate intravenous injection; Expression of MMP-2 and MMP-9 were significantly up-regulated in severe burns group and showed no significantly changed after sivelestat sodium hydrate intravenous injection. In a rat model of severe burns and ALI, administration of sivelestat sodium hydrate improved

  10. Benefits and harms of CT lung cancer screening strategies. A comparative modeling study for the U.S. Preventive Services Task Force

    PubMed Central

    de Koning, Harry J.; Meza, Rafael; Plevritis, Sylvia K.; Haaf, Kevin ten; Munshi, Vidit N.; Jeon, Jihyoun; Erdogan, Saadet Ayca; Kong, Chung Yin; Han, Summer S.; van Rosmalen, Joost; Choi, Sung Eun; Pinsky, Paul F.; Berrington de Gonzalez, Amy; Berg, Christine D.; Black, William C.; Tammemägi, Martin C.; Hazelton, William D.; Feuer, Eric J.; McMahon, Pamela M.

    2014-01-01

    Background The optimal screening policy for lung cancer is unknown. Objective To identify efficient CT-screening scenarios where relatively more lung cancer deaths are averted for fewer CT screens. Design Comparative modeling study using 5 independent models. Data Sources The National Lung Screening Trial, the Prostate, Lung, Colorectal and Ovarian trial, the Surveillance, Epidemiology, and End Results program, and U.S. Smoking History Generator. Target Population U.S. cohort born in 1950. Time Horizon Cohort followed from ages 45 to 90. Perspective Societal. Intervention 576 scenarios with varying eligibility criteria (age, smoking pack-years, years quit) and screening intervals. Outcome Measures Benefits: lung cancer deaths averted or life-years gained; harms: CT-exams, false positives (including biopsy/surgery), overdiagnosed cases, radiation-related deaths. Results of Best-Case Annual screening from age 55 through 80 for ever-smokers with at least 30 pack-years and ex-smokers with less than 15 years since quitting was the most advantageous strategy. It would lead to 50% (45 to 54%) of cancers being detected at an early stage (I/II); 575 screens per lung cancer death averted; a 14% (8.2 to 23.5%) lung cancer mortality reduction; 497 lung cancer deaths averted; and 5,250 life-years gained per the 100,000-member cohort. Harms would include 67,550 false-positive tests, 910 biopsies or surgeries for benign lesions and 190 overdiagnosed cancers (3.7%; 1.4 to 8.3%). Results of Sensitivity Analysis The number of cancer deaths averted for the scenario varied across models between 177 and 862, and for overdiagnosed cancers between 72 and 426. Limitations Scenarios assumed 100% screening adherence. Data derived from trials with short duration were extrapolated to life-time follow-up. Conclusion Annual CT screening for lung cancer has a favorable benefit-harm ratio for individuals aged 55 through 80 years with 30 or more pack-year exposure to smoking. PMID:24379002

  11. Wood Bark Smoke Induces Lung and Pleural Plasminogen Activator Inhibitor 1 and Stabilizes Its mRNA in Porcine Lung Cells

    DTIC Science & Technology

    2011-08-01

    admitted to US burn centers, and greatly increases postburn morbidity and mortality (1). The pathogenesis of smoke inhalationYinduced acute lung...have been successfully used to ameliorate lung dysfunction in SIALI in animal models (3Y5). Disordered fibrin turnover in the lung in patients with...of the pathogenesis of SIALI. In vivo and in vitro approaches were applied to address this gap. We used a porcine model of wood bark smoke (WBS)Y

  12. Lack of matrix metalloproteinase 3 in mouse models of lung injury ameliorates the pulmonary inflammatory response in female but not in male mice.

    PubMed

    Puntorieri, Valeria; McCaig, Lynda A; Howlett, Christopher J; Yao, Li-Juan; Lewis, James F; Yamashita, Cory M; Veldhuizen, Ruud A W

    2016-09-01

    The acute respiratory distress syndrome (ARDS) is a complex pulmonary disorder in which the local release of cytokines and chemokines appears central to the pathophysiology. Based on the known role of matrix metalloproteinase-3 (MMP3) in inflammatory processes, the objective was to examine the role of MMP3 in the pathogenesis of ARDS through the modulation of pulmonary inflammation. Female and male, wild type (MMP3 +/+ ) and knock out (MMP3 -/- ) mice were exposed to two, clinically relevant models of ARDS including (i) lipopolysaccharide (LPS)-induced lung injury, and (ii) hydrochloric acid-induced lung injury. Parameters of lung injury and inflammation were assessed through measurements in lung lavage including total protein content, inflammatory cell influx, and concentrations of mediators such as TNF-α, IL-6, G-CSF, CXCL1, CXCL2, and CCL2. Lung histology and compliance were also evaluated in the LPS model of injury. Following intra-tracheal LPS instillation, all mice developed lung injury, as measured by an increase in lavage neutrophils, and decrease in lung compliance, with no overall effect of genotype observed. Increased concentrations of lavage inflammatory cytokines and chemokines were also observed following LPS injury, however, LPS-instilled female MMP3 -/- mice had lower levels of inflammatory mediators compared to LPS-instilled female MMP3 +/+ mice. This effect of the genotype was not observed in male mice. Similar findings, including the MMP3-related sex differences, were also observed after acid-induced lung injury. MMP3 contributes to the pathogenesis of ARDS, by affecting the pulmonary inflammatory response in female mice in relevant models of lung injury.

  13. A Biomechanical Model for Lung Fibrosis in Proton Beam Therapy

    NASA Astrophysics Data System (ADS)

    King, David J. S.

    The physics of protons makes them well-suited to conformal radiotherapy due to the well-known Bragg peak effect. From a proton's inherent stopping power, uncertainty effects can cause a small amount of dose to overflow to an organ at risk (OAR). Previous models for calculating normal tissue complication probabilities (NTCPs) relied on the equivalent uniform dose model (EUD), in which the organ was split into 1/3, 2/3 or whole organ irradiation. However, the problem of dealing with volumes <1/3 of the total volume renders this EUD based approach no longer applicable. In this work the case for an experimental data-based replacement at low volumes is investigated. Lung fibrosis is investigated as an NTCP effect typically arising from dose overflow from tumour irradiation at the spinal base. Considering a 3D geometrical model of the lungs, irradiations are modelled with variable parameters of dose overflow. To calculate NTCPs without the EUD model, experimental data is used from the quantitative analysis of normal tissue effects in the clinic (QUANTEC) data. Additional side projects are also investigated, introduced and explained at various points. A typical radiotherapy course for the patient of 30x2Gy per fraction is simulated. A range of geometry of the target volume and irradiation types is investigated. Investigations with X-rays found the majority of the data point ratios (ratio of EUD values found from calculation based and data based methods) at 20% within unity showing a relatively close agreement. The ratios have not systematically preferred one particular type of predictive method. No Vx metric was found to consistently outperform another. In certain cases there is a good agreement and not in other cases which can be found predicted in the literature. The overall results leads to conclusion that there is no reason to discount the use of the data based predictive method particularly, as a low volume replacement predictive method.

  14. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis.

    PubMed

    Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J

    2005-02-01

    A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.

  15. Model Lung Surfactant Films: Why Composition Matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phasemore » but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.« less

  16. Theoretical analysis of the influence of aerosol size distribution and physical activity on particle deposition pattern in human lungs.

    PubMed

    Voutilainen, Arto; Kaipio, Jari P; Pekkanen, Juha; Timonen, Kirsi L; Ruuskanen, Juhani

    2004-01-01

    A theoretical comparison of modeled particle depositions in the human respiratory tract was performed by taking into account different particle number and mass size distributions and physical activity in an urban environment. Urban-air data on particulate concentrations in the size range 10 nm-10 microm were used to estimate the hourly average particle number and mass size distribution functions. The functions were then combined with the deposition probability functions obtained from a computerized ICRP 66 deposition model of the International Commission on Radiological Protection to calculate the numbers and masses of particles deposited in five regions of the respiratory tract of a male adult. The man's physical activity and minute ventilation during the day were taken into account in the calculations. Two different mass and number size distributions of aerosol particles with equal (computed) <10 microm particle mass concentrations gave clearly different deposition patterns in the central and peripheral regions of the human respiratory tract. The deposited particle numbers and masses were much higher during the day (0700-1900) than during the night (1900-0700) because an increase in physical activity and ventilation were temporally associated with highly increased traffic-derived particles in urban outdoor air. In future analyses of the short-term associations between particulate air pollution and health, it would not only be important to take into account the outdoor-to-indoor penetration of different particle sizes and human time-activity patterns, but also actual lung deposition patterns and physical activity in significant microenvironments.

  17. Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model.

    PubMed

    Yoshida, Takeshi; Engelberts, Doreen; Otulakowski, Gail; Katira, Bhushan; Post, Martin; Ferguson, Niall D; Brochard, Laurent; Amato, Marcelo B P; Kavanagh, Brian P

    2018-04-27

    In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration ("baby lung"). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by "continuous negative abdominal pressure." A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (-5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, -3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (PaO2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.

  18. Combinatorial Therapy with Acetylation and Methylation Modifiers Attenuates Lung Vascular Hyperpermeability in Endotoxemia-Induced Mouse Inflammatory Lung Injury

    PubMed Central

    Thangavel, Jayakumar; Malik, Asrar B.; Elias, Harold K.; Rajasingh, Sheeja; Simpson, Andrew D.; Sundivakkam, Premanand K.; Vogel, Stephen M.; Xuan, Yu-Ting; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI. PMID:24929240

  19. Human biokinetic data and a new compartmental model of zirconium--a tracer study with enriched stable isotopes.

    PubMed

    Greiter, Matthias B; Giussani, Augusto; Höllriegl, Vera; Li, Wei Bo; Oeh, Uwe

    2011-09-01

    Biokinetic models describing the uptake, distribution and excretion of trace elements are an essential tool in nutrition, toxicology, or internal dosimetry of radionuclides. Zirconium, especially its radioisotope (95)Zr, is relevant to radiation protection due to its production in uranium fission and neutron activation of nuclear fuel cladding material. We present a comprehensive set of human data from a tracer study with stable isotopes of zirconium. The data are used to refine a biokinetic model of zirconium. Six female and seven male healthy adult volunteers participated in the study. It includes 16 complete double tracer investigations with oral ingestion and intravenous injection, and seven supplemental investigations. Tracer concentrations were measured in blood plasma and urine collected up to 100 d after tracer administration. The four data sets (two chemical tracer forms in plasma and urine) each encompass 105-240 measured concentration values above detection limits. Total fractional absorption of ingested zirconium was found to be 0.001 for zirconium in citrate-buffered drinking solution and 0.007 for zirconium oxalate solution. Biokinetic models were developed based on the linear first-order kinetic compartmental model approach used by the International Commission on Radiological Protection (ICRP). The main differences of the optimized systemic model of zirconium to the current ICRP model are (1) recycling into the transfer compartment made necessary by the observed tracer clearance from plasma, (2) different parameters related to fractional absorption for each form of the ingested tracer, and (3) a physiologically based excretion pathway to urine. The study considerably expands the knowledge on the biokinetics of zirconium, which was until now dominated by data from animal studies. The proposed systemic model improves the existing ICRP model, yet is based on the same principles and fits well into the ICRP radiation protection approach. Copyright © 2011

  20. Near infrared photoimmunotherapy for lung metastases

    PubMed Central

    Sato, Kazuhide; Nagaya, Tadanobu; Mitsunaga, Makoto; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Lung metastases are a leading cause of cancer related deaths; nonetheless current treatments are limited. Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies that target tumors with the toxicity induced by photosensitizers activated by NIR-light. Herein, we demonstrate the efficacy of NIR-PIT in a mouse model of lung metastases. Experiments were conducted with a HER2, luciferase and GFP expressing cell line (3T3/HER2-luc-GFP). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. With 3D culture, repeated NIR-PIT could eradicate entire spheroids. In vivo anti-tumor effects of NIR-PIT included significant reductions in both tumor volume (p = 0.0141 vs. APC) and bioluminescence image (BLI) (p = 0.0086 vs. APC) in the flank model, and prolonged survival (p < 0.0001). BLI demonstrated a significant reduction in lung metastases volume (p = 0.0117 vs. APC). Multiple NIR-PIT doses significantly prolonged survival in the lung metastases model (p < 0.0001). These results suggested that NIR-PIT is a potential new therapy for the local control of lung metastases. PMID:26021765

  1. Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury

    PubMed Central

    Roerig, David L.; Haworth, Steven T.; Clough, Anne V.

    2012-01-01

    Rat exposure to 60% oxygen (O2) for 7 days (hyper-60) or to >95% O2 for 2 days followed by 24 h in room air (hyper-95R) confers susceptibility or tolerance, respectively, of the otherwise lethal effects of subsequent exposure to 100% O2. The objective of this study was to determine if lung retention of the radiopharmaceutical agent technetium-labeled-hexamethylpropyleneamine oxime (HMPAO) is differentially altered in hyper-60 and hyper-95R rats. Tissue retention of HMPAO is dependent on intracellular content of the antioxidant GSH and mitochondrial function. HMPAO was injected intravenously in anesthetized rats, and planar images were acquired. We investigated the role of GSH in the lung retention of HMPAO by pretreating rats with the GSH-depleting agent diethyl maleate (DEM) prior to imaging. We also measured GSH content and activities of mitochondrial complexes I and IV in lung homogenate. The lung retention of HMPAO increased by ∼50% and ∼250% in hyper-60 and hyper-95R rats, respectively, compared with retention in rats exposed to room air (normoxic). DEM decreased retention in normoxic (∼26%) and hyper-95R (∼56%) rats compared with retention in the absence of DEM. GSH content increased by 19% and 40% in hyper-60 and hyper-95R lung homogenate compared with normoxic lung homogenate. Complex I activity decreased by ∼50% in hyper-60 and hyper-95R lung homogenate compared with activity in normoxic lung homogenate. However, complex IV activity was increased by 32% in hyper-95R lung homogenate only. Furthermore, we identified correlations between the GSH content in lung homogenate and the DEM-sensitive fraction of HMPAO retention and between the complex IV/complex I activity ratio and the DEM-insensitive fraction of HMPAO retention. These results suggest that an increase in the GSH-dependent component of the lung retention of HMPAO may be a marker of tolerance to sustained exposure to hyperoxia. PMID:22628374

  2. Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury.

    PubMed

    Audi, Said H; Roerig, David L; Haworth, Steven T; Clough, Anne V

    2012-08-15

    Rat exposure to 60% oxygen (O(2)) for 7 days (hyper-60) or to >95% O(2) for 2 days followed by 24 h in room air (hyper-95R) confers susceptibility or tolerance, respectively, of the otherwise lethal effects of subsequent exposure to 100% O(2). The objective of this study was to determine if lung retention of the radiopharmaceutical agent technetium-labeled-hexamethylpropyleneamine oxime (HMPAO) is differentially altered in hyper-60 and hyper-95R rats. Tissue retention of HMPAO is dependent on intracellular content of the antioxidant GSH and mitochondrial function. HMPAO was injected intravenously in anesthetized rats, and planar images were acquired. We investigated the role of GSH in the lung retention of HMPAO by pretreating rats with the GSH-depleting agent diethyl maleate (DEM) prior to imaging. We also measured GSH content and activities of mitochondrial complexes I and IV in lung homogenate. The lung retention of HMPAO increased by ≈ 50% and ≈ 250% in hyper-60 and hyper-95R rats, respectively, compared with retention in rats exposed to room air (normoxic). DEM decreased retention in normoxic (≈ 26%) and hyper-95R (≈ 56%) rats compared with retention in the absence of DEM. GSH content increased by 19% and 40% in hyper-60 and hyper-95R lung homogenate compared with normoxic lung homogenate. Complex I activity decreased by ≈ 50% in hyper-60 and hyper-95R lung homogenate compared with activity in normoxic lung homogenate. However, complex IV activity was increased by 32% in hyper-95R lung homogenate only. Furthermore, we identified correlations between the GSH content in lung homogenate and the DEM-sensitive fraction of HMPAO retention and between the complex IV/complex I activity ratio and the DEM-insensitive fraction of HMPAO retention. These results suggest that an increase in the GSH-dependent component of the lung retention of HMPAO may be a marker of tolerance to sustained exposure to hyperoxia.

  3. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. Copyright © 2016 the American Physiological Society.

  4. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients.

    PubMed

    Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min

    2015-01-01

    The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

  5. Establishment of a Conditional Transgenic Mouse Model Recapitulating EML4-ALK-Positive Human Non-Small Cell Lung Cancer.

    PubMed

    Pyo, Kyoung Ho; Lim, Sun Min; Kim, Hye Ryun; Sung, Young Hoon; Yun, Mi Ran; Kim, Sung-Moo; Kim, Hwan; Kang, Han Na; Lee, Ji Min; Kim, Sang Gyun; Park, Chae Won; Chang, Hyun; Shim, Hyo Sup; Lee, Han-Woong; Cho, Byoung Chul

    2017-03-01

    Anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion is a distinct molecular subclassification of NSCLC that is targeted by anaplastic lymphoma kinase (ALK) inhibitors. We established a transgenic mouse model that expresses tumors highly resembling human NSCLC harboring echinoderm microtubule associated protein like 4 gene (EML)-ALK fusion. We aimed to test an EML4-ALK transgenic mouse model as a platform for assessing the efficacy of ALK inhibitors and examining mechanisms of acquired resistance to ALK inhibitors. Transgenic mouse lines harboring LoxP-STOP-LoxP-FLAGS-tagged human EML4-ALK (variant 1) transgene was established by using C57BL/6N mice. The transgenic mouse model with highly lung-specific, inducible expression of echinoderm microtubule associated protein like 4-ALK fusion protein was established by crossing the EML4-ALK transgenic mice with mice expressing Cre-estrogen receptor fusion protein under the control of surfactant protein C gene (SPC). Expression of EML4-ALK transgene was induced by intraperitoneally injecting mice with tamoxifen. When the lung tumor of the mice treated with the ALK inhibitor crizotinib for 2 weeks was measured, tumor shrinkage was observed. EML4-ALK tumor developed after 1 week of tamoxifen treatment. Echinoderm microtubule associated protein like 4-ALK was strongly expressed in the lung but not in other organs. ALK and FLAGS expressions were observed by immunohistochemistry. Treatment of EML4-ALK tumor-bearing mice with crizotinib for 2 weeks induced dramatic shrinkage of tumors with no signs of toxicity. Furthermore, prolonged treatment with crizotinib led to acquired resistance in tumors, resulting in regrowth and disease progression. The resistant tumor nodules revealed acquired ALK G1202R mutations. An EML4-ALK transgenic mouse model for study of drug resistance was successfully established with short duration of tumorigenesis. This model should be a strong preclinical model for testing efficacy of ALK TKIs

  6. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  7. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    PubMed

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  8. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  9. Using Micro-computed Tomography for the Assessment of Tumor Development and Follow-up of Response to Treatment in a Mouse Model of Lung Cancer.

    PubMed

    Hegab, Ahmed E; Kameyama, Naofumi; Kuroda, Aoi; Kagawa, Shizuko; Yin, Yongjun; Ornitz, David; Betsuyaku, Tomoko

    2016-05-20

    Lung cancer is the most lethal cancer in the world. Intensive research is ongoing worldwide to identify new therapies for lung cancer. Several mouse models of lung cancer are being used to study the mechanism of cancer development and to experiment with various therapeutic strategies. However, the absence of a real-time technique to identify the development of tumor nodules in mice lungs and to monitor the changes in their size in response to various experimental and therapeutic interventions hampers the ability to obtain an accurate description of the course of the disease and its timely response to treatments. In this study, a method using a micro-computed tomography (CT) scanner for the detection of the development of lung tumors in a mouse model of lung adenocarcinoma is described. Next, we show that monthly follow-up with micro-CT can identify dynamic changes in the lung tumor, such as the appearance of additional nodules, increase in the size of previously detected nodules, and decrease in the size or complete resolution of nodules in response to treatment. Finally, the accuracy of this real-time assessment method was confirmed with end-point histological quantification. This technique paves the way for planning and conducting more complex experiments on lung cancer animal models, and it enables us to better understand the mechanisms of carcinogenesis and the effects of different treatment modalities while saving time and resources.

  10. A clinicopathologic prediction model for postoperative recurrence in stage Ia non-small cell lung cancer.

    PubMed

    Zhang, Yang; Sun, Yihua; Xiang, Jiaqing; Zhang, Yawei; Hu, Hong; Chen, Haiquan

    2014-10-01

    Controversy remains over the appropriate postoperative management for patients with stage Ia non-small cell lung cancer who underwent complete surgical resection as a result of a heterogeneous prognosis. We aimed to identify the predictive factors for recurrence in these patients to aid in the decision making. We reviewed 344 patients with stage Ia non-small cell lung cancer to analyze the associations between recurrence-free survival and the following clinicopathologic variables: age, gender, smoking history, family history, preoperative serum carcinoembryonic antigen level, type of surgical resection, tumor location, tumor histology, lymphovascular invasion, tumor differentiation, and pathologic T status. Cox multivariate survival analysis revealed that central tumor location (P=.019), stage T1b (P=.006), high histologic grade (including large cell carcinoma, solid predominant, micropapillary predominant, and invasive mucinous adenocarcinoma, P=.007), poor differentiation (P=.022), and lymphovascular invasion (P=.035) were independently associated with recurrence-free survival. A nomogram for predicting the probability of 3-year recurrence-free survival was developed using the 5 variables. This model shows good calibration, reasonable discrimination (concordance index=0.733), and small overfitting (2.6%) demonstrated by bootstrapping. We developed a clinicopathologic prediction model for postoperative recurrence in stage Ia non-small cell lung cancer. This model can help with the selection of appropriate postoperative therapeutic strategies for these patients. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. A 3D human tissue-engineered lung model to study influenza A infection.

    PubMed

    Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather

    2018-05-05

    Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

  12. The metastatic microenvironment: lung-derived factors control the viability of neuroblastoma lung metastasis.

    PubMed

    Maman, Shelly; Edry-Botzer, Liat; Sagi-Assif, Orit; Meshel, Tsipi; Yuan, Weirong; Lu, Wuyuan; Witz, Isaac P

    2013-11-15

    Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease. Copyright © 2013 UICC.

  13. Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness: decreased numbers of high affinity beta-adrenoceptors.

    PubMed Central

    Emala, C. W.; Aryana, A.; Hirshman, C. A.

    1996-01-01

    1. To evaluate mechanisms involved in the impaired beta-adrenoceptor stimulation of adenylyl cyclase in tissues from the Basenji-greyhound (BG) dog model of airway hyperresponsiveness, we compared agonist and antagonist binding affinity of beta-adrenoceptors, beta-adrenoceptor subtypes, percentage of beta-adrenoceptors sequestered, and coupling of the beta-adrenoceptor to Gs alpha in lung membranes from BG and control mongrel dogs. We found that lung membranes from the BG dog had higher total numbers of beta-adrenoceptors with a greater percentage of receptors of the beta 2 subtype as compared to mongrel lung membranes. 2. Agonist and antagonist binding affinity and the percentage of beta-adrenoceptors sequestered were not different in BG and mongrel dog lung membranes. However, the percentage of beta-adrenoceptors in the high affinity state for agonist was decreased in BG lung membranes suggesting an uncoupling of the receptor from Gs alpha. 3. Impaired coupling between the beta-adrenoceptor and G protein documented by the decreased numbers of beta-adrenoceptors in the high affinity state in BG lung membranes, is a plausible explanation for the reduced stimulation of adenylyl cyclase and the resultant reduction in airway smooth muscle relaxation in this model. PMID:8864536

  14. Differential Lung Uptake of 99mTc-HMPAO and 99mTc-Duramycin in the Chronic Hyperoxia Rat Model

    PubMed Central

    Clough, Anne V.; Audi, Said H.; Haworth, Steven T.; Roerig, David L.

    2015-01-01

    Noninvasive radionuclide imaging has the potential to identify and assess mechanisms involved in particular stages of lung injury which occur with acute respiratory distress syndrome, for example. Lung uptake of 99mTc-hexamethylpropyleneamine oxime (HMPAO) is reported to be partially dependent on the redox status of the lung tissue while 99mTc-duramycin, a new marker of cell injury, senses cell death via apoptosis and/or necrosis. Thus, we investigated changes in lung uptake of these agents in rat exposed to hyperoxia for prolonged periods, a common model of acute lung injury. Methods Male Sprague-Dawley rats were pre-exposed to either normoxia (21% O2) or hyperoxia (85% O2) for up to 21 days. For imaging, the rats were anesthetized, injected i.v. with either 99mTc-HMPAO or 99mTc-duramycin (37-74 MBq) and planar images were acquired using a high sensitivity modular gamma camera. Subsequently, 99mTc-macroagreggated albumin (37 MBq, diam=10-40 μm) was injected i.v., imaged, and used to define a lung region-of-interest. The lung to background ratio was used as a measure of lung uptake. Results Hyperoxia exposure resulted in a 74% increase in 99mTc-HMPAO lung uptake, which peaked at 7 days and persisted for the 21 days of exposure. 99mTc-duramycin lung uptake was also maximal at 7 days of exposure but decreased to near control levels by 21 days. The sustained elevation of 99mTc-HMPAO uptake suggests ongoing changes in lung redox status whereas cell death appears to have subsided by 21 days. Conclusion These results suggest the potential use of 99mTc-HMPAO and 99mTc-duramycin as redox and cell-death imaging biomarkers, respectively, for in vivo identification and assessment of different stages of lung injury. PMID:23086010

  15. Development of a bolus injection system for regional deposition studies of nanoparticles in the human respiratory system

    NASA Astrophysics Data System (ADS)

    Koujalagi, V.; Ramesh, S. L.; Gunarathne, G. P. P.; Semple, S.; Ayres, J. G.

    2009-02-01

    This study presents the work carried out in developing a precision bolus injection system in order to understand the regional deposition of nanoparticles (NP) in human lung. A real-time control system has been developed that is capable of storing graphite NP, assessing human breathing pattern and delivering a bolus of the stored NP at a pre-determined instance of the inhalation phase of breathing. This will form the basis for further development of a system to deliver radioactive nanoparticles to enable 3-dimensional lung imaging using techniques such as positron emission tomography (PET). The system may then be used to better understand the actual regional deposition in human lung, which could validate or challenge the current computational lung models such as that published by the International Commission for Radiation Protection (ICRP-1994). A dose related response to inhaled PM can possibly be shown, which can be used to review the current workplace exposure limits (WELs).

  16. Overview of ICRP Committee 3: protection in medicine.

    PubMed

    Vañó, E; Miller, D L; Rehani, M M

    2016-06-01

    Committee 3 of the International Commission on Radiological Protection (ICRP) develops recommendations and guidance for protection of patients, staff, and the public against radiation exposure when ionising radiation is used for medical diagnosis, therapy, or biomedical research. This paper presents a summary of the work that Committee 3 has accomplished over the past few years, and also describes its current work. The most recent reports published by the Commission that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (Publication 129), 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (Publication 128, in cooperation with Committee 2), 'Radiological protection in ion beam radiotherapy' (Publication 127), 'Radiological protection in paediatric diagnostic and interventional radiology' (Publication 121), 'Radiological protection in cardiology' (Publication 120), and 'Radiological protection in fluoroscopically guided procedures outside the imaging department' (Publication 117). A new report on diagnostic reference levels in medical imaging will provide specific advice for interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and hybrid (multi-modality) imaging procedures, and is expected to be published in 2016. Committee 3 is also working on guidance for occupational radiological protection in brachytherapy, and on guidance on occupational protection issues in interventional procedures, paying particular attention to the 2011 Commission's recommendations on the occupational dose limit for the lens of the eye (Publication 118). Other reports in preparation deal with justification, radiological protection in therapy with radiopharmaceuticals, radiological protection in medicine as related to individual radiosusceptibility, appropriate use of effective dose (in cooperation with other

  17. Monitoring lung contusion in a porcine polytrauma model using EIT: an application study.

    PubMed

    Santos, Susana Aguiar; Wembers, Carlos Castelar; Horst, Klemens; Pfeifer, Roman; Simon, Tim-Philipp; Pape, Hans-Christoph; Hildebrand, Frank; Czaplik, Michael; Leonhardt, Steffen; Teichmann, Daniel

    2017-07-26

    Lung contusion is the most common lung injury following blunt chest trauma which, in turn, is associated with high mortality rates (Gavelli et al 2002 Eur. Radiol. 12 1273-94). Lung contusion is characterized by hemorrhage and edema with consecutively reduced compliance. Objective and Approach: In this study, unilateral lung contusion and other traumata were induced in 12 pigs by using a bolt gun machine. To investigate the pathophysiological consequences of lung contusion, information on clinical parameters was collected and monitored regularly while animals were additionally monitored with electrical impedance tomography (EIT) before trauma, and at 4, 24, 48 and 72 h after polytrauma. Statistical analyses showed significant differences between the measurement time points in terms of lung compliance ([Formula: see text]) and in global EIT parameters, such as absolute global impedance (aGlobImp) ([Formula: see text]), tidal impedance variation (TIV) ([Formula: see text]) and the center of ventilation (CoV) ([Formula: see text]). Additionally, distinct analyses for the left (non-injured) and right (injured) lung were also performed. In this context, during the progress of lung contusion, significant changes were found for the injured lung in TIV ([Formula: see text]), global inhomogeneity ([Formula: see text]), regional ventilation delay ([Formula: see text]), CoV ([Formula: see text]) and in regions of non-ventilation (rNoVent) ([Formula: see text]). Furthermore, TIV and rNoVent were capable to differentiate the injured and the contralateral healthy lung at 4 and 24 h after injury (TIV: [Formula: see text] and [Formula: see text]; rNoVent: [Formula: see text] and [Formula: see text]). TIV reached a sensitivity of 82% (specificity of 100%) at 4 h and sensitivity of 82% (specificity of 82%) at 24 h after injury, in detecting lung contusion specific consequences. The results indicate that EIT might be a valuable tool to detect and to monitor lung injuries

  18. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    PubMed Central

    Mitran, Sorin

    2013-01-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842

  19. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitran, Sorin, E-mail: mitran@unc.edu

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough,more » upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.« less

  20. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  1. Quantitative assessment of lung ventilation and microstructure in an animal model of idiopathic pulmonary fibrosis using hyperpolarized gas MRI.

    PubMed

    Stephen, Michael J; Emami, Kiarash; Woodburn, John M; Chia, Elaine; Kadlecek, Stephen; Zhu, Jianliang; Pickup, Stephen; Ishii, Masaru; Rizi, Rahim R; Rossman, Milton

    2010-11-01

    The use of hyperpolarized (3)He magnetic resonance imaging as a quantitative lung imaging tool has progressed rapidly in the past decade, mostly in the assessment of the airway diseases chronic obstructive pulmonary disease and asthma. This technique has shown potential to assess both structural and functional information in healthy and diseased lungs. In this study, the regional measurements of structure and function were applied to a bleomycin rat model of interstitial lung disease. Male Sprague-Dawley rats (weight, 300-350 g) were administered intratracheal bleomycin. After 3 weeks, apparent diffusion coefficient and fractional ventilation were measured by (3)He magnetic resonance imaging and pulmonary function testing using a rodent-specific plethysmography chamber. Sensitized and healthy animals were then compared using threshold analysis to assess the potential sensitivity of these techniques to pulmonary abnormalities. No significant changes were observed in total lung volume and compliance between the two groups. Airway resistance elevated and forced expiratory volume significantly declined in the 3-week bleomycin rats, and fractional ventilation was significantly decreased compared to control animals (P < .0004). The apparent diffusion coefficient of (3)He showed a smaller change but still a significant decrease in 3-week bleomycin animals (P < .05). Preliminary results suggest that quantitative (3)He magnetic resonance imaging can be a sensitive and noninvasive tool to assess changes in an animal interstitial lung disease model. This technique may be useful for longitudinal animal studies and also in the investigation of human interstitial lung diseases. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  2. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

    PubMed Central

    Maruta, Naomichi; Marumoto, Moegi

    2017-01-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293

  3. Progesterone and estradiol synergistically promote the lung metastasis of tuberin-deficient cells in a preclinical model of lymphangioleiomyomatosis

    PubMed Central

    Sun, Yang; Zhang, Erik; Lao, Taotao; Pereira, Ana M.; Li, Chenggang; Xiong, Li; Morrison, Tasha; Haley, Kathleen J.; Zhou, Xiaobo; Yu, Jane J.

    2014-01-01

    Lymphangioleiomyomatosis (LAM) is a female-predominant lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 hyperactivation. The gender specificity of LAM suggests that female hormones contribute to disease progression. Clinical findings indicate that estradiol exacerbates LAM behaviors and symptoms. Although hormonal therapy with progesterone has been employed, the benefit in LAM improvement has not been achieved. We have previously found that estradiol promotes the survival and lung metastasis of cells lacking tuberin in a preclinical model of LAM. In this study, we hypothesize that progesterone alone or in combination with estradiol promote metastatic behaviors of TSC2-deficient cells. In cell culture models of TSC2-deficient LAM patient-derived and rat uterine leiomyoma-derived cells, we found that progesterone treatment or progesterone plus estradiol resulted in increased phosphorylation of Akt and ERK1/2, induced the proliferation, and enhanced the migration and invasiveness. In addition, treatment of progesterone plus estradiol synergistically decreased the levels of reactive oxygen species, and enhanced cell survival under oxidative stress. In a murine model of LAM, treatment of progesterone plus estradiol promoted the growth of xenograft tumors; however, progesterone treatment did not affect the development of xenograft tumors of Tsc2-deficient cells. Importantly, treatment of progesterone plus estradiol resulted in alteration of lung morphology, and significantly increased the number of lung micrometastases of Tsc2-deficient cells compared with estradiol treatment alone. Collectively, these data indicate that progesterone increases the metastatic potential of TSC2-deficient LAM patient-derived cells in vitro and lung metastasis in vivo. Thus, targeting progesterone-mediated signaling events may have therapeutic benefit for LAM and possibly other hormonally dependent cancers. PMID

  4. Lung parenchyma remodeling in a murine model of chronic allergic inflammation.

    PubMed

    Xisto, Debora G; Farias, Luciana L; Ferreira, Halina C; Picanço, Miguel R; Amitrano, Daniel; Lapa E Silva, Jose R; Negri, Elnara M; Mauad, Thais; Carnielli, Denise; Silva, Luiz Fernando F; Capelozzi, Vera L; Faffe, Debora S; Zin, Walter A; Rocco, Patricia R M

    2005-04-15

    This study tested the hypotheses that chronic allergic inflammation induces not only bronchial but also lung parenchyma remodeling, and that these histologic changes are associated with concurrent changes in respiratory mechanics. For this purpose, airway and lung parenchyma remodeling were evaluated by quantitative analysis of collagen and elastin, immunohistochemistry (smooth-muscle actin expression, eosinophil, and dendritic cell densities), and electron microscopy. In vivo (airway resistance, viscoelastic pressure, and static elastance) and in vitro (tissue elastance, resistance, and hysteresivity) respiratory mechanics were also analyzed. BALB/c mice were sensitized with ovalbumin and exposed to repeated ovalbumin challenges. A marked eosinophilic infiltration was seen in lung parenchyma and in large and distal airways. Neutrophils, lymphocytes, and dendritic cells also infiltrated the lungs. There was subepithelial fibrosis, myocyte hypertrophy and hyperplasia, elastic fiber fragmentation, and increased numbers of myofibroblasts in airways and lung parenchyma. Collagen fiber content was increased in the alveolar walls. The volume proportion of smooth muscle-specific actin was augmented in distal airways and alveolar duct walls. Airway resistance, viscoelastic pressure, static elastance, and tissue elastance and resistance were significantly increased. In conclusion, prolonged allergen exposure induced remodeling not only of the airway wall but also of the lung parenchyma, leading to in vivo and in vitro mechanical changes.

  5. A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Mariana; Golder, Matthew; Archer, Fabienne

    2008-02-05

    Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The JSRV envelope glycoprotein (Env) functions as a dominant oncoprotein in vitro and in vivo. In order to develop the basis for the use of OPA as a lung cancer model, we screened a variety of signal transduction inhibitors for their ability to block transformation by the JSRV Env. Most inhibitors were not effective in blocking JSRV Env-induced transformation. On the contrary, various Hsp90 inhibitors efficiently blocked JSRV transformation. This phenomenon was at least partly due to Akt degradation, which is activatedmore » in JSRV-transformed cells. Hsp90 was found expressed in tumor cells of sheep with naturally occurring OPA. In addition, Hsp90 inhibitors specifically inhibited proliferation of immortalized and moreover primary cells derived from OPA tumors. Thus, OPA could be used as a large animal model for comprehensive studies investigating the effects of Hsp90 inhibitors in lung adenocarcinoma.« less

  6. A qualitative study of lung cancer risk perceptions and smoking beliefs among national lung screening trial participants.

    PubMed

    Park, Elyse R; Streck, Joanna M; Gareen, Ilana F; Ostroff, Jamie S; Hyland, Kelly A; Rigotti, Nancy A; Pajolek, Hannah; Nichter, Mark

    2014-02-01

    The National Comprehensive Cancer Network and the American Cancer Society recently released lung screening guidelines that include smoking cessation counseling for smokers undergoing screening. Previous work indicates that smoking behaviors and risk perceptions of the National Lung Screening Trial (NLST) participants were relatively unchanged. We explored American College of Radiology Imaging Network (ACRIN)/NLST former and current smokers' risk perceptions specifically to (a) determine whether lung screening is a cue for behavior change, (b) elucidate risk perceptions for lung cancer and smoking-related diseases, and (c) explore postscreening behavioral intentions and changes. A random sample of 35 participants from 4 ACRIN sites were qualitatively interviewed 1-2 years postscreen. We used a structured interview guide based on Health Belief Model and Self-Regulation Model constructs. Content analyses were conducted with NVivo 8. Most participants endorsed high-risk perceptions for lung cancer and smoking-related diseases, but heightened concern about these risks did not appear to motivate participants to seek screening. Risk perceptions were mostly attributed to participants' heavy smoking histories; former smokers expressed greatly reduced risk. Lung cancer and smoking-related diseases were perceived as very severe although participants endorsed low worry. Current smokers had low confidence in their ability to quit, and none reported quitting following their initial screen. Lung screening did not appear to be a behavior change cue to action, and high-risk perceptions did not translate into quitting behaviors. Cognitive and emotional dissonance and avoidance strategies may deter engagement in smoking behavior change. Smoking cessation and prevention interventions during lung screening should explore risk perceptions, emotions, and quit confidence.

  7. Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model.

    PubMed

    Huleihel, Luai; Sellares, Jacobo; Cardenes, Nayra; Álvarez, Diana; Faner, Rosa; Sakamoto, Koji; Yu, Guoying; Kapetanaki, Maria G; Kaminski, Naftali; Rojas, Mauricio

    2017-07-01

    Although different preclinical models have demonstrated a favorable role for bone marrow-derived mesenchymal stem cells (B-MSC) in preventing fibrosis, this protective effect is not observed with late administration of these cells, when fibrotic changes are consolidated. We sought to investigate whether the late administration of B-MSCs overexpressing microRNAs (miRNAs) let-7d (antifibrotic) or miR-154 (profibrotic) could alter lung fibrosis in a murine bleomycin model. Using lentiviral vectors, we transduced miRNAs (let-7d or miR-154) or a control sequence into human B-MSCs. Overexpression of let-7d or miR-154 was associated with changes in the mesenchymal properties of B-MSCs and in their cytokine expression. Modified B-MSCs were intravenously administered to mice at day 7 after bleomycin instillation, and the mice were euthanized at day 14 Bleomycin-injured animals that were treated with let-7d cells were found to recover quicker from the initial weight loss compared with the other treatment groups. Interestingly, animals treated with miR-154 cells had the lowest survival rate. Although a slight reduction in collagen mRNA levels was observed in lung tissue from let-7d mice, no significant differences were observed in Ashcroft score and OH-proline. However, the distinctive expression in cytokines and CD45-positive cells in the lung suggests that the differential effects observed in both miRNA mice groups were related to an effect on the immunomodulation function. Our results establish the use of miRNA-modified mesenchymal stem cells as a potential future research in lung fibrosis. Copyright © 2017 the American Physiological Society.

  8. Cannabis smoking and lung cancer risk: Pooled analysis in the International Lung Cancer Consortium

    PubMed Central

    Zhang, Li Rita; Morgenstern, Hal; Greenland, Sander; Chang, Shen-Chih; Lazarus, Philip; Teare, M. Dawn; Woll, Penella J.; Orlow, Irene; Cox, Brian; Brhane, Yonathan; Liu, Geoffrey; Hung, Rayjean J.

    2014-01-01

    To investigate the association between cannabis smoking and lung cancer risk, data on 2,159 lung cancer cases and 2,985 controls were pooled from 6 case-control studies in the US, Canada, UK, and New Zealand within the International Lung Cancer Consortium. Study-specific associations between cannabis smoking and lung cancer were estimated using unconditional logistic regression adjusting for sociodemographic factors, tobacco smoking status and pack-years; odds-ratio estimates were pooled using random effects models. Subgroup analyses were done for sex, histology and tobacco smoking status. The shapes of dose-response associations were examined using restricted cubic spline regression. The overall pooled OR for habitual versus nonhabitual or never users was 0.96 (95% CI: 0.66–1.38). Compared to nonhabitual or never users, the summary OR was 0.88 (95%CI: 0.63–1.24) for individuals who smoked 1 or more joint-equivalents of cannabis per day and 0.94 (95%CI: 0.67–1.32) for those consumed at least 10 joint-years. For adenocarcinoma cases the ORs were 1.73 (95%CI: 0.75–4.00) and 1.74 (95%CI: 0.85–3.55), respectively. However, no association was found for the squamous cell carcinoma based on small numbers. Weak associations between cannabis smoking and lung cancer were observed in never tobacco smokers. Spline modeling indicated a weak positive monotonic association between cumulative cannabis use and lung cancer, but precision was low at high exposure levels. Results from our pooled analyses provide little evidence for an increased risk of lung cancer among habitual or long-term cannabis smokers, although the possibility of potential adverse effect for heavy consumption cannot be excluded. PMID:24947688

  9. Smad1 and WIF1 genes are downregulated during saccular stage of lung development in the nitrofen rat model.

    PubMed

    Fujiwara, Naho; Doi, Takashi; Gosemann, Jan-Hendrik; Kutasy, Balazs; Friedmacher, Florian; Puri, Prem

    2012-02-01

    The exact pathogenesis of pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Smad1, one of the bone morphogenesis protein (BMP) receptor downstream signaling proteins, plays a key role in organogenesis including lung development and maturation. Smad1 knockout mice display reduced sacculation, an important feature of pulmonary hypoplasia. Wnt inhibitor factor 1 (Wif1) is a target gene of Smad1 in the developing lung epithelial cells (LECs). Smad1 directly regulates Wif1 gene expression and blockade of Smad1 function in fetal LECs is reported to downregulate Wif1 gene expression. We designed this study to test the hypothesis that pulmonary Smad1 and Wif1 gene expression is downregulated during saccular stage of lung development in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18, and D21. Fetal lungs were dissected and divided into 2 groups: control and nitrofen (n = 9 at each time point, respectively). Pulmonary gene expression of Smad1 and Wif1 were analyzed by real-time RT-PCR. Immunohistochemistry was performed to evaluate protein expression/distribution of Smad1 and Wif1. The relative mRNA expression levels of Smad1 and Wif1 were significantly downregulated in the nitrofen group compared to controls on D18 and D21 (*p < 0.01, **p < 0.05). Immunoreactivity of Smad1 and Wif1 was also markedly decreased in nitrofen lungs compared to controls on D18 and D21. We provide evidence, for the first time, that the pulmonary gene expression of Smad1 and Wif1 is downregulated on D18 and D21 (saccular stage of lung development) in the nitrofen-induced hypoplastic lung. These findings suggest that the downregulation of Smad1/Wif1 gene expression may contribute to pulmonary hypoplasia in the nitrofen CDH model by retardation of lung development during saccular stage.

  10. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    PubMed Central

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  11. Bipolar sealing of lung parenchyma: tests in an ex vivo model.

    PubMed

    Kirschbaum, A; Clemens, A; Steinfeldt, T; Pehl, A; Meyer, C; Bartsch, D K

    2015-01-01

    Almost every pulmonary lobe resection requires cutting the lung parenchyma in the area of a lung fissure. A monopolar cutter or stapler is often used for this purpose. The seal should be absolutely airtight to prevent post-operative pulmonary fistulas. In the present study, the bipolar sealing technique was evaluated regarding air tightness of the seals during normal ventilation and its burst pressure in an ex vivo animal model. The investigations were carried out on paracardial lung lobes obtained from heart-lung preparations taken from freshly killed pigs at a slaughter house. In the laboratory, each individual lobe was perfused with Ringer's solution at body temperature and protectively ventilated through a tube (frequency: 20 1/min, p insp = 20 mbar, PEEP +5 mbar). Non-anatomic resection was carried out in the periphery of the lung lobe. The two control groups (12 lobes per group; Group 1-stapler, Group 2-parenchyma suture) were compared to three groups in which different bipolar sealing instruments were used. They were Group 3-MARSEAL(®) 10 mm (KLS Martin, Tuttlingen); Group 4-MARSEAL(®) 5 mm; and Group 5-MARCLAMP(®) (KLS Martin, Tuttlingen). The SealSafe(®) G3 electric current was used in all cases. Ventilation was continued for 20 min following parenchymal resection. Parenchymal sealing was then judged visually in a water bath and given a score (0-3). Burst pressure (mbar) was measured by increasing the inspiration pressure stepwise. Group mean values were compared (nonparametric Mann-Whitney U test, p < 0.005). Parenchymal seals were airtight under ventilation throughout the observation period in all groups. Mean burst pressures were as follows: Group 1: 47.1 ± 6.2 mbar; Group 2: 32.9 ± 3.9 mbar; Group 3: 38.8 ± 2.2 mbar; Group 4: 25.0 ± 6.4 mbar; and Group 5: 32.9 ± 5.8 mbar. Group 1, the stapler group, thus exhibited the highest burst pressures. Burst pressures for Group 3 were significantly greater than those for Group 2 (p < 0.006). Burst

  12. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  13. A generic biokinetic model for noble gases with application to radon.

    PubMed

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric

    2013-06-01

    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  14. Lung Cancer Mortality (1950–1999) among Eldorado Uranium Workers: A Comparison of Models of Carcinogenesis and Empirical Excess Risk Models

    PubMed Central

    Eidemüller, Markus; Jacob, Peter; Lane, Rachel S. D.; Frost, Stanley E.; Zablotska, Lydia B.

    2012-01-01

    Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates. PMID:22936975

  15. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    NASA Astrophysics Data System (ADS)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  16. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats.

    PubMed

    Gaspar, Maria Manuela; Radomska, Anna; Gobbo, Oliviero L; Bakowsky, Udo; Radomski, Marek W; Ehrhardt, Carsten

    2012-12-01

    Lung cancer is the leading cause of cancer death worldwide. Pulmonary anticancer therapy might offer several advantages over systemic delivery, leading to an increased exposure of the lung tumor to the drug, while minimizing side effects, due to regional containment. Here, we studied if a combination of inhalation therapy and drug targeting holds potential as an even more efficient lung cancer therapy. Transferrin (Tf )-conjugated PEG liposomes loaded with doxorubicin (DOX) were administered using an intracorporeal nebulizing catheter to an orthotopic lung cancer model established in athymic Rowett nude rats. Different DOX formulations and doses (0.2 and 0.4 mg/kg) were tested and the influence on tumor progression and life span of rats was evaluated in comparison with the i.v. administration of Tf-PEG-liposomes loaded with DOX at a therapeutic dose of 2 mg/kg. Rats in the untreated control group showed significant weight loss 2 weeks after tumor induction and died between days 19 and 29. Lungs of these animals showed multiple foci of neoplastic deposits, ranging up to 20 mm replacing the entire lobe. Empty Tf-liposomes showed a significant effect on survival time. This might be caused by the secondary cytotoxicity via stimulation of pulmonary macrophages. All animal treated intravenously also perished before the end of the study. No significant (p<0.05) improvement in survival was observed between the groups treated with aerosols of free drug, DOX encapsulated in plain and in Tf-modified liposomes. However, more animals survived in the Tf-liposome groups than in the other treatment regimes, and their lung tissue generally had fewer and smaller tumors. Nevertheless, the size of the groups, and the duration of the trial render it impossible to come to a definite conclusion. Drug targeting demonstrated potential for improving the aerosol treatment of lung cancer.

  17. Report of Task Group on the implications of the implementation of the ICRP recommendations for a revised dose limit to the lens of the eye.

    PubMed

    Broughton, J; Cantone, M C; Ginjaume, M; Shah, B

    2013-12-01

    This report was commissioned by the IRPA President to provide an assessment of the impact on members of IRPA Associate Societies of the introduction of ICRP recommendations for a reduced dose limit for the lens of the eye. The report summarises current practice and considers possible changes that may be required. Recommendations for further collaboration, clarification and changes to working practices are suggested.

  18. Noninvasive imaging of experimental lung fibrosis.

    PubMed

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  19. The Lung Microbiome After Lung Transplantation

    PubMed Central

    Becker, Julia B.; Poroyko, Valeriy

    2014-01-01

    Summary Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome’s role in the failing lung allograft. PMID:24601662

  20. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  1. A standardized model of brain death, donor treatment, and lung transplantation for studies on organ preservation and reconditioning.

    PubMed

    Valenza, Franco; Coppola, Silvia; Froio, Sara; Ruggeri, Giulia Maria; Fumagalli, Jacopo; Villa, Alessandro Maria; Rosso, Lorenzo; Mendogni, Paolo; Conte, Grazia; Lonati, Caterina; Carlin, Andrea; Leonardi, Patrizia; Gatti, Stefano; Stocchetti, Nino; Gattinoni, Luciano

    2014-12-01

    We set a model of brain death, donor management, and lung transplantation for studies on lung preservation and reconditioning before transplantation. Ten pigs (39.7 ± 5.9 Kg) were investigated. Five animals underwent brain death and were treated as organ donors; the lungs were then procured and cold stored (Ischemia). Five recipients underwent left lung transplantation and post-reperfusion follow-up (Graft). Cardiorespiratory and metabolic parameters were collected. Lung gene expression of cytokines (tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon gamma (IFNγ), high mobility group box-1 (HMGB-1)), chemokines (chemokine CC motif ligand-2 (CCL2-MCP-1), chemokine CXC motif ligand-10 (CXCL-10), interleukin-8 (IL-8)), and endothelial activation markers (endothelin-1 (EDN-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), selectin-E (SELE)) was assessed by real-time polymerase chain reaction (PCR). Tachycardia and hypertension occurred during brain death induction; cardiac output rose, systemic vascular resistance dropped (P < 0.05), and diabetes insipidus occurred. Lung-protective ventilation strategy was applied: 9 h after brain death induction, PaO2 was 192 ± 12 mmHg at positive end-expiratory pressure (PEEP) 8.0 ± 1.8 cmH2O and FiO2 of 40%; wet-to-dry ratio (W/D) was 5.8 ± 0.5, and extravascular lung water (EVLW) was 359 ± 80 mL. Procured lungs were cold-stored for 471 ± 24 min (Ischemia) at the end of which W/D was 6.1 ± 0.9. Left lungs were transplanted and reperfused (warm ischemia 98 ± 14 min). Six hours after controlled reperfusion, PaO2 was 192 ± 23 mmHg (PEEP 8.7 ± 1.5 cmH2O, FiO2 40%), W/D was 5.6 ± 0.4, and EVLW was 366 ± 117 mL. Levels of IL-8 rose at the end of donor management (BD, P < 0.05); CCL2-MCP-1, IL-8, HMGB-1, and SELE were significantly altered after reperfusion (Graft, P < 0

  2. Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury.

    PubMed

    Katira, Bhushan H; Giesinger, Regan E; Engelberts, Doreen; Zabini, Diana; Kornecki, Alik; Otulakowski, Gail; Yoshida, Takeshi; Kuebler, Wolfgang M; McNamara, Patrick J; Connelly, Kim A; Kavanagh, Brian P

    2017-12-01

    In the original 1974 in vivo study of ventilator-induced lung injury, Webb and Tierney reported that high Vt with zero positive end-expiratory pressure caused overwhelming lung injury, subsequently shown by others to be due to lung shear stress. To reproduce the lung injury and edema examined in the Webb and Tierney study and to investigate the underlying mechanism thereof. Sprague-Dawley rats weighing approximately 400 g received mechanical ventilation for 60 minutes according to the protocol of Webb and Tierney (airway pressures of 14/0, 30/0, 45/10, 45/0 cm H 2 O). Additional series of experiments (20 min in duration to ensure all animals survived) were studied to assess permeability (n = 4 per group), echocardiography (n = 4 per group), and right and left ventricular pressure (n = 5 and n = 4 per group, respectively). The original Webb and Tierney results were replicated in terms of lung/body weight ratio (45/0 > 45/10 ≈ 30/0 ≈ 14/0; P < 0.05) and histology. In 45/0, pulmonary edema was overt and rapid, with survival less than 30 minutes. In 45/0 (but not 45/10), there was an increase in microvascular permeability, cyclical abolition of preload, and progressive dilation of the right ventricle. Although left ventricular end-diastolic pressure decreased in 45/10, it increased in 45/0. In a classic model of ventilator-induced lung injury, high peak pressure (and zero positive end-expiratory pressure) causes respiratory swings (obliteration during inspiration) in right ventricular filling and pulmonary perfusion, ultimately resulting in right ventricular failure and dilation. Pulmonary edema was due to increased permeability, which was augmented by a modest (approximately 40%) increase in hydrostatic pressure. The lung injury and acute cor pulmonale is likely due to pulmonary microvascular injury, the mechanism of which is uncertain, but which may be due to cyclic interruption and exaggeration of pulmonary blood flow.

  3. Development of ferret as a human lung cancer model by injecting 4-(Nmethyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK).

    PubMed

    Aizawa, Koichi; Liu, Chun; Veeramachaneni, Sudipta; Hu, Kang-Quan; Smith, Donald E; Wang, Xiang-Dong

    2013-12-01

    Development of new animal lung cancer models that are relevant to human lung carcino-genesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK). In the present study, we investigated whether NNK treatment alone induces both preneoplastic and neoplastic lesions in the lungs of ferrets. We exposed ferrets to NNK by i.p. injection of NNK (50 mg/kg BW) once a month for four consecutive months and then followed up for 24, 26 and 32 weeks. The incidences of pulmonary pre-neoplastic and neoplastic lesions were assessed by histopathological examination. The expressions of 7 nicotinic acetylcholine receptor ( 7 nAChR, which has been shown to promote lung carcinogenesis)and its related molecular biomarkers in lungs were examined by immunohistochemistry and/or Western blotting analysis. Ferrets exposed to NNK alone developed both preneoplastic lesions (squamous metaplasia, dysplasia and atypical adenomatous hyperplasia) and tumors (squamous cell carcinoma, adenocarcinoma and adenosquamous carcinoma), which are commonly seen in humans. The incidence of tumor induced by NNK was time-dependent in the ferrets (16.7%, 40.0% and 66.7% for 24, 26 and 32 weeks, respectively). 7 nAChR is highly expressed in the ferret bronchial/bronchiolar epithelial cells, and alveolar macrophages in ferrets exposed to NNK, and in both squamous cell carcinoma and adenocarcinoma of the ferrets. In addition, we observed the tendency for an increase in phospho-ERK and cyclin D1 protein levels (p = 0.081 and 0.080, respectively) in the lungs of ferrets exposed to NNK. The development of both preneoplastic and neoplastic lesions in ferret lungs by injecting NNK alone provides a simple and highly relevant non-rodent model for studying biomarkers/molecular targets for the prevention, detection and treatment of lung

  4. Down-regulation of lung Kruppel-like factor in the nitrofen-induced hypoplastic lung.

    PubMed

    Lukošiūtė, A; Doi, T; Dingemann, J; Ruttenstock, E M; Puri, P

    2011-01-01

    stages of lung development in nitrofen-induced hypoplastic lungs. These data suggest that the down-regulation of LKLF during this critical period of lung morphogenesis may impair lung development and maturation, resulting in pulmonary hypoplasia in the nitrofen CDH model. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Comparison between semantic features and lung-RADS in predicting malignancy of screening lung nodule

    PubMed Central

    Li, Qian; Balagurunathan, Yoganand; Liu, Ying; Qi, Jin; Schabath, Matthew B.; Ye, Zhaoxiang; Gillies, Robert

    2017-01-01

    Rationale Lung-RADS is proposed for the Low-dose computed tomography (LDCT) interpretation in lung cancer screening, but its performance needs to be further evaluated. Objectives To compare the value of radiological semantic features and lung-RADS in predicting nodule malignancy risk at different screening rounds, and to investigate whether the predictive power of lung-RADS could be improved by incorporating semantic features. Methods A training cohort of 199 patients (139 benign and 60 cancerous nodules diagnosed at the third screening round), and a testing cohort of 80 patients (40 benign and 40 malignant nodules) were obtained from the National Lung Screening Trial dataset. A multivariate linear predictor model was built based on the 24 systematically scored semantic features, and the performances were compared to lung-RADS (scale 3 or above called positive). Measurements and Main Results Among the semantic features, contour and border definition were the top individual predictors. The average area under the receiver-operating characteristic curve (AUC) of border definition at baseline (T0) was 0.724. The average AUC of contour at first (T1) and second follow-up (T2) were 0.843 and 0.878, respectively. Other significant features included size, location, vessel attachment, solidity, focal emphysema and focal fibrosis. In comparison, the average AUC of lung-RADS at T0, T1 and T2 were 0.600, 0.760 and 0.867, respectively, and could be improved to 0.743, 0.887 and 0.968 by adding semantic features. Conclusion The semantic features performed similar to lung-RADS at follow-ups, outperformed lung-RADS at baseline, and could improve the performance of lung-RADS for all screening rounds. PMID:29137847

  6. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.

    PubMed

    Rathinasabapathy, Anandharajan; Horowitz, Alana; Horton, Kelsey; Kumar, Ashok; Gladson, Santhi; Unger, Thomas; Martinez, Diana; Bedse, Gaurav; West, James; Raizada, Mohan K; Steckelings, Ulrike M; Sumners, Colin; Katovich, Michael J; Shenoy, Vinayak

    2018-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH) is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT 2 ) receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21), a selective AT 2 receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg) to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip) either immediately (prevention protocol, BCP) or after 3 days (treatment protocol, BCT) of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition), and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT 2 receptor by C21 attenuates

  7. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Zuber, Benjamin; Courtine, Emilie; Rousseau, Christophe; Ouaaz, Fatah; Toubiana, Julie; Tazi, Asmaa; Mira, Jean-Paul; Chiche, Jean-Daniel

    2008-12-15

    Host infection by pathogens triggers an innate immune response leading to a systemic inflammatory response, often followed by an immune dysfunction which can favor the emergence of secondary infections. Dendritic cells (DCs) link innate and adaptive immunity and may be centrally involved in the regulation of sepsis-induced immune dysfunction. We assessed the contribution of DCs to lung defense in a murine model of sublethal polymicrobial sepsis (cecal ligature and puncture, CLP). In this model, bone marrow-derived DCs (BMDCs) retained an immature phenotype, associated with decreased capacity of IL-12p70 release and impaired priming of T cell lymphocytes. Eight days after CLP surgery, we induced a secondary pulmonary infection through intratracheal instillation of 5 x 10(6) CFUs of Pseudomonas aeruginosa. Whereas all sham-operated mice survived, 80% of post-CLP mice died after secondary pneumonia. Post-CLP mice exhibited marked lung damage with early recruitment of neutrophils, cytokine imbalance with decreased IL-12p70 production, and increased IL-10 release, but no defective bacterial lung clearance, while systemic bacterial dissemination was almost constant. Concomitant intrapulmonary administration of exogenous BMDCs into post-CLP mice challenged with P. aeruginosa dramatically improved survival. BMDCs did not improve bacterial lung clearance, but delayed neutrophil recruitment, strongly attenuated the early peak of TNF-alpha and restored an adequate Il-12p70/IL-10 balance in post-CLP mice. Thus, adoptive transfer of BMDCs reversed sepsis-induced immune dysfunction in a relevant model of secondary P. aeruginosa pneumonia. Unexpectedly, the mechanism of action of BMDCs did not involve enhanced antibacterial activity, but occurred by dampening the pulmonary inflammatory response.

  8. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  9. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    PubMed

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  10. Risk Profiling May Improve Lung Cancer Screening

    Cancer.gov

    A new modeling study suggests that individualized, risk-based selection of ever-smokers for lung cancer screening may prevent more lung cancer deaths and improve the effectiveness and efficiency of screening compared with current screening recommendations

  11. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  12. Prediction of lung cancer incidence on the low-dose computed tomography arm of the National Lung Screening Trial: A dynamic Bayesian network

    PubMed Central

    Petousis, Panayiotis; Han, Simon X.; Aberle, Denise; Bui, Alex A.T.

    2016-01-01

    Introduction Identifying high-risk lung cancer individuals at an early disease stage is the most effective way of improving survival. The landmark National Lung Screening Trial (NLST) demonstrated the utility of low-dose computed tomography (LDCT) imaging to reduce mortality (relative to x-ray screening). As a result of the NLST and other studies, imaging-based lung cancer screening programs are now being implemented. However, LDCT interpretation results in a high number of false positives. A set of dynamic Bayesian networks (DBN) were designed and evaluated to provide insight into how longitudinal data can be used to help inform lung cancer screening decisions. Methods The LDCT arm of the NLST dataset was used to build and explore five DBNs for high-risk individuals. Three of these DBNs were built using a backward construction process, and two using structure learning methods. All models employ demographic, smoking status, cancer history, family lung cancer history, exposure risk factors, comorbidities related to lung cancer, and LDCT screening outcome information. Given the uncertainty arising from lung cancer screening, a cancer state-space model based on lung cancer staging was utilized to characterize the cancer status of an individual over time. The models were evaluated on balanced training and test sets of cancer and non-cancer cases to deal with data imbalance and overfitting. Results Results were comparable to expert decisions. The average area under the curve (AUC) of the receiver operating characteristic (ROC) for the three intervention points of the NLST trial was higher than 0.75 for all models. Evaluation of the models on the complete LDCT arm of the NLST dataset (N = 25, 486) demonstrated satisfactory generalization. Consensus of predictions over similar cases is reported in concordance statistics between the models’ and the physicians’ predictions. The models’ predictive ability with respect to missing data was also evaluated with the sample

  13. A Qualitative Study of Lung Cancer Risk Perceptions and Smoking Beliefs Among National Lung Screening Trial Participants

    PubMed Central

    2014-01-01

    Introduction: The National Comprehensive Cancer Network and the American Cancer Society recently released lung screening guidelines that include smoking cessation counseling for smokers undergoing screening. Previous work indicates that smoking behaviors and risk perceptions of the National Lung Screening Trial (NLST) participants were relatively unchanged. We explored American College of Radiology Imaging Network (ACRIN)/NLST former and current smokers’ risk perceptions specifically to (a) determine whether lung screening is a cue for behavior change, (b) elucidate risk perceptions for lung cancer and smoking-related diseases, and (c) explore postscreening behavioral intentions and changes. Methods: A random sample of 35 participants from 4 ACRIN sites were qualitatively interviewed 1–2 years postscreen. We used a structured interview guide based on Health Belief Model and Self-Regulation Model constructs. Content analyses were conducted with NVivo 8. Results: Most participants endorsed high-risk perceptions for lung cancer and smoking-related diseases, but heightened concern about these risks did not appear to motivate participants to seek screening. Risk perceptions were mostly attributed to participants’ heavy smoking histories; former smokers expressed greatly reduced risk. Lung cancer and smoking-related diseases were perceived as very severe although participants endorsed low worry. Current smokers had low confidence in their ability to quit, and none reported quitting following their initial screen. Conclusions: Lung screening did not appear to be a behavior change cue to action, and high-risk perceptions did not translate into quitting behaviors. Cognitive and emotional dissonance and avoidance strategies may deter engagement in smoking behavior change. Smoking cessation and prevention interventions during lung screening should explore risk perceptions, emotions, and quit confidence. PMID:23999653

  14. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    PubMed Central

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  15. A multiphase non-linear mixed effects model: An application to spirometry after lung transplantation.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H

    2017-02-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.

  16. Lung Cancer Pathological Image Analysis Using a Hidden Potts Model

    PubMed Central

    Li, Qianyun; Yi, Faliu; Wang, Tao; Xiao, Guanghua; Liang, Faming

    2017-01-01

    Nowadays, many biological data are acquired via images. In this article, we study the pathological images scanned from 205 patients with lung cancer with the goal to find out the relationship between the survival time and the spatial distribution of different types of cells, including lymphocyte, stroma, and tumor cells. Toward this goal, we model the spatial distribution of different types of cells using a modified Potts model for which the parameters represent interactions between different types of cells and estimate the parameters of the Potts model using the double Metropolis-Hastings algorithm. The double Metropolis-Hastings algorithm allows us to simulate samples approximately from a distribution with an intractable normalizing constant. Our numerical results indicate that the spatial interaction between the lymphocyte and tumor cells is significantly associated with the patient’s survival time, and it can be used together with the cell count information to predict the survival of the patients. PMID:28615918

  17. Geographic disparities in donor lung supply and lung transplant waitlist outcomes: A cohort study.

    PubMed

    Benvenuto, Luke J; Anderson, David R; Kim, Hanyoung P; Hook, Jaime L; Shah, Lori; Robbins, Hilary Y; D'Ovidio, Frank; Bacchetta, Matthew; Sonett, Joshua R; Arcasoy, Selim M

    2017-12-21

    Despite the Final Rule mandate for equitable organ allocation in the United States, geographic disparities exist in donor lung allocation, with the majority of donor lungs being allocated locally to lower-priority candidates. We conducted a retrospective cohort study of 19 622 lung transplant candidates waitlisted between 2006 and 2015. We used multivariable adjusted competing risk survival models to examine the relationship between local lung availability and waitlist outcomes. The primary outcome was a composite of death and removal from the waitlist for clinical deterioration. Waitlist candidates in the lowest quartile of local lung availability had an 84% increased risk of death or removal compared with candidates in the highest (subdistribution hazard ratio [SHR]: 1.84, 95% confidence interval [CI]: 1.51-2.24, P < .001). The transplantation rate was 57% lower in the lowest quartile compared with the highest (SHR: 0.43, 95% CI: 0.39-0.47). The adjusted death or removal rate decreased by 11% with a 50% increase in local lung availability (SHR: 0.89, 95% CI: 0.85-0.93, P < .001) and the adjusted transplantation rate increased by 19% (SHR: 1.19, 95% CI: 1.17-1.22, P < .001). There are geographically disparate waitlist outcomes in the current lung allocation system. Candidates listed in areas of low local lung availability have worse waitlist outcomes. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Scientific Advances in Lung Cancer 2015.

    PubMed

    Tsao, Anne S; Scagliotti, Giorgio V; Bunn, Paul A; Carbone, David P; Warren, Graham W; Bai, Chunxue; de Koning, Harry J; Yousaf-Khan, A Uraujh; McWilliams, Annette; Tsao, Ming Sound; Adusumilli, Prasad S; Rami-Porta, Ramón; Asamura, Hisao; Van Schil, Paul E; Darling, Gail E; Ramalingam, Suresh S; Gomez, Daniel R; Rosenzweig, Kenneth E; Zimmermann, Stefan; Peters, Solange; Ignatius Ou, Sai-Hong; Reungwetwattana, Thanyanan; Jänne, Pasi A; Mok, Tony S; Wakelee, Heather A; Pirker, Robert; Mazières, Julien; Brahmer, Julie R; Zhou, Yang; Herbst, Roy S; Papadimitrakopoulou, Vassiliki A; Redman, Mary W; Wynes, Murry W; Gandara, David R; Kelly, Ronan J; Hirsch, Fred R; Pass, Harvey I

    2016-05-01

    Lung cancer continues to be a major global health problem; the disease is diagnosed in more than 1.6 million new patients each year. However, significant progress is underway in both the prevention and treatment of lung cancer. Lung cancer therapy has now emerged as a "role model" for precision cancer medicine, with several important therapeutic breakthroughs occurring during 2015. These advances have occurred primarily in the immunotherapy field and in treatments directed against tumors harboring specific oncogenic drivers. Our knowledge about molecular mechanisms for oncogene-driven tumors and about resistance to targeted therapies has increased quickly over the past year. As a result, several regulatory approvals of new agents that significantly improve survival and quality of life for patients with lung cancer who have advanced disease have occurred. The International Association for the Study of Lung Cancer has gathered experts in different areas of lung cancer research and management to summarize the most significant scientific advancements related to prevention and therapy of lung cancer during the past year. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  19. Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma.

    PubMed

    Burburan, Shirley Moreira; Xisto, Debora Gonçalves; Ferreira, Halina Cidrini; Riva, Douglas Dos Reis; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araujo; Rocco, Patricia Rieken Macêdo

    2007-03-01

    There are no studies examining the effects of sevoflurane on a chronically inflamed and remodeled airway, such as that found in asthma. In the present study, we sought to define the respiratory effects of sevoflurane in a model of chronic allergic asthma. For this purpose, pulmonary mechanics were studied and lung morphometry analyzed to determine whether the physiological modifications reflected underlying morphological changes. Thirty-six BALB/c mice (20-25 g) were randomly divided into four groups. In OVA groups, mice were sensitized with ovalbumin and exposed to repeated ovalbumin challenges. In SAL groups, mice received saline using the same protocol. Twenty-four hours after the last challenge, the animals were anesthetized with pentobarbital sodium (PENTO, 20 mg/kg i.p.) or sevoflurane (SEVO, 1 MAC). Lung static elastance (Est), resistive ([DELTA]P1) and viscoelastic/inhomogeneous ([DELTA]P2) pressure decreases were analyzed by an end-inflation occlusion method. Lungs were fixed and stained for histological analysis. Animals in the OVASEVO group showed lower [DELTA]P1 (38%), [DELTA]P2 (24%), and Est (22%) than animals in the OVAPENTO group. Histology demonstrated greater airway dilation (16%) and a lower degree of alveolar collapse (25%) in the OVASEVO compared with OVAPENTO group. [DELTA]P1 was lower (35%) and airway diameters larger (12%) in the SALSEVO compared with SALPENTO group. Sevoflurane anesthesia acted both at airway level and lung periphery reducing ([DELTA]P1 and [DELTA]P2 pressures, and Est in chronic allergic asthma.

  20. Biological and statistical approaches to predicting human lung cancer risk from silica.

    PubMed

    Kuempel, E D; Tran, C L; Bailer, A J; Porter, D W; Hubbs, A F; Castranova, V

    2001-01-01

    Chronic inflammation is a key step in the pathogenesis of particle-elicited fibrosis and lung cancer in rats, and possibly in humans. In this study, we compute the excess risk estimates for lung cancer in humans with occupational exposure to crystalline silica, using both rat and human data, and using both a threshold approach and linear models. From a toxicokinetic/dynamic model fit to lung burden and pulmonary response data from a subchronic inhalation study in rats, we estimated the minimum critical quartz lung burden (Mcrit) associated with reduced pulmonary clearance and increased neutrophilic inflammation. A chronic study in rats was also used to predict the human excess risk of lung cancer at various quartz burdens, including mean Mcrit (0.39 mg/g lung). We used a human kinetic lung model to link the equivalent lung burdens to external exposures in humans. We then computed the excess risk of lung cancer at these external exposures, using data of workers exposed to respirable crystalline silica and using Poisson regression and lifetable analyses. Finally, we compared the lung cancer excess risks estimated from male rat and human data. We found that the rat-based linear model estimates were approximately three times higher than those based on human data (e.g., 2.8% in rats vs. 0.9-1% in humans, at mean Mcrit lung burden or associated mean working lifetime exposure of 0.036 mg/m3). Accounting for variability and uncertainty resulted in 100-1000 times lower estimates of human critical lung burden and airborne exposure. This study illustrates that assumptions about the relevant biological mechanism, animal model, and statistical approach can all influence the magnitude of lung cancer risk estimates in humans exposed to crystalline silica.