Is ICRP guidance on the use of reference levels consistent?
Hedemann-Jensen, Per; McEwan, Andrew C
2011-12-01
In ICRP 103, which has replaced ICRP 60, it is stated that no fundamental changes have been introduced compared with ICRP 60. This is true except that the application of reference levels in emergency and existing exposure situations seems to be applied inconsistently, and also in the related publications ICRP 109 and ICRP 111. ICRP 103 emphasises that focus should be on the residual doses after the implementation of protection strategies in emergency and existing exposure situations. If possible, the result of an optimised protection strategy should bring the residual dose below the reference level. Thus the reference level represents the maximum acceptable residual dose after an optimised protection strategy has been implemented. It is not an 'off-the-shelf item' that can be set free of the prevailing situation. It should be determined as part of the process of optimising the protection strategy. If not, protection would be sub-optimised. However, in ICRP 103 some inconsistent concepts have been introduced, e.g. in paragraph 279 which states: 'All exposures above or below the reference level should be subject to optimisation of protection, and particular attention should be given to exposures above the reference level'. If, in fact, all exposures above and below reference levels are subject to the process of optimisation, reference levels appear superfluous. It could be considered that if optimisation of protection below a fixed reference level is necessary, then the reference level has been set too high at the outset. Up until the last phase of the preparation of ICRP 103 the concept of a dose constraint was recommended to constrain the optimisation of protection in all types of exposure situations. In the final phase, the term 'dose constraint' was changed to 'reference level' for emergency and existing exposure situations. However, it seems as if in ICRP 103 it was not fully recognised that dose constraints and reference levels are conceptually different. The use of reference levels in radiological protection is reviewed. It is concluded that the recommendations in ICRP 103 and related ICRP publications seem to be inconsistent regarding the use of reference levels in existing and emergency exposure situations.
Management of radon: a review of ICRP recommendations.
Vaillant, Ludovic; Bataille, Céline
2012-09-01
This article proposes a review of past and current ICRP publications dealing with the management of radon exposures. Its main objective is to identify and discuss the driving factors that have been used by the Commission during the last 50 years so as to better appreciate current issues regarding radon exposure management. The analysis shows that major evolutions took place in very recent years. As far as the management of radon exposures is concerned, ICRP recommended, until ICRP Publication 103 (ICRP 2007 ICRP Publication 103; Ann. ICRP 37), to use action levels and to consider only exposures above these levels. The Commission has reviewed its approach and now proposes to manage any radon exposure through the application of the optimisation principle and associated reference levels. As far as the assessment of the radon risk is concerned, it appears that the successive changes made by ICRP did not have a strong impact on the values of radon gas concentration recommended as action levels either in dwellings or in workplaces. The major change occurred in late 2009 with the publication of the ICRP Statement on Radon, which acknowledged that the radon risk has been underestimated by a factor of 2, thus inducing a major revision of radon reference levels.
Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.
Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less
Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...
2016-08-29
Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less
Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons
NASA Astrophysics Data System (ADS)
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.
2017-09-01
With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.
Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji
2009-04-07
The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.
Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J
2017-03-01
The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.
Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.
2015-05-02
With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less
Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.
With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less
Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W
2012-04-01
To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika
2016-01-01
Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261
Müller, Wolfgang-Ulrich; Giussani, Augusto; Rühm, Werner; Lecomte, Jean-Francois; Harrison, John; Kreuzer, Michaela; Sobotzki, Christina; Breckow, Joachim
2016-08-01
ICRP suggested a strategy based on the distinction between a protection approach for dwellings and one for workplaces in the previous recommendations on radon. Now, the Commission recommends an integrated approach for the protection against radon exposure in all buildings irrespective of their purpose and the status of their occupants. The strategy of protection in buildings, implemented through a national action plan, is based on the application of the optimisation principle below a derived reference level in concentration (maximum 300 Bq m(-3)). A problem, however, arises that due to new epidemiological findings and application of dosimetric models, ICRP 115 (Ann ICRP 40, 2010) presents nominal probability coefficients for radon exposure that are approximately by a factor of 2 larger than in the former recommendations of ICRP 65 (Ann ICRP 23, 1993). On the basis of the so-called epidemiological approach and the dosimetric approach, the doubling of risk per unit exposure is represented by a doubling of the dose coefficients, while the risk coefficient of ICRP 103 (2007) remains unchanged. Thus, an identical given radon exposure situation with the new dose coefficients would result in a doubling of dose compared with the former values. This is of serious conceptual implications. A possible solution of this problem was presented during the workshop.
Radiological Protection in Space: Indication from the ICRP Task Group
NASA Astrophysics Data System (ADS)
Dietze, Günther
In 2007 the International Commission on Radiological Protection (ICRP) has established a Task Group (Radiation Protection in Space) dealing with the problems of radiation protection of astronauts in space missions. Its first task is a report on "Assessment of Radiation Exposure of Astronauts in Space". When the ICRP published its general recommendations for radiological protection in 2007 (ICRP Publication 103 following ICRP Publication 60 (1991)) it was obvious that these recommendations do not really consider the special situation of astronauts in space. The radiation field with its high content of charged particles of very high energies strongly differs from usual radiation fields on ground. For example, this has consequences for the assessment of doses in the body of astronauts. The ICRP Task Group has discussed this situation and the presentation will deal with some consequences for the concept of radiation dosimetry and radiological protection in space. This includes e. g. the assessment of organ doses and the application of the effective dose concept with its definition of radiation weighting factors. Radiation quality of high energy heavy ions may be defined different than usually performed on ground. An approach of using the quality factor concept in the definition of an "effective dose" is favored for application in space missions similar to the method proposed in NCRP Report 142. New data calculated on the basis of the reference anthropomorphic voxel phantoms recommended by ICRP support this procedure. Individual dosimetry is a further subject of discussion in the Task Group. While the operational dose equivalent quantities generally in use in radiation protection on ground are not helpful for applications in space, different procedures of the assessment of organ and effective doses are applied. The Task Group is dealing with this situation.
Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol
2018-01-01
Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).
Weiss, W
2012-01-01
The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.
Human biodistribution and radiation dosimetry of 82Rb.
Senthamizhchelvan, Srinivasan; Bravo, Paco E; Esaias, Caroline; Lodge, Martin A; Merrill, Jennifer; Hobbs, Robert F; Sgouros, George; Bengel, Frank M
2010-10-01
Prior estimates of radiation-absorbed doses from (82)Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated (82)Rb dosimetry using human in vivo biokinetic measurements. Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate (82)Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. The highest mean absorbed organ doses (μGy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 μSv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Our current (82)Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical (82)Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103-only slightly above the average annual natural background exposure in the United States (3.1 mSv).
Endo, Akira; Sato, Tatsuhiko
2013-04-01
Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.
Focal role of tolerability and reasonableness in the radiological protection system.
Schneider, T; Lochard, J; Vaillant, L
2016-06-01
The concepts of tolerability and reasonableness are at the core of the International Commission on Radiological Protection (ICRP) system of radiological protection. Tolerability allows the definition of boundaries for implementing ICRP principles, while reasonableness contributes to decisions regarding adequate levels of protection, taking into account the prevailing circumstances. In the 1970s and 1980s, attempts to find theoretical foundations in risk comparisons for tolerability and cost-benefit analysis for reasonableness failed. In practice, the search for a rational basis for these concepts will never end. Making a wise decision will always remain a matter of judgement and will depend on the circumstances as well as the current knowledge and past experience. This paper discusses the constituents of tolerability and reasonableness at the heart of the radiological protection system. It also emphasises the increasing role of stakeholder engagement in the quest for tolerability and reasonableness since Publication 103. © The International Society for Prosthetics and Orthotics.
Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M
2013-06-01
This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences the application of the protection system over the different phases in the life time of a disposal facility is the level of oversight or 'watchful care' that is present. The level of oversight affects the capability to control the source, i.e. the waste and the repository, and to avoid or reduce potential exposures. Three main time frames are considered: time of direct oversight, when the disposal facility is being implemented and is under active supervision; time of indirect oversight, when the disposal facility is sealed and oversight is being exercised by regulators or special administrative bodies or society at large to provide additional assurance on behalf of society; and time of no oversight, when oversight is no longer exercised in case memory of the disposal facility is lost. Copyright © 2013. Published by Elsevier Ltd.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Sato, Tatsuhiko; Endo, Akira; Niita, Koji
2010-04-21
The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.
ICRP Publication 138: Ethical Foundations of the System of Radiological Protection.
Cho, K-W; Cantone, M-C; Kurihara-Saio, C; Le Guen, B; Martinez, N; Oughton, D; Schneider, T; Toohey, R; ZöLzer, F
2018-02-01
Despite a longstanding recognition that radiological protection is not only a matter of science, but also ethics, ICRP publications have rarely addressed the ethical foundations of the system of radiological protection explicitly. The purpose of this publication is to describe how the Commission has relied on ethical values, either intentionally or indirectly, in developing the system of radiological protection with the objective of presenting a coherent view of how ethics is part of this system. In so doing, it helps to clarify the inherent value judgements made in achieving the aim of the radiological protection system as underlined by the Commission in Publication 103. Although primarily addressed to the radiological protection community, this publication is also intended to address authorities, operators, workers, medical professionals, patients, the public, and its representatives (e.g. NGOs) acting in the interest of the protection of people and the environment. This publication provides the key steps concerning the scientific, ethical, and practical evolutions of the system of radiological protection since the first ICRP publication in 1928. It then describes the four core ethical values underpinning the present system: beneficence/ non-maleficence, prudence, justice, and dignity. It also discusses how these core ethical values relate to the principles of radiological protection, namely justification, optimisation, and limitation. The publication finally addresses key procedural values that are required for the practical implementation of the system, focusing on accountability, transparency, and inclusiveness. The Commission sees this publication as a founding document to be elaborated further in different situations and circumstances.
Puncher, M; Zhang, W; Harrison, J D; Wakeford, R
2017-06-26
Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients.
Homma, T; Takahara, S; Kimura, M; Kinase, S
2015-06-01
Radiation protection issues on preparedness and response for a severe nuclear accident are discussed in this paper based on the experiences following the accident at Fukushima Daiichi nuclear power plant. The criteria for use in nuclear emergencies in the Japanese emergency preparedness guide were based on the recommendations of International Commission of Radiological Protection (ICRP) Publications 60 and 63. Although the decision-making process for implementing protective actions relied heavily on computer-based predictive models prior to the accident, urgent protective actions, such as evacuation and sheltering, were implemented effectively based on the plant conditions. As there were no recommendations and criteria for long-term protective actions in the emergency preparedness guide, the recommendations of ICRP Publications 103, 109, and 111 were taken into consideration in determining the temporary relocation of inhabitants of heavily contaminated areas. These recommendations were very useful in deciding the emergency protective actions to take in the early stages of the Fukushima accident. However, some suggestions have been made for improving emergency preparedness and response in the early stages of a severe nuclear accident. © The Chartered Institution of Building Services Engineers 2014.
The mandate and work of ICRP Committee 3 on radiological protection in medicine.
Miller, D L; Martin, C J; Rehani, M M
2018-01-01
The mandate of Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with the protection of persons and unborn children when ionising radiation is used in medical diagnosis, therapy, and biomedical research. Protection in veterinary medicine has been newly added to the mandate. Committee 3 develops recommendations and guidance in these areas. The most recent documents published by ICRP that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (ICRP Publication 129) and 'Radiological protection in ion beam radiotherapy' (ICRP Publication 127). A report in cooperation with ICRP Committee 2 entitled 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (ICRP Publication 128) has also been published. 'Diagnostic reference levels in medical imaging' (ICRP Publication 135), published in 2017, provides specific advice on the setting and use of diagnostic reference levels for diagnostic and interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and multi-modality procedures. 'Occupational radiological protection in interventional procedures' was published in March 2018 as ICRP Publication 139. A document on radiological protection in therapy with radiopharmaceuticals is likely to be published in 2018. Work is in progress on several other topics, including appropriate use of effective dose in collaboration with the other ICRP committees, guidance for occupational radiological protection in brachytherapy, justification in medical imaging, and radiation doses to patients from radiopharmaceuticals (an update to ICRP Publication 128). Committee 3 is also considering the development of guidance on radiological protection in medicine related to individual radiosusceptibility, in collaboration with ICRP Committee 1.
Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms
NASA Astrophysics Data System (ADS)
Tat Nguyen, Thang; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Chung, Beom Sun
2015-11-01
The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manabe, K.; Endo, Akira; Eckerman, Keith F
2010-03-01
The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was foundmore » that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.« less
Conversion of ICRP male reference phantom to polygon-surface phantom
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi
2013-10-01
The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom for highly penetrating radiations such as photons and neutrons. The results of the electron beams, on the other hand, show that the dose values of the polygon-surface phantom are higher by a factor of 2-5 times than those of the ICRP reference phantom for the skin and wall organs which have large holes due to low voxel resolution. The results demonstrate that the ICRP reference phantom could provide significantly unreasonable dose values to thin or wall organs especially for weakly penetrating radiations. Therefore, when compared to the original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating radiations such as electrons and other charged particles.
NASA Astrophysics Data System (ADS)
Kim, Han Sung; Yeom, Yeon Soo; Tat Nguyen, Thang; Choi, Chansoo; Han, Min Cheol; Lee, Jai Ki; Kim, Chan Hyeong; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Qiu, Rui; Eckerman, Keith; Chung, Beom Sun
2017-03-01
It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.
Ethos in Fukushima and the ICRP dialogue seminars.
Ando, R
2016-12-01
Ethos in Fukushima, a non-profit organisation, participated in 10 of the 12 International Commission on Radiological Protection (ICRP) dialogue seminars over the past 4 years. The slides and videos that were shown at the seminars are recorded on the Ethos in Fukushima website ( http://ethos-fukushima.blogspot.jp/p/icrp-dialogue.html ). I would like to introduce the activities of Ethos in Fukushima to date, and explain why the ICRP dialogue materials have come to be published on its website.
Effective and organ doses from common CT examinations in one general hospital in Tehran, Iran
NASA Astrophysics Data System (ADS)
Khoramian, Daryoush; Hashemi, Bijan
2017-09-01
Purpose: It is well known that the main portion of artificial sources of ionizing radiation to human results from X-ray imaging techniques. However, reports carried out in various countries have indicated that most of their cumulative doses from artificial sources are due to CT examinations. Hence assessing doses resulted from CT examinations is highly recommended by national and international radiation protection agencies. The aim of this research has been to estimate the effective and organ doses in an average human according to 103 and 60 ICRP tissue weighting factor for six common protocols of Multi-Detector CT (MDCT) machine in a comprehensive training general hospital in Tehran/Iran. Methods: To calculate the patients' effective dose, the CT-Expo2.2 software was used. Organs/tissues and effective doses were determined for about 20 patients (totally 122 patients) for every one of six typical CT protocols of the head, neck, chest, abdomen-pelvis, pelvis and spine exams. In addition, the CT dosimetry index (CTDI) was measured in the standard 16 and 32 cm phantoms by using a calibrated pencil ionization chamber for the six protocols and by taking the average value of CT scan parameters used in the hospital compared with the CTDI values displayed on the console device of the machine. Results: The values of the effective dose based on the ICRP 103 tissue weighting factor were: 0.6, 2.0, 3.2, 4.2, 2.8, and 3.9 mSv and based on the ICRP 60 tissue weighting factor were: 0.9, 1.4, 3, 7.9, 4.8 and 5.1 mSv for the head, neck, chest, abdomen-pelvis, pelvis, spine CT exams respectively. Relative differences between those values were -22, 21, 23, -6, -31 and 16 percent for the head, neck, chest, abdomen-pelvis, pelvis, spine CT exams, respectively. The average value of CTDIv calculated for each protocol was: 27.32 ± 0.9, 18.08 ± 2.0, 7.36 ± 2.6, 8.84 ± 1.7, 9.13 ± 1.5, 10.42 ± 0.8 mGy for the head, neck, chest, abdomen-pelvis and spine CT exams, respectively. Conclusions: The highest organ doses delivered by various CT exams were received by brain (15.5 mSv), thyroid (19.00 mSv), lungs (9.3 mSv) and bladder (9.9 mSv), bladder (10.4 mSv), stomach (10.9 mSv) in the head, neck, chest, and the abdomen-pelvis, pelvis, and spine respectively. Except the neck and spine CT exams showing a higher effective dose compared to that reported in Netherlands, other exams indicated lower values compared to those reported by any other country.
Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.
Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji
2012-02-01
Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.
The role of the ICRP in radiation protection--a view from industry.
Henrichs, K
2003-01-01
It is the objective of this paper to discuss some aspects concerning the role and importance of the ICRP. Here, this is done with a background of practical radiation protection in industry. The author organises and controls radiation protection for a worldwide operating company, for which efficiently realised radiation safety is as relevant for its workplaces as for its products and services. According to the author's subjective observation, the ICRP has a decreasing importance in operational radiation protection. However, there are growing demands on the ICRP as it is the only basis for internationally compatible regulations and standards. It is the merit of the ICRP that an international comparison of legal protection systems and concepts should give a much more homogeneous picture than that for any other safety and protection issue. The most valuable asset of the ICRP is its credibility as a scientific authority solely committed to the effective protection of people. But its success also brings with it an obligation: there is an increasing need for more effective communication to non-experts. This and other expectations for the future are briefly discussed.
Construction of new skin models and calculation of skin dose coefficients for electron exposures
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi
2016-08-01
The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.
NASA Astrophysics Data System (ADS)
Bundke, U.; Hänel, G.
2003-04-01
During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}
Annual limits on intake (ALI) values in ICRP 61 and 10 CFR Part 20 (1991)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Kearfott, K.J.
The newest major revision of Nuclear Regulatory Commission`s 10 CFR Part 20 (1991) incorporates the new dose methodology system, revised limits, and improved internal dose computations presented in International Commission on Radiation Protection (ICRP) Publication 30 (1979). A year before the issue of this revised 10 CFR Part 20, the ICRP dispatched Publication 61 (1990). This new ICRP report employed different dose limits, in addition to incorporating more recent biological information and variations in physiological and different tissue weighing factors for various organs. An investigation of the numerical differences in the Annual Limit on Intake (ALI) reported in this moremore » recent international regulations and those of the new regulations was thus undertaken. Overall means, medians, modes, maximum, minimum, and ranges of the percent changes are almost identical for ingestion and inhalation, although the percent difference between 10 CFR and ICRP Publication 61 showed minor differences for individual radionuclides. Approximately 334 of 1,351 radionuclides for inhalation and 173 of 771 radionuclides for ingestion have much less restrictive ALIs in the new ICRP recommendations than in the old, with some of those limits increased by at least a factor of two. Approximately 51% of the radionuclides for ingestion intake and 48% of radionuclides for inhalation intake showed changes of greater than 25%. The radionuclides observed to have much less restrictive ALIs are primarily the radionuclides of thorium, mercury, plutonium, uranium, and americium which have short effective clearance rates. While many countries have already applied the ICRP 61 recommendations to their radiation protection standards, using the ICRP 30 recommendation in the United States does not match the international standards even when the values of the ALIs are adjusted for differences in dose limits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.
Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.
1995-12-01
The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Althoughmore » this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.« less
Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement.
Li, Wei Bo; Gerstmann, Udo; Giussani, Augusto; Oeh, Uwe; Paretzke, Herwig G
2008-02-01
The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 ((210)Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of (210)Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of (210)Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 x 10(-8) (1.4 x 10(-7)) Sv Bq(-1), 2.0 x 10(-7) (9.6 x 10(-7)) Sv Bq(-1) over 10 days, 5.2 x 10(-7) (2.0 x 10(-6)) Sv Bq(-1) over 30 days and 1.0 x 10(-6) (3.0 x 10(-6)) Sv Bq(-1) over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of (210)Po are 1.1 x 10(-3) (1.0 x 10(-4)) on day 1, 2.0 x 10(-3) (1.9 x 10(-4)) on day 10, 1.3 x 10(-3) (1.7 x 10(-4)) on day 30 and 3.6 x 10(-4) (8.3 x 10(-5)) Bq d(-1) on day 100, respectively. The resulting committed effective doses range from 2.1 x 10(-3) to 1.7 x 10(-2) mSv by an assumption of ingestion and from 5.5 x 10(-2) to 4.5 x 10(-1) mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of (210)Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2-8.5 microg, depending on the modality of intake and on different assumptions about blood absorption.
Lazo, Ted
2003-12-01
The Nuclear Energy Agency's (NEA's) Committee on Radiological Protection and Public Health (CRPPH) has collaborated closely with the ICRP in its efforts to develop new recommendations for radiological protection at the start of the 21st century. As part of this effort, the NEA organised, in collaboration with the ICRP, two fora to discuss the radiological protection of the environment (Taormina, February 2002) and the future policy for radiological protection (Lanzarote, April 2003). Both these meetings were attended by a broad representation of stakeholders. The CRPPH and other stakeholders universally appreciated the opportunity to speak directly with the ICRP on these important subjects. This report summarises the main conclusions made during these two meetings to advance the deliberations of the ICRP to create a new set of recommendations responsive to stakeholder needs, firmly rooted in science, and that can be implemented in a timely, efficient and cost-effective manner.
Evolution of the Radiological Protection System and its Implementation.
Lazo, Edward
2016-02-01
The International System of Radiological Protection, developed, maintained, and elaborated by the International Commission on Radiological Protection (ICRP) has, for the past 50 y, provided a robust framework for developing radiological protection policy, regulation, and application. It has, however, been evolving as a result of experience with its implementation, modernization of social awareness of a shrinking world where the Internet links everyone instantly, and increasing public interest in safety-related decisions. These currents have gently pushed the ICRP in recent years to focus more sharply on particular aspects of its system: optimization, prevailing circumstances, the use of effective dose and aspects of an individual's risk, and consideration of the independent implementation of the international system's elements. This paper will present these issues and their relevance to the ICRP system of protection and its evolution. The broader framework of radiological protection (e.g., science, philosophy, policy, regulation, implementation), of which the ICRP is an important element, will provide a global, equally evolving context for this characterization of the changing ICRP system of radiological protection.
Lochard, J
2016-12-01
Publication 111, published by the International Commission on Radiological Protection (ICRP) in 2009, provided the first recommendations for dealing with the long-term recovery phase after a nuclear accident. Its focus is on the protection of people living in long-term contaminated areas after a nuclear accident, drawing on the experience of the Belarus population, Cumbrian sheep farmers in the UK, and Sami reindeer herders in Norway affected by the fallout from Chernobyl. The ICRP dialogue initiative in Fukushima confirmed what had been identified after Chernobyl, namely the very strong concern for health, particularly that of children, loss of control over everyday life, apprehension about the future, disintegration of family life and of the social and economic fabric, and the threat to the autonomy and dignity of affected people. Through their testimonies and reflections, the participants of the 12 dialogue meetings shed light on this complex situation. The ICRP dialogue initiative also confirmed that the wellbeing of the affected people is at stake, and radiological protection must focus on rehabilitation of their living conditions. The challenge is to incorporate the important clarifications resulting from the ICRP dialogue initiative into the updated version of Publication 111 that is currently in development. This paper does not necessarily reflect the views of the International Commission on Radiological Protection.
NASA Astrophysics Data System (ADS)
Mattsson, S.; Johansson, L.; Leide-Svegborn, S.; Liniecki, J.; Nosske, D.; Riklund, K.; Stabin, M.; Taylor, D.
2011-09-01
A Task Group within the ICRP Committees 2 and 3 is continuously working to improve absorbed dose estimates to patients investigated with radiopharmaceuticals. The work deals with reviews of the literature, initiation of new or complementary studies of the biokinetics of a compound and dose estimates. Absorbed dose calculations for organs and tissues have up to now been carried out using the MIRD formalism. There is still a lack of necessary biokinetic data from measurements in humans. More time series obtained by nuclear medicine imaging techniques such as whole-body planar gamma-camera imaging, SPECT or PET are highly desirable for this purpose. In 2008, a new addendum to ICRP Publication 53 was published under the name of ICRP Publication 106 containing biokinetic data and absorbed dose information to organs and tissues of patients of various ages for radiopharmaceuticals in common use. That report also covers a number of generic models and realistic maximum models covering other large groups of substances (e.g. "123I-brain receptor substances"). Together with ICRP Publication 80, most radiopharmaceuticals in clinical use at the time of publication were covered except the radioiodine labeled compounds for which the ICRP dose estimates are still found in Publication 53. There is an increasing use of new radiopharmaceuticals, especially PET-tracers and the TG has recently finished its work with biokinetic and dosimetric data for 18F-FET, 18F-FLT and 18F-choline. The work continues now with new data for 11C-raclopride, 11C-PiB and 123I-ioflupan as well as re-evaluation of published data for 82Rb-chloride, 18F-fluoride and radioiodide. This paper summarises published ICRP-information on dose to patients from radiopharmaceuticals and gives some preliminary data for substances under review.
Development of skeletal system for mesh-type ICRP reference adult phantoms
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik
2016-10-01
The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.
Application of the Commission's recommendations: the 2013-2017 Committee 4 programme of work.
Lochard, J
2015-06-01
Committee 4 of the International Commission on Radiological Protection (ICRP) is responsible for developing principles, recommendations, and guidance on the protection of people against radiation exposure, and to consider their practical application in all exposure situations. Currently, the Committee's efforts are focused on the completion of a series of future ICRP publications on the implementation of its 2007 Recommendations to the various existing exposure situations. A report on protection against radon exposure was published recently (ICRP Publication 126), and two documents on protection against cosmic radiation in aviation, and naturally occurring radioactive material are under development. The programme of work for the forthcoming 2013-2017 period comprises the update of ICRP Publication 109 on protection of people in emergency exposure situations, and the update of ICRP Publication 111 on protection of people living in long-term contaminated areas after a nuclear accident, as well as the development of a future ICRP publication on the ethics of radiological protection. It also includes the preparation of task groups on the application of the Commission's recommendations for contaminated sites from past activities and for surface and near-surface disposal of radioactive waste. Another important task for Committee 4 will be to develop a reflection on the tolerability of risk from radiation. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhold, C.B.
1982-01-01
This paper discusses the goals of the ICRP for the 1980 decade in optimizing radiation protection in the areas of workers, patients, and the public. Economic and operational concerns are expressed. (PSB)
Basis for standards: ICRP activities.
Vano, E
2015-07-01
The purpose of this chapter is to describe work achieved recently by the International Commission on Radiological Protection (ICRP) and especially by Committee 3 (Protection in Medicine) and its use for standards. In March 1960, the Board of Governors of the International Atomic Energy Agency approved the Agency's 'Health and Safety Measures', stating that the Agency's 'Basic Safety Standards' (BSS) would be based, to the extent possible, on the recommendations of the ICRP. In a similar way, the Council of the European Union took into account the new recommendations of the ICRP when adopting the new Directive 2013/59/EURATOM that laid down BSS for protection against the dangers arising from exposure to ionising radiation. The new limit for the lens of the eyes for occupational exposures has been incorporated into these international standards and several articles dealing with medical exposures: justification, optimisation, recording patient doses, the use of diagnostic reference levels, training, accidental and unintended exposures, etc. have also been included in agreement with the ICRP recommendations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Overview of ICRP Committee 5: protection of the environment.
Larsson, C-M
2016-06-01
Protection of the environment is integral to the system of radiological protection, as outlined in the 2007 Recommendations of the International Commission on Radiological Protection (ICRP, Publication 103). The Commission's activities in this area are mainly pursued by Committee 5 and its associated Task Groups. Publication 91 broadly outlines the approach to radiological protection of the environment, and its alignment with approaches to environmental protection from hazardous substances in general. Publications 108 and 114 provide the cornerstones of the environmental protection system and relevant databases. Publication 124 considers its application in planned, existing, and emergency exposure situations. The system centres on 12 Reference Animals and Plants (RAPs) with broad relevance for environmental protection based on their ubiquity and significance as well as other criteria, as described in Publication 108 The databases comprise general biology of the RAPs, transfer parameters, dose conversion coefficients, and effects data. Derived Consideration Reference Levels (DCRLs) were established for each RAP; a DCRL represents a band of dose rates that might result in some deleterious effects in individuals of that type of RAP. Newly established Task Group 99 will compile the RAP-specific reference information into monographs, with the view of updating information and improving the applicability of the system in different exposure situations. For certain scenarios, more precise and ecosystem-specific protection benchmarks may be justified, which would have to be informed by consideration of representative organisms (i.e. representative of a particular ecosystem and relevant to the specific scenario; Publication 124). Committee 5 will explore this further, making use of a limited number of case studies. © The International Society for Prosthetics and Orthotics.
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.
2007-01-01
The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion coefficients for newly identified radiosensitive organs—salivary glands, gall bladder, heart and prostate—were reported, as well as the brain, which was originally considered in ICRP Publication 60 as a member of the remainder category of the effective dose.
NASA Astrophysics Data System (ADS)
Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.
2016-09-01
The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, 8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.
Dose conversion factors for radon: recent developments.
Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot
2010-10-01
Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.
Fell, T P
2007-01-01
The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David A; Schwahn, Scott O
2011-01-01
While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.
Use of the ICRP system for the protection of marine ecosystems.
Telleria, D; Cabianca, T; Proehl, G; Kliaus, V; Brown, J; Bossio, C; Van der Wolf, J; Bonchuk, I; Nilsen, M
2015-06-01
The International Commission on Radiological Protection (ICRP) recently reinforced the international system of radiological protection, initially focused on humans, by identifying principles of environmental protection and proposing a framework for assessing impacts of ionising radiation on non-human species, based on a reference flora and fauna approach. For this purpose, ICRP developed dosimetric models for a set of Reference Animals and Plants, which are representative of flora and fauna in different environments (terrestrial, freshwater, marine), and produced criteria based on information on radiation effects, with the aim of evaluating the level of potential or actual radiological impacts, and as an input for decision making. The approach developed by ICRP for flora and fauna is consistent with the approach used to protect humans. The International Atomic Energy Agency (IAEA) includes considerations on the protection of the environment in its safety standards, and is currently developing guidelines to assess radiological impacts based on the aforementioned ICRP approach. This paper presents the method developed by IAEA, in a series of meetings with international experts, to enable assessment of the radiological impact to the marine environment in connection with the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter 1972 (London Convention 1972). This method is based on IAEA's safety standards and ICRP's recommendations, and was presented in 2013 for consideration by representatives of the contracting parties of the London Convention 1972; it was approved for inclusion in its procedures, and is in the process of being incorporated into guidelines. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Comparative analysis of dosimetry parameters for nuclear medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toohey, R.E.; Stabin, M.G.
For years many have employed the concept of ``total-body dose`` or ``whole-body dose,`` i.e., the total energy deposited in the body divided by the mass of the body, when evaluating the risks of different nuclear medicine procedures. The effective dose equivalent (H{sub E}), first described in ICRP Publication 26, has been accepted by some as a better quantity to use in evaluating the total risk of a procedure, but its use has been criticized by others primarily because the tissue weighting factors were intended for use in the radiation worker, rather than the nuclear medicine patient population. Nevertheless, in ICRPmore » Publication 52, the ICRP has suggested that the H{sub E} may be used in nuclear medicine. The ICRP also has published a compendium of dose estimates, including H{sub E} values, for various nuclear medicine procedures at various ages in ICRP Publication 53. The effective dose (E) of ICRP Publication 60 is perhaps more suitable for use in nuclear medicine, with tissue weighting factors based on the entire population. Other comparisons of H{sub E} and E have been published. The authors have used the program MIRDOSE 3.1 to compute total-body dose, H{sub E}, and E for 62 radiopharmaceutical procedures, based on the best current biokinetic data available.« less
The internal dosimetry of Rubidium-82 based on dynamic PET/CT imaging in humans
NASA Astrophysics Data System (ADS)
Hunter, Chad R.
Rubidium-82 (Rb-82) is a useful blood flow tracer, and has become important in recent years due to the shutdown of the Chalk River reactor. Published effective dose estimates for Rb-82 vary widely, and as yet no comprehensive study in man has been conducted with PET/CT, and no effective dose estimates for Rb-82 during pharmacological stress testing has been published. 30 subjects were recruited for rest, and 25 subjects were recruited for stress. The subjects consisted of both cardiac patients and normal subjects. For rest, a total of 283 organs were measured across 60 scans. For stress, a total of 171 organs were measured across 25 scans. Effective dose estimates were calculated using the ICRP 60, 80, and 103 tissue weighting factors. Relative differences between this study and the published in-vivo estimates showed agreement for the lungs. Relative differences between this study and the blood flow models showed differences> 5 times in the thyroid contribution to the effective dose demonstrating a limitation in these models. Comparisons between rest and stress effective dose estimates revealed no significant difference. The average 'adult' effective dose for Rb-82 was found to be 0.00084+/-0.00018 mSv/MBq. The highest dose organs were the lungs, kidneys and stomach wall. These dose estimates for Rb-82 are the first to be measured directly with PET/CT in humans, and are 4 times lower than previous ICRP 60 values based on a theoretical blood flow model. The total adult effective dose from a typical Rb-82 study including CT for attenuation correction and potential Sr-85 breakthrough is 1.5 +/- 0.4 mSv.
On effective dose for radiotherapy based on doses to nontarget organs and tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uselmann, Adam J., E-mail: ajuselmann@wisc.edu; Thomadsen, Bruce R.
2015-02-15
Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling.more » Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.« less
Lazo, T
2016-12-01
Between September 2011 and August 2015, the International Commission on Radiological Protection (ICRP) organised a series of 12 stakeholder dialogue workshops with residents of Fukushima Prefecture. Discussions focused on recovery, addressing topics such as protection of children, management of contaminated food, monitoring, and self-help measures. The OECD Nuclear Energy Agency (NEA) supported, and the Committee on Radiation Protection and Public Health (CRPPH) Secretariat attended, all 12 meetings to listen directly to the concerns of affected individuals and draw lessons for CRPPH. To summarise the dialogue results, ICRP organised a final meeting in Date, Japan with the support of NEA and other organisations. The lessons from and utility of the dialogue meetings were praised by dialogue participants and sponsors, and ICRP agreed that some form of dialogue would continue, although with ICRP participation and support rather than leadership. This paper summarises the internationally relevant lessons learned by CRPPH from this important process.
Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen
2010-12-01
The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhold, C.B.
For many years, protecting the fetus has been a concern of the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). Early recommendations focused on the possibility of a wide variety of detrimental developmental effects while later recommendations focused on the potential for severe mental retardation and/or reduction in the intelligence quotient (I.Q.). The latest recommendations also note that the risk of cancer for the fetus is probably two to three times greater per Sv than in the adult. For all these reasons, the NCRP and the ICRP have provided guidance to physiciansmore » on taking all reasonable steps to ascertain whether any woman requiring a radiological or nuclear medicine procedure is pregnant or nursing a child. The NCRP and the ICRP also advise the clinician to postpone such procedures until after delivery or cessation of nursing, if possible.« less
Tamura, Taro; Suganuma, Narufumi; Hering, Kurt G; Vehmas, Tapio; Itoh, Harumi; Akira, Masanori; Takashima, Yoshihiro; Hirano, Harukazu; Kusaka, Yukinori
2015-01-01
The International Classification of High-resolution Computed Tomography (HRCT) for Occupational and Environmental Respiratory Diseases (ICOERD) has been developed for the screening, diagnosis, and epidemiological reporting of respiratory diseases caused by occupational hazards. This study aimed to establish a correlation between readings of HRCT (according to the ICOERD) and those of chest radiography (CXR) pneumoconiotic parenchymal opacities (according to the International Labor Organization Classification/International Classification of Radiographs of Pneumoconioses [ILO/ICRP]). Forty-six patients with and 28 controls without mineral dust exposure underwent posterior-anterior CXR and HRCT. We recorded all subjects' exposure and smoking history. Experts independently read CXRs (using ILO/ICRP). Experts independently assessed HRCT using the ICOERD parenchymal abnormalities grades for well-defined rounded opacities (RO), linear and/or irregular opacities (IR), and emphysema (EM). The correlation between the ICOERD summed grades and ILO/ICRP profusions was evaluated using Spearman's rank-order correlation. Twenty-three patients had small opacities on CXR. HRCT showed that 21 patients had RO; 20 patients, IR opacities; and 23 patients, EM. The correlation between ILO/ICRP profusions and the ICOERD grades was 0.844 for rounded opacities (p<0.01). ICOERD readings from HRCT scans correlated well with previously validated ILO/ICRP criteria. The ICOERD adequately detects pneumoconiotic micronodules and can be used for the interpretation of pneumoconiosis.
A DISCUSSION ON DIFFERENT APPROACHES FOR ASSESSING LIFETIME RISKS OF RADON-INDUCED LUNG CANCER.
Chen, Jing; Murith, Christophe; Palacios, Martha; Wang, Chunhong; Liu, Senlin
2017-11-01
Lifetime risks of radon induced lung cancer were assessed based on epidemiological approaches for Canadian, Swiss and Chinese populations, using the most recent vital statistic data and radon distribution characteristics available for each country. In the risk calculation, the North America residential radon risk model was used for the Canadian population, the European residential radon risk model for the Swiss population, the Chinese residential radon risk model for the Chinese population, and the EPA/BEIR-VI radon risk model for all three populations. The results were compared with the risk calculated from the International Commission on Radiological Protection (ICRP)'s exposure-to-risk conversion coefficients. In view of the fact that the ICRP coefficients were recommended for radiation protection of all populations, it was concluded that, generally speaking, lifetime absolute risks calculated with ICRP-recommended coefficients agree reasonably well with the range of radon induced lung cancer risk predicted by risk models derived from epidemiological pooling analyses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.
2017-01-01
Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846
MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolch, Wesley
The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less
A biokinetic model for systemic nickel
Melo, Dunstana; Leggett, Richard Wayne
2017-01-01
The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less
A biokinetic model for systemic nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, Dunstana; Leggett, Richard Wayne
The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less
ICRP special radiation protection issues in interventional radiology, digital and cardiac imaging.
Vano, E; Faulkner, K
2005-01-01
The International Commission on Radiological Protection (ICRP) has published two reports giving recommendations dealing with the avoidance of deterministic injuries in interventional radiology and the management of patient dose in digital radiology in 2001 and 2004, respectively. Another document, on radiation protection for cardiologists performing fluoroscopically guided procedures, will be produced during 2005. This paper highlights some of the topics of the published reports, their relevance to European legislation on medical exposures and the importance of radiation protection research in underpinning the ICRP task groups' work in to producing these documents. It is also anticipated that the results, obtained in the cardiology work package of the European research project, will be used in the new document on radiation protection for cardiologists.
Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T
2017-07-01
Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Hybrid pregnant reference phantom series based on adult female ICRP reference phantom
NASA Astrophysics Data System (ADS)
Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie
2018-03-01
This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.
Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina
2016-01-01
Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003
MPC and ALI: their basis and their comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, W.E. Jr.; Watson, E.C.
Radiation protection regulations in the United States have evolved from the recommendations of the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP). In 1959, the ICRP issued Publication 2 which contained specific recommendations on dose rate limits, permissible body burdens, metabolic data for radionuclides, and maximum permissible concentrations (MPC) in air or water. Over the next 20 years, new information became available concerning the effects of radiation, the uptake and retention of radionuclides, and the radioactive decay schemes of parent radionuclides. To include this newer information, the ICRP issued Publication 30 inmore » 1978 to supersede Publication 2. One of the secondary limits defined in Publication 30 is the annual limit of intake (ALI). Radionuclide specific ALI values are intended to replace MPC values in determining whether or not ambient air and water concentrations are sufficiently low to maintain the dose to workers within accepted dose rate limits. In this paper, we discuss the derivation of MPC and ALI values, compare inhalation committed dose equivalent factors derived from ICRP Publications 2 and 30, and discuss the practical implications of using either MPC or ALI in determining compliance with occupational exposure limits. 6 references.« less
An age dependent model for radium metabolism in man.
Johnson, J R
1983-01-01
The model developed by a Task Group of Committee 2 of ICRP to describe Alkaline Earth Metabolism in Adult Man (ICRP Publication 20) has been modified so that recycling is handled explicitly, and retention in mineral bone is represented by second compartments rather than by the product of a power function and an exponential. This model has been extended to include all ages from birth to adult man, and has been coupled with modified "ICRP" lung and G.I. tract models so that activity in organs can be calculated as functions of time during or after exposures. These activities, and age dependent "specific effective energy" factors, are then used to calculate age dependent dose rates, and dose commitments. This presentation describes this work, with emphasis on the model parameters and results obtained for radium.
ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3.
Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Marsh, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Blanchardon, E; Gregoratto, D; Harrison, J D
2017-12-01
The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988) and Publication 68 (ICRP, 1994). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), this current publication and upcoming publications in the OIR series (Parts 4 and 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv Bq−1 intake) for inhalation and ingestion, tables of committed effective dose per content (Sv Bq−1 measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This third publication in the series provides the above data for the following elements: ruthenium (Ru), antimony (Sb), tellurium (Te), iodine (I), caesium (Cs), barium (Ba), iridium (Ir), lead (Pb), bismuth (Bi), polonium (Po), radon (Rn), radium (Ra), thorium (Th), and uranium (U).
42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?
Code of Federal Regulations, 2010 CFR
2010-10-01
... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...
42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?
Code of Federal Regulations, 2011 CFR
2011-10-01
... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...
42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?
Code of Federal Regulations, 2013 CFR
2013-10-01
... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...
42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?
Code of Federal Regulations, 2014 CFR
2014-10-01
... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...
42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?
Code of Federal Regulations, 2012 CFR
2012-10-01
... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the ICRP...
Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli
2017-03-21
The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.
An image-based skeletal tissue model for the ICRP reference newborn
NASA Astrophysics Data System (ADS)
Pafundi, Deanna; Lee, Choonsik; Watchman, Christopher; Bourke, Vincent; Aris, John; Shagina, Natalia; Harrison, John; Fell, Tim; Bolch, Wesley
2009-07-01
Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set—both male and female—that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in mineral bone composition may have significant dosimetric implications when considering localized marrow dosimetry for radionuclides that target mineral bone in the newborn child.
NASA Astrophysics Data System (ADS)
Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli
2017-03-01
The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.
Rühm, W; Walsh, L
2007-01-01
Currently, most analyses of the A-bomb survivors' solid tumour and leukaemia data are based on a constant neutron relative biological effectiveness (RBE) value of 10 that is applied to all survivors, independent of their distance to the hypocentre at the time of bombing. The results of these analyses are then used as a major basis for current risk estimates suggested by the International Commission on Radiological Protection (ICRP) for use in international safety guidelines. It is shown here that (i) a constant value of 10 is not consistent with weighting factors recommended by the ICRP for neutrons and (ii) it does not account for the hardening of the neutron spectra in Hiroshima and Nagasaki, which takes place with increasing distance from the hypocentres. The purpose of this paper is to present new RBE values for the neutrons, calculated as a function of distance from the hypocentres for both cities that are consistent with the ICRP60 neutron weighting factor. If based on neutron spectra from the DS86 dosimetry system, these calculations suggest values of about 31 at 1000 m and 23 at 2000 m ground range in Hiroshima, while the corresponding values for Nagasaki are 24 and 22. If the neutron weighting factor that is consistent with ICRP92 is used, the corresponding values are about 23 and 21 for Hiroshima and 21 and 20 for Nagasaki, respectively. It is concluded that the current risk estimates will be subject to some changes in view of the changed RBE values. This conclusion does not change significantly if the new doses from the Dosimetry System DS02 are used.
NASA Astrophysics Data System (ADS)
Schlattl, H.; Zankl, M.; Petoussi-Henss, N.
2007-04-01
A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.
NASA Astrophysics Data System (ADS)
Xie, Tianwu; Zaidi, Habib
2014-03-01
PET uses specific molecules labelled with positron-emitting radionuclides to provide valuable biochemical and physiological information. However, the administration of radiotracers to patients exposes them to low-dose ionizing radiation, which is a concern in the paediatric population since children are at a higher cancer risk from radiation exposure than adults. Therefore, radiation dosimety calculations for commonly used positron-emitting radiotracers in the paediatric population are highly desired. We evaluate the absorbed dose and effective dose for 19 positron-emitting labelled radiotracers in anthropomorphic paediatric models including the newborn, 1-, 5-, 10- and 15-year-old male and female. This is achieved using pre-calculated S-values of positron-emitting radionuclides of UF-NCI paediatric phantoms and published biokinetic data for various radiotracers. The influence of the type of anthropomorphic model, tissue weight factors and direct human- versus mouse-derived biokinetic data on the effective dose for paediatric phantoms was also evaluated. In the case of 18F-FDG, dosimetry calculations of reference paediatric patients from various dose regimens were also calculated. Among the considered radiotracers, 18F-FBPA and 15O-water resulted in the highest and lowest effective dose in the paediatric phantoms, respectively. The ICRP 103 updated tissue-weighting factors decrease the effective dose in most cases. Substantial differences of radiation dose were observed between direct human- versus mouse-derived biokinetic data. Moreover, the effect of using voxel- versus MIRD-type models on the calculation of the effective dose was also studied. The generated database of absorbed organ dose and effective dose for various positron-emitting labelled radiotracers using new generation computational models and the new ICRP tissue-weighting factors can be used for the assessment of radiation risks to paediatric patients in clinical practice. This work also contributes to a better understanding of the factors influencing patient-specific radiation dose calculation.
Gao, Bo; Li, Qiang; Zhou, Huai-Dong; Gao, Ji-Jun; Zou, Xiao-Wen; Yong, Huang
2014-05-01
The six heavy metal concentrations (Cr, Cr, As, Cd, Cu, Zn and Pb) in water samples collected from five reservoirs of Liao River Basin were studied. The health risk assessment for heavy metals pollution in reservoirs was conducted based on the environmental health risk assessment model recommended by U. S. Environmental Protection Agency. The results showed that the average concentrations of Cr, Cu, Zn, As, Cd and Pb in five reservoirs of Liao River Basin were 3.36, 1.03, 2. 70, 1.23, 0. 02 and 0. 03 microg L-1, respectively. In fact, these heavy metals concentrations were obviously lower than the Standard of National Drinking Water in China (GB 5749-2006). The results also showed that the metal carcinogenic risk was relatively high in this region. The order of the risk level of carcinogenic metals was Cr>As>Cd. The highest carcinogenic risk was from Cr, with the risk for adults ranging from 4. 50 X 10(-5) approximately 7. 53 X 10(-5) a-1' and the risk for children ranging from 6. 29 X 10(-5) to 1. 05 X 10(-4) a-1. The health risk levels caused by non-carcinogenic metals ranging from 10-13 to 10(-10) a-1 were lower than the acceptable range suggested by International Commission on Radiological Protection (ICRP) and the order of the risk level of non-carcinogenic metals was Cu>Zn>Pb. The total health risk of heavy metals for adults ranging from 1. 07X 10(-4) to 1. 72X 10(-4) a-1 and for children ranging from 1. 49 X 10(-4) to 2. 40 X 10(-4) a-1 exceeded the accepted level of 5 X 10(-5) a-1 as suggested by ICRP. The health risk levels of carcinogenic metals were significantly higher than those of non-carcinogenic metals in the reservoirs for Liao River Basin.
Study of natural radioactivity in Mansehra granite, Pakistan: environmental concerns.
Qureshi, Aziz Ahmed; Jadoon, Ishtiaq Ahmed Khan; Wajid, Ali Abbas; Attique, Ahsan; Masood, Adil; Anees, Muhammad; Manzoor, Shahid; Waheed, Abdul; Tubassam, Aneela
2014-03-01
A part of Mansehra Granite was selected for the assessment of radiological hazards. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 27.32, 50.07 and 953.10 Bq kg(-1), respectively. These values are in the median range when compared with the granites around the world. Radiological hazard indices and annual effective doses were estimated. All of these indices were found to be within the criterion limits except outdoor external dose (82.38 nGy h(-1)) and indoor external dose (156.04 nGy h(-1)), which are higher than the world's average background levels of 51 and 55 nGy h(-1), respectively. These values correspond to an average annual effective dose of 0.867 mSv y(-1), which is less than the criterion limit of 1 mSv y(-1) (ICRP-103). Some localities in the Mansehra city have annual effective dose higher than the limit of 1 mSv y(-1). Overall, the Mansehra Granite does not pose any significant radiological health hazard in the outdoor or indoor.
Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S
2015-11-01
Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ICRP Publication 132: Radiological Protection from Cosmic Radiation in Aviation.
Lochard, J; Bartlett, D T; Rühm, W; Yasuda, H; Bottollier-Depois, J-F
2016-06-01
In this publication, the International Commission on Radiological Protection (ICRP) provides updated guidance on radiological protection from cosmic radiation in aviation, taking into account the current ICRP system of radiological protection, the latest available data on exposures in aviation, and experience gained worldwide in the management of exposures in aviation. The publication describes the origins of cosmic radiation, how it exposes passengers and aircraft crew, the basic radiological protection principles that apply to this existing exposure situation, and the available protective actions. For implementation of the optimisation principle, the Commission recommends a graded approach proportionate to the level of exposure that may be received by individuals. The objective is to keep the exposure of the most exposed individuals to a reasonable level. The Commission also recommends that information be disseminated to raise awareness about cosmic radiation, and to support informed decisions among concerned stakeholders.
Katja — the 24th week of virtual pregnancy for dosimetric calculations
NASA Astrophysics Data System (ADS)
Becker, Janine; Zankl, Maria; Fill, Ute; Hoeschen, Christoph
2008-01-01
Virtual human models, a.k.a. voxel models, are currently the
ICRP draft publication on 'radiological protection against radon exposure'.
Lecomte, J-F
2014-07-01
To control the main part of radon exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) recommends an integrated approach focused as far as possible on the management of the building or location in which radon exposure occurs whatever the purpose of the building and the types of its occupants. This approach is based on the optimisation principle and a graded approach according to the degree of responsibilities at stake, notably in workplace, as well as the level of ambition of the national authorities. The report which is being developed by the Committee 4 is considering the recently consolidated ICRP general recommendations, the new scientific knowledge about the radon risk and the experience gained by many organisations and countries in the control of radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kolo, Matthew Tikpangi; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Abdullah, Wan Hasiah Binti
2016-01-01
Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10-3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10-3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal.
Pragmatic ethical basis for radiation protection in diagnostic radiology.
Malone, Jim; Zölzer, Friedo
2016-01-01
Medical ethics has a tried and tested literature and a global active research community. Even among health professionals, literate and fluent in medical ethics, there is low recognition of radiation protection principles such as justification and optimization. On the other hand, many in healthcare environments misunderstand dose limitation obligations and incorrectly believe patients are protected by norms including a dose limit. Implementation problems for radiation protection in medicine possibly flow from apparent inadequacies of the International Commission on Radiological Protection (ICRP) principles taken on their own, coupled with their failure to transfer successfully to the medical world. Medical ethics, on the other hand, is essentially global, is acceptable in most cultures, is intuitively understood in hospitals, and its expectations are monitored, even by managements. This article presents an approach to ethics in diagnostic imaging rooted in the medical tradition, and alert to contemporary social expectations. ICRP and the International Radiation Protection Association (IRPA), both alert to growing ethical concerns, organized a series of consultations on ethics for general radiation protection in the last few years. The literature on medical ethics and implicit ICRP ethical values were reviewed qualitatively, with a view to identifying a system that will help guide contemporary behaviour in radiation protection of patients. Application of the system is illustrated in six clinical scenarios. The proposed system is designed, as far as is possible, so as not to be in conflict with the conclusions emerging from the ICRP/IRPA consultations. A widely recognized and well-respected system of medical ethics was identified that has global reach and claims acceptance in all cultures. Three values based on this system are grouped with two additional values to provide an ethical framework for application in diagnostic imaging. This system has the potential to be robust and to reach conclusions that are in accord with contemporary medical, social and ethical thinking. The system is not intended to replace the ICRP principles. Rather, it is intended as a well-informed interim approach that will help judge and analyse situations that arouse ethical concerns in radiology. Six scenarios illustrate the practicality of the value system in alerting one to possible deficits in practice. Five widely recognized values and the basis for them are identified to support the contemporary practice of diagnostic radiology. These are essential to complement the widely used ICRP principles pending further development in the area.
Radiological protection in computed tomography and cone beam computed tomography.
Rehani, M M
2015-06-01
The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M
2015-06-01
Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Kurihara, Chieko; Cho, Kunwoo; Toohey, Richard E
2016-12-01
The International Commission on Radiological Protection (ICRP) has established Task Group 94 (TG94) to develop a publication to clarify the ethical foundations of the radiological protection system it recommends. This TG identified four core ethical values which structure the system: beneficence and non-maleficence, prudence, justice, and dignity. Since the ICRP is an international organization, its recommendations and guidance should be globally applicable and acceptable. Therefore, first this paper presents the basic principles of the ICRP radiological protection system and its core ethical values, along with a reflection on the variation of these values in Western and Eastern cultural traditions. Secondly, this paper reflects upon how these values can be applied in difficult ethical dilemmas as in the case of the emergency and post-accident phases of a nuclear power plant accident, using the Fukushima case to illustrate the challenges at stake. We found that the core ethical values underlying the ICRP system of radiological protection seem to be quite common throughout the world, although there are some variations among various cultural contexts. Especially we found that 'prudence' would call for somewhat different implementation in each cultural context, balancing and integrating sometime conflicting values, but always with objectives to achieve the well-being of people, which is itself the ultimate aim of the radiological protection system.
Broughton, J; Cantone, M C; Ginjaume, M; Shah, B
2013-12-01
This report was commissioned by the IRPA President to provide an assessment of the impact on members of IRPA Associate Societies of the introduction of ICRP recommendations for a reduced dose limit for the lens of the eye. The report summarises current practice and considers possible changes that may be required. Recommendations for further collaboration, clarification and changes to working practices are suggested.
Doses and risks from the ingestion of Dounreay fuel fragments.
Darley, P J; Charles, M W; Fell, T P; Harrison, J D
2003-01-01
The radiological implications of ingestion of nuclear fuel fragments present in the marine environment around Dounreay have been reassessed by using the Monte Carlo code MCNP to obtain improved estimates of the doses to target cells in the walls of the lower large intestine resulting from the passage of a fragment. The approach takes account of the reduction in dose due to attenuation within the intestinal wall and self-absorption of radiation in the fuel fragment itself. In addition, dose is calculated on the basis of a realistic estimate of the anatomical volume of the lumen, rather than being based on the average mass of the contents, as in the current ICRP model. Our best estimates of doses from the ingestion of the largest Dounreay particles are at least a factor of 30 lower than those predicted using the current ICRP model. The new ICRP model will address the issues raised here and provide improved estimates of dose.
Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph
2011-12-01
The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a certain extent depending on the strength of the correlation. In the case of model prediction, the qualitative comparison of the model predictions with the measured plasma and urinary data showed the HMGU model to be more reliable than the ICRP model; quantitatively, the uncertainty model prediction by the HMGU systemic biokinetic model is smaller than that of the ICRP model. The uncertainty information on the model parameters analyzed in this study was used in the second part of the paper regarding a sensitivity analysis of the Zr biokinetic models.
ICRP Publication 134: Occupational Intakes of Radionuclides: Part 2.
Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Ansoborlo, E; Giussani, A; Bolch, W E; Harrison, J D
2016-12-01
The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. Part 1 of the OIR series has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. The following publications in the OIR series (Parts 2–5) will provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. The present publication provides the above data for the following elements: hydrogen (H), carbon (C), phosphorus (P), sulphur (S), calcium (Ca), iron (Fe), cobalt (Co), zinc (Zn), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), and technetium (Tc).
Pragmatic ethical basis for radiation protection in diagnostic radiology
Zölzer, Friedo
2016-01-01
Objective: Medical ethics has a tried and tested literature and a global active research community. Even among health professionals, literate and fluent in medical ethics, there is low recognition of radiation protection principles such as justification and optimization. On the other hand, many in healthcare environments misunderstand dose limitation obligations and incorrectly believe patients are protected by norms including a dose limit. Implementation problems for radiation protection in medicine possibly flow from apparent inadequacies of the International Commission on Radiological Protection (ICRP) principles taken on their own, coupled with their failure to transfer successfully to the medical world. Medical ethics, on the other hand, is essentially global, is acceptable in most cultures, is intuitively understood in hospitals, and its expectations are monitored, even by managements. This article presents an approach to ethics in diagnostic imaging rooted in the medical tradition, and alert to contemporary social expectations. ICRP and the International Radiation Protection Association (IRPA), both alert to growing ethical concerns, organized a series of consultations on ethics for general radiation protection in the last few years. Methods: The literature on medical ethics and implicit ICRP ethical values were reviewed qualitatively, with a view to identifying a system that will help guide contemporary behaviour in radiation protection of patients. Application of the system is illustrated in six clinical scenarios. The proposed system is designed, as far as is possible, so as not to be in conflict with the conclusions emerging from the ICRP/IRPA consultations. Results and conclusion: A widely recognized and well-respected system of medical ethics was identified that has global reach and claims acceptance in all cultures. Three values based on this system are grouped with two additional values to provide an ethical framework for application in diagnostic imaging. This system has the potential to be robust and to reach conclusions that are in accord with contemporary medical, social and ethical thinking. The system is not intended to replace the ICRP principles. Rather, it is intended as a well-informed interim approach that will help judge and analyse situations that arouse ethical concerns in radiology. Six scenarios illustrate the practicality of the value system in alerting one to possible deficits in practice. Advances in knowledge: Five widely recognized values and the basis for them are identified to support the contemporary practice of diagnostic radiology. These are essential to complement the widely used ICRP principles pending further development in the area. PMID:26796852
The internal dosimetry code PLEIADES.
Fell, T P; Phipps, A W; Smith, T J
2007-01-01
The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.
NASA Astrophysics Data System (ADS)
Netwong, Y.; Krisanachinda, A.
2016-03-01
The 64-row multidetector computed tomography angiography (64-MDCTA) provides vascular image quality of the brain similar to digital subtraction angiography (DSA), but the effective dose of CTA is lower than DSA studied in phantom. The purpose of this study is to evaluate the effective dose from 64-MDCTA and DSA. Effective dose (according to ICRP 103) from 64-MDCTA and DSA flat panel detector for cerebral vessels examination of the brain using standard protocols as recommended by the manufacturer was calculated for 30 cases of MDCTA (15 male and 15 female).The mean patient age was 49.5 (23-89) yrs. 30 cases of DSA (14 male and 16 female), the mean patient age was 46.8 (21-81) yrs. For CTA, the mean effective dose was 3.7 (2.82- 5.19) mSv. For DSA, the mean effective dose was 5.78 (3.3-10.06) mSv. The effective dose of CTA depends on the scanning protocol and scan length. Low tube current can reduce patient dose whereas the number of exposures and number of series in 3D rotational angiography (3D RA) resulted in increasing effective dose in DSA patients.
Karimian, A; Nikparvar, B; Jabbari, I
2014-11-01
Renal angiography is one of the medical imaging methods in which patient and physician receive high equivalent doses due to long duration of fluoroscopy. In this research, equivalent doses of some radiosensitive tissues of patient (adult and child) and physician during renal angiography have been calculated by using adult and child Oak Ridge National Laboratory phantoms and Monte Carlo method (MCNPX). The results showed, in angiography of right kidney in a child and adult patient, that gall bladder with the amounts of 2.32 and 0.35 mSv, respectively, has received the most equivalent dose. About the physician, left hand, left eye and thymus absorbed the most amounts of doses, means 0.020 mSv. In addition, equivalent doses of the physician's lens eye, thyroid and knees were 0.023, 0.007 and 7.9E-4 mSv, respectively. Although these values are less than the reported thresholds by ICRP 103, it should be noted that these amounts are related to one examination. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Measurement of radiation exposure in relatives of thyroid cancer patients treated with (131)I.
Ramírez-Garzón, Y T; Ávila, O; Medina, L A; Gamboa-deBuen, I; Rodríguez-Laguna, A; Buenfil, A E; Ruíz-Trejo, C; Estrada, E; Brandan, M E
2014-11-01
This work evaluates the radiological risk that patients treated with I for differentiated thyroid cancer could present to relatives and occupationally exposed workers. Recently, the International Atomic Energy Agency issued document K9010241, which recommends that patient discharge from the hospital must be based on the particular status of each patient. This work measures effective dose received by caregivers of patients treated with I at the Instituto Nacional de Cancerología, Mexico City. Thermoluminescent dosimeters were carried during a 15-d period by 40 family caregivers after patient release from hospital. Relatives were classified into two groups, ambulatory and hospitalized, according to the release mode of the patient, and three categories according to the individual patient home and transport facilities. Categories A, B, and C were defined going from most to least adequate concerning public exposure risk. Measurements were performed for 20 family caregivers in each group. The effective dose received by all caregivers participating in this study was found to be less than 5 mSv, the recommended limit per event for caregivers suggested by ICRP 103. In addition, 70 and 90% of ambulatory and hospitalized groups, respectively, received doses lower than 1 mSv. Caregivers belonging to category C, with home situations that are not appropriate for immediate release, received the highest average doses; i.e., 2.2 ± 1.3 and 3.1 ± 1.0 mSv for hospitalized and ambulatory patients, respectively. Results of this work have shown that the proper implementation of radiation protection instructions for relatives and patients can reduce significantly the risk that differentiated thyroid cancer patients treated with I can represent for surrounding individuals. The results also stress the relevance of the patient's particular lifestyle and transport conditions as the prevailing factors related to the dose received by the caregiver. Therefore, the patient's status should be the criterion used to decide his/her release modality. This work provides support to recommend the implementation of the "patient specific release criteria" in accordance with ICRP 94, IAEA Safety Report No. 63, and IAE document K9010241 A for patients treated with radiopharmaceuticals.
The conversion of exposures due to radon into the effective dose: the epidemiological approach.
Beck, T R
2017-11-01
The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year -1 per 100 Bq m -3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used.
Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2
Leggett, Richard W.
2017-03-02
Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less
An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.
Ferrari, P; Gualdrini, G
2005-09-21
In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.
ICRP Publication 107. Nuclear decay data for dosimetric calculations.
Eckerman, K; Endo, A
2008-01-01
In this report, the Commission provides an electronic database of the physical data needed in calculations of radionuclide-specific protection and operational quantities. This database supersedes the data of Publication 38 (ICRP, 1983), and will be used in future ICRP publications of dose coefficients for the intake of or exposure to radionuclides in the workplace and the environment.The database contains information on the half-lives, decay chains, and yields and energies of radiations emitted in nuclear transformations of 1252 radionuclides of 97 elements. The CD accompanying the publication provides electronic access to complete tables of the emitted radiations, as well as the beta and neutron spectra. The database has been constructed such that user-developed software can extract the data needed for further calculations of a radionuclide of interest. A Windows-based application is provided to display summary information on a user-specified radionuclide, as well as the general characterisation of the nuclides contained in the database. In addition, the application provides a means by which the user can export the emissions of a specified radionuclide for use in subsequent calculations.
Medical and occupational dose reduction in pediatric barium meal procedures
NASA Astrophysics Data System (ADS)
Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Ledesma, J. A.; Legnani, A.; Bunick, A. P.; Sauzen, J.; Yagui, A.; Vosiak, P.
2017-11-01
Doses received in pediatric Barium Meal procedure can be rather high. It is possible to reduce dose values following the recommendations of the European Communities (EC) and the International Commission on Radiological Protection (ICRP). In the present work, the modifications of radiographic techniques made in a Brazilian hospital according to the EC and the ICRP recommendations and their influence on medical and occupational exposure are reported. The procedures of 49 patients before and 44 after the optimization were studied and air kerma-area product (PK,A) values and the effective doses were evaluated. The occupational equivalent doses were measured next to the eyes, under the thyroid shield and on each hand of both professionals who remained inside the examination room. The implemented modifications reduced by 70% and 60% the PK,A and the patient effective dose, respectively. The obtained dose values are lower than approximately 75% of the results from similar studies. The occupational annual equivalent doses for all studied organs became lower than the limits set by the ICRP. The equivalent doses in one examination were on average below than 75% of similar studies.
Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard W.
Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less
Little, M P
2002-03-01
To estimate the ratio of risks for exposure to radon progeny relative to low-LET radiation based on human lung cancer data, taking account of possible time and age variations in radiation-induced lung cancer risk. Fitting two sorts of time- and age-adjusted relative risk models to a case-control dataset nested within the Colorado Plateau uranium miner cohort and to the Japanese atomic (A)-bomb survivor mortality data. If all A-bomb survivors are compared with the Colorado data, there are statistically significant (two-sided p < 0.05) differences between the two datasets in the pattern of the variation of relative risk with time after exposure, age at exposure and attained age. The excess relative risk decreases much faster with time, age at exposure and attained age in the Colorado uranium miners than in the Japanese A-bomb survivors. If only male A-bomb survivors are compared with the Colorado data, there are no longer statistically significant differences between the two datasets in the pattern of variation of relative risk with time after exposure, age at exposure or attained age. There are no statistically significant differences between the male and female A-bomb survivors in the speed of reduction of relative risk with time after exposure, age at exposure or attained age, although there are indications of rather faster reduction of relative risk with time and age among male survivors than among female survivors. The implicit risk conversion factor for exposure to radon progeny relative to the A-bomb radiation in the male survivors is 1.8 x 10(-2) Sv WLM(-1) (95% CI 6.1 x10(-3), 1.1 x 10(-1)) using a model with exponential adjustments for the effects of radiation for time since exposure and age at exposure, and 1.9 x 10(-2) Sv WLM(-1) (95% CI 6.2 x 10(-3), 1.6 x 10(-1)) using a model with adjustments for the effects of radiation proportional to powers of time since exposure and attained age. Estimates of the risk conversion factor calculated using variant assumptions as to the definition of lung cancer in the Colorado data, or by excluding miners for whom exposure estimates may be less reliable, are very similar. The absence of information on cigarette smoking in the Japanese A-bomb survivors, and the possibility that this may confound the time trends in radiation-induced lung cancer risk in that cohort, imply that these findings should be interpreted with caution. There are no statistically significant differences between the male A-bomb survivors data and the Colorado miner data in the pattern of variation of relative risk with time after exposure and age at exposure. The risk conversion factor is very close to the value suggested by the latest ICRP lung model, albeit with substantial uncertainties.
Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee
2016-04-01
The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
KDEP: A resource for calculating particle deposition in the respiratory tract
Klumpp, John A.; Bertelli, Luiz
2017-08-01
This study presents KDEP, an open-source implementation of the ICRP lung deposition model developed by the authors. KDEP, which is freely available to the public, can be used to calculate lung deposition values under a variety of different conditions using the ICRP methodology. The paper describes how KDEP implements this model and discusses some key points of the implementation. The published lung deposition values for intakes by workers were reproduced, and new deposition values were calculated for intakes by members of the public. KDEP can be obtained for free at github.com or by emailing the authors directly.
Bair, W J
1989-01-01
In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users. This should facilitate application of the revised human respiratory tract model to worldwide radiation protection needs.
History and Organizations for Radiological Protection.
Kang, Keon Wook
2016-02-01
International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.
Dose estimation of eye lens for interventional procedures in diagnosis
NASA Astrophysics Data System (ADS)
Liu, Yu-Rong; Huang, Chia-Yu; Hsu, Ching-Han; Hsu, Fang-Yuh
2017-11-01
The International Commission on Radiological Protection (ICRP) recommended that the equivalent dose limit for the lens of the eye be decreased from 150 mSv/y (ICRP, 2007) to 20 mSv/y averaged over five years (ICRP, 2011). How to accurately measure the eye-lens dose has, therefore, been an issue of interest recently. Interventional radiologists are at a higher risk of radiation-induced eye injury, such as cataracts, than all other occupational radiation workers. The main objective of this study is to investigate the relationship between the doses to the eye lenses of interventional radiologists measured by different commercial eye-lens dosimeters. This study measured a reference eye-lens dose, which involved placing thermoluminescent dosimeter (TLD) chips at the surface of the eye of the Rando Phantom, and the TLD chips were covered by a 3-mm-thick tissue-equivalent bolus. Commercial eye-lens dosimeters, such as a headband dosimeter and standard personnel dose badges, were placed at the positions recommended by the manufacturers. The results show that the personnel dose badge is not an appropriate dosimeter for evaluating eye-lens dose. Dose deviations for different dosimeters are discussed and presented in this study.
Dental radiographic guidelines: a review.
Kim, Irene H; Mupparapu, Muralidhar
2009-05-01
The 2004 American Dental Association (ADA)/US Food and Drug Administration (FDA) radiographic selection criteria and guidelines were reviewed and compared with the prior radiographic selection criteria and guidelines. The authors reviewed the publications from the US FDA, US Department of Health and Human Services, and National Council on Radiation Protection and Measurements. The positions outlined by the Canadian Dental Association and the European Commission were also reviewed and compared to US guidelines. The FDA guidelines were first published in 1987, and several changes have been made to them over the years. Recent literature reveals that the general compliance of these guidelines is very low, especially within dental schools in the United States and Canada. Little is known about the compliance outside of the dental school environment; however, it is expected to be low for various reasons. In 2007, the International Commission on Radiological Protection (ICRP) revised its estimates of tissue radiosensitivity, which resulted in effective doses of dental radiographs 32% to 422% higher than the 1990 ICRP guidelines. Flow charts summarizing the latest guidelines were developed to facilitate general compliance among practitioners. Based on the literature reviewed and the recent ICRP findings, it would be prudent for dental health care professionals to follow dental radiographic guidelines.
Estimation of absorbed fraction to the anterior nose from inhaled beta emitters
NASA Astrophysics Data System (ADS)
Moussa, Hanna Moussa
2000-08-01
The main purpose of this research is to introduce a new and more realistic geometry for the anterior nose region (ET1) as an alternative to the one provided in ICRP Publication 66. For a more accurate estimation of electron absorbed fraction (AF) to the nuclei of basal cells in the ET 1 region, the proposed new geometry (frustum of a cone) replaces the cylinder geometry, which was used in ICRP 66. Since the electron absorbed fraction (AF) data in ICRP 66 are calculated based on the nose size for an adult Caucasian male, a second purpose of this research is to investigate how the nose size (different ethnic groups) and nose tissue composition (male, female and adolescent), affects the electron absorbed fraction values. The third aim of this research is to develop a Monte Carlo program to estimate the electron energies that emerge from the surface of spherical dust particles. Given that electrons can be located anywhere between the center and the surface of the sphere, we vary the sphere radius from 0.5 to 50 μm and investigate the effects of self-absorption on the emitted electron energies and absorbed fraction.
Bouffler, Simon; Ainsbury, Elizabeth; Gilvin, Phil; Harrison, John
2012-12-01
This paper presents the response of the Health Protection Agency (HPA) to the 2011 statement from the International Commission on Radiological Protection (ICRP) on tissue reactions and recommendation of a reduced dose limit for the lens of the eye. The response takes the form of a brief review of the most recent epidemiological and mechanistic evidence. This is presented together with a discussion of dose limits in the context of the related risk and the current status of eye dosimetry, which is relevant for implementation of the limits. It is concluded that although further work is desirable to quantify better the risk at low doses and following protracted exposures, along with research into the mechanistic basis for radiation cataractogenesis to inform selection of risk projection models, the HPA endorses the conclusion reached by the ICRP in their 2011 statement that the equivalent dose limit for the lens of the eye should be reduced from 150 to 20 mSv per year, averaged over a five year period, with no year's dose exceeding 50 mSv.
New Stochastic Annual Limits on Intake for Selected Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.
Annual limits on intake (ALI) have historically been tabulated by the International Commission on Radiological Protection (e.g., ICRP 1979, 1961) and also by the Environmental Protection Agency (EPA 1988). These compilations have been rendered obsolete by more recent ICRP dosimetry methods, and, rather than provide new ALIs, the ICRP has opted instead to provide committed dose coefficients from which an ALI can be determined by a user for a specific set of conditions. The U.S. Department of Energy historically has referenced compilations of ALIs and has defined their method of calculation in its radiation protection regulation (10 CFDR 835), butmore » has never provided a specific compilation. Under June 2007 amendments to 10 CFR 835, ALIs can be calculated by dividing an appropriate dose limit, either 5-rem (0.05 Sv) effective dose or 50 rem (0.5 Sv) equivalent dose to an individual organ or tissue, by an appropriate committed dose coefficient. When based on effective dose, the ALI is often referred to as a stochastic annual limit on intake (SALI), and when based on the individual organ or tissue equivalent limit, it has often been called a deterministic annual limit on intake (DALI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.
1994-10-01
The unabridged data used in preparing ICRP Publication 38 (1983) and a monograph of the Medical Internal Radiation Dose (MIRD) Committee are now available in electronic form. The {open_quotes}ICRP38 collection{close_quotes} contains data on the energies and intensities of radiations emitted by 825 radionuclides (those in ICRP Publication 38 plus 13 from the MIRD monograph), and the {open_quotes}MIRD collection{close_quotes} contains data on 242 radionuclides. Each collection consists of a radiations data file and a beta spectra data file. The radiations data file contains the complete listing of the emitted radiations, their types, mean or unique energies, and absolute intensities for eachmore » radionuclide, the probability that a beta particle will be emitted with kinetic energies defined by a standard energy grid. Although summary information from the radiation data files has been published, neither the unabridged data nor the beta spectra have been published. These data files and a data extraction utility, which runs on a personal computer, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory. 13 refs., 1 fig., 6 tabs.« less
Harrison, John D.; Leggett, Richard Wayne
2016-01-01
This letter to the editor of Journal of Radiological Protection is in response to a letter to the editor from G. M. Smith and M. C. Thorne of Great Britain concerning the appropriate selection of dose coefficients for ingested carbon-14 and chlorine-36, two of the most important long-lived components of radioactive wastes. Smith and Thorne argue that current biokinetic models of the International Commission on Radiological Protection (ICRP) for carbon and chlorine are overly cautious models from the standpoint of radiation dose estimates for C-14 and Cl-36, and that more realistic models are needed for evaluation of the hazards ofmore » these radionuclides in nuclear wastes. We (Harrison and Leggett) point out that new biokinetic models for these and other elements (developed at ORNL) will soon appear in ICRP Publications. These new models generally are considerably more realistic than current ICRP models. Here, examples are given for C-14 inhaled as carbon dioxide or ingested in water as bicarbonate, carbonate, or carbon dioxide.« less
Eisele, G R; Bernard, S R; Nestor, C W
1987-10-01
Two groups of 11-week-old swine (40 miniature and 40 domestic swine) received a single oral administration of 1.9 X 10(8) Bq (5.2 mCi) of 241Am citrate, and groups of eight animals, four of each type, were killed and sampled at 1, 2, 4, 8, 16, 24, 48, 72, and 96 h and 30 days later. Uptake and excretion patterns of the radioactivity appeared to occur in three phases: rapid uptake, rapid excretion, and then a slower excretion. All animals were systematically dissected, and the eviscerated carcasses were autoclaved for separation of bone and muscle. The predominant site of deposition was bone, and autoclaving had little effect on releasing 241Am from either bone or muscle. The maximum fractional gastrointestinal absorption of 1.1 X 10(-3) occurred 8 h after radionuclide administration. The tissue distribution data suggest partitions of 50, 20, and 30%, for bone, liver, and other soft tissues, respectively. Two metabolic models were evaluated: a modified Mewhinney-Griffith model and the ICRP 30 model to compare the biological data with model predictions. All models underestimated the actual early time data, but the fits to the experimental results were better at later times.
Zali, A; Shamsaei Zafarghandi, M; Feghhi, S A; Taherian, A M
2017-05-01
In this work, public dose resulting from fission products released from Bushehr Nuclear Power Plant (BNPP) under normal operation is assessed. Due to the long range transport of radionuclides in this work (80 km) and considering terrain and meteorological data, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYsplit) model, which uses three dimensional long-range numerical models, has been employed to calculate atmospheric dispersion. Annual effective dose calculation is carried out for inhalation, ingestion, and external exposure pathways in 16directions and within 80 km around the site for representative person. The results showed the maximum dose of inhalation and external exposure for adults is 3.8 × 10 -8 Sv/y in the SE direction and distance of 600 m from the BNPP site which is less than ICRP 103 recommended dose limit (1 mSv). Children and infants' doses are higher in comparison with adults, although they are less than 1 mSv. Ingestion dose percentage in the total dose is less than 0.1%. The results of this study underestimate the Final Safety Analysis Report ofBNPP-1 (FSAR)data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M
2012-09-01
The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.
Dosimetric assessment from 212Pb inhalation at a thorium purification plant.
Campos, M P; Pecequilo, B R S
2004-01-01
At the Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, Brazil, there is a facility (thorium purification plant) where materials with high thorium concentrations are manipulated. In order to estimate afterwards the lung cancer risk for the workers, the thoron daughter (212Pb) levels were assessed and the committed effective and lung committed equivalent doses for workers in place. A total of 28 air filter samples were measured by total alpha counting through the modified Kusnetz method, to determine the 212Pb concentraion. The committed effective dose and lung committed equivalent dose due to 212Pb inhalation were derived from compartmental analysis following the ICRP 66 lung compartmental model, and ICRP 67 lead metabolic model.
Dosimetry of {sup 210}Po in humans, caribou, and wolves in northern Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.A.
1994-06-01
Effective doses from {sup 210}Po intake with caribou meat were determined for human residents in Baker Lake and Snowdrift in the Northwest Territories of Canada and compared to doses calculated from reported {sup 210}Po tissue activities in Alaskan and British residents. Effective doses were calculated to separate body tissues, using ICRP 60 human weighting factors and the ICRP 30 metabolic model for {sup 210}Po. Baker Lake and Alaskan effective doses were similar at 0.4 mSv y{sup {minus}1} and slightly higher than Snowdrift doses (0.3 mSv y{sup {minus}1}). Alaskan tissue activities indicated higher effective doses to liver, bone surfaces and redmore » marrow and lower doses to spleen than the {sup 210}Po metabolic model (ICRP 1979a) predicts. Effective doses to Baker Lake and Snowdrift caribou and wolves, calculated from tissue activities, ranged from 7-20 mSv y{sup {minus}1} using human weighting factors for comparison to human doses only. Effective doses to northern Canadians and wildlife were, respectively, 7-11% and 1.8-5 times an estimated human background of 4 mSv y{sup {minus}} from all sources. 51 refs., 2 figs., 9 tabs.« less
NASA Astrophysics Data System (ADS)
Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel
2017-03-01
The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.
Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)
NASA Astrophysics Data System (ADS)
Ding, Aiping
X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this software provides a better CT dose assessment by using anatomically realistic patient phantoms. All the related organ doses are incorporated into a standardized database compiled using Microsoft Structured Query Language (SQL) server 2008. Organ doses from contiguous axial or helical scans defined by a specific protocol can be rapidly obtained from the database. A next-generation software architecture and Active Server Pages (ASP) .NET framework are adopted to create a browser-hosted application to improve the user interactivity and reporting functionality including scanning parameter selection and organ dose reporting. “VirtualDose” has been developed as a web-based CT dose reporting platform to facilitate several important features including: (1) easy access via Internet; (2) no need for installation on the local computer; (3) a user-friendly, dynamic, browser-hosted graphical user interface; (4) use of advanced patient models for the adult male and female, pregnant women, children, and obese patient models; (5) adoption of modern CT scanners and protocols, as well as the most recent ICRP 103 effective dose algorithms; and (6) flexibility to manage and easily upgrade without impacting user’s usage.
Appropriate Use of Effective Dose in Radiation Protection and Risk Assessment.
Fisher, Darrell R; Fahey, Frederic H
2017-08-01
Effective dose was introduced by the ICRP for the single, over-arching purpose of setting limits for radiation protection. Effective dose is a derived quantity or mathematical construct and not a physical, measurable quantity. The formula for calculating effective dose to a reference model incorporates terms to account for all radiation types, organ and tissue radiosensitivities, population groups, and multiple biological endpoints. The properties and appropriate applications of effective dose are not well understood by many within and outside the health physics profession; no other quantity in radiation protection has been more confusing or misunderstood. According to ICRP Publication 103, effective dose is to be used for "prospective dose assessment for planning and optimization in radiological protection, and retrospective demonstration of compliance for regulatory purposes." In practice, effective dose has been applied incorrectly to predict cancer risk among exposed persons. The concept of effective dose applies generally to reference models only and not to individual subjects. While conceived to represent a measure of cancer risk or heritable detrimental effects, effective dose is not predictive of future cancer risk. The formula for calculating effective dose incorporates committee-selected weighting factors for radiation quality and organ sensitivity; however, the organ weighting factors are averaged across all ages and both genders and thus do not apply to any specific individual or radiosensitive subpopulations such as children and young women. Further, it is not appropriate to apply effective dose to individual medical patients because patient-specific parameters may vary substantially from the assumptions used in generalized models. Also, effective dose is not applicable to therapeutic uses of radiation, as its mathematical underpinnings pertain only to observed late (stochastic) effects of radiation exposure and do not account for short-term adverse tissue reactions. The weighting factors incorporate substantial uncertainties, and linearity of the dose-response function at low dose is uncertain and highly disputed. Since effective dose is not predictive of future cancer incidence, it follows that effective dose should never be used to estimate future cancer risk from specific sources of radiation exposure. Instead, individual assessments of potential detriment should only be based on organ or tissue radiation absorbed dose, together with best scientific understanding of the corresponding dose-response relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pappas, D; Reis, S; Ali, A
Purpose To determine how consistent the results of different raters are when reviewing the same cases within the Radiation Oncology Incident Learning System (ROILS). Methods Three second-year medical physics graduate students filled out incident reports in spreadsheets set up to mimic ROILS. All students studied the same 33 cases and independently entered their assessments, for a total of 99 reviewed cases. The narratives for these cases were obtained from a published International Commission on Radiological Protection (ICRP) report which included shorter narratives selected from the Radiation Oncology Safety Information System (ROSIS) database. Each category of questions was reviewed to seemore » how consistent the results were by utilizing free-marginal multirater kappa analysis. The percentage of cases where all raters shared full agreement or full disagreement was recorded to show which questions were answered consistently by multiple raters for a given case. The consistency among the raters was analyzed between ICRP and ROSIS cases to see if either group led to more reliable results. Results The categories where all raters agreed 100 percent in their choices were the event type (93.94 percent of cases 0.946 kappa) and the likelihood of the event being harmful to the patient (42.42 percent of cases 0.409 kappa). The categories where all raters disagreed 100 percent in their choices were the dosimetric severity scale (39.39 percent of cases 0.139 kappa) and the potential future toxicity (48.48 percent of cases 0.205 kappa). ROSIS had more cases where all raters disagreed than ICRP (23.06 percent of cases compared to 15.58 percent, respectively). Conclusion Despite reviewing the same cases, the results among the three raters was widespread. ROSIS narratives were shorter than ICRP, which suggests that longer narratives lead to more consistent results. This study shows that the incident reporting system can be optimized to yield more consistent results.« less
Greiter, Matthias B; Giussani, Augusto; Höllriegl, Vera; Li, Wei Bo; Oeh, Uwe
2011-09-01
Biokinetic models describing the uptake, distribution and excretion of trace elements are an essential tool in nutrition, toxicology, or internal dosimetry of radionuclides. Zirconium, especially its radioisotope (95)Zr, is relevant to radiation protection due to its production in uranium fission and neutron activation of nuclear fuel cladding material. We present a comprehensive set of human data from a tracer study with stable isotopes of zirconium. The data are used to refine a biokinetic model of zirconium. Six female and seven male healthy adult volunteers participated in the study. It includes 16 complete double tracer investigations with oral ingestion and intravenous injection, and seven supplemental investigations. Tracer concentrations were measured in blood plasma and urine collected up to 100 d after tracer administration. The four data sets (two chemical tracer forms in plasma and urine) each encompass 105-240 measured concentration values above detection limits. Total fractional absorption of ingested zirconium was found to be 0.001 for zirconium in citrate-buffered drinking solution and 0.007 for zirconium oxalate solution. Biokinetic models were developed based on the linear first-order kinetic compartmental model approach used by the International Commission on Radiological Protection (ICRP). The main differences of the optimized systemic model of zirconium to the current ICRP model are (1) recycling into the transfer compartment made necessary by the observed tracer clearance from plasma, (2) different parameters related to fractional absorption for each form of the ingested tracer, and (3) a physiologically based excretion pathway to urine. The study considerably expands the knowledge on the biokinetics of zirconium, which was until now dominated by data from animal studies. The proposed systemic model improves the existing ICRP model, yet is based on the same principles and fits well into the ICRP radiation protection approach. Copyright © 2011 Elsevier B.V. All rights reserved.
US Transuranium and Uranium Registries case study on accidental exposure to uranium hexafluoride.
Avtandilashvili, Maia; Puncher, Matthew; McComish, Stacey L; Tolmachev, Sergei Y
2015-03-01
The United States Transuranium and Uranium Registries' (USTUR) whole-body donor (Case 1031) was exposed to an acute inhalation of uranium hexafluoride (UF6) produced from an explosion at a uranium processing plant 65 years prior to his death. The USTUR measurements of tissue samples collected at the autopsy indicated long-term retention of inhaled slightly enriched uranium material (0.85% (235)U) in the deep lungs and thoracic lymph nodes. In the present study, the authors combined the tissue measurement results with historical bioassay data, and analysed them with International Commission on Radiological Protection (ICRP) respiratory tract models and the ICRP Publication 69 systemic model for uranium using maximum likelihood and Bayesian statistical methods. The purpose of the analysis was to estimate intakes and model parameter values that best describe the data, and evaluate their effect on dose assessment. The maximum likelihood analysis, which used the ICRP Publication 66 human respiratory tract model, resulted in a point estimate of 79 mg of uranium for the occupational intake composed of 86% soluble, type F material and 14% insoluble, type S material. For the Bayesian approach, the authors applied the Markov Chain Monte Carlo method, but this time used the revised human respiratory tract model, which is currently being used by ICRP to calculate new dose coefficients for workers. The Bayesian analysis estimated that the mean uranium intake was 160 mg, and calculated the case-specific lung dissolution parameters with their associated uncertainties. The parameters were consistent with the inhaled uranium material being predominantly soluble with a small but significant insoluble component. The 95% posterior range of the rapid dissolution fraction (the fraction of deposited material that is absorbed to blood rapidly) was 0.12 to 0.91 with a median of 0.37. The remaining fraction was absorbed slowly, with a 95% range of 0.000 22 d(-1) to 0.000 36 d(-1) and a median of 0.000 31 d(-1). The effective dose per unit intake calculated using the dissolution parameters derived from the maximum likelihood and the Bayesian analyses was higher than the current ICRP dose coefficient for type F uranium by a factor of 2 or 7, respectively; the higher value of the latter was due to use of the revised respiratory tract model. The dissolution parameter values obtained here may be more appropriate to use for radiation protection purposes when individuals are exposed to a UF6 mixture that contains an insoluble uranium component.
NASA Astrophysics Data System (ADS)
Sasaki, S.; Yamada, T.
2013-12-01
The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time series of effective cesium-137 dose according to age calculated by ICRP software with calculated by the present method. Plots are calculated values by ICRP, the solid line is analytic solution given from the present method. It should be noted that the present study does not consider complicated mechanism, but it could give equally accurate results comparing to existing research. Time series of effective Cs-137 dose according to age when food contains 1 Bq/year is ingested for 1 year. (Plots are calculated values by ICRP. The solid line is analytic solution given from the present method)
Matsumoto, Masaki; Yamanaka, Tsuneyasu; Hayakawa, Nobuhiro; Iwai, Satoshi; Sugiura, Nobuyuki
2015-03-01
This paper describes the Basic Radionuclide vAlue for Internal Dosimetry (BRAID) code, which was developed to calculate the time-dependent activity distribution in each organ and tissue characterised by the biokinetic compartmental models provided by the International Commission on Radiological Protection (ICRP). Translocation from one compartment to the next is taken to be governed by first-order kinetics, which is formulated by the first-order differential equations. In the source program of this code, the conservation equations are solved for the mass balance that describes the transfer of a radionuclide between compartments. This code is applicable to the evaluation of the radioactivity of nuclides in an organ or tissue without modification of the source program. It is also possible to handle easily the cases of the revision of the biokinetic model or the application of a uniquely defined model by a user, because this code is designed so that all information on the biokinetic model structure is imported from an input file. The sample calculations are performed with the ICRP model, and the results are compared with the analytic solutions using simple models. It is suggested that this code provides sufficient result for the dose estimation and interpretation of monitoring data. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.
Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B
2018-04-25
3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.
Froning, M; Kozielewski, T; Schläger, M; Hill, P
2004-01-01
In 1987, a worker was internally contaminated with 137Cs as a result of an accident during the handling of high temperature reactor fuel element ash. In the long-term follow-up monitoring an unusual retention behaviour was found. The observed time dependence of caesium retention does not agree with the standard models of ICRP Publication 30. The present case can be better explained by assuming an intake of a mixture of type F and type S compounds. However, experimental data can be best described by a four-exponential retention function with two long-lived components, which was used as an ad hoc model for dose calculation. The resulting dose is compared with doses calculated on the basis of ICRP Publication 66.
Effect of Dietary Intake of Stable Iodine on Dose-per-unit-intake Factors for 99Tc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, Daniel J.
It is well-known that the human thyroid concentrates iodine more than 100 times the concentration in plasma. Also well-known is the fact that large amounts of stable iodine in the diet can limit thyroid uptake of total iodine; this is the basis for administering potassium iodide following a release of radioiodine from a nuclear reactor accident or nuclear weapon detonation. Many researchers have shown enhanced concentrations of both organic and inorganic iodine in saliva and breast milk. Technetium-99 is a long-lived (231,000 year half-life) radionuclide of concern in the management of high-level radioactive waste. There is no doubt that 99Tc,more » if it is in groundwater, will be found in the chemical form of pertechnetate, 99TcO4?. Pertechnetate is a large anion, almost identical in size to iodide, I?. The nuclear medicine literature shows that pertechnetate concentrates in the thyroid, salivary glands, and lactating breast in addition to the stomach, liver, and alimentary tract as currently recognized by the International Commission on Radiological Protection (ICRP). The fact that large intakes of stable iodine (127I) in the diet limit uptake of iodine by the thyroid leads one to generalize that stable iodine in the diet may also limit thyroid uptake of pertechnetate. While there is at least one report that iodine in the diet blocks uptake of 99mTcO4? by the thyroid and salivary glands (which have the same Na/I symporter, the biochemical concentration mechanism), the level of protective effect seen for blocking radioactive iodine is not expected for 99TcO4? because pertechnetate does not become organically bound in the thyroid and thus is not retained for months the way iodide is. While it does account for Tc concentration in the thyroid, the existing ICRP biokinetic model for technetium does not take enhanced concentrations in salivary gland and breast tissue into account. From the survey of the nuclear medicine literature, it is not possible to compute the effect of stable iodine in the diet on the dose per unit intake factors for 99Tc without developing an improved biokinetic model for technetium. Specific experiments should be designed to quantitatively evaluate 99TcO4? metabolism, excretion, and secretion, as well as to evaluate its chemical toxicity It is recommended that the ICRP reexamine its biokinetics models for Tc based on nuclear medicine data that have accumulated over the years. In particular, the ICRP ignores the lactation pathway, the enhanced concentration of Tc in breast and breast milk, and enhanced concentration of Tc (and I) in the salivary glands as well as in the thyroid. The ICRP should also explicitly incorporate the effect of stable iodine in the diet into both its models for iodine and technetium. The effect of concentration of Tc in breast milk needs further study for dosimetric implications to nursing infants whose mothers may ingest 99TcO4? from groundwater sources. The ICRP should also investigate the possibility of enhanced concentration of both I and Tc in the non-lactating female breast. To do these re-evaluations of biokinetic models, new experiments designed specifically to evaluate these questions concerning the biokinetics of Tc and I are needed.« less
Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.
2011-01-01
Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient’s clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDIvol) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDIvol underestimated dose to large organs in the scan coverage by 30%–48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by −57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by −63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients’ clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols. PMID:21361209
Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiang; Samei, Ehsan; Segars, W. Paul
2011-01-15
Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GEmore » Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDI{sub vol} underestimated dose to large organs in the scan coverage by 30%-48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by -57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by -63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients' clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols.« less
NASA Astrophysics Data System (ADS)
O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.
2016-12-01
An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) but did not follow results from skeletal models based upon assumptions of an infinite expanse of trabecular spongiosa.
Age-specific inhalation radiation dose commitment factors for selected radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strenge, D.L.; Peloquin, R.A.; Baker, D.A.
Inhalation dose commitment factors are presented for selected radionuclides for exposure of individuals in four age groups: infant, child, teen and adult. Radionuclides considered are /sup 35/S, /sup 36/Cl, /sup 45/Ca, /sup 67/Ga, /sup 75/Se, /sup 85/Sr, /sup 109/Cd, /sup 113/Sn, /sup 125/I, /sup 133/Ba, /sup 170/Tm, /sup 169/Yb, /sup 182/Ta, /sup 192/Ir, /sup 198/Au, /sup 201/Tl, /sup 204/Tl, and /sup 236/Pu. The calculational method is based on the human metabolic model of ICRP as defined in Publication 2 (ICRP 1959) and as used in previous age-specific dose factor calculations by Hoenes and Soldat (1977). Dose commitment factors are presentedmore » for the following organs of reference: total body, bone, liver, kidney, thyroid, lung and lower large intestine.« less
Uranium levels in the diet of São Paulo City residents.
Garcia, F; Barioni, A; Arruda-Neto, J D T; Deppman, A; Milian, F; Mesa, J; Rodriguez, O
2006-07-01
Natural levels of uranium in the diet of São Paulo City residents were studied, and radionuclide concentrations were measured by the fission track method on samples of typical adult food items. This information was used to evaluate the daily intake of uranium in individuals living in São Paulo City which is, according to our findings, around 0.97 microg U/day. Using the ICRP Uranium-model, we estimated the uranium accumulation and committed doses in some tissues and organs, as function of time. We compared the output of the ICRP uranium biokinetic model, tailored for the conditions prevailing in São Paulo, with experimental data from other localities. Such comparison was possible by means of a simple method we developed, which allows normalization among experimental results from different regions where distinct values of chronic daily intake are observed.
Farkas, Árpád; Balásházy, Imre
2015-04-01
A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Behrens, R
2013-07-01
In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.
Implementation of the integrated approach in different types of exposure scenarios.
Copplestone, D; Hirth, G; Johansen, M; Lazo, E; Takala, J; Sakai, K; Yankovich, T
2018-01-01
The International Commission on Radiological Protection (ICRP) recognises three types of exposure situations: planned, existing, and emergency. In all three situations, the release of radionuclides into the natural environment leads to exposures of non-human biota, as well as the potential for exposures of the public. This paper describes how the key principles of the ICRP system of radiological protection apply to non-human biota and members of the public in each of these exposure situations. Current work in this area within ICRP Task Group 105 is highlighted. For example, how simplified numeric criteria may be used in planned exposure situations that are protective of both the public and non-human biota. In emergency exposure situations, the initial response will always be focused on human protection; however, understanding the potential impacts of radionuclide releases on non-human biota will likely become important in terms of communication as governments and the public seek to understand the exposures that are occurring. For existing exposure situations, there is a need to better understand the potential impacts of radionuclides on animals and plants, especially when deciding on protective actions. Understanding the comparative impacts from radiological, non-radiological, and physical aspects is often important in managing the remediation of legacy sites. Task Group 105 is making use of case studies of how exposure situations have been managed in the past to provide additional guidance and advice for the protection of non-human biota.
Liu, Dan; Khong, Pek-Lan; Gao, Yiming; Mahmood, Usman; Quinn, Brian; St Germain, Jean; Xu, X George; Dauer, Lawrence T
2016-06-01
Combined whole-body dual-tracer ((18)F-FDG and (11)C-acetate) PET/CT is increasingly used for staging hepatocellular carcinoma, with only limited studies investigating the radiation dosimetry data of these scans. The aim of the study was to characterize the radiation dosimetry of combined whole-body dual-tracer PET/CT protocols. Consecutive adult patients with hepatocellular carcinoma who underwent whole-body dual-tracer PET/CT scans were retrospectively reviewed with institutional review board approval. OLINDA/EXM 1.1 was used to estimate patient-specific internal dose exposure in each organ. Biokinetic models for (18)F-FDG and (11)C-acetate as provided by ICRP (International Commission on Radiological Protection) publication 106 were used. Standard reference phantoms were modified to more closely represent patient-specific organ mass. With patient-specific parameters, organ equivalent doses from each CT series were estimated using VirtualDose. Dosimetry capabilities for tube current modulation protocols were applied by integrating with the latest anatomic realistic models. Effective dose was calculated using ICRP publication 103 tissue-weighting coefficients for adult male and female, respectively. Fourteen scans were evaluated (12 men, 2 women; mean age ± SD, 60 ± 19.48 y). The patient-specific effective dose from (18)F-FDG and (11)C-acetate was 6.08 ± 1.49 and 1.56 ± 0.47 mSv, respectively, for male patients and 6.62 ± 1.38 and 1.79 ± 0.12 mSV, respectively, for female patients. The patient-specific effective dose of the CT component, which comprised 2 noncontrast whole-body scans, to male and female patients was 21.20 ± 8.94 and 14.79 ± 3.35 mSv, respectively. Thus, the total effective doses of the combined whole-body dual-tracer PET/CT studies for male and female patients were 28.84 ± 10.18 and 23.19 ± 4.61 mSv, respectively. Patient-specific parameters allow for more accurate estimation of organ equivalent doses. Considering the substantial radiation dose incurred, judicious medical justification is required with every whole-body dual-tracer PET/CT referral. Although radiation risks may have less impact for the population with cancer because of their reduced life expectancy, the information is of interest and relevant for both justification, to evaluate risk/benefit, and protocol optimization. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik
2011-11-01
The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a source region for selected target organs—small intestine wall, lungs, pancreas and breast—as well as illustrate differences in energy deposition across the energy range (12 photon energies from 0.01 to 4 MeV). Differences were found in the SAFs between phantoms in a similar manner as the differences observed in S values but with larger differences at lower photon energies. To investigate the differences observed in the S and SAF values, the chord length distributions (CLDs) were computed for the selected source-target pairs and compared across the phantoms. As demonstrated by the CLDs, we found that the differences between phantoms in those factors used in internal dosimetry were governed to a significant degree by inter-organ distances which are a function of organ shape as well as organ location.
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae
2014-07-01
In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.
Kravchik, T; Oved, S; Paztal-Levy, O; Pelled, O; Gonen, R; German, U; Tshuva, A
2008-01-01
Inhalation is the main route of internal exposure to radioactive aerosols in the nuclear industry. To assess the radiation dose from the intake of these aerosols, it is necessary to know their physical (aerodynamic diameter distribution) and chemical (dissolution rate in extracellular lung fluid) characteristics. Air samples were taken from the uranium processing plant at the Nuclear Research Center, Negev. Measurements of aerodynamic diameter distribution using a cascade impactor indicated an average activity median aerodynamic diameter value close to 5 microm, in accordance with the recent recommended values of International Commission on Radiological Protection (ICRP) model. Solubility profiles of these aerosols were determined by performing in vitro solubility tests over 100 d in a simultant solution of the extracellular fluid. The tests indicated that the uranium aerosols should be assigned to an absorption between Types M and S (as defined by the ICRP Publication 66 model).
Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae
2014-07-21
In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.
2006-01-01
This report compiles the various numerical protection level values published by the International Commission on Radiological Protection (ICRP) since its 1990 Recommendations (Publication 60). Several terms are used to denominate the protection levels: individual dose limit, 'maximum' individual dose, dose constraint, exemption level, exclusion level, action level, or intervention level. The reasons provided by the Commission for selecting the associated numerical values is quoted as far as available. In some cases the rationale is not totally explicit in the original ICRP report concerned; in such cases the Task Group that prepared the present report have proposed their own interpretation. Originally, this report was prepared by a Task Group at CEPN, a French research and development center, in behalf of IRSN, a French public expert body engaged in radiological protection and nuclear safety. It is published here with kind permission by CEPN and IRSN.
Emigh, Brent; Gordon, Christopher L; Connolly, Bairbre L; Falkiner, Michelle; Thomas, Karen E
2013-09-01
There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences <19%, T > 0.18). DAP-to-effective dose conversion factors ranged from 6.5 ×10(-4) mSv per Gy-cm(2) to 4.3 × 10(-3) mSv per Gy-cm(2) for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is < 1 mSv. Estimations of effective dose associated with pediatric UGI examinations can be made for children up to the age of 10 using the DAP-normalized conversion factors provided in this study. These estimates can be further refined to reflect individual hospital examination protocols through the use of direct organ dose measurement using MOSFETs, which were shown to agree with Monte Carlo simulated doses.
Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radev, R
2009-01-13
In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) tomore » be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The health physicists should consider this increase for any areas that have dose rates near a posting limit, such as near the 100 mrem/hr for a high radiation area, as this increase in measured dose rate may result in some changes to postings and consequent radiological controls.« less
NASA Astrophysics Data System (ADS)
Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin
2011-10-01
Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.
Law, Martin; Ma, Wang-Kei; Lau, Damian; Chan, Eva; Yip, Lawrance; Lam, Wendy
2016-03-01
To quantitatively evaluate the cumulative effective dose and associated cancer risk for scoliotic patients undergoing repetitive full spine radiography during their diagnosis and follow up periods. Organ absorbed doses of full spine exposed scoliotic patients at different age were computer simulated with the use of PCXMC software. Gender specific effective dose was then calculated with the ICRP-103 approach. Values of lifetime attributable cancer risk for patients exposed at different age were calculated for both patient genders and for Asian and Western population. Mathematical fitting for effective dose and for lifetime attributable cancer risk, as function of exposed age, was analytically obtained to quantitatively estimate patient cumulated effective dose and cancer risk. The cumulative effective dose of full spine radiography with posteroanterior and lateral projection for patients exposed annually at age between 5 and 30 years using digital radiography system was calculated as 15mSv. The corresponding cumulative lifetime attributable cancer risk for Asian and Western population was calculated as 0.08-0.17%. Female scoliotic patients would be at a statistically significant higher cumulated cancer risk than male patients under the same full spine radiography protocol. We demonstrate the use of computer simulation and analytic formula to quantitatively obtain the cumulated effective dose and cancer risk at any age of exposure, both of which are valuable information to medical personnel and patients' parents concern about radiation safety in repetitive full spine radiography. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ketelsen, Dominik; Buchgeister, Markus; Korn, Andreas; Fenchel, Michael; Schmidt, Bernhard; Flohr, Thomas G; Thomas, Christoph; Schabel, Christoph; Tsiflikas, Ilias; Syha, Roland; Claussen, Claus D; Heuschmid, Martin
2012-01-01
Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable.
Assessing the International Landscape
On April 11th, 2018 the NCI Center for Research Strategy, in coordination with CGH, hosted the Annual Meeting of the International Cancer Research Partnership (ICRP). The meeting marked 18 years of a successful partnership, representing 124 organizations that fund cancer research projects in 145 countries.
NASA Technical Reports Server (NTRS)
Sakaguchi, T.; Doke, T.; Hayashi, T.; Kikuchi, J.; Hasebe, N.; Kashiwagi, T.; Takashima, T.; Takahashi, K.; Nakano, T.; Nagaoka, S.;
1997-01-01
The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.
A review of lung-to-blood absorption rates for radon progeny.
Marsh, J W; Bailey, M R
2013-12-01
The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.
O'Connor, U; Gallagher, A; Malone, L; O'Reilly, G
2013-02-01
Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. A new eye lens dosemeter (EYE-D(™), Radcard, Krakow, Poland) was used to measure the ERCP eye dose, H(p)(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated H(p)(3) dosemeter.
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.
2016-04-01
The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.
Radiological Risk Assessment of Capstone Depleted Uranium Aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.
2009-02-26
Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lungmore » and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.« less
Fleeman, Jennifer A; Stavisky, Christopher; Carson, Simon; Dukelow, Nancy; Maier, Sheryl; Coles, Heather; Wager, John; Rice, Jordyn; Essaff, David; Scherer, Marcia
2015-01-01
Interdisciplinary cognitive rehabilitation is emerging as the expected standard of care for individuals with mild to moderate degrees of cognitive impairment for a variety of etiologies. There is a growing body of evidence in cognitive rehabilitation literature supporting the involvement of multiple disciplines, with the use of cognitive support technologies (CSTs), in delivering cognitive therapy to individuals who require cognitive rehabilitative therapies. This article provides an overview of the guiding theories related to traditional approaches of cognitive rehabilitation and the positive impact of current theoretical models of an interdisciplinary approach in clinical service delivery of this rehabilitation. A theoretical model of the Integrative Cognitive Rehabilitation Program (ICRP) will be described in detail along with the practical substrates of delivering specific interventions to individuals and caregivers who are living with mild to moderate cognitive impairment. The ultimate goal of this article is to provide a clinically useful resource for direct service providers. It will serve to further clinical knowledge and understanding of the evolution from traditional silo based treatment paradigms to the current implementation of multiple perspectives and disciplines in the pursuit of patient centered care. The article will discuss the theories that contributed to the development of the interdisciplinary team and the ICRP model, implemented with individuals with mild to moderate cognitive deficits, regardless of etiology. The development and implementation of specific assessment and intervention strategies in this cognitive rehabilitation program will also be discussed. The assessment and intervention strategies utilized as part of ICRP are applicable to multiple clinical settings in which individuals with cognitive impairment are served. This article has specific implications for rehabilitation which include: (a) An Interdisciplinary Approach is an effective method for cognitive rehabilitation; and (b) Recent theories offer beneficial evaluation and intervention techniques for cognitive rehabilitation.
NASA Astrophysics Data System (ADS)
Dimbylow, Peter
2005-09-01
Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.
Dimbylow, Peter
2005-09-07
Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.
Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G
2015-01-01
Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211
THE SCIENCE BEHIND THE ICRP 2005 RECOMMENDATIONS
The ICRP 2005 Recommendations are stated to be "based on a simple, but widely applicable, general system of protection that will clarify its objectives and will provide a basis for the more formal systems needed by operating managements and regulators". The Recommendati...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killough, G.G.; Rohwer, P.S.
1974-03-01
INDOS1, INDOS2, and INDOS3 (the INDOS codes) are conversational FORTRAN IV programs, implemented for use in time-sharing mode on the ORNL PDP-10 System. These codes use ICRP10-10A models to estimate the radiation dose to an organ of the body of Reference Man resulting from the ingestion or inhalation of any one of various radionuclides. Two patterns of intake are simulated: intakes at discrete times and continuous intake at a constant rate. The IND0S codes provide tabular output of dose rate and dose vs time, graphical output of dose vs time, and punched-card output of organ burden and dose vs time.more » The models of internal dose calculation are discussed and instructions for the use of the INDOS codes are provided. The INDOS codes are available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830. (auth)« less
A generic biokinetic model for noble gases with application to radon.
Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric
2013-06-01
To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.
The optimisation of occupational potential exposures - preliminary considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouail, P.; Guimaraes, L.
1995-03-01
One of the major innovation brought about the ICRP 60 recommendations and emphasized by the ICRP 64 publication, is the introduction of the concept of potential exposures into the system of radiological protection. Potential exposures are characterized by {open_quotes}probability of occurrence lesser than unity{close_quotes} and {open_quotes}radiological risks exceeding normal levels{close_quotes} where normal must be interpreted as not exceeding the planned routine exposures. It is then necessary to develop consensual methods to look for and choose the optimum scenarios (i.e. those for which probability of events and possible consequences have been reduced as low as reasonably achievable). Moreover, the boundaries formore » the unacceptable levels of risks for workers should be defined, as well as reasonable risk indicators. The aim of this paper is to discuss the actual changes in the field of occupational radiological protection, induced by the potential exposure concept with particular emphasize on the optimization of protection.« less
Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M
2003-03-01
As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.
Weiss, Wolfgang
2016-09-01
Observations and lessons identified after the Fukushima accident have been collected and assessed by ICRP Task Group 84. Together with the observations of other expert organizations, they are being used to further develop the current system of protection. While many of the established protection criteria remain valid, improvements are needed in three areas. Key issues related to the need of planning for long-term protective actions (criteria for returning home, dealing with waste) have to be implemented as important elements of the national protection strategies during the preparedness stage. The justification of disruptive protective actions and the protection of vulnerably groups of the population need to be reconsidered to avoid unpleasant imbalances and outcomes. The coexistence of radiation-induced health effects and health effects with social determinants requires consideration of both aspects in decision-making and response. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human absorption and retention of polonium-210 from caribou meat.
Thomas, P A; Fisenne, I; Chorney, D; Baweja, A S; Tracy, B L
2001-01-01
The gastrointestinal (GI) absorption factors and the biological retention times for polonium were determined for a group of 14 volunteers--seven men and seven women--from Saskatoon, Saskatchewan, Canada. Each volunteer consumed 2.0 kg of caribou meat containing known amounts of naturally occurring 210Po. Urine and faecal samples were collected for up to 65 days after meat consumption and analysed for 210Po. The average GI absorption factor for the 14 volunteers was 56 +/- 4% (range = 31-71%), not significantly different from the ICRP value of 50%. About 3% of absorbed polonium underwent prompt excretion by the urinary pathway. The remainder was retained by the body with a half-time >100 days, compared to the ICRP value of 50 days. The effect of these findings increases the dose estimate for ingestion of 210Po in food by a factor of 1.5 to 3.5. Thus, background doses to people consuming caribou and reindeer may be higher than previously thought.
A probabilistic safety analysis of incidents in nuclear research reactors.
Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi
2012-06-01
This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.
Radiation protection of people and the environment: developing a common approach.
Pentreath, R J
2002-03-01
The problem with the current ICRP system of radiation protection, particularly for regulators, is that it fails to differentiate between the application of justification and optimisation to people in the circumstances of medical care or as part of a workforce, compared with their application to members of the general public in an environmental setting; plus the fact that it also fails to address the issue of potential impacts on the rest of the environment in any meaningful way. But if these deficiencies are to be addressed, it will be essential to consider how protection of both people and the living environment can be achieved within a broad philosophical framework, using complementary approaches, based on the same underlying scientific knowledge. This paper briefly examines some of these issues, and offers some suggestions for developing a common, or even a combined, approach. It draws upon recent suggestions made by the ICRP itself with regard to radiological protection, plus current activities-on several fronts-to provide an explicit basis for environmental protection.
NASA Astrophysics Data System (ADS)
Zhang, Juying; Hum Na, Yong; Caracappa, Peter F.; Xu, X. George
2009-10-01
This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes affects the dose by more than 80% below 150 keV in the PA source direction. The deformability and adjustability of organs and posture in the RPI adult phantoms may prove useful not only for average workers or patients for radiation protection purposes, but also in studies involving anatomical and posture variability that is important in future radiation protection dosimetry.
Radiological protection issues arising during and after the Fukushima nuclear reactor accident.
González, Abel J; Akashi, Makoto; Boice, John D; Chino, Masamichi; Homma, Toshimitsu; Ishigure, Nobuhito; Kai, Michiaki; Kusumi, Shizuyo; Lee, Jai-Ki; Menzel, Hans-Georg; Niwa, Ohtsura; Sakai, Kazuo; Weiss, Wolfgang; Yamashita, Shunichi; Yonekura, Yoshiharu
2013-09-01
Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential health effects are properly interpreted; the limitations of epidemiological studies for attributing radiation effects following low exposures are understood; any confusion on protection quantities and units is resolved; the potential hazard from the intake of radionuclides into the body is elucidated; rescuers and volunteers are protected with an ad hoc system; clear recommendations on crisis management and medical care and on recovery and rehabilitation are available; recommendations on public protection levels (including infant, children and pregnant women and their expected offspring) and associated issues are consistent and understandable; updated recommendations on public monitoring policy are available; acceptable (or tolerable) 'contamination' levels are clearly stated and defined; strategies for mitigating the serious psychological consequences arising from radiological accidents are sought; and, last but not least, failures in fostering information sharing on radiological protection policy after an accident need to be addressed with recommendations to minimise such lapses in communication.
Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation
NASA Technical Reports Server (NTRS)
2012-01-01
At the request of NASA, the National Research Council's (NRC's) Committee for Evaluation of Space Radiation Cancer Risk Model reviewed a number of changes that NASA proposes to make to its model for estimating the risk of radiation-induced cancer in astronauts. The NASA model in current use was last updated in 2005, and the proposed model would incorporate recent research directed at improving the quantification and understanding of the health risks posed by the space radiation environment. NASA's proposed model is defined by the 2011 NASA report Space Radiation Cancer Risk Projections and Uncertainties 2010 (Cucinotta et al., 2011). The committee's evaluation is based primarily on this source, which is referred to hereafter as the 2011 NASA report, with mention of specific sections or tables cited more formally as Cucinotta et al. (2011). The overall process for estimating cancer risks due to low linear energy transfer (LET) radiation exposure has been fully described in reports by a number of organizations. They include, more recently: (1) The "BEIR VII Phase 2" report from the NRC's Committee on Biological Effects of Ionizing Radiation (BEIR) (NRC, 2006); (2) Studies of Radiation and Cancer from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006), (3) The 2007 Recommendations of the International Commission on Radiological Protection (ICRP), ICRP Publication 103 (ICRP, 2007); and (4) The Environmental Protection Agency s (EPA s) report EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (EPA, 2011). The approaches described in the reports from all of these expert groups are quite similar. NASA's proposed space radiation cancer risk assessment model calculates, as its main output, age- and gender-specific risk of exposure-induced death (REID) for use in the estimation of mission and astronaut-specific cancer risk. The model also calculates the associated uncertainties in REID. The general approach for estimating risk and uncertainty in the proposed model is broadly similar to that used for the current (2005) NASA model and is based on recommendations by the National Council on Radiation Protection and Measurements (NCRP, 2000, 2006). However, NASA's proposed model has significant changes with respect to the following: the integration of new findings and methods into its components by taking into account newer epidemiological data and analyses, new radiobiological data indicating that quality factors differ for leukemia and solid cancers, an improved method for specifying quality factors in terms of radiation track structure concepts as opposed to the previous approach based on linear energy transfer, the development of a new solar particle event (SPE) model, and the updates to galactic cosmic ray (GCR) and shielding transport models. The newer epidemiological information includes updates to the cancer incidence rates from the life span study (LSS) of the Japanese atomic bomb survivors (Preston et al., 2007), transferred to the U.S. population and converted to cancer mortality rates from U.S. population statistics. In addition, the proposed model provides an alternative analysis applicable to lifetime never-smokers (NSs). Details of the uncertainty analysis in the model have also been updated and revised. NASA's proposed model and associated uncertainties are complex in their formulation and as such require a very clear and precise set of descriptions. The committee found the 2011 NASA report challenging to review largely because of the lack of clarity in the model descriptions and derivation of the various parameters used. The committee requested some clarifications from NASA throughout its review and was able to resolve many, but not all, of the ambiguities in the written description.
Development of 3D Advanced Rapid Prototyping Multipurpose Structures with Micro and Nano Materials
2006-05-01
dynamic parts, cinematic behavior, geometric evaluation, quality and reliability). The RP elements produced normally are moulds (for metal casting but...rapid tooling from Stereo Lithography”, Proceedings of the Seventh International ICRP Conference, California, USA, 9–12 March 1997, pp. 338–354 [5] P
2002-01-01
This report presents detailed information on age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. These reference values provide needed input to prospective dosimetry calculations for radiation protection purposes for both workers and members of the general public. The purpose of this report is to consolidate and unify in one publication, important new information on reference anatomical and physiological values that has become available since Publication 23 was published by the ICRP in 1975. There are two aspects of this work. The first is to revise and extend the information in Publication 23 as appropriate. The second is to provide additional information on individual variation among grossly normal individuals resulting from differences in age, gender, race, or other factors. This publication collects, unifies, and expands the updated ICRP reference values for the purpose of providing a comprehensive and consistent set of age- and gender-specific reference values for anatomical and physiological features of the human body pertinent to radiation dosimetry. The reference values given in this report are based on: (a) anatomical and physiological information not published before by the ICRP; (b) recent ICRP publications containing reference value information; and (c) information in Publication 23 that is still considered valid and appropriate for radiation protection purposes. Moving from the past emphasis on 'Reference Man', the new report presents a series of reference values for both male and female subjects of six different ages: newborn, 1 year, 5 years, 10 years, 15 years, and adult. In selecting reference values, the Commission has used data on Western Europeans and North Americans because these populations have been well studied with respect to antomy, body composition, and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian populations. The first section of the report provides summary tables of all the anatomical and physiological parameters given as reference values in this publication. These results give a comprehensive view of reference values for an individual as influenced by age and gender. The second section describes characteristics of dosimetric importance for the embryo and fetus. Information is provided on the development of the total body and the timing of appearance and development of the various organ systems. Reference values are provided on the mass of the total body and selected organs and tissues, as well as a number of physiological parameters. The third section deals with reference values of important anatomical and physiological characteristics of reference individuals from birth to adulthood. This section begins with details on the growth and composition of the total body in males and females. It then describes and quantifies anatomical and physiological characteristics of various organ systems and changes in these characteristics during growth, maturity, and pregnancy. Reference values are specified for characteristics of dosimetric importance. The final section gives a brief summary of the elemental composition of individuals. Focusing on the elements of dosimetric importance, information is presented on the body content of 13 elements: calcium, carbon, chloride, hydrogen, iodine, iron, magnesium, nitrogen, oxygen, potassium, sodium, sulphur, and phosphorus.
NASA Astrophysics Data System (ADS)
Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh
2015-01-01
Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies.
Kashcheev, Valery V; Pryakhin, Evgeny A; Menyaylo, Alexander N; Chekin, Sergey Yu; Ivanov, Viktor K
2014-06-01
The current study has two aims: the first is to quantify the difference between radiation risks estimated with the use of organ or effective doses, particularly when planning pediatric and adult computed tomography (CT) examinations. The second aim is to determine the method of calculating organ doses and cancer risk using dose-length product (DLP) for typical routine CT examinations. In both cases, the radiation-induced cancer risks from medical CT examinations were evaluated as a function of gender and age. Lifetime attributable risk values from CT scanning were estimated with the use of ICRP (Publication 103) risk models and Russian national medical statistics data. For populations under the age of 50 y, the risk estimates based on organ doses usually are 30% higher than estimates based on effective doses. In older populations, the difference can be up to a factor of 2.5. The typical distributions of organ doses were defined for Chest Routine, Abdominal Routine, and Head Routine examinations. The distributions of organ doses were dependent on the anatomical region of scanning. The most exposed organs/tissues were thyroid, breast, esophagus, and lungs in cases of Chest Routine examination; liver, stomach, colon, ovaries, and bladder in cases of Abdominal Routine examination; and brain for Head Routine examinations. The conversion factors for calculation of typical organ doses or tissues at risk using DLP were determined. Lifetime attributable risk of cancer estimated with organ doses calculated from DLP was compared with the risk estimated on the basis of organ doses measured with the use of silicon photodiode dosimeters. The estimated difference in LAR is less than 29%.
A biokinetic model for systemic technetium in adult humans
Leggett, Richard Wayne; Giussani, Augusto
2015-04-10
The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T 1/2=2.1x10 5 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T 1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body formore » use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less
A generic biokinetic model for noble gases with application to radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Marsh, James; Gregoratto, Demetrio
The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny willmore » be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.« less
Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji
2011-03-01
Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010
Proposed biokinetic model for phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne
2014-06-04
This paper reviews data related to the biokinetics of phosphorus in the human body and proposes a biokinetic model for systemic phosphorus for use in updated International Commission on Radiological Protection (ICRP) guidance on occupational intake of radionuclides. Compared with the ICRP s current occupational model for phosphorus (Publication 68, 1994) the proposed model provides a more realistic description of the paths of movement of phosphorus in the body and improved consistency with experimental, medical, and environmental data on the time-dependent distribution and retention of phosphorus following uptake to blood. For acute uptake of 32P to blood, the proposed modelmore » yields roughly a 50% decrease in dose estimates for bone surface and red marrow and a 6-fold increase in estimates for liver and kidney compared with the biokinetic model of Publication 68 (applying Publication 68 dosimetric models in both sets of calculations). For acute uptake of 33P to blood, the proposed model yields roughly a 50% increase in dose estimates for bone surface and red marrow and a 7-fold increase in estimates for liver and kidney compared with the model of Publication 68.« less
Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong
2018-03-15
ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.
Cosmic radiation in aviation: radiological protection of Air France aircraft crew.
Desmaris, G
2016-06-01
Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders. © The International Society for Prosthetics and Orthotics.
Khokhryakov, V F; Suslova, K G; Vostrotin, V V; Romanov, S A; Eckerman, K F; Krahenbuhl, M P; Miller, S C
2005-02-01
The biokinetics of inhaled plutonium were analyzed using compartment models representing their behavior within the respiratory tract, the gastrointestinal tract, and in systemic tissues. The processes of aerosol deposition, particle transport, absorption, and formation of a fixed deposit in the respiratory tract were formulated in the framework of the Human Respiratory Tract Model described in ICRP Publication 66. The values of parameters governing absorption and formation of the fixed deposit were established by fitting the model to the observations in 530 autopsy cases. The influence of smoking on mechanical clearance of deposited plutonium activity was considered. The dependence of absorption on the aerosol transportability, as estimated by in vitro methods (dialysis), was demonstrated. The results of this study were compared to those obtained from an earlier model of plutonium behavior in the respiratory tract, which was based on the same set of autopsy data. That model did not address the early phases of respiratory clearance and hence underestimated the committed lung dose by about 25% for plutonium oxides. Little difference in lung dose was found for nitrate forms.
NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.
2004-12-01
In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, L.M.
2008-07-01
As a student intern with the United States Environmental Protection Agency (EPA) Headquarters, the author was trained in the National Response Plan (NRP) and assisted in the editing of the new (unpublished) EPA Protective Action Guides (PAGs) [1] which has been revised in light of the perceived post 9/11 potential for 'Dirty Bomb' and 'Improvised Nuclear Device' attacks on civilian areas. Technical aspects and the public policy aspects of developing the new guides are discussed. Early Phase initial responses discussed include: Notification of state and/or local authorities, immediate evacuation/sheltering prior to release information or measurements, monitoring of releases and exposuremore » rate measurements, estimation of dose consequences, implementation of protective actions in other areas. The new PAG clarifies the use of 1992 PAGs [2] for incidents other than nuclear power plant accidents, lowers projected thyroid dose for potassium iodine (KI), provides drinking water guidance, includes guidance for long-term site restoration, and updates dosimetry from ICRP 26 to ICRP 60. (authors)« less
Ethical foundations of the radiological protection system.
Cho, K W
2016-06-01
The International Commission on Radiological Protection (ICRP) has established Task Group 94 under Committee 4 to develop a report on the ethical foundations of the system of radiological protection. The aim of this report is to consolidate the basis of ICRP recommendations, to improve understanding of the system, and to provide a basis for communication on radiation risk and its perception. Through a series of workshops organised by the Commission in cooperation with the International Radiation Protection Association and its associate societies involving radiological protection professionals and specialists of ethics around the world, Task Group 94 has identified the key ethical and social values underpinning the system of radiological protection. The purpose of eliciting the ethical principles and values of the radiological protection system is not only to clarify the rationale for recommendations made by the Commission, but also to assist in discussions related to its practical implementation. A clear understanding of the ethical principles will help resolve dilemmas caused by potential conflicts in actions that might be considered, or decisions that must be made. © The International Society for Prosthetics and Orthotics.
NASA Astrophysics Data System (ADS)
Sato, T.; Endo, A.; Niita, K.
2013-07-01
For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(Z, E) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation. Therefore, we calculated the mean quality factors in organs and tissues in ICRP/ICRU reference voxel phantoms for the isotropic exposure to various mono-energetic particles using the three Q-functions. The Particle and Heavy Ion Transport code System PHITS was employed to simulate the particle motions inside the phantoms. The effective dose equivalents and the phantom-averaged effective quality factors for the astronauts were then estimated from the calculated mean quality factors multiplied by the fluence-to-dose conversion coefficients and cosmic-ray fluxes inside a spacecraft. It was found from the calculations that QNASA generally gives the largest values for the phantom-averaged effective quality factors among the three Q-functions for neutron, proton, and lighter-ion irradiation, whereas Q(L) provides the largest values for heavier-ion irradiation. Overall, the introduction of QNASA instead of Q(L) or Q(y) in astronaut dosimetry results in the increase the effective dose equivalents because the majority of the doses are composed of the contributions from protons and neutrons, although this tendency may change by the calculation conditions.
A kinematic model to estimate effective dose of radioactive substances in a human body
NASA Astrophysics Data System (ADS)
Sasaki, S.; Yamada, T.
2013-05-01
The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with ingestion duration
The reference individual of radiation protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.; Cristy, M.
1995-12-31
The 70-kg {open_quotes}standard man{close_quotes} representing a typical Western adult male has been used in physiological models since at least the 1920s. In 1949 at the Chalk River conference, health physicists from the U.S., UK, and Canada agreed on the concept of a standard man to facilitate comparison of internal dose estimates. The 70-kg standard man included specifications of the masses of 25 organs and tissues, total body content of 15 elements, total water intake and output, water content of the body, and some anatomical and physiological data for the respiratory and gastrointestinal tracts. In 1959, in its Publication 2{sup 2}more » on permissible doses for internal radiation the International Commission on Radiological Protection (ICRP) modified standard man. In 1963 the ICRP established a task group to revise and extend the standard man concept. The name was changed later to Reference Man and the task group`s work was published in 1975 as ICRP Publication 23{sup 3}. Publication 23 similar to Publication 2, updates and documents the sources of the data. Data on women, children, and fetuses were also collected, where available, but these data were limited primarily to anatomical data and only a few reference values were established for these groups. Information assembled during the course of the effort on the Reference Man report was used at Oak Ridge National Laboratory (ORNL) to construct a mathematical representation of the body (a phantom) that was suitable for use with Monte Carlo methods in the calculation of organ doses. That effort was undertaken to improve estimates of dose from photon-emitting radionuclides residing within organs, so-called internal emitters. The phantom, although updated throughout the years, remains today as the basis for organ dose estimates in nuclear medicine and radiation protection and underlies the radiation risk data derived from the epidemiologic studies of the atomic bomb survivors of Hiroshima and Nagasaki.« less
Allen, Mark B; Brey, Richard R; Gesell, Thomas; Derryberry, Dewayne; Poudel, Deepesh
2016-01-01
This study had a goal to evaluate the predictive capabilities of the National Council on Radiation Protection and Measurements (NCRP) wound model coupled to the International Commission on Radiological Protection (ICRP) systemic model for 90Sr-contaminated wounds using non-human primate data. Studies were conducted on 13 macaque (Macaca mulatta) monkeys, each receiving one-time intramuscular injections of 90Sr solution. Urine and feces samples were collected up to 28 d post-injection and analyzed for 90Sr activity. Integrated Modules for Bioassay Analysis (IMBA) software was configured with default NCRP and ICRP model transfer coefficients to calculate predicted 90Sr intake via the wound based on the radioactivity measured in bioassay samples. The default parameters of the combined models produced adequate fits of the bioassay data, but maximum likelihood predictions of intake were overestimated by a factor of 1.0 to 2.9 when bioassay data were used as predictors. Skeletal retention was also over-predicted, suggesting an underestimation of the excretion fraction. Bayesian statistics and Monte Carlo sampling were applied using IMBA to vary the default parameters, producing updated transfer coefficients for individual monkeys that improved model fit and predicted intake and skeletal retention. The geometric means of the optimized transfer rates for the 11 cases were computed, and these optimized sample population parameters were tested on two independent monkey cases and on the 11 monkeys from which the optimized parameters were derived. The optimized model parameters did not improve the model fit in most cases, and the predicted skeletal activity produced improvements in three of the 11 cases. The optimized parameters improved the predicted intake in all cases but still over-predicted the intake by an average of 50%. The results suggest that the modified transfer rates were not always an improvement over the default NCRP and ICRP model values.
Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G
2004-12-07
The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.
A physiologically based pharmacokinetic model for lactational transfer of Na-131I
NASA Astrophysics Data System (ADS)
Turner, Anita Loretta
The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24 hours and decreases with an effective half-life of 1.2 day.
The UF family of reference hybrid phantoms for computational radiation dosimetry
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.
2010-01-01
Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ masses from ICRP Publication 89, (3) reference elemental compositions provided in ICRP 89 as well as ICRU Report 46, and (4) reference data on the alimentary tract organs given in ICRP Publications 89 and 100. Various adjustments and refinements to the organ systems of the previously described newborn, 15 year and adult phantoms are also presented. The UF series of hybrid phantoms retain the non-uniform scalability of stylized phantoms while maintaining the anatomical realism of patient-specific voxel phantoms with respect to organ shape, depth and inter-organ distance. While the final versions of these phantoms are in a voxelized format for radiation transport simulation, their primary format is given as NURBS and polygon mesh surfaces, thus permitting one to sculpt non-reference phantoms using the reference phantoms as an anatomic template.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... Radiological Protection; Recommendations on the Annual Dose Limit to the Lens of the Eye AGENCY: Nuclear... Protection (ICRP) recommendations for the limitation of annual dose to the lens of the eye. This significant... might be lower than previously considered. For the lens of the eye, the threshold in absorbed dose for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
..., which are based on a more diverse world population? Issue No. 2: Occupational Dose Limits The... between the ICRP values and the EPA values stems primarily from the use of a U.S. population cancer... worldwide population. In discussion with stakeholders to date, the majority have been generally in favor of...
Martinez, N E; Johnson, T E; Capello, K; Pinder, J E
2014-12-01
This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from (131)I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (131)I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body DCFs for each model (∼3 × 10(-3) μGy d(-1) per Bq kg(-1)) were comparable to DCFs listed in ICRP 108 for (131)I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guberina, N; Dietrich, U; Forsting, M; Ringelstein, A
2018-02-01
A neurointerventional examination of intracranial aneurysms often involves the eye lens in the primary beam of radiation. To assess and compare eye-lens doses imparted during interventional and non-interventional imaging techniques for the examination of intracranial aneurysms. We performed a phantom study on an anthropomorphic phantom (ATOM dosimetry phantom 702-D; CIRS, Norfolk, Virginia, USA) and assessed eye-lens doses with thermoluminescent dosimeters (TLDs) type 100 (LiF:Mg, Ti) during (1) interventional (depiction of all cerebral arteries with triple 3D-rotational angiography and twice 2-plane DSA anteroposterior and lateral projections) and (2) non-interventional (CT angiography (CTA)) diagnosis of intracranial aneurysms. Eye-lens doses were calculated following recommendations of the ICRP 103. Image quality was analysed in retrospective by two experienced radiologists on the basis of non-interventional and interventional pan-angiography examinations of patients with incidental aneurysms (n=50) on a five-point Likert scale. The following eye-lens doses were assessed: (1) interventional setting (triple 3D-rotational angiography and twice 2-plane DSA anteroposterior and lateral projections) 12 mGy; (2) non-interventional setting (CTA) 4.1 mGy. Image quality for depiction of intracranial aneurysms (>3 mm) was evaluated as good by both readers for both imaging techniques. Eye-lens doses are markedly higher during the interventional than during the non-interventional diagnosis of intracranial aneurysms. For the eye-lens dose, CTA offers considerable radiation dose savings in the diagnosis of intracranial aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
MONTE CARLO STUDY OF THE CARDIAC ABSORBED DOSE DURING X-RAY EXAMINATION OF AN ADULT PATIENT.
Kadri, O; Manai, K; Alfuraih, A
2016-12-01
The computational voxel phantom 'High-Definition Reference Korean-Man (HDRK-Man)' was implemented into the Monte Carlo transport toolkit Geant4. The voxel model, adjusted to the Reference Korean Man, is 171 cm in height and 68 kg in weight and composed of ∼30 million voxels whose size is 1.981 × 1.981 × 2.0854 mm 3 The Geant4 code is then utilised to compute the dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free in air for >30 tissues and organs, including almost all organs required in the new recommendation of the ICRP 103, due to a broad parallel beam of monoenergetic photons impinging in antero-postero direction with energy ranging from 10 to 150 keV. The computed DCCs of different organs are found to be in good agreement with data published using other simulation codes. Also, the influence of patient size on DCC values was investigated for a representative body size of the adult Korean patient population. The study was performed using five different sizes covering the range of 0.8-1.2 magnification order of the original HDRK-Man. It focussed on the computation of DCC for the human heart. Moreover, the provided DCCs were used to present an analytical parameterisation for the calculation of the cardiac absorbed dose for any arbitrary X-ray spectrum and for those patient sizes. Thus, the present work can be considered as an enhancement of the continuous studies performed by medical physicist as part of quality control tests and radiation protection dosimetry. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Januzis, Natalie; Belley, Matthew D; Nguyen, Giao; Toncheva, Greta; Lowry, Carolyn; Miller, Michael J; Smith, Tony P; Yoshizumi, Terry T
2014-05-01
The purpose of this study was three-fold: (1) to measure the transmission properties of various lead shielding materials, (2) to benchmark the accuracy of commercial film badge readings, and (3) to compare the accuracy of effective dose (ED) conversion factors (CF) of the U.S. Nuclear Regulatory Commission methods to the MOSFET method. The transmission properties of lead aprons and the accuracy of film badges were studied using an ion chamber and monitor. ED was determined using an adult male anthropomorphic phantom that was loaded with 20 diagnostic MOSFET detectors and scanned with a whole body CT protocol at 80, 100, and 120 kVp. One commercial film badge was placed at the collar and one at the waist. Individual organ doses and waist badge readings were corrected for lead apron attenuation. ED was computed using ICRP 103 tissue weighting factors, and ED CFs were calculated by taking the ratio of ED and badge reading. The measured single badge CFs were 0.01 (±14.9%), 0.02 (±9.49%), and 0.04 (±15.7%) for 80, 100, and 120 kVp, respectively. Current regulatory ED CF for the single badge method is 0.3; for the double-badge system, they are 0.04 (collar) and 1.5 (under lead apron at the waist). The double-badge system provides a better coefficient for the collar at 0.04; however, exposure readings under the apron are usually negligible to zero. Based on these findings, the authors recommend the use of ED CF of 0.01 for the single badge system from 80 kVp (effective energy 50.4 keV) data.
1998-01-01
C-Arms and Digital Fluorscopy ....... ............................. 6 Image Intensifier III) Input Exposure Rates and Exposures...Setup for ESE Measurements in Conventional Radiography .................. 3 Figure 2: Setup tor IP ;R M easurem ents...exposure from dental procedures. An area of dental radiography which has not been well addressed is the dose received during panoramic or panalipse
NASA Astrophysics Data System (ADS)
Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.
2014-03-01
The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.
Operational health physics training
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-06-01
The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised tomore » reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.« less
A biokinetic model for {sup 137}Cs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, D.R.; Lipsztein, J.L.; Oliveira, C.A.N.
1997-08-01
An improved biokinetic model for {sup 137}Cs in humans was developed based on an analysis of data obtained from individuals internally contaminated during an accident in Goiania, Brazil, and other data. Seventeen children (ten girls and seven boys 1-10 y old), ten adolescents (four females and six males), and thirty adults, (fifteen females and fifteen males) contaminated in the accident in Goiania contributed to this study. {sup 137}Cs retention was determined through periodic measurements in a whole-body counter. In addition to the data on {sup 137}Cs retention from these individuals, data from a study on the metabolism of {sup 137}Csmore » in immature, adult, and aged Beagle dogs and data from the literature were used in the formulation of the {sup 137}Cs biokinetic model presented. Mathematically, the retention of cesium is described by three exponential terms, and the retention model is based on a step function of body weight. When the ICRP Publication 56 model for cesium was compared to the model suggested in this paper, it was determined that the ICRP model predicts lower effective doses in 5-y-old children and higher effective doses in infants, adolescents, and adults.« less
Analysis of Mass Averaged Tissue Doses in CAM, CAF, MAX, and FAX
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Qualls, Garry D.; Clowdsley, Martha S.; Blattnig, Steve R.; Simonsen, Lisa C.; Walker, Steven A.; Singleterry, Robert C.
2009-01-01
To estimate astronaut health risk due to space radiation, one must have the ability to calculate exposure-related quantities averaged over specific organs and tissue types. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various tissues to the reference values specified by the International Commission on Radiological Protection (ICRP). Major discrepancies are found between the CAM and CAF tissue masses and the ICRP reference data for almost all of the tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN to compute mass averaged exposure quantities. A numerical algorithm is used to generate multiple point distributions for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.
Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Syouichi; Koshida, Kichiro; Matsunaga, Yuta; Kawaguchi, Ai; Haba, Tomonobu; Toyama, Hiroshi; Kato, Ryouichi
2017-05-01
We developed a k-factor-creator software (kFC) that provides the k-factor for CT examination in an arbitrary scan area. It provides the k-factor from the effective dose and dose-length product by Imaging Performance Assessment of CT scanners and CT-EXPO. To assess the reliability, we compared the kFC-evaluated k-factors with those of the International Commission on Radiological Protection (ICRP) publication 102. To confirm the utility, the effective dose determined by coronary computed tomographic angiography (CCTA) was evaluated by a phantom study and k-factor studies. In the CCTA, the effective doses were 5.28 mSv in the phantom study, 2.57 mSv (51%) in the k-factor of ICRP, and 5.26 mSv (1%) in the k-factor of the kFC. Effective doses can be determined from the kFC-evaluated k-factors in suitable scan areas. Therefore, we speculate that the flexible k-factor is useful in clinical practice, because CT examinations are performed in various scan regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Recent international regulations: low dose-low rate radiation protection and the demise of reason.
Okkalides, Demetrios
2008-01-01
The radiation protection measures suggested by the International Committee for Radiation Protection (ICRP), national regulating bodies and experts, have been becoming ever more strict despite the decrease of any information supporting the existence of the Linear no Threshold model (LNT) and of any adverse effects of Low Dose Low Rate (LDLR) irradiation. This tendency arises from the disproportionate response of human society to hazards that are currently in fashion and is unreasonable. The 1 mSv/year dose limit for the public suggested by the ICRP corresponds to a 1/18,181 detriment-adjusted cancer risk and is much lower than other hazards that are faced by modern societies such as e.g. driving and smoking which carry corresponding rate risks of 1/2,100 and 1/2,000. Even worldwide deadly work accidents rate is higher at 1/ 8,065. Such excessive safety measures against minimal risks from man made radiation sources divert resources from very real and much greater hazards. In addition they undermine research and development of radiation technology and tend to subjugate science and the quest for understanding nature to phobic practices.
Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.
2013-03-01
We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for smaller phantoms due to the shorter inter-organ distances compared to the bigger phantoms. By testing sensitivity of S values to random sampling and voxel resolution, we confirmed that the lymph node model is reasonably stable and consistent for different random samplings and voxel resolutions.
Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U
2011-06-01
High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published statement on radon. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming
2008-07-01
The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.
Jelin, Benjamin A; Sun, Wenjie; Kravets, Alexandra; Naboka, Maryna; Stepanova, Eugenia I; Vdovenko, Vitaliy Y; Karmaus, Wilfried J; Lichosherstov, Alex; Svendsen, Erik R
2016-11-01
The Chernobyl Nuclear Power Plant (CNPP) accident represents one of the most significant civilian releases of 137 Cesium ( 137 Cs, radiocesium) in human history. In the Chernobyl-affected region, radiocesium is considered to be the greatest on-going environmental hazard to human health by radiobiologists and public health scientists. The goal of this study was to characterize dosimetric patterns and predictive factors for whole-body count (WBC)-derived radiocesium internal dose estimations in a CNPP-affected children's cohort, and cross-validate these estimations with a soil-based ecological dose estimation model. WBC data were used to estimate the internal effective dose using the International Commission on Radiological Protection (ICRP) 67 dose conversion coefficient for 137 Cs and MONDAL Version 3.01 software. Geometric mean dose estimates from each model were compared utilizing paired t-tests and intra-class correlation coefficients. Additionally, we developed predictive models for WBC-derived dose estimation in order to determine the appropriateness of EMARC to estimate dose for this population. The two WBC-derived dose predictive models identified 137 Cs soil concentration (P<0.0001) as the strongest predictor of annual internal effective dose from radiocesium validating the use of the soil-based EMARC model. The geometric mean internal effective dose estimate of the EMARC model (0.183 mSv/y) was the highest followed by the ICRP 67 dose estimates (0.165 mSv/y) and the MONDAL model estimates (0.149 mSv/y). All three models yielded significantly different geometric mean dose (P<0.05) estimates for this cohort when stratified by sex, age at time of exam and season of exam, except for the mean MONDAL and EMARC estimates for 15- and 16-year olds and mean ICRP and MONDAL estimates for children examined in Winter. Further prospective and retrospective radio-epidemiological studies utilizing refined WBC measurements and ecological model dose estimations, in conjunction with findings from animal toxicological studies, should help elucidate possible deterministic radiogenic health effects associated with chronic low-dose internal exposure to 137 Cs.
NASA Astrophysics Data System (ADS)
Geng, Changran; Moteabbed, Maryam; Seco, Joao; Gao, Yiming; Xu, X. George; Ramos-Méndez, José; Faddegon, Bruce; Paganetti, Harald
2016-01-01
The goal of this work was to determine the scattered photon dose and secondary neutron dose and resulting risk for the sensitive fetus from photon and proton radiotherapy when treating a brain tumor during pregnancy. Anthropomorphic pregnancy phantoms with three stages (3-, 6-, 9-month) based on ICRP reference parameters were implemented in Monte Carlo platform TOPAS, to evaluate the scattered dose and secondary neutron dose and dose equivalent. To evaluate the dose equivalent, dose averaged quality factors were considered for neutrons. This study compared three treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS) and 6-MV 3D conformal photon therapy. The results show that, for 3D conformal photon therapy, the scattered photon dose equivalent to the fetal body increases from 0.011 to 0.030 mSv per treatment Gy with increasing stage of gestation. For PBS, the neutron dose equivalent to the fetal body was significantly lower, i.e. increasing from 1.5 × 10-3 to 2.5 × 10-3 mSv per treatment Gy with increasing stage of gestation. For PPT, the neutron dose equivalent of the fetus decreases from 0.17 to 0.13 mSv per treatment Gy with the growing fetus. The ratios of dose equivalents to the fetus for a 52.2 Gy(RBE) course of radiation therapy to a typical CT scan of the mother’s head ranged from 3.4-4.4 for PBS, 30-41 for 3D conformal photon therapy and 180-500 for PPT, respectively. The attained dose to a fetus from the three modalities is far lower than the thresholds of malformation, severe mental retardation and lethal death. The childhood cancer excessive absolute risk was estimated using a linear no-threshold dose-response relationship. The risk would be 1.0 (95% CI: 0.6, 1.6) and 0.1 (95% CI: -0.01, 0.52) in 105 for the 9-month fetus for PBS with a prescribed dose of 52.2 Gy(RBE). The increased risks for PPT and photon therapy are about two and one orders of magnitude larger than that for PBS, respectively. We can conclude that a pregnant woman with a brain tumor could be treated with pencil beam scanning with acceptable risks to the fetus.
2009-01-01
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6
2009-07-05
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA
Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde
2018-01-01
This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.
Age and gender specific biokinetic model for strontium in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic modelmore » for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.« less
Evaluation of lens absorbed dose with Cone Beam IGRT procedures.
Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J
2015-12-01
The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 ± 0.07 mGy/CBCT and 0.70 ± 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.
Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, D.E.
1982-01-01
This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less
Weighting factors for radiation quality: how to unite the two current concepts.
Kellerer, Albrecht M
2004-01-01
The quality factor, Q(L), used to be the universal weighting factor to account for radiation quality, until--in its 1991 Recommendations--the ICRP established a dichotomy between 'computable' and 'measurable' quantities. The new concept of the radiation weighting factor, w(R), was introduced for use with the 'computable' quantities, such as the effective dose, E. At the same time, the application of Q(L) was restricted to 'measurable' quantities, such as the operational quantities ambient dose equivalent or personal dose equivalent. The result has been a dual system of incoherent dosimetric quantities. The most conspicuous inconsistency resulted for neutrons, for which the new concept of wR had been primarily designed. While its definition requires an accounting for the gamma rays produced by neutron capture in the human body, this effect is not adequately reflected in the numerical values of wR, which are now suitable for mice, but are--at energies of the incident neutrons below 1 MeV--conspicuously too large for man. A recent Report 92 to ICRP has developed a proposal to correct the current imbalance and to define a linkage between the concepts Q(L) and wR. The proposal is here considered within a broader assessment of the rationale that led to the current dual system of dosimetric quantities.
Nuclear decay data files of the Dosimetry Research Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.
1993-12-01
This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission onmore » Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.« less
Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Robin L.; Rathbone, Bruce A.
2010-08-01
The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41more » standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).« less
Guillén, J; Beresford, N A; Baeza, A; Izquierdo, M; Wood, M D; Salas, A; Muñoz-Serrano, A; Corrales-Vázquez, J M; Muñoz-Muñoz, J G
2018-06-01
A system for the radiological protection of the environment (or wildlife) based on Reference Animals and Plants (RAPs) has been suggested by the International Commission on Radiological Protection (ICRP). To assess whole-body activity concentrations for RAPs and the resultant internal dose rates, transfer parameters are required. However, transfer values specifically for the taxonomic families defined for the RAPs are often sparse and furthermore can be extremely site dependent. There is also a considerable geographical bias within available transfer data, with few data for Mediterranean ecosystems. In the present work, stable element concentrations (I, Li, Be, B, Na, Mg, Al, P, S, K. Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Cs, Ba, Tl, Pb and U) in terrestrial RAPs, and the corresponding whole-body concentration ratios, CR wo , were determined in two different Mediterranean ecosystems: a Pinewood and a Dehesa (grassland with disperse tree cover). The RAPs considered in the Pinewood ecosystem were Pine Tree and Wild Grass; whereas in the Dehesa ecosystem those considered were Deer, Rat, Earthworm, Bee, Frog, Duck and Wild Grass. The CR wo values estimated from these data are compared to those reported in international compilations and databases. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Narang, Saurabh; Kumar, Deepak; Sharma, Dinesh Kumar; Kumar, Ajay
2018-02-01
Over the last few decades, the study of radioactive radon gas has gained huge momentum due to its possible role in health related hazards. In the present work, pin-hole twin chamber single entrance dosimeters have been used for track measurements of radon and thoron. The annual average radon concentration varies from 50.3 to 204 Bq/m3 at all locations. Almost all the values are below the safe range provided by ICRP. Radon concentration is found to be higher in winter as compared to other seasons. Variation of radon with quality of dwellings is also discussed. The values of annual effective dose due to radon and thoron are also well within the range provided by ICRP and WHO. Radon and thoron exhalation rates are measured using SMART RnDuo monitor. The radon mass exhalation rates ranged from 11 to 71 mBq/kg/h while the thoron surface values ranged from 36 to 2048 Bq/m2/h. All the values are on the lower side. A weak correlation is found between radon and thoron concentrations and their exhalation rates. When compared with the values of other parts of northern India, the values of present investigation are on higher side.
25 CFR 103.45 - Information collection.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Information collection. 103.45 Section 103.45 Indians... INTEREST SUBSIDY Definitions and Miscellaneous Provisions § 103.45 Information collection. (a) The information collection requirements of §§ 103.11, 103.12, 103.13, 103.14, 103.17, 103.21, 103.23, 103.26, 103...
4D XCAT phantom for multimodality imaging research
Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.
2010-01-01
Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT. PMID:20964209
An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources
NASA Astrophysics Data System (ADS)
Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley
2011-04-01
In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal-averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.
Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F
A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother.more » It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.« less
Kurudirek, Murat
2016-09-01
To compare some biological materials in respect to the water and tissue equivalence properties for photon, electron, proton and alpha particle interactions as means of the effective atomic number (Zeff) and electron density (Ne). A Z-wise interpolation procedure has been adopted for calculation of Zeff using the mass attenuation coefficients for photons and the mass stopping powers for charged particles. At relatively low energies (100 keV-3 MeV), Zeff and Ne for photons and electrons were found to be constant while they vary much more for protons and alpha particles. In contrast, Zeff and Ne for protons and alpha particles were found to be constant after 3 MeV whereas for photons and electrons they were found to increase with the increasing energy. Also, muscle eq. liquid (with sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) within low relative differences below 9%. Muscle eq. liquid (without sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) with difference below 10%. The reported data should be useful in determining best water as well as tissue equivalent materials for photon, electron, proton and alpha particle interactions.
The effective dose result of 18F-FDG PET-CT paediatric patients
NASA Astrophysics Data System (ADS)
Hussin, D.; Said, M. A.; Ali, N. S.; Tajuddin, A. A.; Zainon, R.
2017-05-01
Paediatric patient received high exposure from both CT and PET examination. Automatic Exposure Control (AEC) is important in CT dose reduction. This study aimed to compare the effective dose obtained from PET-CT scanner with and without the use of AEC function. In this study, 68 patients underwent PET-CT examination without the use of AEC function, while 25 patients used the AEC function during the examination. Patients involved in this study were between 2 to 15 years old with varies of malignancies and epilepsy diseases. The effective dose obtained from PET and CT examinations was calculated based on recommendation from International Commission on Radiological Protection (ICRP) Publication 106 and ICRP publication 102. The outcome of this study shows that the radiation dose was reduced up to 20% with the use of AEC function. The mean average of effective dose result obtained from PET and CT examinations without the use of AEC and AEC function were found to be as 6.67 mSv, 6.77 mSv, 6.03mSv and 4.96 mSv respectively. Where total effective dose result of PET-CT with non-AEC and AEC were found to be 13.44 mSv and 10.99 mSv respectively. Conclusion of this study is, the installation of AEC function in PET-CT machine does play important role in CT dose reduction especially for paediatric patient.
Measurement of dose equivalent distribution on-board commercial jet aircraft.
Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y
2014-12-01
The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, Edward J., E-mail: edwardc@schoolph.uma
This paper assesses the discovery of the dose-rate effect in radiation genetics and how it challenged fundamental tenets of the linear non-threshold (LNT) dose response model, including the assumptions that all mutational damage is cumulative and irreversible and that the dose-response is linear at low doses. Newly uncovered historical information also describes how a key 1964 report by the International Commission for Radiological Protection (ICRP) addressed the effects of dose rate in the assessment of genetic risk. This unique story involves assessments by two leading radiation geneticists, Hermann J. Muller and William L. Russell, who independently argued that the report'smore » Genetic Summary Section on dose rate was incorrect while simultaneously offering vastly different views as to what the report's summary should have contained. This paper reveals occurrences of scientific disagreements, how conflicts were resolved, which view(s) prevailed and why. During this process the Nobel Laureate, Muller, provided incorrect information to the ICRP in what appears to have been an attempt to manipulate the decision-making process and to prevent the dose-rate concept from being adopted into risk assessment practices. - Highlights: • The discovery of radiation dose rate challenged the scientific basis of LNT. • Radiation dose rate occurred in males and females. • The dose rate concept supported a threshold dose-response for radiation.« less
Lecompte, Yannick; Bohand, Sandra; Laroche, Pierre; Cazoulat, Alain
2013-01-01
After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (β emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.
Transfer of environmental plutonium and americium across the human gut.
Hunt, G J; Leonard, D R; Lovett, M B
1986-08-01
Data on gut transfer factors for environmental forms of radionuclides are essential for estimates of public radiation exposures following ingestion, and thus in decisions on controlling waste discharges. Dose estimates for transuranic nuclides are particularly sensitive to uncertainties stemming from gut transfer data being related to non-environmental forms and/or derived from animal experiments. We have measured human gut transfer factors for plutonium and americium in two experiments using marine foods obtained near Sellafield, Cumbria. Firstly, the urine of volunteer members of the critical group of shellfish consumers was analysed for transuranics and the results related to their consumption rates. Secondly, remotely-based volunteers ate single quantities of shellfish obtained near Sellafield, and their urine was analysed. An overall result for the gut transfer factor for environmental plutonium of 0.8 X 10(-4) indicates no need to increase the value of 1 X 10(-4), currently used by the International Commission on Radiological Protection (ICRP) for soluble forms. Results for americium show that the ICRP value of 5 X 10(-4) is maximising, and that a value of 1 X 10(-4) would be supportable. The results from the study of critical group members provide confidence in our habits survey techniques and reassurance that there are no significant pathways for intake of transuranics by these people that have not been recognised.
NASA Astrophysics Data System (ADS)
Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George
2010-07-01
Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight) with those for the RPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated.
Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George
2012-01-01
Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999–2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals’ size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight)with those for theRPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated. PMID:20551505
SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raudabaugh, J; Moore, B; Nguyen, G
2016-06-15
Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDImore » phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S; Shulkin, B
Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed withmore » the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co-localization of hybrid CT anatomy and PET radioisotope uptake.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, A; Bostani, M; McMillan, K
Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I; Song, J; Kim, K
Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less
NASA Astrophysics Data System (ADS)
Makarevich, K. O.; Minenko, V. F.; Verenich, K. A.; Kuten, S. A.
2016-05-01
This work is dedicated to modeling dental radiographic examinations to assess the absorbed doses of patients and effective doses. For simulating X-ray spectra, the TASMIP empirical model is used. Doses are assessed on the basis of the Monte Carlo method by using MCNP code for voxel phantoms of ICRP. The results of the assessment of doses to individual organs and effective doses for different types of dental examinations and features of X-ray tube are presented.
Estimation of eye lens doses received by pediatric interventional cardiologists.
Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A
2015-09-01
Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20 mSv recommended by ICRP. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadir, A. B. A.; Priharti, W.; Samat, S. B.
OSLD was evaluated in terms of energy response and accuracy of the measured dose in comparison with TLD-100H and TLD-100. The OSLD showed a better energy response performance for H{sub p}(10) whereas for H{sub p}(0.07), TLD-100H is superior than the others. The OSLD dose accuracy is comparable with the other two dosimeters since it fulfilled the requirement of the ICRP trumpet graph analysis.
Freeware for reporting radiation dosimetry following the administration of radiopharmaceuticals.
Gómez Perales, Jesús Luis; García Mendoza, Antonio
2015-09-01
This work describes the development of a software application for reporting patient radiation dosimetry following radiopharmaceutical administration. The resulting report may be included within the patient's medical records. The application was developed in the Visual Basic programming language. The dosimetric calculations are based on the values given by the International Commission on Radiological Protection (ICRP). The software is available in both Spanish and English and can be downloaded at no cost from www.radiopharmacy.net. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermoluminescent dosimetry in veterinary diagnostic radiology.
Hernández-Ruiz, L; Jimenez-Flores, Y; Rivera-Montalvo, T; Arias-Cisneros, L; Méndez-Aguilar, R E; Uribe-Izquierdo, P
2012-12-01
This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. Copyright © 2012 Elsevier Ltd. All rights reserved.
8 CFR 103.20-103.36 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false [Reserved] 103.20-103.36 Section 103.20-103.36 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Biometric Requirements §§ 103.20-103.36 [Reserved] ...
8 CFR 103.20-103.36 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false [Reserved] 103.20-103.36 Section 103.20-103.36 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Biometric Requirements §§ 103.20-103.36 [Reserved] ...
8 CFR 103.20-103.36 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false [Reserved] 103.20-103.36 Section 103.20-103.36 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Biometric Requirements §§ 103.20-103.36 [Reserved] ...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination
NASA Astrophysics Data System (ADS)
Dhalisa, H.; Mohamad, A. S.; Rafidah, Z.
2016-01-01
This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dose to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.
Risk of eye lens radiation exposure for members of the public.
Chevallier, M-A; Rannou, A; Villagrasa, C; Clairand, I
2016-01-01
In 2011, the International Commission on Radiological Protection (ICRP) reviewed its recommendation concerning the equivalent dose limit for the eye lens, lowering it to 20 mSv in a year, for occupational exposure in planned exposure situations. The ICRP's statement does not contain any explicit recommendations regarding the organ dose limit for the eye lens for public exposure. For the moment, no change is proposed. But, to be coherent in the overall approach, the current equivalent limit for the public might be lowered. A similar yardstick than in the former recommendation may be used, that is to say a reduction of 10 times lower than that for occupational exposure. In this context, additional data on potential scenarios for public exposure of the eye lens are necessary. This paper, mainly based on a literature study, aims to provide, as far as possible, an exhaustive list of the situations in which members of the public can be exposed at the level of the eye lens. Once these situations have been defined, some calculations, made to assess the associated doses to the eye lens, are presented. This literature study did not reveal any current situations where members of the public would receive significant radiation doses to the eye lens. Indeed, the situations in which the dose to the eye lens might reach around 1 mSv per year for the public are extremely rare. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Regulating exposure of the lens of the eye to ionising radiations.
Thorne, M C
2012-06-01
The International Commission on Radiological Protection (ICRP) has reviewed recent epidemiological evidence suggesting that, for the lens of the eye, the threshold in absorbed dose for the induction of deleterious health effects is about 0.5 Gy. On this basis, the Commission recommends that for occupational exposure in planned exposure situations, the equivalent dose limit for the lens of the eye should be 20 mSv in a year, averaged over defined periods of 5 yr, with exposure not exceeding 50 mSv in any single year. This paper summarises the data that have been taken into account by the ICRP and critically examines whether the proposed downward revision of the dose limit is justified. Overall, it is concluded that the accumulating radiobiological and epidemiological evidence makes it more appropriate to treat cataract induction as a stochastic rather than a deterministic effect. Within this framework, it is illogical to have the same dose limit for the lens of the eye as for the whole body irradiated uniformly. This could be addressed either by removing the special dose limit for the lens of the eye, assigning it an appropriate tissue weighting factor and including it in the computation of the effective dose, or through a composite approach involving the use of a tissue weighting factor for effective dose computations together with a special limit on the equivalent dose to the lens of the eye to ensure that no individual was subject to an unacceptably high risk of induction of clinically significant cataracts.
Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhalisa, H., E-mail: dhalisa82@gmail.com; Rafidah, Z.; Mohamad, A. S.
2016-01-22
This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dosemore » to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.« less
Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, Keith F; Bolch, W E; Zankl, M
2007-01-01
The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbedmore » energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose response functions. This paper outlines the development of such response functions for photons.« less
Ibrahim, Shawki; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold
2009-01-01
This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g. local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the ICRP (e.g. iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively. The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout. PMID:20622554
Radiographic progression of silicosis among Japanese tunnel workers in Kochi.
Dumavibhat, Narongpon; Matsui, Tomomi; Hoshino, Eri; Rattanasiri, Sasivimol; Muntham, Dittapol; Hirota, Ryoji; Eitoku, Masamitsu; Imanaka, Momo; Muzembo, Basilua Andre; Ngatu, Nlandu Roger; Kondo, Shinichi; Hamada, Norihiko; Suganuma, Narufumi
2013-01-01
The aim of our study was to investigate the natural course of silicosis in terms of radiographic progression among Japanese tunnel workers. Tunnel workers with silicosis were included in our study between January 2008 and June 2011. We retrospectively assessed workers' radiographs from their first through last visits to see whether there was progression. All films were interpreted by two physicians, who had been specially trained in using the ILO (2000) International Classification of Radiographs of Pneumoconioses (ILO/ICRP). We classified the radiographic findings according to the ILO/ICRP. Survival analysis was performed and then presented as time to progression. Subgroup analysis among the progressed group was performed to demonstrate duration of progression. A total of 65 patients, who were no longer exposed to silica for the duration of the study, were included. The mean age at the first visit was 58.60 ± 7.10 years. The incidence rate of progression was 42 per 1,000 person-years with a median time to progression of 17 years. Progression was demonstrated among 33 cases (51%). The mean durations of progression from category 1 to category 4 and category 2 to category 4 were 14.55 and 10.65 years, respectively. Most patients (86%) had radiographic change from category 1 or 2 directly to category 4. Silicosis progressed at a relatively high rate among tunnel workers without further silica exposure. The high probability of progression directly from category 1 to category 4 may lead to further investigation for the improvement of disease prevention.
Ibrahim, Shawki A; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L
2010-08-01
This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g., local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the International Commission on Radiological Protection (ICRP) (e.g., iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively). The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout.
Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S
2015-12-01
Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Giri, Soma; Jha, V N; Singh, Gurdeep; Tripathi, R M
2013-12-01
To study the distribution of (210)Po, (226)Ra, (230)Th and U(nat) (naturally occurring radioisotopes of uranium [(234)U, (235)U and (238)U]) in food and water around the Bagjata uranium mining area in India. Radionuclides were analyzed in food samples of plant and animal origin after acid digestion. Intake and ingestion dose of the radionuclides were estimated. (210)Po, (226)Ra, (230)Th and U(nat) in all the dietary components ranged widely from < 0.2-36, < 0.02-1.58, < 0.01-2.8 and < 0.017-0.39 Bqkg(-1), respectively. The range of (226)Ra and U(nat) in water was < 3.5-206 and < 12.6-693 mBql(-1), respectively. The intake of radionuclides considering food and water was calculated to be 760 BqY(-1) while the ingestion dose was 601 μSvY(-1). The estimated doses reflect the natural background dose via route of ingestion, which is below the 1 mSvY(-1) limit set by the International Commission on Radiological Protection (ICRP). However, the doses are more than the dose constraint of 300 μSvY(-1) as suggested by the ICRP for members of the public for planned disposal of long-lived radioactive waste. The study confirms that current levels of radionuclides do not pose significant radiological risk to the local inhabitants, but they need close investigation in the near future.
Depth-dose equivalent relationship for cosmic rays at various solar minima
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.
1993-01-01
Galactic cosmic rays (GCR) pose a serious radiation hazard for long-duration missions. In designing a lunar habitat or a Mars transfer vehicle, the radiation exposure determines the GCR shielding thickness, and hence the weight of spacecraft. Using the spherically symmetric diffusion theory of the solar modulation of GCR, and data on the differential energy spectra of H, He, O, and Fe, from 1965 to 1989, it has been shown that (1) the flux is determined by the diffusion parameter which is a function of the time in the solar cycle, and (2) the fluxes in the 1954 and 1976-1977 solar minima were similar and higher than those in 1965. In this paper, we have extended the spherical solar modulation theory back to 1954. The 1954-1955 GCR flux was nearly the same as that from 1976 to 1977; the 1965 flux values were nearly the same as those in 1986. Using this theory we have obtained the GCR spectra for all the nuclei, and calculated the depth dose as a function of Al thickness. It is shown that the shielding required to stay below 0.5 Sv is 17.5 -3/+8 g/sq cm of Al, and 9 -1.5/+5 g/sq cm to stay below 0.6 Sv. The calculated dose equivalent using the ICRP 60 values for quality factors is about 15 percent higher than that calculated using the ICRP 26 value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolch, W E; Eckerman, Keith F; Sgouros, George
2009-03-01
The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations formore » limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.« less
Priya, S; Srinivasan, P; Gopalakrishnan, R K
2012-01-01
The thoria dissolver, used for separation of (233)U from reactor-irradiated thorium metal and thorium oxide rods, is no longer operational. It was decided to carry out assessment of the radiological status of the dissolver cell for planning of the future decommissioning/dismantling operations. The dissolver interiors are expected to be contaminated with the dissolution remains of irradiated thorium oxide rods in addition to some of the partially dissolved thoria pellets. Hence, (220)Rn, a daughter product of (228)Th is of major radiological concern. Airborne activity of thoron daughters (212)Pb (Th-B) and (212)Bi (Th-C) was estimated by air sampling followed by high-resolution gamma spectrometry of filter papers. By measuring the full-energy peaks counts in the energy windows of (212)Pb, (212)Bi and (208)Tl, concentrations of thoron progeny in the sampled air were estimated by applying the respective intrinsic peak efficiency factors and suitable correction factors for the equilibration effects of (212)Pb and (212)Bi in the filter paper during the delay between sampling and counting. Then the thoron working level (TWL) was evaluated using the International Commission on Radiological Protection (ICRP) methodology. Finally, the potential effective dose to the workers, due to inhalation of thoron and its progeny during dismantling operations was assessed by using dose conversion factors recommended by ICRP. Analysis of filter papers showed a maximum airborne thoron progeny concentration of 30 TWLs inside the dissolver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, David J.; Strom, Daniel J.
This paper is part three of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. The radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I and 90Sr-90Y. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludesmore » intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Part two described the methods used to organize the data collected in part one and segregate it into the ages and genders defined by the study, imputed missing values from the existing data, apportioned activity in bone, and imputed activity in hollow organ contents and the remainder of the body. This paper estimates equivalent doses to target tissues from source regions and maps target tissues to lists of tissues with International Commission on Radiation Protection (ICRP) tissue-weighting factors or to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue-weighting factors recommended in 1977, 1990, and 2007, are then calculated, and an upper bound of variability of the effective dose is estimated by calculating the average coefficients of variation (CV), assuming all variance is due to variability. Most of the data were for adult males, whose average annual effective dose is estimated to be 337 μSv (CV = 0.65, geometric mean = 283 μSv, geometric standard deviation sG = 1.81) using 2007 ICRP tissue-weighting factors. This result is between the National Council on Radiation Protection & Measurements’ 1987 estimate of 390 μSv (using 1977 wTs) and its 2009 estimate of 285 μSv (using 2007 wTs) and is higher than the United Nations Scientific Committee on the Effects of Atomic Radiation’s 2000 estimate of 310 μSv (using 1990 wTs). The methods and software developed for this project are sufficiently detailed and sufficiently general to be usable with autopsy data from any or all countries.« less
18 CFR 385.103 - References to rules (Rule 103).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false References to rules (Rule 103). 385.103 Section 385.103 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Definitions § 385.103 References to rules (Rule 103). This part cross-references its sections according to...
18 CFR 385.103 - References to rules (Rule 103).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false References to rules (Rule 103). 385.103 Section 385.103 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Definitions § 385.103 References to rules (Rule 103). This part cross-references its sections according to...
Field and bioassay indicators for internal dose intervention therapy.
Carbaugh, Eugene H
2007-05-01
Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.
Field and Bioassay Indicators for Internal Dose Intervention Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.
2007-05-01
Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.
19 CFR 103.8 - Time extensions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Time extensions. 103.8 Section 103.8 Customs... AVAILABILITY OF INFORMATION Production of Documents/Disclosure of Information Under the FOIA § 103.8 Time... deciding an initial request or an appeal may extend the time limitations set in §§ 103.6 and 103.7 after...
19 CFR 103.8 - Time extensions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Time extensions. 103.8 Section 103.8 Customs... AVAILABILITY OF INFORMATION Production of Documents/Disclosure of Information Under the FOIA § 103.8 Time... deciding an initial request or an appeal may extend the time limitations set in §§ 103.6 and 103.7 after...
19 CFR 103.8 - Time extensions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Time extensions. 103.8 Section 103.8 Customs... AVAILABILITY OF INFORMATION Production of Documents/Disclosure of Information Under the FOIA § 103.8 Time... deciding an initial request or an appeal may extend the time limitations set in §§ 103.6 and 103.7 after...
19 CFR 103.8 - Time extensions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Time extensions. 103.8 Section 103.8 Customs... AVAILABILITY OF INFORMATION Production of Documents/Disclosure of Information Under the FOIA § 103.8 Time... deciding an initial request or an appeal may extend the time limitations set in §§ 103.6 and 103.7 after...
19 CFR 103.8 - Time extensions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Time extensions. 103.8 Section 103.8 Customs... AVAILABILITY OF INFORMATION Production of Documents/Disclosure of Information Under the FOIA § 103.8 Time... deciding an initial request or an appeal may extend the time limitations set in §§ 103.6 and 103.7 after...
Higuchi, Toshihiro
2015-10-01
Radiation protection standards for the general population have constituted one of the most controversial subjects in the history of atomic energy uses. This paper reexamines the process in which the first such standards evolved in the early postwar period. While the existing literature has emphasized a "collusion" between the standard-setters and users, the paper seeks to examine the horizontal relationship among the standard-setters. It first examines a series of expert consultations between the United States and the United Kingdom. Representing a different configuration of power and interest, the two failed to agree on the assessment of genetic damage and cancer induction whose occurrence might have no threshold and therefore be dependent on the population size. This stalemate prevented the International Commission on Radiological Protection (ICRP), established in 1950, from formulating separate guidelines for the general public. Situations radically changed when the Bikini incident in 1954 led to the creation of more scientific panels. One such panel under the U.S. Academy of Sciences enabled the geneticists to bridge their internal divide, unanimously naming 100 mSv as the genetically permissible dose for the general population. Not to be outdone, ICRP publicized its own guidelines for the same purpose. The case examined in this paper shows that the standard-setting process is best understood as a series of "epistemic negotiations" among and within the standard-setters, whose agendas were determined from the outset but whose outcomes were not.
Dose conversion coefficients for photon exposure of the human eye lens.
Behrens, R; Dietze, G
2011-01-21
In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity H(p)(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model-with the addition of the whole body-was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.
Mairs, William DA
2016-06-01
The International Commission on Radiological Protection (ICRP) has recommended a 20 mSv year(-1) dose limit for the lens of the eye, which has been adopted in the European Union Basic Safety Standards. Interventional radiologists (IRs) and interventional cardiologists (ICs) are likely to be affected by this. The effects of radiation in the lens are somewhat uncertain, and the ICRP explicitly recommend optimization. Occupational dose constraints are part of the optimization process and define a level of dose which ought to be achievable in a well-managed practice. This commentary calls on the professional bodies to review a need for national constraints to guide local decisions. Consideration is given to developing such constraints using maximum expected doses in high-workload facilities with good radiation protection practices and application of a factor allowing for attenuation by lead glasses (LG). Doses are based on a Public Health England survey of eye dose in the UK. Maximum expected doses for ICs are approximately 21 mSv year(-1), neglecting LG. However, the extent of IR exposure is not yet fully known, and further evidence is required before conclusions are drawn. A Health and Safety Laboratory review of LG established a conservative dose reduction factor of 3 for models available in 2012. Application of this factor provides a dose constraint of 7 mSv year(-1) to the eye for ICs. To achieve this constraint, those employers with the most exposed ICs will have to provide and ensure the correct use of a ceiling-suspended eye shield and LG.
Dose conversion coefficients for photon exposure of the human eye lens
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.
2011-01-01
In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity Hp(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model—with the addition of the whole body—was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.
Measurements of indoor 222RN activity in dwellings and workplaces of Curitiba (Brazil)
NASA Astrophysics Data System (ADS)
Corrêa, Janine N.; Paschuk, Sergei A.; Del Claro, Flávia; Kappke, Jaqueline; Perna, Allan F. N.; Schelin, Hugo R.; Denyak, Valeriy
2014-11-01
The present work describes the results of systematic measurements of radon (222Rn) in residential environments and workplaces in the Metropolitan Region of Curitiba (Paraná State, Brazil) during the period 2004-2012. For radon in air activity measurements, polycarbonate Track Etch Detectors CR-39, mounted in diffusion chambers protected by borosilicate glass fiber filters, were used. After being exposed in air, the CR-39 detectors were submitted to a chemical etching in a 6.25 M NaOH solution at 70 °C for 14 h. The alpha particle tracks were identified and manually counted with an optical microscope, and with the results of previously performed calibrations, the indoor activity concentration of 222Rn was calculated. The calibration of CR-39 and the alpha particle tracks chemical development procedures were performed in collaboration the National Institute of Radiological Sciences (NIRS, Japan). The major part of indoor 222Rn concentration in residences was found to be below 100 Bq/m3. In the case of working places, all measurements of 222Rn concentrations were below 100 Bq/m3. These values are considered within the limits set by international regulatory agencies, such as the US EPA and ICRP, which adopt up to 148 and 300 Bq/m3 as upper values for the reference levels for radon gas activity in dwellings, respectively. The latest value of 300 Bq/m3 for radon activity in air is proposed by ICRP considering the upper value for the individual dose reference level for radon exposure of 10 mSv/yr.
Radiological risk assessment of Capstone depleted uranium aerosols.
Hahn, Fletcher F; Roszell, Laurie E; Daxon, Eric G; Guilmette, Raymond A; Parkhurst, Mary Ann
2009-03-01
Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-y doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth, and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.
14 CFR § 1250.103-6 - Medical emergencies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Medical emergencies. § 1250.103-6 Section... § 1250.103-6 Medical emergencies. Notwithstanding the provisions of §§ 1250.103 to 1250.103-5, a... through a medical institution which refuses or fails to comply with § 1250.103-1. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A.J.; Macha, J.; Wenzel, M.
1980-01-01
Hydroxyacetyl(/sup 103/Ru)ruthenocene and its o-glucuronide were prepared in vitro by incubation of acetyl(/sup 103/Ru)ruthenocene with rat-liver homogenate, NADPH, and UDP-glucuronate. The factors affecting hydroxylation and glucuronidation in vitro were optimized for acetylruthenocene. Hydroxyacetyl(/sup 103/Ru)ruthenocene glucuronide showed no affinity for the adrenal glands, but after iv administration of hydroxyacetyl(/sup 103/Ru)ruthenocene there was a distinct accumulation of Ru-103 in adrenals, similar to that found after administration of acetyl(/sup 103/Ru)ruthenocene.
Calculation of the effective dose from natural radioactivity in soil using MCNP code.
Krstic, D; Nikezic, D
2010-01-01
Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.
Kodak EDR2 film for patient skin dose assessment in cardiac catheterization procedures.
Morrell, R E; Rogers, A T
2006-07-01
Patient skin doses were measured using Kodak EDR2 film for 20 coronary angiography (CA) and 32 percutaneous transluminal coronary angioplasty (PTCA) procedures. For CA, all skin doses were well below 1 Gy. However, 23% of PTCA patients received skin doses of 1 Gy or more. Dose-area product (DAP) was also recorded and was found to be an inadequate indicator of maximum skin dose. Practical compliance with ICRP recommendations requires a robust method for skin dosimetry that is more accurate than DAP and is applicable over a wider dose range than EDR2 film.
NASA Astrophysics Data System (ADS)
Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.
2011-11-01
Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.
Indoor 222Rn concentration in the exhibition and storage rooms of Polish geological museums.
Długosz-Lisiecka, Magdalena; Krystek, Marcin; Raczyński, Paweł; Głuszek, Ewa; Kietlińska-Michalik, Barbara; Niechwedowicz, Mariusz
2017-03-01
The radon exhaled from radioactive mineral collections exhibited in five Polish geological museums may influence its total indoor concentration. Radon concentrations measured in the exhibition halls do not pose a risk for visitors or museum staff. However, air exceeding the ICRP (2007) action limit for workers (equal to 300Bq/m 3 ) was noted in the storage rooms of two museums. Significant 222 Rn activity concentrations equal to more than ~300kBq/m 3 were measured inside lead containers where radioactive minerals were stored. Copyright © 2016 Elsevier Ltd. All rights reserved.
10 CFR 434.103 - Referenced standards (RS).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Referenced standards (RS). 434.103 Section 434.103 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Administration and Enforcement-General § 434.103 Referenced standards (RS). 103.1The...
17 CFR 229.103 - (Item 103) Legal proceedings.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false (Item 103) Legal proceedings... AND CONSERVATION ACT OF 1975-REGULATION S-K Business § 229.103 (Item 103) Legal proceedings. Describe briefly any material pending legal proceedings, other than ordinary routine litigation incidental to the...
17 CFR 229.103 - (Item 103) Legal proceedings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false (Item 103) Legal proceedings... AND CONSERVATION ACT OF 1975-REGULATION S-K Business § 229.103 (Item 103) Legal proceedings. Describe briefly any material pending legal proceedings, other than ordinary routine litigation incidental to the...
17 CFR 229.103 - (Item 103) Legal proceedings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false (Item 103) Legal proceedings... AND CONSERVATION ACT OF 1975-REGULATION S-K Business § 229.103 (Item 103) Legal proceedings. Describe briefly any material pending legal proceedings, other than ordinary routine litigation incidental to the...
17 CFR 229.103 - (Item 103) Legal proceedings.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false (Item 103) Legal proceedings... AND CONSERVATION ACT OF 1975-REGULATION S-K Business § 229.103 (Item 103) Legal proceedings. Describe briefly any material pending legal proceedings, other than ordinary routine litigation incidental to the...
10 CFR 434.103 - Referenced standards (RS).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Referenced standards (RS). 434.103 Section 434.103 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Administration and Enforcement-General § 434.103 Referenced standards (RS). 103.1The...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Definitions. 0.103 Section 0.103... RULES OF CONDUCT General Provisions § 0.103 Definitions. The following definitions are used throughout... outside group and is not an employee or special Government employee as those terms are defined in § 0.103...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Definitions. 0.103 Section 0.103... RULES OF CONDUCT General Provisions § 0.103 Definitions. The following definitions are used throughout... outside group and is not an employee or special Government employee as those terms are defined in § 0.103...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Definitions. 0.103 Section 0.103... RULES OF CONDUCT General Provisions § 0.103 Definitions. The following definitions are used throughout... outside group and is not an employee or special Government employee as those terms are defined in § 0.103...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Definitions. 0.103 Section 0.103... RULES OF CONDUCT General Provisions § 0.103 Definitions. The following definitions are used throughout... outside group and is not an employee or special Government employee as those terms are defined in § 0.103...
Jung, Young Ho; Lee, Doh Young; Cha, Wonjae; Kim, Bo Hae; Sung, Myung-Whun; Kim, Kwang Hyun; Ahn, Soon-Hyun
2016-10-01
A tumorigenic cell line (BHP10-3M) derived from nontumorigenic papillary thyroid carcinoma (PTC) cells (BHP10-3) having rearranged during transfection (RET)/PTC1 gene rearrangement might have a higher expression of CXCR4, either quantitatively or functionally. The authors also postulated that CXCR4-mediated invasion or tumorigenesis could be blocked by CXCR4 antagonists, including AMD3100. The expression of CXCR4 in BHP10-3 and BHP10-3M cells was assessed using immunoblot analysis, flow cytometry, and quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). The effect of AMD3100 on BHP10-3 and BHP10-3M cell lines was evaluated using cell proliferation assay, invasion assay, and tumor growth experiment in nude mice. Immunoblotting, flow cytometry, and quantitative RT-PCR proved that BHP10-3M cells expressed a higher level of CXCR4 than BHP10-3 cells. Although blocking CXCR4 with AMD3100 did not suppress cell proliferation in both cell lines from 1 ng/mL to 100 ng/mL concentration, AMD3100 suppressed invasion of BHP10-3M cells in vitro in a dose-dependent manner. At higher concentrations from 10(3) ng/mL to 10(5) ng/mL, the proliferation of BHP10-3M cells was inhibited more strongly by AMD3100 than that of BHP10-3 cells. Intraperitoneal injection of AMD3100 inhibited tumor formation by BHP10-3M cells in the thyroid of nude mice. A tumorigenic cell line (BHP10-3M) of PTC showed higher expression of CXCR4 quantitatively and functionally than a nontumorigenic cell line (BHP10-3). The CXCR4 antagonist (AMD3100) showed a significant antitumor effect on the tumorigenic cell line of PTC BHP10-3 cells both in vitro and in vivo. CXCR4 antagonist can be expected to have an adjuvant role in the management of PTC. © 2016 Wiley Periodicals, Inc. Head Neck, 2016 © 2016 Wiley Periodicals, Inc. Head Neck 38: First-1486, 2016. © 2016 Wiley Periodicals, Inc.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Certification for Purposes of Section 314(b) of the USA Patriot Act and 31 CFR 103.110 B Appendix B to Part 103 Money and Finance: Treasury... TRANSACTIONS Pt. 103, App. B Appendix B to Part 103—Certification for Purposes of Section 314(b) of the USA...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Nguyen, G; Chung, Y
Purpose: Ureteroscopy involves fluoroscopy which potentially results in considerable amount of radiation dose to the patient. Purpose of this study was two-fold: (a) to develop the effective dose computational model for obese and non-obese patients undergoing left and right ureteroscopy, and (b) to evaluate the utility of a commercial Monte Carlo software for dose assessment in ureteroscopy. Methods: Organ dose measurements were performed on an adult male anthropomorphic phantom, representing the non-obese patients, with 20 high-sensitivity MOSFET detectors and two 0.18cc ionization chambers placed in selected organs. Fat-equivalent paddings were placed around the abdominal region to simulate for obese patients.more » Effective dose (ED) was calculated using ICRP 103 tissue weighting factors and normalized to the effective dose rate in miliSivert per second (mSv/s). In addition, a commercial Monte Carlo (MC) dose estimation program was used to estimate ED for the non-obese model, with table attenuation correction applied to simulate clinical procedure. Results: For the equipment and protocols involved in this study, the MOSFETderived ED rates for the obese patient model (‘Left’: 0.0092±0.0004 mSv/s; ‘Right’: 0.0086±0.0004 mSv/s) was found to be more than twice as much as that to the non-obese patient model (‘Left’: 0.0041±0.0003 mSv/s; ‘Right’: 0.0036±0.0007 mSv/s). The MC-derived ED rates for the non-obese patient model (‘Left’: 0.0041 mSv/s; ‘Right’: 0.0036 mSv/s; with statistical uncertainty of 1%) showed a good agreement with the MOSFET method. Conclusion: The significant difference in ED rate between the obese and non-obese patient models shows the limitation of directly applying commercial softwares for obese patients and leading to considerable underestimation of ED. Although commercial softwares offer a convenient means of dose estimation, but the utility may be limited to standard-man geometry as the software does not account for table attenuation, obese patient geometry, and differences between the anthropomorphic phantom and MC mathematical phantom.« less
Transfer of aged Pu to cattle grazing on a contaminated environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, R.O.; Engel, D.W.; Smith, D.D.
1988-03-01
Estimates are obtained of the fraction of ingested or inhaled 239+240Pu transferred to blood and tissues of a reproducing herd of beef cattle, individuals of which grazed within fenced enclosures for up to 1064 d under natural conditions with no supplemental feeding at an arid site contaminated 16 y previously with Pu oxide. The estimated (geometric mean (GM)) fraction of Pu transferred from the gastrointestinal tract to blood serum was about 5 x 10(-6) (geometric standard error (GSE) = 1.4) with an approximate upper bound of about 2 x 10(-5). These results are in reasonable agreement with the value ofmore » 1 x 10(-5) recommended for human radiation protection purposes by the International Commission on Radiological Protection (ICRP) for insoluble Pu oxides that are free of very small particles. Also, results from a laboratory study by Stanley (St75), in which large doses of /sup 238/Pu were orally administered daily to dairy cattle for 19 consecutive days, suggest that aged 239+240Pu at this arid grazing site may not be more biologically available to blood serum than fresh 239+240Pu oxide. The estimated fractions of 239+240Pu transferred from blood serum to tissues of adult grazing cattle were: femur (3.2 X 10(-2), 1.8; GM, GSE), vertebra (1.4 X 10(-1), 1.6), liver (2.3 X 10(-1), 2.0), muscle (1.3 X 10(-1), 1.9), female gonads (7.9 X 10(-5), 1.5), and kidney (1.4 X 10(-3), 1.7). The blood-to-tissue fractional transfers for cattle initially exposed in utero were greater than those exposed only as adults by a factor of about 4 for femur (statistically significant) and of about 2 for other tissues (not significant). The estimated (GM) fraction of inhaled Pu initially deposited in the pulmonary lung was 0.34 (GSE = 1.3) for adults and 0.15 (GSE = 1.3) for cattle initially exposed in utero (a statistically significant difference).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Moteabbed, M
Purpose: To determine the scattered neutron dose and the resulting risk for a fetus from proton therapy for brain tumors during pregnancy. Methods: Using the Monte Carlo platform TOPAS, the ICRP reference parameters based anthropomorphic pregnancy phantoms for three stages (3-, 6-, 9-month) were applied to evaluate the scattered neutron dose and dose equivalent. To calculate the dose equivalent, organ specific linear energy transfer (LET) based quality factor was used. Treatment plans from both passive scattering (PS) and pencil beam scanning (PBS) methods were considered in this study. Results: For pencil beam scanning, the neutron dose equivalent in the softmore » tissue of the fetus increases from 1.53x10−{sup 3} to 2.84x10−{sup 3} mSv per treatment Gy with increasing stage of gestation. This is due to scattered neutrons from the patient as the main contaminant source in PBS and a decrease in distance between the soft tissue of the fetus and GTV with increasing stage of gestation. For passive scattering, neutron dose equivalent to the soft tissue of the fetus shows a decrease from 0.17 to 0.13 mSv per treatment Gy in different stages, while the dose to the brain shows little difference around 0.18 mSv per treatment Gy because scattered neutrons from the treatment head contribute predominantly in passive scattering. Conclusion: The results show that the neutron dose to the fetus assuming a prescribed dose of 52.2 Gy is negligible for PBS, and is comparable to the scattered dose (0–10 mSv) from a head and neck CT scan for PS. It can be concluded that the dose to fetus is far lower than the thresholds of malformation, SMR and lethal death. The excess relative risk of childhood cancer induction would be increased by 0.48 and 0.103 using the Oxford Survey of Childhood Cancers and Japanese atomic model, respectively. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less
Thoron concentration, aerosol characteristics of 212Pb and estimation of equivalent dose
NASA Astrophysics Data System (ADS)
Mohery, M.; Abdallah, A. M.; Kelany, Adel M.; Yaghmour, S. J.
2014-08-01
The thoron gas (220Rn) activity concentration as well as activity size distribution of unattached and attached 212Pb to aerosol particles was measured in the open air of Jeddah City, Kingdom of Saudi Arabia. An electroprecipitation method was applied for measuring the 220Rn concentration. A mean activity concentration of 220Rn was determined to be 1.80±0.47 Bq m-3. The unattached activities of 212Pb were collected using the wire screen diffusion battery technique while a low-pressure cascade impactor collected the attached activities. The mean activity median thermodynamic diameter (AMTD) of unattached 212Pb was determined to be 1.32 nm with a relative mean geometric standard deviation (σg) of 1.45. A mean concentration of unattached activity of 212Pb was found to be 9.48±1.12 mBq m-3. A mean unattached fraction (fp) of 0.028±0.002 was obtained at a mean aerosol particle concentration of 29×103 cm-3. Sometimes, the fp values were less than the detection limit of 0.009. A mean activity median aerodynamic diameter (AMAD) of the accumulation mode of attached 212Pb was determined to be 352 nm with a mean (σg) of 2.6. The mean value of specific air activity concentration of 212Pb associated with that mode was determined to be 310±12 mBq m-3. With a dosimetric model calculation (ICRP, 1994) the total and regional deposition fractions, total and regional equivalent doses could be evaluated considering the obtained parameters of the activity size distributions. At a total deposition fraction of about 97% of unattached activities the total equivalent dose to the human lung was determined to be 0.16 μSv while a total equivalent dose of 0.44 μSv was determined at a total deposition fraction of about 23% for the attached activities. It was found that an unattached fraction of fP≈3% yields to about 27% of the total equivalent dose.
NASA Astrophysics Data System (ADS)
Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John
2015-03-01
This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long-term testicular cancer survivors.
Mastren, Tara; Radchenko, Valery; Hopkins, Philip D.; ...
2017-12-22
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. Furthermore, the development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was usedmore » to decontaminate 103Ru from the remaining impurities. This method then resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f) 103,106Ru reactions are reported within.« less
Hopkins, Philip D.; Engle, Jonathan W.; Weidner, John W.; Copping, Roy; Brugh, Mark; Nortier, F. Meiring; Birnbaum, Eva R.; John, Kevin D.
2017-01-01
Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. The development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was used to decontaminate 103Ru from the remaining impurities. This method resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f)103,106Ru reactions are reported within. PMID:29272318
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 3-Year-Old Child § 572.20 Limbs. The limbs consist of the assemblies shown on drawing SA 103C 001 as Nos. SA 103C 041, SA 103C 042, SA 103C 051, SA... each of the applicable drawings listed under their respective numbers of the drawing SA 103C 002...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilmette, R.A.; Hoover, M.D.
1995-12-01
The revised 10 CFR Part 20 has adopted the ICRP Publication 30 method for calculating the committed effective dose equivalent from intakes of radionuclides. This dosimetry scheme requires knowledge or assumptions about the chemical form of the radionuclide, its particle size, and its known or assumed solubility. The solubility is classified as being either D (relatively soluble), W, or Y (relatively insoluble), depending on whether the material dissolves over periods of days, weeks, or years. Although Nuclear Regulatory Commission licensees may wish to take advantage of material-specific knowledge in order to adjust annual limits on intake and derived air concentrations,more » relatively few radioactive materials to which workers and the general population may be exposed have been adequately characterized either in terms of physicochemical form or solubility. Experimental measurement of solubility using some type of in vitro dissolution measurement system is therefore needed. However, there is currently no clear consensus regarding the appropriate design of in vitro dissolution systems, particularly when considering the range of different radionuclides to be studied, and the complexity of the biological mechanisms involved in the retention and clearance of inhaled deposited radioactive particles. The purpose of this study was to evaluate the effect of the several solvents on the dissolution of four test aerosols ({sup 57}Co{sub 3}O{sub 4}, {sup 241}AmO{sub 2}, ammonium diuranate [ADU], and U{sub 3}O{sub 8}) selected to encompass a variety of chemical and biochemical properties in vivo. The results of this study provide some guidance on the usefulness of in vitro dissolution tests for estimating the solubility of unknown radionuclide particles within the context of a simple model such as the class D, W, and Y formulation of ICRP 30.« less
SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V
Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dosemore » that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.« less
Radiation absorbed dose estimates for 18F-BPA PET.
Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun
2017-09-01
Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the 10 B (n, α) 7 Li nuclear reaction in cancer cells. In BNCT, delivery of 10 B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).
A generic biokinetic model for carbon-14 labelled compounds
NASA Astrophysics Data System (ADS)
Manger, Ryan Paul
Carbon-14, a radioactive nuclide, is used in many industrial applications. Due to its wide range of uses in industry, many workers are at risk of accidental internal exposure to 14C. Being a low energy beta emitter, 14C is not a significant external radiation hazard, but the internal consequences posed by 14C are important, especially because of its long half life of 5730 years [46]. The current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) is a conservative estimate of how radiocarbon is treated by the human body. The ICRP generic radiocarbon model consists of a single compartment representing the entire human body. This compartment has a biological half life of 40 days yielding an effective dose coefficient of 5.8x10-10 Sv B q-1 [44, 45, 49, 53, 54]. This overestimates the dose of all radiocarbon compounds that have been studied [96]. An improved model has been developed that includes and alimentary tract, a urinary bladder, CO2 model, and an "Other" compartment used to model systemic tissues. The model can be adapted to replicate any excretion curve and excretion pattern. In addition, the effective dose coefficient produced by the updated model is near the mean effective dose coefficient of carbon compounds that have been considered in this research. The major areas of improvement are: more anatomically significant, a less conservative dose coefficient, and the ability to manipulate the model for known excretion data. Due to the wide variety of carbon compounds, it is suggested that specific biokinetic models be implemented for known radiocarbon substances. If the source of radiocarbon is dietary, then the physiologically based model proposed by Whillans [102] that splits all ingested radiocarbon compounds into carbohydrates, fats, and proteins should be used.
In vivo organ mass of Korean adults obtained from whole-body magnetic resonance data.
Park, S; Lee, J K; Kim, J I; Lee, Y J; Lim, Y K; Kim, C S; Lee, C
2006-01-01
In vivo organ mass of the Korean adult, male and female were presented for the purpose of radiation protection. A total of 121 healthy volunteers (66 males and 55 females), whose body dimensions were close to that of average Korean adults, were recruited for this study. Whole-body magnetic resonance (MR) images were obtained, and contours of 15 organs (brain, eye, gall bladder, heart, kidney, liver, lung, pancreas, stomach, spleen, testes, thymus, thyroid, urinary bladder and uterus) and 9 bones (femur, tibia + fibula, humerus, radius + ulna, pelvis, cervical spine, thoracic and lumber spine, skull and clavicle) were segmented for organ volume rendering by anatomists using commercial software. Organ and bone masses were calculated by multiplying the Asian reference densities of the corresponding organs and bones by the measured volumes. The resulting organ and bone masses were compared with those of the International Commission of Radiological Protection (ICRP) and the Asian reference data. Significantly large standard deviation was shown in the moving organs of the respiratory and circulatory systems and in the alimentary and urogenital organs that are variable in volume in a single person. Gall bladder and pancreas showed unique Korean organ masses compared with those of ICRP and the Asian reference adults. Different from anatomical data based on autopsy, the in vivo volume and mass in this study can more exactly describe the organ volume of a living human subject for radiation protection. A larger sample size would be required for obtaining statistically more reliable results. It is also needed to establish the reference organ mass of younger age groups for which it is difficult to recruit volunteers and to immobilise the subjects for long-time MR scanning. At present, the data from this study will contribute to the establishment of a Korean reference database.
NASA Astrophysics Data System (ADS)
Jansen, Jan T. M.; Shrimpton, Paul C.
2016-07-01
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of ±6% and ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.
[Diagnostic reference levels in interventional radiology].
Vañó Carruana, E; Fernández Soto, J M; Sánchez Casanueva, R M; Ten Morón, J I
2013-12-01
This article discusses the diagnostic reference levels for radiation exposure proposed by the International Commission on Radiological Protection (ICRP) to facilitate the application of the optimization criteria in diagnostic imaging and interventional procedures. These levels are normally established as the third quartile of the dose distributions to patients in an ample sample of centers and are supposed to be representative of good practice regarding patient exposure. In determining these levels, it is important to evaluate image quality as well to ensure that it is sufficient for diagnostic purposes. When the values for the dose received by patients are systematically higher or much lower than the reference levels, an investigation should determine whether corrective measures need to be applied. The European and Spanish regulations require the use of these reference values in quality assurance programs. For interventional procedures, the dose area product (or kerma area product) values are usually used as reference values together with the time under fluoroscopy and the total number of images acquired. The most modern imaging devices allow the value of the accumulated dose at the entrance to the patient to be calculated to optimize the distribution of the dose on the skin. The ICRP recommends that the complexity of interventional procedures be taken into account when establishing reference levels. In the future, diagnostic imaging departments will have automatic systems to manage patient dosimetric data; these systems will enable continuous dosage auditing and alerts about individual procedures that might involve doses several times above the reference values. This article also discusses aspects that need to be clarified to take better advantage of the reference levels in interventional procedures. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li
2009-02-01
A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...
2017-08-24
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Overview of ICRP Committee 3: protection in medicine.
Vañó, E; Miller, D L; Rehani, M M
2016-06-01
Committee 3 of the International Commission on Radiological Protection (ICRP) develops recommendations and guidance for protection of patients, staff, and the public against radiation exposure when ionising radiation is used for medical diagnosis, therapy, or biomedical research. This paper presents a summary of the work that Committee 3 has accomplished over the past few years, and also describes its current work. The most recent reports published by the Commission that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (Publication 129), 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (Publication 128, in cooperation with Committee 2), 'Radiological protection in ion beam radiotherapy' (Publication 127), 'Radiological protection in paediatric diagnostic and interventional radiology' (Publication 121), 'Radiological protection in cardiology' (Publication 120), and 'Radiological protection in fluoroscopically guided procedures outside the imaging department' (Publication 117). A new report on diagnostic reference levels in medical imaging will provide specific advice for interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and hybrid (multi-modality) imaging procedures, and is expected to be published in 2016. Committee 3 is also working on guidance for occupational radiological protection in brachytherapy, and on guidance on occupational protection issues in interventional procedures, paying particular attention to the 2011 Commission's recommendations on the occupational dose limit for the lens of the eye (Publication 118). Other reports in preparation deal with justification, radiological protection in therapy with radiopharmaceuticals, radiological protection in medicine as related to individual radiosusceptibility, appropriate use of effective dose (in cooperation with other Committees), and guidance for healthcare practitioners on radiological and patient protection. Committee 3 has also suggested specific priorities for research on radiological protection in medicine to the Commission. © The International Society for Prosthetics and Orthotics.
Ainsbury, Elizabeth A; Barnard, Stephen; Bright, Scott; Dalke, Claudia; Jarrin, Miguel; Kunze, Sarah; Tanner, Rick; Dynlacht, Joseph R; Quinlan, Roy A; Graw, Jochen; Kadhim, Munira; Hamada, Nobuyuki
The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Uranium bone content as an indicator of chronic environmental exposure from drinking water.
Larivière, Dominic; Tolmachev, Sergei Y; Kochermin, Vera; Johnson, Sonia
2013-07-01
Uranium (U) is an ubiquitous radioelement found in drinking water and food. As a consequence of its prevalence, most humans ingest a few micrograms (μg) of this element daily. It is incorporated in various organs and tissues. Several studies have demonstrated that ingested U is deposited mainly in bones. Therefore, U skeletal content could be considered as a prime indicator for low-level chronic intake. In this study, 71 archived vertebrae bone samples collected in seven Canadian cities were subjected to digestion and U analysis by inductively coupled plasma mass spectrometry. These results were correlated with U concentrations in municipal drinking water supplies, with the data originating from historical studies performed by Health Canada. A strong relationship (r(2) = 0.97) was observed between the averaged U total skeletal content and averaged drinking water concentration, supporting the hypothesis that bones are indeed a good indicator of U intake. Using a PowerBASIC compiler to process an ICRP systemic model for U (ICRP, 1995a), U total skeletal content was estimated using two gastrointestinal tract absorption factors (ƒ1 = 0.009 and 0.03). Comparisons between observed and modelled skeletal contents as a function of U intake from drinking water tend to demonstrate that neither of the ƒ1 values can adequately estimate observed values. An ƒ1value of 0.009 provides a realistic estimate for intake resulting from food consumption only (6.72 μg) compared to experimental data (7.4 ± 0.8 μg), whereas an ƒ1value of 0.03 tends to better estimate U skeletal content at higher levels of U (1-10 μg L(-1)) in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal
2016-01-01
The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false [Reserved] 1040.103 Section 1040.103 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.103 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false [Reserved] 1040.103 Section 1040.103 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.103 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false [Reserved] 1040.103 Section 1040.103 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.103 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false [Reserved] 1040.103 Section 1040.103 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.103 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false [Reserved] 1040.103 Section 1040.103 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION IN FEDERALLY ASSISTED PROGRAMS OR ACTIVITIES Program Monitoring § 1040.103 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Authority. 308.103 Section 308.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS VOLUNTEER SERVICE § 308.103... students in nonpay status. ...
Wenzel, M; Wu, Y F
1987-01-01
The radioactive decay of [103Ru]ruthenocene derivatives leads to 103mRh labelled rhodocinium derivatives, which can be separated by the extraction of a lipophilic solution of the ruthenocen derivate with water. The separation factor 103mRh/103Ru reaches values of 32:1 Rh3+ ions are not liberated and extracted. The organ distribution of the 103mRh labelled rhodocinium derivatives gained from ruthenocene and from N-isopropyl-ruthenocene amphetamine is different from the distribution of the parent ruthenocene compound. The liver and kidney uptake of the rhodocinium-amphetamine is much higher than the uptake with ruthenocene amphetamine.
26 CFR 1.103(n)-5T - Certification of no consideration for allocation (temporary).
Code of Federal Regulations, 2011 CFR
2011-04-01
... (temporary). 1.103(n)-5T Section 1.103(n)-5T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Income § 1.103(n)-5T Certification of no consideration for allocation (temporary). Q-1: Who must certify that there was no consideration for an allocation? A-1: Section 103(n)(12)(A) provides that, with...
26 CFR 1.103(n)-5T - Certification of no consideration for allocation (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... (temporary). 1.103(n)-5T Section 1.103(n)-5T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Income § 1.103(n)-5T Certification of no consideration for allocation (temporary). Q-1: Who must certify that there was no consideration for an allocation? A-1: Section 103(n)(12)(A) provides that, with...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Commerce. 1220.103 Section 1220.103 Agriculture... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.103 Commerce. The term commerce means interstate, foreign, or intrastate commerce. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Commerce. 1220.103 Section 1220.103 Agriculture... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.103 Commerce. The term commerce means interstate, foreign, or intrastate commerce. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Commerce. 1220.103 Section 1220.103 Agriculture... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.103 Commerce. The term commerce means interstate, foreign, or intrastate commerce. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Commerce. 1220.103 Section 1220.103 Agriculture... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.103 Commerce. The term commerce means interstate, foreign, or intrastate commerce. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Commerce. 1220.103 Section 1220.103 Agriculture... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.103 Commerce. The term commerce means interstate, foreign, or intrastate commerce. ...
8 CFR 103.41 - Genealogy request fees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Availability of Records § 103.41 Genealogy request fees. (a) Genealogy search fee. See 8 CFR 103.7(b)(1). (b) Genealogy records fees. See 8 CFR 103.7...
8 CFR 103.41 - Genealogy request fees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Availability of Records § 103.41 Genealogy request fees. (a) Genealogy search fee. See 8 CFR 103.7(b)(1). (b) Genealogy records fees. See 8 CFR 103.7...
8 CFR 103.41 - Genealogy request fees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Availability of Records § 103.41 Genealogy request fees. (a) Genealogy search fee. See 8 CFR 103.7(b)(1). (b) Genealogy records fees. See 8 CFR 103.7...
Transdermal delivery of curcumin via microemulsion.
Sintov, Amnon C
2015-03-15
The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55. Copyright © 2015 Elsevier B.V. All rights reserved.
7 CFR 1956.103-1956.104 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 14 2010-01-01 2009-01-01 true [Reserved] 1956.103-1956.104 Section 1956.103-1956.104...) PROGRAM REGULATIONS (CONTINUED) DEBT SETTLEMENT Debt Settlement-Community and Business Programs §§ 1956.103-1956.104 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Policy. 14.103 Section 14.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Use of Sealed Bidding 14.103 Policy. ...
14 CFR § 1250.103 - Discrimination prohibited.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Discrimination prohibited. § 1250.103 Section § 1250.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION... § 1250.103 Discrimination prohibited. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.103 Section 457.103 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.103 [Reserved] ...
26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).
Code of Federal Regulations, 2011 CFR
2011-04-01
... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds will...
26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds will...
49 CFR 224.103 - Characteristics of retroreflective sheeting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Characteristics of retroreflective sheeting. 224.103 Section 224.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Application, Inspection, and Maintenance of Retroreflective Material § 224.103 Characteristics of...
49 CFR 224.103 - Characteristics of retroreflective sheeting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Characteristics of retroreflective sheeting. 224.103 Section 224.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Application, Inspection, and Maintenance of Retroreflective Material § 224.103 Characteristics of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Policy. 9.103 Section 9.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Responsible Prospective Contractors 9.103 Policy. (a) Purchases shall be made from...
48 CFR 3.103 - Independent pricing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Independent pricing. 3.103 Section 3.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 3.103 Independent pricing. ...
23 CFR 635.103 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Applicability. 635.103 Section 635.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS CONSTRUCTION AND MAINTENANCE Contract Procedures § 635.103 Applicability. The policies, requirements, and procedures prescribed...
42 CFR 475.103 - Eligibility of physician-access organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
....103 Section 475.103 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS QUALITY IMPROVEMENT ORGANIZATIONS Utilization and Quality Control Quality Improvement Organizations § 475.103 Eligibility of physician-access...
48 CFR 2501.103 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Applicability. 2501.103 Section 2501.103 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Purpose, Authority, Issuance 2501.103 Applicability. Except where a deviation...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Coverage. 930.103 Section 930.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Motor Vehicle Operators § 930.103 Coverage...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Coverage. 930.103 Section 930.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Motor Vehicle Operators § 930.103 Coverage...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Coverage. 930.103 Section 930.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Motor Vehicle Operators § 930.103 Coverage...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Coverage. 930.103 Section 930.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Motor Vehicle Operators § 930.103 Coverage...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Coverage. 930.103 Section 930.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROGRAMS FOR SPECIFIC POSITIONS AND EXAMINATIONS (MISCELLANEOUS) Motor Vehicle Operators § 930.103 Coverage...
48 CFR 3401.103 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Applicability. 3401.103 Section 3401.103 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION GENERAL ED ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 3401.103 Applicability. The FAR and...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Definitions. 230.103 Section 230.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL PROGRAMS Equal Employment Opportunity on Federal and Federal-Aid Construction Contracts (Including Supportive Services) § 230.103...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Definitions. 230.103 Section 230.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL PROGRAMS Equal Employment Opportunity on Federal and Federal-Aid Construction Contracts (Including Supportive Services) § 230.103...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Definitions. 230.103 Section 230.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL PROGRAMS Equal Employment Opportunity on Federal and Federal-Aid Construction Contracts (Including Supportive Services) § 230.103...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Definitions. 230.103 Section 230.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL PROGRAMS Equal Employment Opportunity on Federal and Federal-Aid Construction Contracts (Including Supportive Services) § 230.103...
5 CFR 572.103 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Recordkeeping. 572.103 Section 572.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS TRAVEL AND TRANSPORTATION EXPENSES; NEW APPOINTEES AND INTERVIEWS § 572.103 Recordkeeping. Each agency will maintain records of...
7 CFR 1400.103 - Charitable organizations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Charitable organizations. 1400.103 Section 1400.103... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Limitation § 1400.103 Charitable organizations. (a) A charitable organization, including a club, society, fraternal organization, or religious...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 10.3 Section 10.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL ENVIRONMENTAL CONSIDERATIONS General § 10.3 Definitions. (a) Regional Administrator means...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Authority. 2301.103 Section 2301.103 Federal Acquisition Regulations System SOCIAL SECURITY ADMINISTRATION GENERAL SOCIAL SECURITY ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 2301.103 Authority. The SSAR is prescribed under...
49 CFR 1016.103 - Proceedings covered.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 8 2010-10-01 2010-10-01 false Proceedings covered. 1016.103 Section 1016.103 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT... BY PARTIES TO BOARD ADJUDICATORY PROCEEDINGS General Provisions § 1016.103 Proceedings covered. (a...
49 CFR 1016.103 - Proceedings covered.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 8 2011-10-01 2011-10-01 false Proceedings covered. 1016.103 Section 1016.103 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT... BY PARTIES TO BOARD ADJUDICATORY PROCEEDINGS General Provisions § 1016.103 Proceedings covered. (a...
5 CFR 911.103 - Eligibility for indemnification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Eligibility for indemnification. 911.103 Section 911.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROCEDURES FOR STATES AND LOCALITIES TO REQUEST INDEMNIFICATION § 911.103 Eligibility...
5 CFR 911.103 - Eligibility for indemnification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Eligibility for indemnification. 911.103 Section 911.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROCEDURES FOR STATES AND LOCALITIES TO REQUEST INDEMNIFICATION § 911.103 Eligibility...
5 CFR 911.103 - Eligibility for indemnification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Eligibility for indemnification. 911.103 Section 911.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROCEDURES FOR STATES AND LOCALITIES TO REQUEST INDEMNIFICATION § 911.103 Eligibility...
5 CFR 911.103 - Eligibility for indemnification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Eligibility for indemnification. 911.103 Section 911.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROCEDURES FOR STATES AND LOCALITIES TO REQUEST INDEMNIFICATION § 911.103 Eligibility...
5 CFR 911.103 - Eligibility for indemnification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Eligibility for indemnification. 911.103 Section 911.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) PROCEDURES FOR STATES AND LOCALITIES TO REQUEST INDEMNIFICATION § 911.103 Eligibility...
40 CFR 97.103 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Measurements, abbreviations, and acronyms. 97.103 Section 97.103 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Annual Trading Program General Provisions § 97.103 Measurements, abbreviations, and acronyms...
5 CFR 180.103 - Time limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Time limitations. 180.103 Section 180.103... CLAIMS § 180.103 Time limitations. A claim must be presented in writing within 2 years after it accrues... occurred at a prior time. ...
5 CFR 180.103 - Time limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Time limitations. 180.103 Section 180.103... CLAIMS § 180.103 Time limitations. A claim must be presented in writing within 2 years after it accrues... occurred at a prior time. ...
5 CFR 180.103 - Time limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Time limitations. 180.103 Section 180.103... CLAIMS § 180.103 Time limitations. A claim must be presented in writing within 2 years after it accrues... occurred at a prior time. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Coverage. 730.103 Section 730.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NOTIFICATION OF POST-EMPLOYMENT RESTRICTIONS § 730.103 Coverage. (a) The following individuals are subject to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Coverage. 730.103 Section 730.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NOTIFICATION OF POST-EMPLOYMENT RESTRICTIONS § 730.103 Coverage. (a) The following individuals are subject to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Coverage. 730.103 Section 730.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NOTIFICATION OF POST-EMPLOYMENT RESTRICTIONS § 730.103 Coverage. (a) The following individuals are subject to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Coverage. 730.103 Section 730.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NOTIFICATION OF POST-EMPLOYMENT RESTRICTIONS § 730.103 Coverage. (a) The following individuals are subject to...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Coverage. 730.103 Section 730.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) NOTIFICATION OF POST-EMPLOYMENT RESTRICTIONS § 730.103 Coverage. (a) The following individuals are subject to...
48 CFR 1311.103 - Market acceptance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Market acceptance. 1311.103 Section 1311.103 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE COMPETITION AND ACQUISITION PLANNING DESCRIBING AGENCY NEEDS Selecting and Developing Requirements Documents 1311.103 Market...
48 CFR 811.103 - Market acceptance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Market acceptance. 811.103 Section 811.103 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS COMPETITION AND ACQUISITION PLANNING DESCRIBING AGENCY NEEDS Selecting and Developing Requirements Documents 811.103 Market...
48 CFR 611.103 - Market acceptance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Market acceptance. 611.103 Section 611.103 Federal Acquisition Regulations System DEPARTMENT OF STATE COMPETITION AND ACQUISITION PLANNING DESCRIBING AGENCY NEEDS Selecting and Developing Requirements Documents 611.103 Market acceptance...
48 CFR 1011.103 - Market Acceptance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Market Acceptance. 1011.103 Section 1011.103 Federal Acquisition Regulations System DEPARTMENT OF THE TREASURY COMPETITION AND ACQUISITION PLANNING DESCRIBING AGENCY NEEDS Selecting and Developing Requirements Documents 1011.103 Market...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Certifications. 103.4 Section 103.4 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.4...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false [Reserved] 103.1 Section 103.1 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.1 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false [Reserved] 103.1 Section 103.1 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.1 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false [Reserved] 103.1 Section 103.1 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.1 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Certifications. 103.4 Section 103.4 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.4...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Certifications. 103.4 Section 103.4 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.4...
26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).
Code of Federal Regulations, 2011 CFR
2011-04-01
... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects). Q-2...
26 CFR 1.103(n)-2T - Private activity bond defined (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
...(n)-2T Section 1.103(n)-2T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-2T Private activity bond defined (temporary). Q-1: What is the definition of the term “private activity bond”? A-1: In general, for purposes of §§ 1.103(n)-1T through 1.103(n)-6T, the term “private...
26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).
Code of Federal Regulations, 2010 CFR
2010-04-01
... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects). Q-2...
The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer
NASA Astrophysics Data System (ADS)
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.
48 CFR 951.103 - Ordering from Government supply sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... supply sources. 951.103 Section 951.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Government Supply Sources 951.103 Ordering from Government supply sources. (b) The Senior Procurement Executive shall be...
5 CFR 6401.103 - Prior approval for outside employment.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... 6401.103 Section 6401.103 Administrative Personnel ENVIRONMENTAL PROTECTION AGENCY SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE ENVIRONMENTAL PROTECTION AGENCY § 6401.103 Prior approval... an organization for which a different Deputy Ethics Official has responsibility, the employee must...
48 CFR 36.103 - Methods of contracting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Methods of contracting. 36.103 Section 36.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS General 36.103 Methods of contracting...
48 CFR 36.103 - Methods of contracting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Methods of contracting. 36.103 Section 36.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS General 36.103 Methods of contracting...
7 CFR 3015.103 - Withholding payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Withholding payments. 3015.103 Section 3015.103 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Payment Requirements § 3015.103 Withholding...
20 CFR 422.103 - Social security numbers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Social security numbers. 422.103 Section 422.103 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.103 Social security numbers. (a) General. The Social Security Administration (SSA) maintains a...
10 CFR 766.103 - Special Assessment invoices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Special Assessment invoices. 766.103 Section 766.103 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.103 Special Assessment...
10 CFR 766.103 - Special Assessment invoices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Special Assessment invoices. 766.103 Section 766.103 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.103 Special Assessment...
10 CFR 766.103 - Special Assessment invoices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Special Assessment invoices. 766.103 Section 766.103 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.103 Special Assessment...
47 CFR 19.735-103 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Definitions. 19.735-103 Section 19.735-103... § 19.735-103 Definitions. Commission means the Federal Communications Commission. Communications Act... partnership, a society, a joint stock company, or any other organization or institution. ...
48 CFR 42.103 - Contract audit services directory.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contract audit services directory. 42.103 Section 42.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Audit Services 42.103 Contract...
33 CFR 174.103 - Administration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Administration. 174.103 Section 174.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED....103 Administration. The State casualty reporting system must be administered by a State agency that...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Location. 960.103 Section 960.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EXECUTIVE BOARDS § 960.103 Location. Federal Executive Boards have been established and shall continue in...
48 CFR 1801.103 - Authority. (NASA supplements paragraph (a))
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Authority. (NASA supplements paragraph (a)) 1801.103 Section 1801.103 Federal Acquisition Regulations System NATIONAL..., Issuance 1801.103 Authority. (NASA supplements paragraph (a)) (a) Under the following authorities, the...
48 CFR 1801.103 - Authority. (NASA supplements paragraph (a))
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Authority. (NASA supplements paragraph (a)) 1801.103 Section 1801.103 Federal Acquisition Regulations System NATIONAL..., Issuance 1801.103 Authority. (NASA supplements paragraph (a)) (a) Under the following authorities, the...
48 CFR 1801.103 - Authority. (NASA supplements paragraph (a))
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Authority. (NASA supplements paragraph (a)) 1801.103 Section 1801.103 Federal Acquisition Regulations System NATIONAL..., Issuance 1801.103 Authority. (NASA supplements paragraph (a)) (a) Under the following authorities, the...
48 CFR 1801.103 - Authority. (NASA supplements paragraph (a))
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Authority. (NASA supplements paragraph (a)) 1801.103 Section 1801.103 Federal Acquisition Regulations System NATIONAL..., Issuance 1801.103 Authority. (NASA supplements paragraph (a)) (a) Under the following authorities, the...
48 CFR 1801.103 - Authority. (NASA supplements paragraph (a))
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Authority. (NASA supplements paragraph (a)) 1801.103 Section 1801.103 Federal Acquisition Regulations System NATIONAL..., Issuance 1801.103 Authority. (NASA supplements paragraph (a)) (a) Under the following authorities, the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... forum for cooperative transportation decision making for a metropolitan planning area. National Highway... 23 Highways 1 2010-04-01 2010-04-01 false Definitions. 500.103 Section 500.103 Highways FEDERAL... AND MONITORING SYSTEMS Management Systems § 500.103 Definitions. Unless otherwise specified in this...
48 CFR 2448.103 - Processing value engineering change proposals.
Code of Federal Regulations, 2013 CFR
2013-10-01
... engineering change proposals. 2448.103 Section 2448.103 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONTRACT MANAGEMENT VALUE ENGINEERING 2448.103 Processing value engineering change proposals. Upon receipt of a Value Engineering Change Proposal (VECP), the Contracting Officer...
48 CFR 2448.103 - Processing value engineering change proposals.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineering change proposals. 2448.103 Section 2448.103 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONTRACT MANAGEMENT VALUE ENGINEERING 2448.103 Processing value engineering change proposals. Upon receipt of a Value Engineering Change Proposal (VECP), the Contracting Officer...
48 CFR 2448.103 - Processing value engineering change proposals.
Code of Federal Regulations, 2012 CFR
2012-10-01
... engineering change proposals. 2448.103 Section 2448.103 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONTRACT MANAGEMENT VALUE ENGINEERING 2448.103 Processing value engineering change proposals. Upon receipt of a Value Engineering Change Proposal (VECP), the Contracting Officer...
48 CFR 2448.103 - Processing value engineering change proposals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... engineering change proposals. 2448.103 Section 2448.103 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONTRACT MANAGEMENT VALUE ENGINEERING 2448.103 Processing value engineering change proposals. Upon receipt of a Value Engineering Change Proposal (VECP), the Contracting Officer...
48 CFR 2448.103 - Processing value engineering change proposals.
Code of Federal Regulations, 2011 CFR
2011-10-01
... engineering change proposals. 2448.103 Section 2448.103 Federal Acquisition Regulations System DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONTRACT MANAGEMENT VALUE ENGINEERING 2448.103 Processing value engineering change proposals. Upon receipt of a Value Engineering Change Proposal (VECP), the Contracting Officer...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false [Reserved] 10.3 Section 10.3 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL SECURITY INFORMATION OR AN EMPLOYMENT CLEARANCE General Provisions § 10.3 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Secretary. 1160.103 Section 1160.103 Agriculture... Definitions § 1160.103 Secretary. Secretary means the Secretary of Agriculture of the United States or any... authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Secretary. 1150.103 Section 1150.103 Agriculture... Order Definitions § 1150.103 Secretary. Secretary means the Secretary of Agriculture of the United..., or to whom authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Secretary. 1160.103 Section 1160.103 Agriculture... Definitions § 1160.103 Secretary. Secretary means the Secretary of Agriculture of the United States or any... authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Secretary. 1150.103 Section 1150.103 Agriculture... Order Definitions § 1150.103 Secretary. Secretary means the Secretary of Agriculture of the United..., or to whom authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Secretary. 1150.103 Section 1150.103 Agriculture... Order Definitions § 1150.103 Secretary. Secretary means the Secretary of Agriculture of the United..., or to whom authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Secretary. 1160.103 Section 1160.103 Agriculture... Definitions § 1160.103 Secretary. Secretary means the Secretary of Agriculture of the United States or any... authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Secretary. 1160.103 Section 1160.103 Agriculture... Definitions § 1160.103 Secretary. Secretary means the Secretary of Agriculture of the United States or any... authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Secretary. 1160.103 Section 1160.103 Agriculture... Definitions § 1160.103 Secretary. Secretary means the Secretary of Agriculture of the United States or any... authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Secretary. 1150.103 Section 1150.103 Agriculture... Order Definitions § 1150.103 Secretary. Secretary means the Secretary of Agriculture of the United..., or to whom authority may hereafter be delegated, to act in the Secretary's stead. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Secretary. 1150.103 Section 1150.103 Agriculture... Order Definitions § 1150.103 Secretary. Secretary means the Secretary of Agriculture of the United..., or to whom authority may hereafter be delegated, to act in the Secretary's stead. ...
50 CFR 224.103 - Special prohibitions for endangered marine mammals.
Code of Federal Regulations, 2012 CFR
2012-10-01
... marine mammals. 224.103 Section 224.103 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS ENDANGERED MARINE AND ANADROMOUS SPECIES § 224.103 Special prohibitions for endangered marine mammals. (a) Approaching...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false [Reserved] 10.3 Section 10.3 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL SECURITY INFORMATION OR AN EMPLOYMENT CLEARANCE General Provisions § 10.3 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false [Reserved] 10.3 Section 10.3 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL SECURITY INFORMATION OR AN EMPLOYMENT CLEARANCE General Provisions § 10.3 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false [Reserved] 10.3 Section 10.3 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL SECURITY INFORMATION OR AN EMPLOYMENT CLEARANCE General Provisions § 10.3 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false [Reserved] 10.3 Section 10.3 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO RESTRICTED DATA OR NATIONAL SECURITY INFORMATION OR AN EMPLOYMENT CLEARANCE General Provisions § 10.3 [Reserved] ...
33 CFR 174.103 - Administration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Administration. 174.103 Section 174.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED....103 Administration. The State casualty reporting system must be administered by a State agency that...
7 CFR 1413.103 - Administration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Administration. 1413.103 Section 1413.103 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... Program § 1413.103 Administration. (a) DWQP will be administered under the general supervision of the...
7 CFR 1413.103 - Administration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Administration. 1413.103 Section 1413.103 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... Program § 1413.103 Administration. (a) DWQP will be administered under the general supervision of the...
33 CFR 174.103 - Administration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Administration. 174.103 Section 174.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED....103 Administration. The State casualty reporting system must be administered by a State agency that...
7 CFR 1413.103 - Administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Administration. 1413.103 Section 1413.103 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... Program § 1413.103 Administration. (a) DWQP will be administered under the general supervision of the...
33 CFR 174.103 - Administration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Administration. 174.103 Section 174.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED....103 Administration. The State casualty reporting system must be administered by a State agency that...
20 CFR 422.103 - Social security numbers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Social security numbers. 422.103 Section 422.103 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.103 Social security numbers. (a) General. The Social Security Administration (SSA) maintains a...
20 CFR 422.103 - Social security numbers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Social security numbers. 422.103 Section 422.103 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.103 Social security numbers. (a) General. The Social Security Administration (SSA) maintains a...
20 CFR 422.103 - Social security numbers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Social security numbers. 422.103 Section 422.103 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.103 Social security numbers. (a) General. The Social Security Administration (SSA) maintains a...
48 CFR 733.103-73 - Protests excluded from consideration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... consideration. 733.103-73 Section 733.103-73 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Protests 733.103-73 Protests excluded from consideration. (a) Contract administration. Disputes between a contractor and USAID are...
48 CFR 733.103-73 - Protests excluded from consideration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... consideration. 733.103-73 Section 733.103-73 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Protests 733.103-73 Protests excluded from consideration. (a) Contract administration. Disputes between a contractor and USAID are...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Scope. 1924.103 Section 1924.103 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... CONSTRUCTION AND REPAIR Planning and Performing Site Development Work § 1924.103 Scope. This subpart provides...
29 CFR 1926.103 - Respiratory protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...
29 CFR 1926.103 - Respiratory protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...
29 CFR 1926.103 - Respiratory protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...
29 CFR 1926.103 - Respiratory protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...
29 CFR 1926.103 - Respiratory protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...
7 CFR 1413.103 - Administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Administration. 1413.103 Section 1413.103 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... Program § 1413.103 Administration. (a) DWQP will be administered under the general supervision of the...
33 CFR 174.103 - Administration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Administration. 174.103 Section 174.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED....103 Administration. The State casualty reporting system must be administered by a State agency that...
5 CFR 731.103 - Delegation to agencies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Delegation to agencies. 731.103 Section 731.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) SUITABILITY Scope § 731.103 Delegation to agencies. (a) Subject to the limitations and...
5 CFR 731.103 - Delegation to agencies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Delegation to agencies. 731.103 Section 731.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) SUITABILITY Scope § 731.103 Delegation to agencies. (a) Subject to the limitations and...
5 CFR 731.103 - Delegation to agencies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Delegation to agencies. 731.103 Section 731.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) SUITABILITY Scope § 731.103 Delegation to agencies. (a) Subject to the limitations and...
5 CFR 731.103 - Delegation to agencies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Delegation to agencies. 731.103 Section 731.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) SUITABILITY Scope § 731.103 Delegation to agencies. (a) Subject to the limitations and...
5 CFR 731.103 - Delegation to agencies.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Delegation to agencies. 731.103 Section 731.103 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) SUITABILITY Scope § 731.103 Delegation to agencies. (a) Subject to the limitations and...
14 CFR 145.103 - Housing and facilities requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...
14 CFR 145.103 - Housing and facilities requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...
14 CFR 145.103 - Housing and facilities requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...
14 CFR 145.103 - Housing and facilities requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...
48 CFR 3011.103 - Market acceptance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Market acceptance. 3011.103 Section 3011.103 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND... Developing Requirements Documents 3011.103 Market acceptance. (a) Contracting officers may act on behalf of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Application. 646.103 Section 646.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS RAILROADS Railroad-Highway Insurance Protection § 646.103 Application. (a) This part applies: (1) To a contractors' legal...
48 CFR 2131.103 - Contracts with commercial organizations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contracts with commercial organizations. 2131.103 Section 2131.103 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT... CONTRACT COST PRINCIPLES AND PROCEDURES Applicability 2131.103 Contracts with commercial organizations. The...
40 CFR 97.103 - Measurements, abbreviations, and acronyms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... acronyms. 97.103 Section 97.103 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Annual Trading Program General Provisions § 97.103 Measurements, abbreviations, and acronyms. Measurements, abbreviations, and acronyms used in this subpart and subparts BB through II are defined as...
5 CFR 5301.103 - Outside employment and activities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Outside employment and activities. 5301.103 Section 5301.103 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.103 Outside employment and...
5 CFR 5301.103 - Outside employment and activities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Outside employment and activities. 5301.103 Section 5301.103 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.103 Outside employment and...
5 CFR 5301.103 - Outside employment and activities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Outside employment and activities. 5301.103 Section 5301.103 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.103 Outside employment and...
5 CFR 5301.103 - Outside employment and activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Outside employment and activities. 5301.103 Section 5301.103 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.103 Outside employment and...
5 CFR 5301.103 - Outside employment and activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Outside employment and activities. 5301.103 Section 5301.103 Administrative Personnel NATIONAL SCIENCE FOUNDATION SUPPLEMENTAL STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE NATIONAL SCIENCE FOUNDATION § 5301.103 Outside employment and...
20 CFR 422.103 - Social security numbers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Social security numbers. 422.103 Section 422.103 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.103 Social security numbers. (a) General. The Social Security Administration (SSA) maintains a...
8 CFR 103.10 - Precedent decisions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Precedent decisions. 103.10 Section 103.10 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.10 Precedent...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Surety bonds. 103.6 Section 103.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.6 Surety...
8 CFR 103.10 - Precedent decisions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Precedent decisions. 103.10 Section 103.10 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.10 Precedent...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Surety bonds. 103.6 Section 103.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.6 Surety...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Surety bonds. 103.6 Section 103.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.6 Surety...
8 CFR 103.10 - Precedent decisions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Precedent decisions. 103.10 Section 103.10 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION BENEFITS; BIOMETRIC REQUIREMENTS; AVAILABILITY OF RECORDS Applying for Benefits, Surety Bonds, Fees § 103.10 Precedent...
48 CFR 2022.103-4 - Approvals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Approvals. 2022.103-4 Section 2022.103-4 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies 2022.103-4 Approvals...
NASA Astrophysics Data System (ADS)
Brown, S.; Nicholls, R. J.; Goodwin, P.; Haigh, I. D.; Lincke, D.; Vafeidis, A. T.; Hinkel, J.
2018-03-01
We use multiple synthetic mitigation sea-level scenarios, together with a non-mitigation sea-level scenario from the Warming Acidification and Sea-level Projector model. We find sea-level rise (SLR) continues to accelerate post-2100 for all but the most aggressive mitigation scenarios indicative of 1.5°C and 2.0°C. Using the Dynamic Interactive Vulnerability Assessment modeling framework, we project land and population exposed in the 1 in 100 year coastal flood plain under SLR and population change. In 2000, the flood plain is estimated at 540 × 103 km2. By 2100, under the mitigation scenarios, it ranges between 610 × 103 and 640 × 103 km2 (580 × 103 and 700 × 103 km2 for the 5th and 95th percentiles). Thus differences between the mitigation scenarios are small in 2100. However, in 2300, flood plains are projected to increase to between 700 × 103 and 960 × 103 km2 in 2300 (610 × 103 and 1290 × 103 km2) for the mitigation scenarios, but 1630 × 103 km2 (1190 × 103 and 2220 × 103 km2) for the non-mitigation scenario. The proportion of global population exposed to SLR in 2300 is projected to be between 1.5% and 5.4% (1.2%-7.6%) (assuming no population growth after 2100) for the aggressive mitigation and the non-mitigation scenario, respectively. Hence over centennial timescales there are significant benefits to climate change mitigation and temperature stabilization. However, sea-levels will continue to rise albeit at lower rates. Thus potential impacts will keep increasing necessitating adaptation to existing coastal infrastructure and the careful planning of new coastal developments.
Manicone, Anne M.; Huizar, Isham; McGuire, John K.
2009-01-01
The E-cadherin receptor CD103 (αEβ7-integrin) is expressed on specific populations of pulmonary dendritic cells (DC) and T cells. However, CD103 function in the lung is not well understood. Matrilysin (MMP-7) expression is increased in lung injury and cleaves E-cadherin from injured lung epithelium. Thus, to assess matrilysin effects on CD103-E-cadherin interactions in lung injury, wild-type, CD103−/−, and Mmp7−/− mice, in which E-cadherin isn’t cleaved in the lung, were treated with bleomycin or bleomycin with nFMLP to reverse the defect in acute neutrophil influx seen in Mmp7−/− mice. Pulmonary CD103+ DC were significantly increased in injured wild-type compared with Mmp7−/− mice, and CD103+ leukocytes showed significantly enhanced interaction with E-cadherin on injured wild-type epithelium than with Mmp7−/− epithelium in vitro and in vivo. Bleomycin-treated CD103−/− mice had persistent neutrophilic inflammation, increased fibrosis, and increased mortality compared with wild-type mice, a phenotype that was partially recapitulated in bleomycin/nFMLP-treated Mmp7−/− mice. Soluble E-cadherin increased IL-12 and IL-10 and reduced IL-6 mRNA expression in wild-type bone marrow-derived DC but not in CD103−/− bone marrow-derived DC. Similar mRNA patterns were seen in lungs of bleomycin-injured wild-type, but not CD103−/− or Mmp7−/−, mice. In conclusion, matrilysin regulates pulmonary localization of DC that express CD103, and E-cadherin cleavage may activate CD103+ DC to limit inflammation and inhibit fibrosis. PMID:19893044
26 CFR 6a.103A-3 - Qualified veterans' mortgage bonds.
Code of Federal Regulations, 2013 CFR
2013-04-01
... meet the requirements of § 6a.103A-1(b)(6) and § 6a.103A-2(d)) for veterans; and (iii) Payment of the...' mortgage bond” means any issue of obligations— (i) Which meets the requirements of § 6.103A-1, § 6a.103A-2...) The date 30 years after the date on which such veteran left active service, or (B) January 1, 1985. (4...
26 CFR 6a.103A-3 - Qualified veterans' mortgage bonds.
Code of Federal Regulations, 2012 CFR
2012-04-01
... meet the requirements of § 6a.103A-1(b)(6) and § 6a.103A-2(d)) for veterans; and (iii) Payment of the...' mortgage bond” means any issue of obligations— (i) Which meets the requirements of § 6.103A-1, § 6a.103A-2...) The date 30 years after the date on which such veteran left active service, or (B) January 1, 1985. (4...
26 CFR 6a.103A-3 - Qualified veterans' mortgage bonds.
Code of Federal Regulations, 2011 CFR
2011-04-01
... meet the requirements of § 6a.103A-1(b)(6) and § 6a.103A-2(d)) for veterans; and (iii) Payment of the...' mortgage bond” means any issue of obligations— (i) Which meets the requirements of § 6.103A-1, § 6a.103A-2...) The date 30 years after the date on which such veteran left active service, or (B) January 1, 1985. (4...
26 CFR 6a.103A-3 - Qualified veterans' mortgage bonds.
Code of Federal Regulations, 2014 CFR
2014-04-01
... meet the requirements of § 6a.103A-1(b)(6) and § 6a.103A-2(d)) for veterans; and (iii) Payment of the...' mortgage bond” means any issue of obligations— (i) Which meets the requirements of § 6.103A-1, § 6a.103A-2...) The date 30 years after the date on which such veteran left active service, or (B) January 1, 1985. (4...
5 CFR 2635.103 - Applicability to members of the uniformed services.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the uniformed services shall issue regulations defining the ethical conduct obligations of... services. 2635.103 Section 2635.103 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH General Provisions § 2635.103...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Policy. 1245.103 Section 1245.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS Patent Waiver Regulations § 1245.103 Policy. (a) In implementing the provisions of section 305(f...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Policy. 1245.103 Section 1245.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS Patent Waiver Regulations § 1245.103 Policy. (a) In implementing the provisions of section 305(f...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Definitions. 164.103 Section 164.103 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS SECURITY AND PRIVACY General Provisions § 164.103 Definitions. As used in this part, the following terms...
38 CFR 13.103 - Investments by Federal fiduciaries.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Investments by Federal fiduciaries. 13.103 Section 13.103 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS VETERANS BENEFITS ADMINISTRATION, FIDUCIARY ACTIVITIES § 13.103 Investments by Federal fiduciaries. (a...
38 CFR 13.103 - Investments by Federal fiduciaries.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Investments by Federal fiduciaries. 13.103 Section 13.103 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS VETERANS BENEFITS ADMINISTRATION, FIDUCIARY ACTIVITIES § 13.103 Investments by Federal fiduciaries. (a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Definitions. 164.103 Section 164.103 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS SECURITY AND PRIVACY General Provisions § 164.103 Definitions. As used in this part, the following terms...