Sample records for ictal spect coregistered

  1. The promise of subtraction ictal SPECT co-registered to MRI for improved seizure localization in pediatric epilepsies: Affecting factors and relationship to the surgical outcome

    PubMed Central

    Stamoulis, Catherine; Verma, Nishant; Kaulas, Himanshu; Halford, Jonathan J.; Duffy, Frank H.; Pearl, Phillip L.; Treves, S. Ted

    2016-01-01

    Objective Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. Methods Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age = 11 years, (25th, 75th) quartiles = (6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. Results Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p = 0.02) but not MRI findings (p = 0.33), epilepsy etiology (p ≥ 0.27) or seizure duration (p = 0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). Significance Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to

  2. The promise of subtraction ictal SPECT co-registered to MRI for improved seizure localization in pediatric epilepsies: Affecting factors and relationship to the surgical outcome.

    PubMed

    Stamoulis, Catherine; Verma, Nishant; Kaulas, Himanshu; Halford, Jonathan J; Duffy, Frank H; Pearl, Phillip L; Treves, S Ted

    2017-01-01

    Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age=11years, (25th, 75th) quartiles=(6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p=0.02) but not MRI findings (p=0.33), epilepsy etiology (p≥0.27) or seizure duration (p=0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to≤25s, although the origin of seizure onset

  3. Ictal SPECT using an attachable automated injector: clinical usefulness in the prediction of ictal onset zone.

    PubMed

    Lee, Jung-Ju; Lee, Sang Kun; Choi, Jang Wuk; Kim, Dong-Wook; Park, Kyung Il; Kim, Bom Sahn; Kang, Hyejin; Lee, Dong Soo; Lee, Seo-Young; Kim, Sung Hun; Chung, Chun Kee; Nam, Hyeon Woo; Kim, Kwang Ki

    2009-12-01

    Ictal single-photon emission computed tomography (SPECT) is a valuable method for localizing the ictal onset zone in the presurgical evaluation of patients with intractable epilepsy. Conventional methods used to localize the ictal onset zone have problems with time lag from seizure onset to injection. To evaluate the clinical usefulness of a method that we developed, which involves an attachable automated injector (AAI), in reducing time lag and improving the ability to localize the zone of seizure onset. Patients admitted to the epilepsy monitoring unit (EMU) between January 1, 2003, and June 30, 2008, were included. The definition of ictal onset zone was made by comprehensive review of medical records, magnetic resonance imaging (MRI), data from video electroencephalography (EEG) monitoring, and invasive EEG monitoring if available. We comprehensively evaluated the time lag to injection and the image patterns of ictal SPECT using traditional visual analysis, statistical parametric mapping-assisted, and subtraction ictal SPECT coregistered to an MRI-assisted means of analysis. Image patterns were classified as localizing, lateralizing, and nonlateralizing. The whole number of patients was 99: 48 in the conventional group and 51 in the AAI group. The mean (SD) delay time to injection from seizure onset was 12.4+/-12.0 s in the group injected by our AAI method and 40.4+/-26.3 s in the group injected by the conventional method (P=0.000). The mean delay time to injection from seizure detection was 3.2+/-2.5 s in the group injected by the AAI method and 21.4+/-9.7 s in the group injected by the conventional method (P=0.000). The AAI method was superior to the conventional method in localizing the area of seizure onset (36 out of 51 with AAI method vs. 21 out of 48 with conventional method, P=0.009), especially in non-temporal lobe epilepsy (non-TLE) patients (17 out of 27 with AAI method vs. 3 out of 13 with conventional method, P=0.041), and in lateralizing the

  4. Magnetoencephalography and ictal SPECT in patients with failed epilepsy surgery.

    PubMed

    El Tahry, Riёm; Wang, Z Irene; Thandar, Aung; Podkorytova, Irina; Krishnan, Balu; Tousseyn, Simon; Guiyun, Wu; Burgess, Richard C; Alexopoulos, Andreas V

    2018-06-06

    Selected patients with intractable focal epilepsy who have failed a previous epilepsy surgery can become seizure-free with reoperation. Preoperative evaluation is exceedingly challenging in this cohort. We aim to investigate the diagnostic value of two noninvasive approaches, magnetoencephalography (MEG) and ictal single-photon emission computed tomography (SPECT), in patients with failed epilepsy surgery. We retrospectively included a consecutive cohort of patients who failed prior resective epilepsy surgery, underwent re-evaluation including MEG and ictal SPECT, and had another surgery after the re-evaluation. The relationship between resection and localization from each test was determined, and their association with seizure outcomes was analyzed. A total of 46 patients were included; 21 (46%) were seizure-free at 1-year followup after reoperation. Twenty-seven (58%) had a positive MEG and 31 (67%) had a positive ictal SPECT. The resection of MEG foci was significantly associated with seizure-free outcome (p = 0.002). Overlap of ictal SPECT hyperperfusion zones with resection was significantly associated with seizure-free outcome in the subgroup of patients with injection time ≤20 seconds(p = 0.03), but did not show significant association in the overall cohort (p = 0.46) although all injections were ictal. Patients whose MEG and ictal SPECT were concordant on a sublobar level had a significantly higher chance of seizure freedom (p = 0.05). MEG alone achieved successful localization in patients with failed epilepsy surgery with a statistical significance. Only ictal SPECT with early injection (≤20 seconds) had good localization value. Sublobar concordance between both tests was significantly associated with seizure freedom. SPECT can provide essential information in MEG-negative cases and vice versa. Our results emphasize the importance of considering a multimodal presurgical evaluation including MEG and SPECT in all patients with a

  5. Automatic and remote controlled ictal SPECT injection for seizure focus localization by use of a commercial contrast agent application pump.

    PubMed

    Feichtinger, Michael; Eder, Hans; Holl, Alexander; Körner, Eva; Zmugg, Gerda; Aigner, Reingard; Fazekas, Franz; Ott, Erwin

    2007-07-01

    In the presurgical evaluation of patients with partial epilepsy, the ictal single photon emission computed tomography (SPECT) is a useful noninvasive diagnostic tool for seizure focus localization. To achieve optimal SPECT scan quality, ictal tracer injection should be carried out as quickly as possible after the seizure onset and under highest safety conditions possible. Compared to the commonly used manual injection, an automatic administration of the radioactive tracer may provide higher quality standards for this procedure. In this study, therefore, we retrospectively analyzed efficiency and safety of an automatic injection system for ictal SPECT tracer application. Over a 31-month period, 26 patients underwent ictal SPECT by use of an automatic remote-controlled injection pump originally designed for CT-contrast agent application. Various factors were reviewed, including latency of ictal injection, radiation safety parameters, and ictal seizure onset localizing value. Times between seizure onset and tracer injection ranged between 3 and 48 s. In 21 of 26 patients ictal SPECT supported the localization of the epileptogenic focus in the course of the presurgical evaluation. In all cases ictal SPECT tracer injection was performed with a high degree of safety to patients and staff. Ictal SPECT by use of a remote-controlled CT-contrast agent injection system provides a high scan quality and is a safe and confirmatory presurgical evaluation technique in the epilepsy-monitoring unit.

  6. Co-registered perfusion SPECT/CT: utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates.

    PubMed

    Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2010-06-01

    To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1s (FEV(1)) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60Co-registered perfusion SPECT/CT has better correlation with clinical outcome in LVRS candidates than do planar imaging, SPECT or qualitatively assessed CT, and is at least as valid as quantitatively assessed CT. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  7. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  8. Correspondence between large-scale ictal and interictal epileptic networks revealed by single photon emission computed tomography (SPECT) and electroencephalography (EEG)-functional magnetic resonance imaging (fMRI).

    PubMed

    Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim

    2015-03-01

    Epilepsy is increasingly recognized as a network disorder, but the spatial relationship between ictal and interictal networks is still largely unexplored. In this work, we compared hemodynamic changes related to seizures and interictal spikes on a whole brain scale. Twenty-eight patients with refractory focal epilepsy (14 temporal and 14 extratemporal lobe) underwent both subtraction ictal single photon emission computed tomography (SPECT) coregistered to magnetic resonance imaging (MRI) (SISCOM) and spike-related electroencephalography (EEG-functional MRI (fMRI). SISCOM visualized relative perfusion changes during seizures, whereas EEG-fMRI mapped blood oxygen level-dependent (BOLD) changes related to spikes. Similarity between statistical maps of both modalities was analyzed per patient using the following two measures: (1) correlation between unthresholded statistical maps (Pearson's correlation coefficient) and (2) overlap between thresholded images (Dice coefficient). Overlap was evaluated at a regional level, for hyperperfusions and activations and for hypoperfusions and deactivations separately, using different thresholds. Nonparametric permutation tests were applied to assess statistical significance (p ≤ 0.05). We found significant and positive correlations between hemodynamic changes related to seizures and spikes in 27 (96%) of 28 cases (median correlation coefficient 0.29 [range -0.12 to 0.62]). In 20 (71%) of 28 cases, spatial overlap between hyperperfusion on SISCOM and activation on EEG-fMRI was significantly larger than expected by chance. Congruent changes were not restricted to the territory of the presumed epileptogenic zone, but could be seen at distant sites (e.g., cerebellum and basal ganglia). Overlap between ictal hypoperfusion and interictal deactivation was statistically significant in 22 (79%) of 28 patients. Despite the high rate of congruence, discrepancies were observed for both modalities. We conclude that hemodynamic changes

  9. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  10. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  11. Ictal SPECT in a case of pure musicogenic epilepsy.

    PubMed

    Gelisse, Philippe; Thomas, Pierre; Padovani, Raymond; Hassan-Sebbag, Nathalie; Pasquier, Jacques; Genton, Pierre

    2003-09-01

    A 39-year-old, right-handed woman had seizures for two years which were always triggered by exposure to various types of music: the first occurred while she listened to a tune she particularly liked, Con Te Partiro, by Andrea Boccelli. Other triggering factors were various types of music such as supermarket background music and polyphonic singing or instrumental music played by family members. The seizures had a stereotyped course: she felt anxious, tearful, then occurred slight obtundation, during which she smacked her lips and moved restlessly. There was no complete loss of consciousness, but some degree of amnesia. She never experienced a generalized tonic-clonic seizure, but reported rare spontaneous feelings of déjà-vu that had begun at the same time as the induced seizures. There were no other spontaneous attacks; only one seizure was apparently provoked, not by music but by a loud background noise in her office. She was a music lover and a singer. Interictal EEG showed independent slow waves over the temporal regions. Several seizures with EEG localisation over the right temporal region were elicited after several minutes of exposure to music. Monoauricular stimulation with the same music produced a seizure when applied to the left ear but was ineffective when applied to the right ear. Ictal SPECT demonstrated right temporal hyperperfusion. MRI was normal. On high dose of carbamazepine, seizure frequency decreased. The addition of topiramate resulted in full seizure control. Musicogenic epilepsy is a rare form of reflex epilepsy. Pure cases, when patients do not experience unprovoked seizures, are exceptional. Our report confirms the implication of the right temporal lobe in this epilepsy. Copyright John Libbey Eurotext 2003

  12. No evidence of perfusion abnormalities in the basal ganglia of a patient with generalized chorea-ballism and polycythaemia vera: analysis using subtraction SPECT co-registered to MRI.

    PubMed

    Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An

    2008-10-01

    Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.

  13. Voxel-based correlation between coregistered single-photon emission computed tomography and dynamic susceptibility contrast magnetic resonance imaging in subjects with suspected Alzheimer disease.

    PubMed

    Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A

    2008-12-01

    Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.

  14. SPECT measurements with /sup 99m/Tc-HM-PAO in focal epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryding, E.; Rosen, I.; Elmqvist, D.

    1988-12-01

    The ability of SPECT measurements with (/sup 99m/Tc)-HM-PAO (Ceretec) to find the location of the epileptic focus was studied in patients under consideration for neurosurgical treatment for therapy-resistant focal epilepsy. The location of low (/sup 99m/Tc)-HM-PAO uptake regions found at interictal measurements, and of high (/sup 99m/Tc)-HM-PAO uptake regions found at ictal measurements, was compared to the findings of extensive ictal and interictal EEG examinations, and to the results of CT and MRT. While EEG revealed focal epileptic activity in all of the 14 patients, SPECT showed regional abnormalities in 13 (93%). CT and MRT showed abnormal findings in 30%.

  15. Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy.

    PubMed

    Leung, H; Kwan, P; Elger, C E

    2006-08-01

    Basic science studies of the human brain have supported the cortical representation of cardiovascular responses, including heart rate variability. Clinical observations of ictal bradyarrhythmia may be mechanistically explained by the influence of the central autonomic network, although the localization and lateralization issues need to be considered in the light of patterns of seizure spread, hand dominance, and presence of lesions. Ictal bradyarrhythmia also offers a mechanistic explanation of sudden unexpected death in epilepsy (SUDEP), though it may explain only some but not all cases of SUDEP. The missing links are (1) clinical evidence of common factors shared by patients with ictal bradyarrhythmia and patients who die from SUDEP, (2) evidence of arrhythmia as a risk factor for SUDEP from epidemiological studies, and, (3) determination of the importance of ictal bradyarrhythmia in SUDEP with respect to other proposed mechanisms including apnea and intrinsic cardiac abnormalities. There remains a need to review the seizure mechanisms in cases of SUDEP and to step up the amount of concurrent ECG/intracranial EEG analysis in both ictal bradyarrhythmia and SUDEP cases.

  16. High density scalp EEG in frontal lobe epilepsy.

    PubMed

    Feyissa, Anteneh M; Britton, Jeffrey W; Van Gompel, Jamie; Lagerlund, Terrance L; So, Elson; Wong-Kisiel, Lilly C; Cascino, Gregory C; Brinkman, Benjamin H; Nelson, Cindy L; Watson, Robert; Worrell, Gregory A

    2017-01-01

    Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (p<0.01) and SISCOM 3/12 (p<0.01). hdEEG correctly lateralized seizure onset in 14/14 cases, compared to 9/14 (p=0.04) cases with conventional EEG. Seven patients underwent surgical resection, of whom five were seizure free. hdEEG monitoring should be considered in patients with suspected frontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization. Published by Elsevier B.V.

  17. Localizing and lateralizing value of ictal flatulence.

    PubMed

    Strzelczyk, Adam; Nowak, Mareike; Bauer, Sebastian; Reif, Philipp S; Oertel, Wolfgang H; Knake, Susanne; Hamer, Hajo M; Rosenow, Felix

    2010-02-01

    Autonomic seizures have been associated with seizure onset in the temporal or insular lobe and consist of variations in blood pressure and heart rate, sweating, flushing, piloerection, hypersalivation, vomiting, spitting, and alterations in bladder and bowel functions. The aim of this study was to evaluate the localizing and lateralizing value of ictal flatulence. Medical records of patients with focal epilepsies who were monitored at the Interdisciplinary Epilepsy Center Marburg between 2006 and 2009 were reviewed for the occurrence of ictal flatulence. Clinical, electrophysiological, and imaging data were reviewed and compared with data for previously reported cases of ictal flatulence. Two patients with ictal flatulence were identified (0.6%). In both patients, ictal flatulence was associated with a seizure pattern in the temporal lobe of the dominant hemisphere. Our cases and previously reported cases point toward activation of insular cortex because of such additional autonomic symptoms as unilateral piloerection, tachycardia, profound sweating, and flushing of the face. Ictal flatulence is a rare manifestation of autonomic seizures and a localizing sign for temporal or/and insular lobe epilepsies. In general, ictal flatulence seems to have no lateralizing value. (c) 2009 Elsevier Inc. All rights reserved.

  18. Ictal SPECT in patients with rapid eye movement sleep behaviour disorder.

    PubMed

    Mayer, Geert; Bitterlich, Marion; Kuwert, Torsten; Ritt, Philipp; Stefan, Hermann

    2015-05-01

    Rapid eye movement sleep behaviour disorder is a rapid eye movement parasomnia clinically characterized by acting out dreams due to disinhibition of muscle tone in rapid eye movement sleep. Up to 80-90% of the patients with rapid eye movement sleep behaviour disorder develop neurodegenerative disorders within 10-15 years after symptom onset. The disorder is reported in 45-60% of all narcoleptic patients. Whether rapid eye movement sleep behaviour disorder is also a predictor for neurodegeneration in narcolepsy is not known. Although the pathophysiology causing the disinhibition of muscle tone in rapid eye movement sleep behaviour disorder has been studied extensively in animals, little is known about the mechanisms in humans. Most of the human data are from imaging or post-mortem studies. Recent studies show altered functional connectivity between substantia nigra and striatum in patients with rapid eye movement sleep behaviour disorder. We were interested to study which regions are activated in rapid eye movement sleep behaviour disorder during actual episodes by performing ictal single photon emission tomography. We studied one patient with idiopathic rapid eye movement sleep behaviour disorder, one with Parkinson's disease and rapid eye movement sleep behaviour disorder, and two patients with narcolepsy and rapid eye movement sleep behaviour disorder. All patients underwent extended video polysomnography. The tracer was injected after at least 10 s of consecutive rapid eye movement sleep and 10 s of disinhibited muscle tone accompanied by movements registered by an experienced sleep technician. Ictal single photon emission tomography displayed the same activation in the bilateral premotor areas, the interhemispheric cleft, the periaqueductal area, the dorsal and ventral pons and the anterior lobe of the cerebellum in all patients. Our study shows that in patients with Parkinson's disease and rapid eye movement sleep behaviour disorder-in contrast to wakefulness

  19. Ictal autoscopic phenomena and near death experiences: a study of five patients with ictal autoscopies.

    PubMed

    Hoepner, Robert; Labudda, Kirsten; May, Theodor W; Schoendienst, Martin; Woermann, Friedrich G; Bien, Christian G; Brandt, Christian

    2013-03-01

    Autoscopic phenomena in general may-among other conditions-occur during epileptic seizures and near death experiences. We set the hypothesis that ictal autoscopic phenomena and near death experiences have a similar semiology as measured by the Near Death Experience Questionnaire. We also investigated whether patients with aura before temporal lobe seizures with or without autoscopic phenomena could be distinguished by this questionnaire. For these purposes, we examined five patients with ictal autoscopy and 12 patients with aura before temporal lobe seizures without ictal autoscopy as controls. We used a cut-off of 7 points or higher on the Near Death Experience Questionnaire for indicating the semiology of a near death experience and for distinguishing patients with ictal autoscopy from controls. This cut-off separated patients with ictal autoscopic phenomena from aura before temporal lobe seizures without autoscopy (p = 0.0002, two-sided, exact Fisher's Test; specificity: 100 % [CI95 % 77.9 and 100 %], sensitivity: 100 % [CI95 % 54.9 and 100 %]). Furthermore, all autoscopic patients (range 7-10) and none of the controls (range 0-5) had scores of 7 points or higher. Thus, the individual experiences during simple partial autoscopic seizures and near death experiences are similar, at least in some prominent aspects. These findings might be of particular interest for the pathophysiology of near death experiences, as all patients with ictal autoscopic phenomena had an epileptic dysfunction at the temporo-parietal junction or its neighboring regions. Therefore, a malfunction of this brain region might also be involved in near death experiences of other origins especially during states which could cause a near death experience and a cerebral excitability.

  20. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co-registered

  1. Five pediatric cases of ictal fear with variable outcomes.

    PubMed

    Akiyama, Mari; Kobayashi, Katsuhiro; Inoue, Takushi; Akiyama, Tomoyuki; Yoshinaga, Harumi

    2014-10-01

    Ictal fear is an uncommon condition in which fear manifests as the main feature of epileptic seizures. The literature has suggested that ictal fear is generally associated with poor seizure outcomes. We wanted to clarify the variability in seizure outcome of children with ictal fear. We identified five pediatric patients with ictal fear who were followed up on at Okayama University Hospital between January 2003 and December 2012. We retrospectively reviewed their clinical records and EEG findings. The onset age of epilepsy ranged from 8 months to 9 years and 10 months. The common ictal symptoms were sudden fright, clinging to someone nearby, and subsequent impairment of consciousness, which were often accompanied by complex visual hallucinations and psychosis-like complaints. Ictal fear, in four patients, was perceived as a nonepileptic disorder by their parents. Ictal electroencephalograms (EEG) of ictal fear were obtained in all patients. Three showed frontal onset, while the other two showed centrotemporal or occipital onsets. Two patients were seizure free at last follow-up, while seizures persisted in the other three. A patient with seizure onset during infancy had a favorable outcome, which was considered to be compatible with benign partial epilepsy with affective symptoms. Ictal fear is not always associated with a symptomatic cause or a poor seizure outcome. It is quite important to make a correct diagnosis of ictal fear as early as possible to optimize treatment. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Ictal electroencephalograms in neonatal seizures: characteristics and associations.

    PubMed

    Nagarajan, Lakshmi; Ghosh, Soumya; Palumbo, Linda

    2011-07-01

    The characteristics of ictal electroencephalograms in 160 neonatal seizures of 43 babies were correlated with mortality and neurodevelopmental outcomes. Neonatal seizures are focal at onset, most frequently temporal, and often occur during sleep. Twenty-one percent of babies with seizures died, and 76% of survivors manifested neurodevelopmental impairment during 2-6-year follow-up. A low-amplitude ictal electroencephalogram discharge was associated with increased mortality, and a frequency of <2 Hz with increased morbidity. Status epilepticus, ictal fractions, multiple foci, and bihemispheric involvement did not influence outcomes. Of 160 seizures, 99 exhibited no associated clinical features (electrographic seizures). Neonatal seizures with clinical correlates (electroclinical seizures) exhibited a higher amplitude and frequency of ictal electroencephalogram discharge than electrographic seizures. During electroclinical seizures, the ictal electroencephalogram was more likely to involve larger areas of the brain and to cross the midline. Mortality and morbidity were similar in babies with electroclinical and electrographic seizures, emphasizing the need to diagnose and treat both types. Ictal electroencephalogram topography has implications for electrode application during limited-channel, amplitude-integrated electroencephalograms. We recommend temporal and paracentral electrodes. Video electroencephalograms are important in diagnosing neonatal seizures and providing useful information regarding ictal electroencephalogram characteristics. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The localizing value of ictal EEG in focal epilepsy.

    PubMed

    Foldvary, N; Klem, G; Hammel, J; Bingaman, W; Najm, I; Lüders, H

    2001-12-11

    To investigate the lateralization and localization of ictal EEG in focal epilepsy. A total of 486 ictal EEG of 72 patients with focal epilepsy arising from the mesial temporal, neocortical temporal, mesial frontal, dorsolateral frontal, parietal, and occipital regions were analyzed. Surface ictal EEG was adequately localized in 72% of cases, more often in temporal than extratemporal epilepsy. Localized ictal onsets were seen in 57% of seizures and were most common in mesial temporal lobe epilepsy (MTLE), lateral frontal lobe epilepsy (LFLE), and parietal lobe epilepsy, whereas lateralized onsets predominated in neocortical temporal lobe epilepsy and generalized onsets in mesial frontal lobe epilepsy (MFLE) and occipital lobe epilepsy. Approximately two-thirds of seizures were localized, 22% generalized, 4% lateralized, and 6% mislocalized/lateralized. False localization/lateralization occurred in 28% of occipital and 16% of parietal seizures. Rhythmic temporal theta at ictal onset was seen exclusively in temporal lobe seizures, whereas localized repetitive epileptiform activity was highly predictive of LFLE. Seizures arising from the lateral convexity and mesial regions were differentiated by a high incidence of repetitive epileptiform activity at ictal onset in the former and rhythmic theta activity in the latter. With the exception of mesial frontal lobe epilepsy, ictal recordings are very useful in the localization/lateralization of focal seizures. Some patterns are highly accurate in localizing the epileptogenic lobe. One limitation of ictal EEG is the potential for false localization/lateralization in occipital and parietal lobe epilepsies.

  4. Ictal EEG/fMRI study of vertiginous seizures.

    PubMed

    Morano, Alessandra; Carnì, Marco; Casciato, Sara; Vaudano, Anna Elisabetta; Fattouch, Jinane; Fanella, Martina; Albini, Mariarita; Basili, Luca Manfredi; Lucignani, Giulia; Scapeccia, Marco; Tomassi, Regina; Di Castro, Elisabetta; Colonnese, Claudio; Giallonardo, Anna Teresa; Di Bonaventura, Carlo

    2017-03-01

    Vertigo and dizziness are extremely common complaints, related to either peripheral or central nervous system disorders. Among the latter, epilepsy has to be taken into consideration: indeed, vertigo may be part of the initial aura of a focal epileptic seizure in association with other signs/symptoms, or represent the only ictal manifestation, a rare phenomenon known as "vertiginous" or "vestibular" seizure. These ictal symptoms are usually related to a discharge arising from/involving temporal or parietal areas, which are supposed to be a crucial component of the so-called "vestibular cortex". In this paper, we describe three patients suffering from drug-resistant focal epilepsy, symptomatic of malformations of cortical development or perinatal hypoxic/ischemic lesions located in the posterior regions, who presented clusters of vertiginous seizures. The high recurrence rate of such events, recorded during video-EEG monitoring sessions, offered the opportunity to perform an ictal EEG/fMRI study to identify seizure-related hemodynamic changes. The ictal EEG/fMRI revealed the main activation clusters in the temporo-parieto-occipital regions, which are widely recognized to be involved in the processing of vestibular information. Interestingly, ictal deactivation was also detected in the ipsilateral cerebellar hemisphere, suggesting the ictal involvement of cortical-subcortical structures known to be part of the vestibular integration network. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ictal and interictal electric source imaging in presurgical evaluation: a prospective study.

    PubMed

    Sharma, Praveen; Scherg, Michael; Pinborg, Lars H; Fabricius, Martin; Rubboli, Guido; Pedersen, Birthe; Leffers, Anne-Mette; Uldall, Peter; Jespersen, Bo; Brennum, Jannick; Mølby Henriksen, Otto; Beniczky, Sándor

    2018-05-11

    Accurate localization of the epileptic focus is essential for surgical treatment of patients with drug- resistant epilepsy. EEG source imaging (ESI) is increasingly used in presurgical evaluation. However, most previous studies analysed interictal discharges. Prospective studies comparing feasibility and accuracy of interictal (II) and ictal (IC) ESI are lacking. We prospectively analysed long-term video EEG recordings (LTM) of patients admitted for presurgical evaluation. We performed ESI of II and IC signals, using two methods: equivalent current dipole (ECD) and distributed source model (DSM). LTM recordings employed the standard 25-electrode array (including inferior temporal electrodes). An age-matched template head-model was used for source analysis. Results were compared with intracranial recordings (ICR), conventional neuroimaging methods (MRI, PET, SPECT) and outcome one year after surgery. Eighty-seven consecutive patients were analysed. ECD gave a significantly higher proportion of patients with localised focal abnormalities (94%) compared to MRI (70%), PET (66%) and SPECT (64%). Agreement between the ESI methods and ICR was moderate to substantial (k=0.56-0.79). Fifty-four patients were operated (47 for more than one year ago) and 62% of them became seizure-free. Localization accuracy of II-ESI was 51% for DSM and 57% for ECD; for IC-ESI this was 51% (DSM) and 62% (ECD). The differences between the ESI methods were not significant. Differences in localization accuracy between ESI and MRI (55%), PET (33%) and SPECT (40%) were not significant. II and IC ESI of LTM-data have high feasibility and their localisation accuracy is similar to the conventional neuroimaging methods. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Ictal verbal help-seeking: Occurrence and the underlying etiology.

    PubMed

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Bujarski, Krzysztof; Rabiei, Amin H; Aminian, Narsis; Wyeth, Dale; Sperling, Michael R

    2016-11-01

    Ictal verbal help-seeking has never been systematically studied before. In this study, we evaluated a series of patients with ictal verbal help-seeking to characterize its frequency and underlying etiology. We retrospectively reviewed all the long-term video-EEG reports from Jefferson Comprehensive Epilepsy Center over a 12-year period (2004-2015) for the occurrence of the term "help" in the text body. All the extracted reports were reviewed and patients with at least one episode of documented ictal verbal help-seeking in epilepsy monitoring unit (EMU) were studied. For each patient, the data were reviewed from the electronic medical records, EMU report, and neuroimaging records. During the study period, 5133 patients were investigated in our EMU. Twelve patients (0.23%) had at least one episode of documented ictal verbal help-seeking. Nine patients (six women and three men) had epilepsy and three patients (two women and one man) had psychogenic nonepileptic seizures (PNES). Seven out of nine patients with epilepsy had temporal lobe epilepsy; six patients had right temporal lobe epilepsy. Ictal verbal help-seeking is a rare finding among patients evaluated in epilepsy monitoring units. Ictal verbal help-seeking may suggest that seizures arise in or propagate to the right temporal lobe. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. On the optimal z-score threshold for SISCOM analysis to localize the ictal onset zone.

    PubMed

    De Coster, Liesbeth; Van Laere, Koen; Cleeren, Evy; Baete, Kristof; Dupont, Patrick; Van Paesschen, Wim; Goffin, Karolien E

    2018-04-17

    In epilepsy patients, SISCOM or subtraction ictal single photon emission computed tomography co-registered to magnetic resonance imaging has become a routinely used, non-invasive technique to localize the ictal onset zone (IOZ). Thresholding of clusters with a predefined number of standard deviations from normality (z-score) is generally accepted to localize the IOZ. In this study, we aimed to assess the robustness of this parameter in a group of patients with well-characterized drug-resistant epilepsy in whom the exact location of the IOZ was known after successful epilepsy surgery. Eighty patients underwent preoperative SISCOM and were seizure free in a postoperative period of minimum 1 year. SISCOMs with z-threshold 2 and 1.5 were analyzed by two experienced readers separately, blinded from the clinical ground truth data. Their reported location of the IOZ was compared with the operative resection zone. Furthermore, confidence scores of the SISCOM IOZ were compared for the two thresholds. Visual reporting with a z-score threshold of 1.5 and 2 showed no statistically significant difference in localizing correspondence with the ground truth (70 vs. 72% respectively, p = 0.17). Interrater agreement was moderate (κ = 0.65) at the threshold of 1.5, but high (κ = 0.84) at a threshold of 2, where also reviewers were significantly more confident (p < 0.01). SISCOM is a clinically useful, routinely used modality in the preoperative work-up in many epilepsy surgery centers. We found no significant differences in localizing value of the IOZ using a threshold of 1.5 or 2, but interrater agreement and reader confidence were higher using a z-score threshold of 2.

  8. Role of ictal baseline shifts and ictal high-frequency oscillations in stereo-electroencephalography analysis of mesial temporal lobe seizures.

    PubMed

    Wu, Shasha; Kunhi Veedu, Hari Prasad; Lhatoo, Samden D; Koubeissi, Mohamad Z; Miller, Jonathan P; Lüders, Hans O

    2014-05-01

    To assess the role of ictal baseline shifts (IBS) and ictal high-frequency oscillations (iHFOs) in intracranial electroencephalography (EEG) presurgical evaluation by analysis of the spatial and temporal relationship of IBS, iHFOs with ictal conventional stereo-electroencephalography (icEEG) in mesial temporal lobe seizures (MTLS). We studied 15 adult patients with medically refractory MTLS who underwent monitoring with depth electrodes. Seventy-five ictal EEG recordings at 1,000 Hz sampling rate were studied. Visual comparison of icEEG, IBS, and iHFOs were performed using Nihon-Kohden Neurofax systems (acquisition range 0.016-300 Hz). Each recorded ictal EEG was analyzed with settings appropriate for displaying icEEG, IBS, and iHFOs. IBS and iHFOs were observed in all patients and in 91% and 81% of intracranial seizures, respectively. IBS occurred before (22%), at (57%), or after (21%) icEEG onset. In contrast, iHFOs occurred at (30%) or after (70%) icEEG onset. The onset of iHFOs was 11.5 s later than IBS onset (p < 0.0001). All of the earliest onset of IBS and 70% of the onset of iHFOs overlapped with the ictal onset zone (IOZ). Compared with iHFOs, interictal HFOs (itHFOs) were less correlated with IOZ. In contrast to icEEG, IBS and iHFOs had smaller spatial distributions in 70% and 100% of the seizures, respectively. An IBS dipole was observed in 66% of the seizures. Eighty-seven percent of the dipoles had a negative pole at the anterior/medial part of amygdala/hippocampus complex (A-H complex) and a positive pole at the posterior/lateral part of the A-H complex. The results suggest that evaluation of IBS and iHFOs, in addition to routine icEEG, helps in more accurately defining the IOZ. This study also shows that the onset and the spatial distribution of icEEG, IBS, and iHFOs do not overlap, suggesting that they reflect different cellular or network dynamics. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  9. Scalp EEG Ictal Gamma and Beta Activity during Infantile Spasms: Evidence of Focality

    PubMed Central

    Nariai, Hiroki; Beal, Jules; Galanopoulou, Aristea S.; Mowrey, Wenzhu B.; Bickel, Stephan; Sogawa, Yoshimi; Jehle, Rana; Shinnar, Shlomo; Moshé, Solomon L.

    2017-01-01

    Objective We investigated temporal and spatial characteristics of ictal gamma and beta activity on scalp EEG during spasms in patients with West syndrome (WS) to evaluate potential focal cortical onset. Methods A total of 1033 spasms from 34 patients with WS of various etiologies were analyzed in video-EEG using time-frequency analysis. Ictal gamma (35–90 Hz) and beta (15–30 Hz) activities were correlated with visual symmetry of spasms, objective EMG (electromyography) analysis, and etiology of WS. Results Prior to the ictal motor manifestation, focal ictal gamma activity emerged from one hemisphere (71%, 24/34) or from midline (26%, 9/34), and was rarely simultaneously bilateral (3%, 1/34). Focal ictal beta activity emerged from either one hemisphere (68%, 23/34) or from midline (32%, 11/34). Onsets of focal ictal gamma and beta activity were most commonly observed around the parietal areas. Focal ictal gamma activity propagated faster than ictal beta activity to adjacent electrodes (median: 65 vs. 170 ms, p<0.01), and to contralateral hemisphere (median: 100 vs. 170 ms, p=0.01). Asymmetric peak amplitude of ictal gamma activity in the centroparietal areas (C3-P3 vs. C4-P4) correlated with asymmetric semiology. On the other hand, the majority of visually symmetric spasms showed asymmetry in peak amplitude and interhemispheric onset latency difference in both ictal gamma and beta activity. Significance Spasms may be a seizure with focal electrographic onset regardless of visual symmetry. Asymmetric involvement of ictal gamma activity to the centroparietal areas may determine the motor manifestations in WS. Scalp EEG ictal gamma and beta activity may be useful to demonstrate localized seizure onset in infants with WS. PMID:28397999

  10. Stimulus-Induced Rhythmic, Periodic, or Ictal Discharges (SIRPIDs).

    PubMed

    Johnson, Emily L; Kaplan, Peter W; Ritzl, Eva K

    2018-05-01

    Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs) are a relatively common phenomenon found on prolonged electroencephalogram (EEG) monitoring that captures state changes and stimulation of critically ill patients. Common causes include hypoxic injury, traumatic brain injury, and hemorrhage, as well as toxic-metabolic disturbances. Some studies have shown an association between SIRPIDs and the presence of spontaneous electrographic seizures. Although the degree to which SIRPIDs should be treated with antiepileptic medications is unknown, the rare cases of functional imaging obtained in patients with SIRPIDs have not shown an increase in cerebral blood flow to suggest an active ictal process. Stimulus-induced rhythmic, periodic, or ictal discharges may reflect dysregulation of thalamo-cortical projections into abnormal or hyperexcitable cortex.

  11. Neuronal autoantibodies in epilepsy patients with peri-ictal autonomic findings.

    PubMed

    Baysal-Kirac, Leyla; Tuzun, Erdem; Erdag, Ece; Ulusoy, Canan; Vanli-Yavuz, Ebru Nur; Ekizoglu, Esme; Peach, Sian; Sezgin, Mine; Bebek, Nerses; Gurses, Candan; Gokyigit, Aysen; Vincent, Angela; Baykan, Betul

    2016-03-01

    Autonomic dysfunction has frequently been reported in autoimmune encephalitis associated with seizures and there is growing evidence that epilepsy patients may display neuronal autoantibodies (NAAb). The aim of this study was to investigate the frequency of NAAb in epilepsy patients with peri-ictal autonomic findings. Fifty-eight patients (37 women/21 men; average age of 34.2 ± 9.9 years and epilepsy duration of 19.1 ± 9.6 years) who had at least one video-EEG recorded focal or secondary generalized seizure with clear-cut documented peri-ictal autonomic findings, or consistently reported seizures with autonomic semiology, were included. NAAb were tested by RIA or cell based assays. NAAb were present in 17 of 58 (29.3%) patients. Among seropositive patients, antibodies were directed against N-methyl-D-aspartate receptor (NMDAR) in 5 (29%), contactin-associated protein-like 2 (CASPR2) in 5 (29%), uncharacterized voltage gated potassium channel (VGKC)-complex antigens in 3 (18%), glutamic acid decarboxylase (GAD) in 2 (12%), glycine receptor (GLYR) in one (6%) and type A gamma aminobutyric acid receptor (GABAAR) in one patient (6%). Peri-ictal gastrointestinal manifestations, piloerection, ictal fever, urinary urge, and cough occurred more commonly in the seropositive group. The prevalences of psychotic attacks and status epilepticus were significantly increased in the seropositive group. Seropositivity prevalence in our patient group with peri-ictal autonomic findings is higher than other previously reported epilepsy cohorts. In our study, ictal fever-VGKC-complex antibody and pilomotor seizure-GABAAR antibody associations were documented for the first time. Chronic epilepsy patients with peri-ictal autonomic semiology, history of status epilepticus and psychotic disorder may benefit from autoantibody screening.

  12. Spatiotemporal source analysis in scalp EEG vs. intracerebral EEG and SPECT: a case study in a 2-year-old child.

    PubMed

    Aarabi, A; Grebe, R; Berquin, P; Bourel Ponchel, E; Jalin, C; Fohlen, M; Bulteau, C; Delalande, O; Gondry, C; Héberlé, C; Moullart, V; Wallois, F

    2012-06-01

    This case study aims to demonstrate that spatiotemporal spike discrimination and source analysis are effective to monitor the development of sources of epileptic activity in time and space. Therefore, they can provide clinically useful information allowing a better understanding of the pathophysiology of individual seizures with time- and space-resolved characteristics of successive epileptic states, including interictal, preictal, postictal, and ictal states. High spatial resolution scalp EEGs (HR-EEG) were acquired from a 2-year-old girl with refractory central epilepsy and single-focus seizures as confirmed by intracerebral EEG recordings and ictal single-photon emission computed tomography (SPECT). Evaluation of HR-EEG consists of the following three global steps: (1) creation of the initial head model, (2) automatic spike and seizure detection, and finally (3) source localization. During the source localization phase, epileptic states are determined to allow state-based spike detection and localization of underlying sources for each spike. In a final cluster analysis, localization results are integrated to determine the possible sources of epileptic activity. The results were compared with the cerebral locations identified by intracerebral EEG recordings and SPECT. The results obtained with this approach were concordant with those of MRI, SPECT and distribution of intracerebral potentials. Dipole cluster centres found for spikes in interictal, preictal, ictal and postictal states were situated an average of 6.3mm from the intracerebral contacts with the highest voltage. Both amplitude and shape of spikes change between states. Dispersion of the dipoles was higher in the preictal state than in the postictal state. Two clusters of spikes were identified. The centres of these clusters changed position periodically during the various epileptic states. High-resolution surface EEG evaluated by an advanced algorithmic approach can be used to investigate the

  13. Prolonged ictal aphasia: a diagnosis to consider.

    PubMed

    Herskovitz, Moshe; Schiller, Yitzhak

    2012-11-01

    Aphasia is a common symptom encountered by clinical neurologists. It is usually caused by strokes or lesions involving language regions of the brain, yet prolonged aphasia is rarely the sole manifestation of a simple partial status epilepticus. We report six patients, who suffered from prolonged ictal aphasia. All but one patient had a structural lesion in the left hemisphere, only three suffered from clinical seizures during or shortly prior to the aphasic episode. All patients had ictal patterns on the electroencephalogram (EEG), four of whom had periodic lateralized epileptiform discharges, and five showed frequent recurrent electrographic seizures during the aphasic state. The aphasia lasted several days in all patients, and it resolved after administration of antiepileptic drug treatment. In conclusion, prolonged ictal aphasia is a rare but important treatable cause of aphasia. Surface EEG recordings should be obtained in all patients with unexplained prolonged aphasia to diagnose this rare but treatable entity. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Long-term subdural strip electrocorticographic monitoring of ictal déjà vu.

    PubMed

    Weinand, M E; Hermann, B; Wyler, A R; Carter, L P; Oommen, K J; Labiner, D; Ahern, G; Herring, A

    1994-01-01

    We report a series of 8 patients with ictal déjà vu. Subdural strip electrocorticographic (ECoG) monitoring localized the ictal epileptogenic focus as follows: right (n = 6) and left (n = 2) mesiotemporal lobe. In all 8 patients, the left hemisphere was dominant for language function based on intracarotid amytal testing. In 6 right-handed patients, ictal déjà vu was associated with a right temporal lobe focus. However, in the 2 left-handed patients, the ictal focus was left temporal lobe. Although ictal déjà vu localizes the epileptic focus to temporal lobe, this experimental phenomenon appears to lateralize to the hemisphere nondominant for handedness.

  15. Ictal fear: Associations with age, gender, and other experiential phenomena.

    PubMed

    Chong, Derek J; Dugan, Patricia

    2016-09-01

    The aim of this study was to determine the relationship of fear to other auras and to gender and age using a large database. The Epilepsy Phenome/Genome Project (EPGP) is a multicenter, multicontinental cross-sectional study in which ictal symptomatology and other data were ascertained in a standardized series of questionnaires then corroborated by epilepsy specialists. Auras were classified into subgroups of symptoms, with ictal fear, panic, or anxiety as a single category. Of 536 participants with focal epilepsy, 72 were coded as having ictal fear/panic/anxiety. Reviewing raw patient responses, 12 participants were deemed not to have fear, and 24 had inadequate data, leaving 36 (7%) of 512 with definite ictal fear. In univariate analyses, fear was significantly associated with auras historically considered temporal lobe in origin, including cephalic, olfactory, and visceral complaints; déjà vu; and derealization. On both univariate and multivariate stepwise analyses, fear was associated with jamais vu and auras with cardiac symptoms, dyspnea, and chest tightening. Expressive aphasia was associated with fear on univariate analysis only, but the general category of aphasias was associated with fear only in the multivariate model. There was no age or gender relationship with fear when compared to the overall population with focal epilepsy that was studied under the EPGP. Patients with ictal fear were more likely to have a right hemisphere seizure focus. Ictal fear was strongly associated with other auras considered to originate from the limbic system. No relationship of fear with age or gender was observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    PubMed

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  17. Progress in SPECT/CT imaging of prostate cancer.

    PubMed

    Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H

    2006-08-01

    Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of

  18. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    NASA Astrophysics Data System (ADS)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  19. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  20. Ictal connectivity in childhood absence epilepsy: Associations with outcome.

    PubMed

    Tenney, Jeffrey R; Kadis, Darren S; Agler, William; Rozhkov, Leonid; Altaye, Mekibib; Xiang, Jing; Vannest, Jennifer; Glauser, Tracy A

    2018-05-01

    The understanding of childhood absence epilepsy (CAE) has been revolutionized over the past decade, but the biological mechanisms responsible for variable treatment outcomes are unknown. Our purpose in this prospective observational study was to determine how pretreatment ictal network pathways, defined using a combined electroencephalography (EEG)-functional magnetic resonance imaging (EEG-fMRI) and magnetoencephalography (MEG) effective connectivity analysis, were related to treatment response. Sixteen children with newly diagnosed and drug-naive CAE had 31 typical absence seizures during EEG-fMRI and 74 during MEG. The spatial extent of the pretreatment ictal network was defined using fMRI hemodynamic response with an event-related independent component analysis (eICA). This spatially defined pretreatment ictal network supplied prior information for MEG-effective connectivity analysis calculated using phase slope index (PSI). Treatment outcome was assessed 2 years following diagnosis and dichotomized to ethosuximide (ETX)-treatment responders (N = 11) or nonresponders (N = 5). Effective connectivity of the pretreatment ictal network was compared to the treatment response. Patterns of pretreatment connectivity demonstrated strongest connections in the thalamus and posterior brain regions (parietal, posterior cingulate, angular gyrus, precuneus, and occipital) at delta frequencies and the frontal cortices at gamma frequencies (P < .05). ETX treatment nonresponders had pretreatment connectivity, which was decreased in the precuneus region and increased in the frontal cortex compared to ETX responders (P < .05). Pretreatment ictal connectivity differences in children with CAE were associated with response to antiepileptic treatment. This is a possible mechanism for the variable treatment response seen in patients sharing the same epilepsy syndrome. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  1. Ictal high frequency oscillations distinguish two types of seizure territories in humans

    PubMed Central

    Weiss, Shennan A.; Banks, Garrett P.; McKhann, Guy M.; Goodman, Robert R.; Emerson, Ronald G.; Trevelyan, Andrew J.

    2013-01-01

    High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80–150 Hz) amplitude, phase-locked to the low-frequency (1–25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1–25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and

  2. Neuronal network model of interictal and recurrent ictal activity

    NASA Astrophysics Data System (ADS)

    Lopes, M. A.; Lee, K.-E.; Goltsev, A. V.

    2017-12-01

    We propose a neuronal network model which undergoes a saddle node on an invariant circle bifurcation as the mechanism of the transition from the interictal to the ictal (seizure) state. In the vicinity of this transition, the model captures important dynamical features of both interictal and ictal states. We study the nature of interictal spikes and early warnings of the transition predicted by this model. We further demonstrate that recurrent seizures emerge due to the interaction between two networks.

  3. Epileptic peri-ictal psychosis, a reversible cause of psychosis.

    PubMed

    González Mingot, C; Gil Villar, M P; Calvo Medel, D; Corbalán Sevilla, T; Martínez Martínez, L; Iñiguez Martínez, C; Santos Lasaosa, S; Mauri Llerda, J A

    2013-03-01

    Epileptic psychoses are categorised as peri-ictal and interictal according to their relationship with the occurrence of seizures. There is a close temporal relationship between peri-ictal psychosis and seizures, and psychosis may present before (preictal), during (ictal) or after seizures (postictal). Epileptic psychoses usually have acute initial and final phases, with a short symptom duration and complete remission with a risk of recurrence. There is no temporal relationship between interictal or chronic psychosis and epileptic seizures. Another type of epileptic psychosis is related to the response to epilepsy treatment: epileptic psychosis caused by the phenomenon of forced normalisation (alternative psychosis), which includes epileptic psychosis secondary to epilepsy surgery. Although combination treatment with antiepileptic and neuroleptic drugs is now widely used to manage this condition, there are no standard treatment guidelines for epileptic psychosis. We present 5 cases of peri-ictal epileptic psychosis in which we observed an excellent response to treatment with levetiracetam. Good control was achieved over both seizures and psychotic episodes. Levetiracetam was used in association with neuroleptic drugs with no adverse effects, and our patients did not require high doses of the latter. Categorising psychotic states associated with epilepsy according to their temporal relationship with seizures is clinically and prognostically useful because it provides important information regarding disease treatment and progression. The treatment of peri-ictal or acute mental disorders is based on epileptic seizure control, while the treatment of interictal or chronic disorders has more in common with managing disorders which are purely psychiatric in origin. In addition to improving the patient's quality of life and reducing disability, achieving strict control over seizures may also prevent the development of interictal psychosis. For this reason, we believe that

  4. Unilateral Eye Blinking Arising From the Ictal Ipsilateral Occipital Area.

    PubMed

    Falsaperla, Raffaele; Perciavalle, Valentina; Pavone, Piero; Praticò, Andrea Domenico; Elia, Maurizio; Ruggieri, Martino; Caraballo, Roberto; Striano, Pasquale

    2016-07-01

    We report on an 18-month-old boy with unilateral left eye blinking as a single ictal manifestation without facial twitching. The clinical onset of this phenomenon was first recorded (as an occasional event) at age 3 months, and it was overlooked. By age 6 months, the child's blinking increased to almost daily occurrence in clusters: during blinking the infant showed intact awareness and occasional jerks in the upper limbs and right leg. A video-electroencephalography (video-EEG) documented clinical correlation with a focal pattern arising from the left occipital region, and brain magnetic resonance imaging (MRI) revealed severe brain damage, consisting in poroencephalic hollows and increased spaces in the convexities involving a large area of the left cerebral hemisphere. The boy was prescribed sodium valproate (30 mg/kg/d), resulting in drastic reduction of his clinical seizures. Follow-up to his current age documented good general status, with persistent partial right hemilateral seizures. The blinking progressively disappeared, and is no longer recorded. The pathogenic hypotheses of the unilateral ictal blinking include involvement of the ipsilateral cerebral hemisphere and/or the cerebellar pathways. Review of previous reports of unilateral eye blinking, arising from the ictal ipsilateral brain, revealed that different damaged regions may give rise to blinking ictal phenomena, likely via the trigeminal fibres innervating the subdural intracranial structures and the pial vessels in the ipsilateral affected brain. The eye blinking in the present child represents a further example of an ictal phenomenon, which is predictive of the damaged brain region. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  5. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria.

    PubMed

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana; Åkeson, Per; Pedersen, Birthe; Pinborg, Lars H; Ziebell, Morten; Jespersen, Bo; Fuglsang-Frederiksen, Anders

    2013-10-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method

  6. Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy

    PubMed Central

    Fujiwara, Hisako; Greiner, Hansel M.; Lee, Ki Hyeong; Holland-Bouley, Katherine D.; Seo, Joo Hee; Arthur, Todd; Mangano, Francesco T.; Leach, James L.; Rose, Douglas F.

    2012-01-01

    Summary Purpose Intracranial electroencephalography (EEG) is performed as part of an epilepsy surgery evaluation when noninvasive tests are incongruent or the putative seizure-onset zone is near eloquent cortex. Determining the seizure-onset zone using intracranial EEG has been conventionally based on identification of specific ictal patterns with visual inspection. High-frequency oscillations (HFOs, >80 Hz) have been recognized recently as highly correlated with the epileptogenic zone. However, HFOs can be difficult to detect because of their low amplitude. Therefore, the prevalence of ictal HFOs and their role in localization of epileptogenic zone on intracranial EEG are unknown. Methods We identified 48 patients who underwent surgical treatment after the surgical evaluation with intracranial EEG, and 44 patients met criteria for this retrospective study. Results were not used in surgical decision making. Intracranial EEG recordings were collected with a sampling rate of 2,000 Hz. Recordings were first inspected visually to determine ictal onset and then analyzed further with time-frequency analysis. Forty-one (93%) of 44 patients had ictal HFOs determined with time-frequency analysis of intracranial EEG. Key Findings Twenty-two (54%) of the 41 patients with ictal HFOs had complete resection of HFO regions, regardless of frequency bands. Complete resection of HFOs (n = 22) resulted in a seizure-free outcome in 18 (82%) of 22 patients, significantly higher than the seizure-free outcome with incomplete HFO resection (4/19, 21%). Significance Our study shows that ictal HFOs are commonly found with intracranial EEG in our population largely of children with cortical dysplasia, and have localizing value. The use of ictal HFOs may add more promising information compared to interictal HFOs because of the evidence of ictal propagation and followed by clinical aspect of seizures. Complete resection of HFOs is a favorable prognostic indicator for surgical outcome. PMID

  7. Post-ictal psychosis in adolescent Niemann-Pick disease type C.

    PubMed

    Walterfang, Mark; Kornberg, Andrew; Adams, Sophia; Fietz, Michael; Velakoulis, Dennis

    2010-12-01

    We describe the presentation of an adolescent with juvenile-onset Niemann-Pick disease type C (NPC) who presented with post-ictal psychosis in the context of a developing seizure disorder. After demonstrating mild gait disturbance beginning at the age of 4 years, he was diagnosed with NPC at age 12 on the basis of 95% of cultured fibroblasts staining positive for filipin and a reduced fibroblast cholesterol esterification rate. He then developed a seizure disorder at age 15, where clusters of seizures produced typical psychotic symptoms, including hallucinations and delusions. His seizure disorder responded to valproate, which resulted in a settling of his psychotic symptoms. Whilst post-ictal psychosis is rarely reported prior to the age of 16, NPC in adolescents and adults is particularly psychotogenic and may increase the risk for post-ictal psychosis in the pediatric population.

  8. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    PubMed

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  9. Non ictal onset zone: A window to ictal dynamics.

    PubMed

    Afra, Pegah; Hanrahan, Sara J; Kellis, Spencer Sterling; House, Paul

    2017-01-01

    The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity.

  10. Alterations of network synchrony after epileptic seizures: An analysis of post-ictal intracranial recordings in pediatric epilepsy patients.

    PubMed

    Tomlinson, Samuel B; Khambhati, Ankit N; Bermudez, Camilo; Kamens, Rebecca M; Heuer, Gregory G; Porter, Brenda E; Marsh, Eric D

    2018-07-01

    Post-ictal EEG alterations have been identified in studies of intracranial recordings, but the clinical significance of post-ictal EEG activity is undetermined. The purpose of this study was to examine the relationship between peri-ictal EEG activity, surgical outcome, and extent of seizure propagation in a sample of pediatric epilepsy patients. Intracranial EEG recordings were obtained from 19 patients (mean age = 11.4 years, range = 3-20 years) with 57 seizures used for analysis (mean = 3.0 seizures per patient). For each seizure, 3-min segments were extracted from adjacent pre-ictal and post-ictal epochs. To compare physiology of the epileptic network between epochs, we calculated the relative delta power (Δ) using discrete Fourier transformation and constructed functional networks based on broadband connectivity (conn). We investigated differences between the pre-ictal (Δ pre , conn pre ) and post-ictal (Δ post , conn post ) segments in focal-network (i.e., confined to seizure onset zone) versus distributed-network (i.e., diffuse ictal propagation) seizures. Distributed-network (DN) seizures exhibited increased post-ictal delta power and global EEG connectivity compared to focal-network (FN) seizures. Following DN seizures, patients with seizure-free outcomes exhibited a 14.7% mean increase in delta power and an 8.3% mean increase in global connectivity compared to pre-ictal baseline, which was dramatically less than values observed among seizure-persistent patients (29.6% and 47.1%, respectively). Post-ictal differences between DN and FN seizures correlate with post-operative seizure persistence. We hypothesize that post-ictal deactivation of subcortical nuclei recruited during seizure propagation may account for this result while lending insights into mechanisms of post-operative seizure recurrence. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  12. Infantile ictal apneas in a child with williams-beuren syndrome.

    PubMed

    Myers, Kenneth A; McLeod, D Ross; Bello-Espinosa, Luis

    2013-02-01

    Williams-Beuren syndrome is a genetic disorder rarely associated with seizures. The few described cases of Williams-Beuren syndrome and epilepsy have primarily involved infantile spasms and deletions extending beyond the common deletion region for this disorder. We present the case of a 5-week-old child with ictal apneas and typical Williams-Beuren syndrome deletion. Diagnosis was challenging, because the child had cardiac, respiratory, and gastrointestinal abnormalities typically associated with Williams-Beuren syndrome, which are also associated with cyanotic episodes. The results of interictal electroencephalography were normal, illustrating that prolonged electroencephalography is often essential in evaluation of suspected ictal apneas. Seizure freedom was achieved with carbamazepine. Sudden death is seen in Williams-Beuren syndrome, and this case raises the question whether some of these cases may be related to ictal apneas and could potentially be preventable with appropriate pharmaceutical intervention. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Paradoxical ictal EEG lateralization in children with unilateral encephaloclastic lesions.

    PubMed

    Garzon, Eliana; Gupta, Ajay; Bingaman, William; Sakamoto, Americo C; Lüders, Hans

    2009-09-01

    Describe an ictal EEG pattern of paradoxical lateralization in children with unilateral encephaloclastic hemispheric lesion acquired early in life. Of 68 children who underwent hemispherectomy during 2003-2005, scalp video-EEG and brain MRI of six children with an ictal scalp EEG pattern discordant to the clinical and imaging data were reanalyzed. Medical charts were reviewed for clinical findings and seizure outcome. Age of seizure onset was 1 day-4 years. The destructive MRI lesion was an ischemic stroke in 2, a post-infectious encephalomalacia in 2, and a perinatal trauma and hemiconvulsive-hemiplegic syndrome in one patient each. Ictal EEG pattern was characterized by prominent ictal rhythms with either 3-7 Hz spike and wave complexes or beta frequency sharp waves (paroxysmal fast) over the unaffected (contralesional) hemisphere. Scalp video-EEG was discordant, however, other findings of motor deficits (hemiparesis; five severe, one mild), seizure semiology (4/6), interictal EEG abnormalities (3/6), and unilateral burden of MRI lesion guided the decision for hemispherectomy. After 12-39 months of post-surgery follow up, five of six patients were seizure free and one has brief staring spells. We describe a paradoxical lateralization of the EEG to the "good" hemisphere in children with unihemispheric encephaloclastic lesions. This EEG pattern is compatible with seizure free outcome after surgery, provided other clinical findings and tests are concordant with origin from the abnormal hemisphere.

  14. Assessment of the Utility of Ictal Magnetoencephalography in the Localization of the Epileptic Seizure Onset Zone.

    PubMed

    Alkawadri, Rafeed; Burgess, Richard C; Kakisaka, Yosuke; Mosher, John C; Alexopoulos, Andreas V

    2018-06-11

    Literature on ictal magnetoencephalography (MEG) in clinical practice and the relationship to other modalities is limited because of the brevity of routine studies. To investigate the utility and reliability of ictal MEG in the localization of the epileptogenic zone. A retrospective medical record review and prospective analysis of a novel ictal rhythm analysis method was conducted at a tertiary epilepsy center with a wide base of referrals for epilepsy surgery evaluation and included consecutive cases of patients who experienced epileptic seizures during routine MEG studies from March 2008 to February 2012. A total of 377 studies screened. Data were analyzed from November 2011 to October 2015. Presurgical workup and interictal and ictal MEG data were reviewed. The localizing value of using extended-source localization of a narrow band identified visually at onset was analyzed. Of the 44 included patients, the mean (SD) age at the time of recording was 19.3 (14.9) years, and 25 (57%) were male. The mean duration of recording was 51.2 minutes. Seizures were provoked by known triggers in 3 patients and were spontaneous otherwise. Twenty-five patients (57%) had 1 seizure, 6 (14%) had 2, and 13 (30%) had 3 or more. Magnetoencephalography single equivalent current dipole analysis was possible in 29 patients (66%), of whom 8 (28%) had no clear interictal discharges. Sublobar concordance between ictal and interictal dipoles was seen in 18 of 21 patients (86%). Three patients (7%) showed clear ictal MEG patterns without electroencephalography changes. Ictal MEG dipoles correlated with the lobe of onset in 7 of 8 patients (88%) who underwent intracranial electroencephalography evaluations. Reasons for failure to identify ictal dipoles included diffuse or poor dipolar ictal patterns, no MEG changes, and movement artifact. Resection of areas containing a minimum-norm estimate of a narrow band at onset, not single equivalent current dipole, was associated with sustained

  15. Peri-ictal water drinking and other ictal vegetative symptoms: Localizing and lateralizing the epileptogenic zone in temporal lobe epilepsy? Two case reports and review of the literature.

    PubMed

    Errguig, L; Lahjouji, F; Belaidi, H; Jiddane, M; Elkhamlichi, A; Dakka, T; Ouazzani, R

    2013-11-01

    Peri-ictal behavior disorders can be helpful in localizing and lateralizing seizure onset in partial epilepsies, especially those originating in the temporal lobe. In this paper, we present the case of two right-handed women aged 36 and 42 years who presented with partial seizures of mesial temporal type. Both of the patients had drug resistant epilepsy and undergone presurgical evaluation tests including brain magnetic resonance imaging, video-EEG monitoring and neuropsychological testing. The two patients had hippocampal sclerosis in the right temporal lobe and exhibited PIWD behavior concomitant with right temporal lobe discharges documented during video-EEG recordings. Anterior temporal lobectomy was performed in one case with an excellent outcome after surgery. The patient was free of seizures at 3 years follow-up. We reviewed other publications of peri-ictal autonomic symptoms considered to have a lateralizing significance, such as peri-ictal vomiting, urinary urge, ictal pilo-erection. Clinicians should search for these symptoms, even if not spontaneously reported by the patient, because they are often under-estimated, both by the patients themselves and by physicians. Additionally, patients with lateralizing auras during seizures have a significantly better outcome after epilepsy surgery than those without lateralizing features. Copyright © 2013. Published by Elsevier Masson SAS.

  16. Apparent CBF decrease with normal aging due to partial volume effects: MR-based partial volume correction on CBF SPECT.

    PubMed

    Inoue, Kentaro; Ito, Hiroshi; Goto, Ryoi; Nakagawa, Manabu; Kinomura, Shigeo; Sato, Tachio; Sato, Kazunori; Fukuda, Hiroshi

    2005-06-01

    Several studies using single photon emission tomography (SPECT) have shown changes in cerebral blood flow (CBF) with age, which were associated with partial volume effects by some authors. Some studies have also demonstrated gender-related differences in CBF. The present study aimed to examine age and gender effects on CBF SPECT images obtained using the 99mTc-ethyl cysteinate dimer and a SPECT scanner, before and after partial volume correction (PVC) using magnetic resonance (MR) imaging. Forty-four healthy subjects (29 males and 15 females; age range, 27-64 y; mean age, 50.0 +/- 9.8 y) participated. Each MR image was segmented to yield grey and white matter images and coregistered to a corresponding SPECT image, followed by convolution to approximate the SPECT spatial resolution. PVC-SPECT images were produced using the convoluted grey matter MR (GM-MR) and white matter MR images. The age and gender effects were assessed using SPM99. Decreases with age were detected in the anterolateral prefrontal cortex and in areas along the lateral sulcus and the lateral ventricle, bilaterally, in the GM-MR images and the SPECT images. In the PVC-SPECT images, decreases in CBF in the lateral prefrontal cortex lost their statistical significance. Decreases in CBF with age found along the lateral sulcus and the lateral ventricle, on the other hand, remained statistically significant, but observation of the spatially normalized MR images suggests that these findings are associated with the dilatation of the lateral sulcus and lateral ventricle, which was not completely compensated for by the spatial normalization procedure. Our present study demonstrated that age effects on CBF in healthy subjects could reflect morphological differences with age in grey matter.

  17. Differentiating ictal panic with low-grade temporal lobe tumors from psychogenic panic attacks.

    PubMed

    Ghods, Ali J; Ruban, Dmitry S; Wallace, David; Byrne, Richard W

    2013-11-01

    Indolent low-grade temporal lobe tumors may present with ictal panic that may be difficult to differentiate from psychogenic panic attacks. The current study aims to demonstrate the differences between the two disorders and help physicians generate a diagnostic paradigm. This was a retrospective study of 43 patients who underwent a temporal lobectomy between 1981 and 2008 for the treatment of intractable temporal lobe epilepsy secondary to low-grade neoplasms at Rush University Medical Center. A total of 10 patients in this group presented with ictal panic who were previously being treated for psychogenic panic attacks. Medical records were reviewed for age at seizure onset, duration of symptoms, lateralization of the epileptogenic zone, pathological diagnosis, and postsurgical seizure outcome according to the modified Engel classification. Neuropathologic findings of the 10 tumors were pleomorphic xanthoastrocytoma, ganglioglioma, oligodendroglioma, and dysembryoplastic neuroepithelial. The mean age of the patients undergoing surgery was 28 years (range, 15-49). The mean duration of panic symptoms prior to surgery was 9.8 years (range, 3-23). All patients had unprovoked ictal panic. None had symptoms suggestive of a brain tumor, such as signs of increased intracranial pressure or any focal neurologic deficit. In 5 of the patients, other symptoms associated with the ictal panic, including unusual sounds, nausea, automatism, uprising gastric sensation, and déjà vu were identified. Gross total resection of the lesion resulted in improved seizure outcome in all patients undergoing surgery. Patient follow-up was, on average, 7.4 years (range, 2-14) from time of surgery. Although similar, ictal panic from epilepsy and classic panic attacks are clinically distinguishable entities with different modalities of treatment. A careful history may help differentiate patients with ictal panic from those with psychogenic panic attacks and determine for which patients to obtain

  18. Measuring the level and content of consciousness during epileptic seizures: the Ictal Consciousness Inventory.

    PubMed

    Cavanna, A E; Mula, M; Servo, S; Strigaro, G; Tota, G; Barbagli, D; Collimedaglia, L; Viana, M; Cantello, R; Monaco, F

    2008-07-01

    Ictal alterations of the level of general awareness and subjective content of consciousness play a pivotal role in the clinical phenomenology of epilepsy, and reflect the pathological involvement of different neurobiological substrates. However, no self-reported measures have been proposed for patients experiencing altered conscious states during seizures. This study describes the development and validation of a new scale for the quantitative assessment of the level and content of ictal consciousness, the Ictal Consciousness Inventory (ICI). The ICI is a 20-item questionnaire generated on the basis of interviews with patients, literature review, and consultation with experts. It was tested on a sample of 110 patients attending three different epilepsy clinics in Northern Italy, who also completed standardized clinical scales. Standard psychometric methods were used to demonstrate that this scale satisfies criteria for acceptability, reliability, and validity. The ICI is proposed as a user-friendly and clinically sound instrument for the measurement of ictal alterations of consciousness in patients with epilepsy.

  19. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI

    PubMed Central

    Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial

  20. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.

    PubMed

    Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and

  1. Age-related gender differences in reporting ictal fear: analysis of case histories and review of the literature.

    PubMed

    Chiesa, Valentina; Gardella, Elena; Tassi, Laura; Canger, Raffaele; Lo Russo, Giorgio; Piazzini, Ada; Turner, Katherine; Canevini, Maria Paola

    2007-12-01

    To determine if there are age or gender-related differences in reporting fear as a symptom of epileptic seizure, all clinical charts of patients evaluated at the "C. Munari - Epilepsy Surgery Center" of Milan from 1990 to June 2005 were analyzed, looking for patients with ictal fear. Among the 2,530 clinical charts examined (1,330 male and 1,200 female), 265 patients were found with ictal fear (100 men, 165 women). The gender difference in reporting ictal fear was not so marked in the pediatric age group (98 girls, 74 boys), whereas in adult patients the difference was significant (158 women, 83 men). Interestingly, more men than women (14:3) had ictal fear during childhood that disappeared during adulthood. The literature review confirmed that ictal fear is significantly more common in women, though there is no gender difference in the pediatric age group.

  2. Initial In Vivo Quantification of Tc-99m Sestamibi Uptake as a Function of Tissue Type in Healthy Breasts Using Dedicated Breast SPECT-CT

    PubMed Central

    Mann, Steve D.; Perez, Kristy L.; McCracken, Emily K. E.; Shah, Jainil P.; Wong, Terence Z.; Tornai, Martin P.

    2012-01-01

    A pilot study is underway to quantify in vivo the uptake and distribution of Tc-99m Sestamibi in subjects without previous history of breast cancer using a dedicated SPECT-CT breast imaging system. Subjects undergoing diagnostic parathyroid imaging studies were consented and imaged as part of this IRB-approved breast imaging study. For each of the seven subjects, one randomly selected breast was imaged prone-pendant using the dedicated, compact breast SPECT-CT system underneath the shielded patient support. Iteratively reconstructed and attenuation and/or scatter corrected images were coregistered; CT images were segmented into glandular and fatty tissue by three different methods; the average concentration of Sestamibi was determined from the SPECT data using the CT-based segmentation and previously established quantification techniques. Very minor differences between the segmentation methods were observed, and the results indicate an average image-based in vivo Sestamibi concentration of 0.10 ± 0.16 μCi/mL with no preferential uptake by glandular or fatty tissues. PMID:22956950

  3. Source localization of temporal lobe epilepsy using PCA-LORETA analysis on ictal EEG recordings.

    PubMed

    Stern, Yaki; Neufeld, Miriam Y; Kipervasser, Svetlana; Zilberstein, Amir; Fried, Itzhak; Teicher, Mina; Adi-Japha, Esther

    2009-04-01

    Localizing the source of an epileptic seizure using noninvasive EEG suffers from inaccuracies produced by other generators not related to the epileptic source. The authors isolated the ictal epileptic activity, and applied a source localization algorithm to identify its estimated location. Ten ictal EEG scalp recordings from five different patients were analyzed. The patients were known to have temporal lobe epilepsy with a single epileptic focus that had a concordant MRI lesion. The patients had become seizure-free following partial temporal lobectomy. A midinterval (approximately 5 seconds) period of ictal activity was used for Principal Component Analysis starting at ictal onset. The level of epileptic activity at each electrode (i.e., the eigenvector of the component that manifest epileptic characteristic), was used as an input for low-resolution tomography analysis for EEG inverse solution (Zilberstain et al., 2004). The algorithm accurately and robustly identified the epileptic focus in these patients. Principal component analysis and source localization methods can be used in the future to monitor the progression of an epileptic seizure and its expansion to other areas.

  4. Prognostic Role of Functional Neuroimaging after Multilobar Resection in Patients with Localization-Related Epilepsy.

    PubMed

    Cho, Eun Bin; Joo, Eun Yeon; Seo, Dae-Won; Hong, Seung-Chyul; Hong, Seung Bong

    2015-01-01

    To investigate the usage of functional neuroimaging as a prognostic tool for seizure recurrence and long-term outcomes in patients with multilobar resection, we recruited 90 patients who received multilobar resections between 1995 and 2013 with at least 1-year follow-up (mean 8.0 years). All patients were monitored using intracranial electroencephalography (EEG) after pre-surgical evaluation. Clinical data (demographics, electrophysiology, and neuroimaging) were reviewed retrospectively. Surgical outcomes were evaluated at 1, 2, 5 years after surgery, and at the end of the study. After 1 year, 56 patients (62.2%) became Engel class I and at the last follow-up, 47 patients (52.2%) remained seizure-free. Furthermore, non-localized 18F-fluorodeoxyglucose positron emission tomography (PET), identifying hypometabolic areas not concordant with ictal onset zones, significantly correlated with seizure recurrence after 1 year. Non-lesional magnetic resonance imaging (MRI) and left-sided resection correlated with poor outcomes. In the last follow-up, non-localized PET and left-sided resection significantly correlated with seizure recurrence. Both localized PET and ictal-interictal SPECT subtraction co-registered to MR (SISCOM) predicted good surgical outcomes in the last follow-up (69.2%, Engel I). This study suggests that PET and SISCOM may predict postoperative outcomes for patients after multilobar epilepsy and shows comparable long-term surgical outcomes after multilobar resection.

  5. Effects of Marijuana on Ictal and Interictal EEG Activities in Idiopathic Generalized Epilepsy.

    PubMed

    Sivakumar, Sanjeev; Zutshi, Deepti; Seraji-Bozorgzad, Navid; Shah, Aashit K

    2017-01-01

    Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series, and clinical trials. However, literature on their EEG effects is sparse. Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy treated with cannabis. We blindly reviewed 3 long-term EEGs-a 24-hour study while only on antiepileptic drugs, a 72-hour EEG with Cannabis indica smoked on days 1 and 3 in addition to antiepileptic drugs, and a 48-hour EEG with combination C indica/sativa smoked on day 1 plus antiepileptic drugs. Generalized spike-wave discharges and diffuse paroxysmal fast activity were categorized as interictal and ictal, based on duration of less than 10 seconds or greater, respectively. Data from three studies concatenated into contiguous time series, with usage of marijuana modeled as time-dependent discrete variable while interictal and ictal events constituted dependent variables. Analysis of variance as initial test for significance followed by time series analysis using Generalized Autoregressive Conditional Heteroscedasticity model was performed. Statistical significance for lower interictal events (analysis of variance P = 0.001) was seen during C indica use, but not for C indica/sativa mixture (P = 0.629) or ictal events (P = 0.087). However, time series analysis revealed a significant inverse correlation between marijuana use, with interictal (P < 0.0004) and ictal (P = 0.002) event rates. Using a novel approach to EEG data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use. Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing, are needed to validate our findings.

  6. Endorphin mediation of post-ictal effects of kindled seizures in rats.

    PubMed

    Kelsey, J E; Belluzzi, J D

    1982-12-16

    Brief electrical stimulation of the enkephalin-rich globus pallidus at 1-h intervals produced kindled, clonic seizures in rats as rapidly as similar stimulation of the amygdala. Massing the kindling trials at 10-min intervals inhibited the occurrence of subsequent seizures, especially following globus pallidus stimulation. Naloxone (20 mg/kg), an opiate receptor antagonist, reversed this post-ictal inhibition of seizures following massed trials, but had no effect on seizures kindled at 1-h intervals. Thus, endorphin-released during seizures do not appear to mediate the production of kindled seizures, but do appear to mediate the transient posts ictal inhibition of seizures.

  7. Palilalia, echolalia, and echopraxia-palipraxia as ictal manifestations in a patient with left frontal lobe epilepsy.

    PubMed

    Cho, Yang-Je; Han, Sang-Don; Song, Sook Keun; Lee, Byung In; Heo, Kyoung

    2009-06-01

    Palilalia is a relatively rare pathologic speech behavior and has been reported in various neurologic and psychiatric disorders. We encountered a case of palilalia, echolalia, and echopraxia-palipraxia as ictal phenomena of left frontal lobe epilepsy. A 55-year-old, right-handed man was admitted because of frequent episodes of rapid reiteration of syllables. Video-electroencephalography monitoring revealed stereotypical episodes of palilalia accompanied by rhythmic head nodding and right-arm posturing with ictal discharges over the left frontocentral area. He also displayed echolalia or echopraxia-palipraxia, partially responding to an examiner's stimulus. Magnetic resonance imaging revealed encephalomalacia on the left superior frontal gyrus and ictal single photon emission computed tomography showed hyperperfusion just above the lesion, corresponding to the left supplementary motor area (SMA), and subcortical nuclei. This result suggests that the neuroanatomic substrate involved in the generation of these behaviors as ictal phenomena might exist in the SMA of the left frontal lobe.

  8. Status gelasticus after temporal lobectomy: ictal FDG-PET findings and the question of dual pathology involving hypothalamic hamartomas.

    PubMed

    Palmini, Andre; Van Paesschen, Wim; Dupont, Patrick; Van Laere, Koen; Van Driel, Guido

    2005-08-01

    To present the first ictal fluorodeoxyglucose-positron emission tomography (FDG-PET) evidence of the hypothalamic origin of gelastic seizures in a patient with a hypothalamic hamartoma (HH) and to raise the issue of true dual pathology related to this entity. Ictal FDG-PET was acquired during an episode of status gelasticus with preserved consciousness, in a patient previously operated on for complex partial seizures (CPSs) due to a temporal lobe epileptogenic cyst. Ictal hypermetabolism was localized to the region of the HH during the status gelasticus. CPSs had been completely eliminated after temporal lobe surgery. Ictal FDG-PET independently confirmed that gelastic seizures in patients with HH do originate in the diencephalic lesion. An HH may coexist with another epileptogenic lesion, in a context of dual pathology.

  9. The origins of SPECT and SPECT/CT.

    PubMed

    Hutton, Brian F

    2014-05-01

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.

  10. Peri-ictal water drinking: a rare automatic behaviour in temporal lobe epilepsy.

    PubMed

    Pietrafusa, Nicola; Trivisano, Marina; de Palma, Luca; Serino, Domenico; Moavero, Romina; Benvenga, Antonella; Cappelletti, Simona; Boero, Giovanni; Vigevano, Federico; La Neve, Angela; Specchio, Nicola

    2015-12-01

    Peri-ictal water drinking (PIWD) has been reported as the action of drinking during or within two minutes of an electroclinical seizure. It is considered a peri-ictal vegetative symptom, evident both during childhood and adulthood epilepsy. The aim of this paper was to describe the clinical and electroencephalographic features of two new adult subjects suffering from symptomatic temporal lobe epilepsy with episodes of PIWD recorded by VIDEO-EEG and to review literature data in order to better define this peculiar event during seizures, a rare and probably underestimated semiological sign. To date, 51 cases with focal epilepsy and seizures associated with PIWD have been reported. All patients presented with temporal lobe epilepsy. All cases but one had symptomatic epilepsy. Most of the patients had an involvement of the right hemisphere. Water drinking was reported as an ictal sign in the majority of patients, and less frequently was reported as postictal. We believe that PIWD might be considered a rare automatic behaviour, like other automatisms. Automatisms are more frequently described in patients with temporal lobe epilepsy. PIWD was reported also to have lateralizing significance in the non-dominant temporal lobe, however, because of its rarity, this finding remains unclear.

  11. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  13. Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles

    PubMed Central

    2013-01-01

    Background In the present study, we used multimodal imaging to investigate biodistribution in rats after intravenous administration of a new 99mTc-labeled delivery system consisting of polymer-shelled microbubbles (MBs) functionalized with diethylenetriaminepentaacetic acid (DTPA), thiolated poly(methacrylic acid) (PMAA), chitosan, 1,4,7-triacyclononane-1,4,7-triacetic acid (NOTA), NOTA-super paramagnetic iron oxide nanoparticles (SPION), or DTPA-SPION. Methods Examinations utilizing planar dynamic scintigraphy and hybrid imaging were performed using a commercially available single-photon emission computed tomography (SPECT)/computed tomography (CT) system. For SPION containing MBs, the biodistribution pattern of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs was investigated and co-registered using fusion SPECT/CT and magnetic resonance imaging (MRI). Moreover, to evaluate the biodistribution, organs were removed and radioactivity was measured and calculated as percentage of injected dose. Results SPECT/CT and MRI showed that the distribution of 99mTc-labeled ligand-functionalized MBs varied with the type of ligand as well as with the presence of SPION. The highest uptake was observed in the lungs 1 h post injection of 99mTc-labeled DTPA and chitosan MBs, while a similar distribution to the lungs and the liver was seen after the administration of PMAA MBs. The highest counts of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs were observed in the lungs, liver, and kidneys 1 h post injection. The highest counts were observed in the liver, spleen, and kidneys as confirmed by MRI 24 h post injection. Furthermore, the results obtained from organ measurements were in good agreement with those obtained from SPECT/CT. Conclusions In conclusion, microbubbles functionalized by different ligands can be labeled with radiotracers and utilized for SPECT/CT imaging, while the incorporation of SPION in MB shells enables imaging using MR. Our investigation revealed that biodistribution

  14. Ictal semiology in hippocampal versus extrahippocampal temporal lobe epilepsy.

    PubMed

    Gil-Nagel, A; Risinger, M W

    1997-01-01

    We have analysed retrospectively the clinical features and electroencephalograms in 35 patients with complex partial seizures of temporal lobe origin who were seizure-free after epilepsy surgery. Two groups were differentiated for statistical analysis: 16 patients had hippocampal temporal lobe seizures (HTS) and 19 patients had extrahippocampal temporal lobe seizures (ETS) associated with a small tumour of the lateral or inferior temporal cortex. All patients in the HTS group had ictal onset verified with intracranial recordings (depth or subdural electrodes). In the ETS group, extrahippocampal onset was verified with intracranial recordings in eight patients and assumed, because of failure of a previous amygdalohippocampectomy, in one patient. Historical information, ictal semiology and ictal EEG of typical seizures were analysed in each patient. The occurrence of early and late oral automatisms and dystonic posturing of an upper extremity was analysed separately. A prior history of febrile convulsions was obtained in 13 HTS patients (81.3%) but in none with ETS (P < 0.0001, Fisher's exact test). An epigastric aura preceded seizures in five patients with HTS (31.3%) and none with ETS (P = 0.0135, Fisher's exact test), while an aura with experiential content was recalled by nine patients with ETS (47.4%) and none with HTS (P = 0.0015), Fisher's exact test). Early oral automatisms occurred in 11 patients with HTS (68.8%) and in two with ETS (10.5%) (P = 0.0005, Fisher's exact test). Early motor involvement of the contralateral upper extremity without oral automatisms occurred in three patients with HTS (18.8%) and in 10 with ETS (52.6%) (P = 0.0298, Fisher's exact test). Arrest reaction, vocalization, speech, facial grimace, postictal cough, late oral automatisms and late motor involvement of the contralateral arm and hand occurred with similar frequency in both groups. These observations show that the early clinical features of HTS and ETS are different.

  15. Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis

    PubMed Central

    Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée

    2012-01-01

    Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297

  16. Paramedic Checklists do not Accurately Identify Post-ictal or Hypoglycaemic Patients Suitable for Discharge at the Scene.

    PubMed

    Tohira, Hideo; Fatovich, Daniel; Williams, Teresa A; Bremner, Alexandra; Arendts, Glenn; Rogers, Ian R; Celenza, Antonio; Mountain, David; Cameron, Peter; Sprivulis, Peter; Ahern, Tony; Finn, Judith

    2016-06-01

    The objective of this study was to assess the accuracy and safety of two pre-defined checklists to identify prehospital post-ictal or hypoglycemic patients who could be discharged at the scene. A retrospective cohort study of lower acuity, adult patients attended by paramedics in 2013, and who were either post-ictal or hypoglycemic, was conducted. Two self-care pathway assessment checklists (one each for post-ictal and hypoglycemia) designed as clinical decision tools for paramedics to identify patients suitable for discharge at the scene were used. The intention of the checklists was to provide paramedics with justification to not transport a patient if all checklist criteria were met. Actual patient destination (emergency department [ED] or discharge at the scene) and subsequent events (eg, ambulance requests) were compared between patients who did and did not fulfill the checklists. The performance of the checklists against the destination determined by paramedics was also assessed. Totals of 629 post-ictal and 609 hypoglycemic patients were identified. Of these, 91 (14.5%) and 37 (6.1%) patients fulfilled the respective checklist. Among those who fulfilled the checklist, 25 (27.5%) post-ictal and 18 (48.6%) hypoglycemic patients were discharged at the scene, and 21 (23.1%) and seven (18.9%) were admitted to hospital after ED assessment. Amongst post-ictal patients, those fulfilling the checklist had more subsequent ambulance requests (P=.01) and ED attendances with seizure-related conditions (P=.04) within three days than those who did not. Amongst hypoglycemic patients, there were no significant differences in subsequent events between those who did and did not meet the criteria. Paramedics discharged five times more hypoglycemic patients at the scene than the checklist predicted with no significant differences in the rate of subsequent events. Four deaths (0.66%) occurred within seven days in the hypoglycemic cohort, and none of them were attributed directly

  17. Do ictal EEG characteristics predict treatment outcomes in schizophrenic patients undergoing electroconvulsive therapy?

    PubMed

    Simsek, Gulnihal Gokce; Zincir, Selma; Gulec, Huseyin; Eksioglu, Sevgin; Semiz, Umit Basar; Kurtulmus, Yasemin Sipka

    2015-08-01

    The aim of this study is to investigate the relationship between features of electroencephalography (EEG), including seizure time, energy threshold level and post-ictal suppression time, and clinical variables, including treatment outcomes and side-effects, among schizophrenia inpatients undergoing electroconvulsive therapy (ECT). This is a naturalistic follow-up study on schizophrenia patients, diagnosed using DSM-IV-TR criteria, treated by a psychosis inpatient service. All participants completed the Brief Psychiatric Rating Scale (BPRS), the Global Assessment of Functioning (GAF) scale, the Frontal Assessment Battery (FAB) and a Data Collection Form. Assessments were made before treatment, during ECT and after treatment. Statistically significant improvements in both clinical and cognitive outcome were noted after ECT in all patients. Predictors of improvement were sought by evaluating electrophysiological variables measured at three time points (after the third, fifth and seventh ECT sessions). Logistic regression analysis showed that clinical outcome/improvement did not differ by seizure duration, threshold energy level or post-ictal suppression time. We found that ictal EEG parameters measured at several ECT sessions did not predict clinical recovery/outcomes. This may be because our centre defensively engages in "very specific patient selection" when ECT is contemplated. ECT does not cause short-term cognitive functional impairment and indeed improves cognition, because symptoms of the schizophrenic episode are alleviated.

  18. Peri-ictal ECG changes in childhood epilepsy: implications for detection systems.

    PubMed

    Jansen, Katrien; Varon, Carolina; Van Huffel, Sabine; Lagae, Lieven

    2013-10-01

    Early detection of seizures could reduce associated morbidity and mortality and improve the quality of life of patients with epilepsy. In this study, the aim was to investigate whether ictal tachycardia is present in focal and generalized epileptic seizures in children. We sought to predict in which type of seizures tachycardia can be identified before actual seizure onset. Electrocardiogram segments in 80 seizures were analyzed in time and frequency domains before and after the onset of epileptic seizures on EEG. These ECG parameters were analyzed to find the most informative ones that can be used for seizure detection. The algorithm of Leutmezer et al. was used to find the temporal relationship between the change in heart rate and seizure onset. In the time domain, the mean RR shows a significant difference before compared to after onset of the seizure in focal seizures. This can be observed in temporal lobe seizures as well as frontal lobe seizures. Calculation of mean RR interval has a high specificity for detection of ictal heart rate changes. Preictal heart rate changes are observed in 70% of the partial seizures. Ictal heart rate changes are present only in partial seizures in this childhood epilepsy study. The changes can be observed in temporal lobe seizures as well as in frontal lobe seizures. Heart rate changes precede seizure onset in 70% of the focal seizures, making seizure detection and closed-loop systems a possible therapeutic alternative in the population of children with refractory epilepsy. © 2013.

  19. Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers.

    PubMed

    Ohno, Yoshiharu; Fujisawa, Yasuko; Takenaka, Daisuke; Kaminaga, Shigeo; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2018-02-01

    The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81m Kr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV 1 ) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. Multivariate logistic regression showed that %FEV 1 was significantly affected (r = 0.77, r 2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). Xenon-enhanced ADCT is more effective than 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.

  20. Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging.

    PubMed

    Salehi, Hassan S; Wang, Tianheng; Kumavor, Patrick D; Li, Hai; Zhu, Quing

    2014-09-01

    A novel lens-array based illumination design for a compact co-registered photoacoustic/ultrasound transvaginal probe has been demonstrated. The lens array consists of four cylindrical lenses that couple the laser beams into four 1-mm-core multi-mode optical fibers with optical coupling efficiency of ~87%. The feasibility of our lens array was investigated by simulating the lenses and laser beam profiles using Zemax. The laser fluence on the tissue surface was experimentally measured and was below the American National Standards Institute (ANSI) safety limit. Spatial distribution of hemoglobin oxygen saturation (sO2) of a mouse tumor was obtained in vivo using photoacoustic measurements at multiple wavelengths. Furthermore, benign and malignant ovaries were imaged ex vivo and evaluated histologically. The co-registered images clearly showed different patterns of blood vasculature. These results highlight the clinical potential of our system for noninvasive photoacoustic and ultrasound imaging of ovarian tissue and cancer detection and diagnosis.

  1. Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging

    PubMed Central

    Salehi, Hassan S.; Wang, Tianheng; Kumavor, Patrick D.; Li, Hai; Zhu, Quing

    2014-01-01

    A novel lens-array based illumination design for a compact co-registered photoacoustic/ultrasound transvaginal probe has been demonstrated. The lens array consists of four cylindrical lenses that couple the laser beams into four 1-mm-core multi-mode optical fibers with optical coupling efficiency of ~87%. The feasibility of our lens array was investigated by simulating the lenses and laser beam profiles using Zemax. The laser fluence on the tissue surface was experimentally measured and was below the American National Standards Institute (ANSI) safety limit. Spatial distribution of hemoglobin oxygen saturation (sO2) of a mouse tumor was obtained in vivo using photoacoustic measurements at multiple wavelengths. Furthermore, benign and malignant ovaries were imaged ex vivo and evaluated histologically. The co-registered images clearly showed different patterns of blood vasculature. These results highlight the clinical potential of our system for noninvasive photoacoustic and ultrasound imaging of ovarian tissue and cancer detection and diagnosis. PMID:25401021

  2. Interictal to Ictal Phase Transition in a Small-World Network

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Cravens, Gary; Worth, Robert

    Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.

  3. Rhythmic ictal nonclonic hand (RINCH) motions in temporal lobe epilepsy: invasive EEG findings, incidence, and lateralizing value.

    PubMed

    Kuba, Robert; Musilová, Klára; Vojvodič, Nikola; Tyrlíková, Ivana; Rektor, Ivan; Brázdil, Milan

    2013-10-01

    The main purpose of this retrospective analysis was to evaluate the incidence and lateralization value of rhythmic ictal nonclonic hand (RINCH) motions in patients with temporal lobe epilepsy (TLE), who were classified as Engel I at least 2 years after epilepsy surgery. We analyzed the distribution of ictal activity at the time of RINCH appearance in patients in whom RINCH motions were present during invasive EEG monitoring. A group of 120 patients was included in this study. In total, we reviewed 491 seizures: 277 seizures in patients with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (TLE-HS group) and 214 in TLE caused by other lesions (TLE-OTH group). We analyzed 29 patients (79 of the seizures) during invasive EEG monitoring. Fisher's exact test and binomial test were used for the statistical analysis. RINCH motions were observed in 24 out of 120 patients (20%) and in 48 out of 491 seizures (9.8%). There was no significant difference between the occurrence of RINCH motions in patients with TLE-HS and in patients with TLE-OTH, or between gender, right/left-sided TLE, and language dominant/nondominant TLE. RINCH motions were contralateral to the seizure onset in 83.3% of patients and 91.7% of seizures (p=0.0015; p<0.001, respectively). There were no differences in the lateralizing value of RINCH motions in patients with TLE-HS or TLE-OTH. We analyzed RINCH motions in 5 patients/7 seizures during invasive EEG. In all 7 seizures with RINCH motions, we observed the widespread activation of the temporal lobe (mesial and lateral, opercular and polar regions) contralateral to the side of RINCH motions. In all 7 seizures, we observed that at the time of RINCH motion onset, at least 1 explored region of the frontal lobe was affected by the ictal activity. In 3 seizures, we observed time-locked epileptic activation associated with the appearance of RINCH motions, i.e., in the orbitofrontal cortex in 2 seizures and in both the orbitofrontal cortex and

  4. Ictal Cardiac Ryhthym Abnormalities.

    PubMed

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy.

  5. Characterization of ictal slow waves in epileptic spasms.

    PubMed

    Honda, Ryoko; Saito, Yoshiaki; Okumura, Akihisa; Abe, Shinpei; Saito, Takashi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2015-12-01

    We characterized the clinico-neurophysiological features of epileptic spasms, particularly focusing on high-voltage slow waves during ictal EEG. We studied 22 patients with epileptic spasms recorded during digital video-scalp EEG, including five individuals who still had persistent spasms after callosotomy. We analysed the duration, amplitude, latency to onset of electromyographic bursts, and distribution of the highest positive and negative peaks of slow waves in 352 spasms. High-voltage positive slow waves preceded the identifiable muscle contractions of spasms. The mean duration of these positive waves was 569±228 m, and the mean latency to electromyographic onset was 182±127 m. These parameters varied markedly even within a patient. The highest peak of the positive component was distributed in variable regions, which was not consistent with the location of lesions on MRI. The peak of the negative component following the positivity was distributed in the neighbouring or opposite areas of the positive peak distribution. No changes were evident in the pre- or post-surgical distributions of the positive peak, or in the interhemispheric delay between both hemispheres, in individuals with callosotomy. Our data imply that ictal positive slow waves are the most common EEG changes during spasms associated with a massive motor component. Plausible explanations for these widespread positive slow waves include the notion that EEG changes possibly reflect involvement of both cortical and subcortical structures.

  6. C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential

    PubMed Central

    Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai

    2013-01-01

    Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129

  7. Presurgical evaluation for partial epilepsy: Relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J. Jr.; Henry, T.R.; Risinger, M.W.

    1990-11-01

    One hundred fifty-three patients with medically refractory partial epilepsy underwent chronic stereotactic depth-electrode EEG (SEEG) evaluations after being studied by positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and scalp-sphenoidal EEG telemetry. We carried out retrospective standardized reviews of local cerebral metabolism and scalp-sphenoidal ictal onsets to determine when SEEG recordings revealed additional useful information. FDG-PET localization was misleading in only 3 patients with temporal lobe SEEG ictal onsets for whom extratemporal or contralateral hypometabolism could be attributed to obvious nonepileptic structural defects. Two patients with predominantly temporal hypometabolism may have had frontal epileptogenic regions, but ultimate localization remains uncertain. Scalp-sphenoidalmore » ictal onsets were misleading in 5 patients. For 37 patients with congruent focal scalp-sphenoidal ictal onsets and temporal hypometabolic zones, SEEG recordings never demonstrated extratemporal or contralateral epileptogenic regions; however, 3 of these patients had nondiagnostic SEEG evaluations. The results of subsequent subdural grid recordings indicated that at least 1 of these patients may have been denied beneficial surgery as a result of an equivocal SEEG evaluation. Weighing risks and benefits, it is concluded that anterior temporal lobectomy is justified without chronic intracranial recording when specific criteria for focal scalp-sphenoidal ictal EEG onsets are met, localized hypometabolism predominantly involves the same temporal lobe, and no other conflicting information has been obtained from additional tests of focal functional deficit, structural imaging, or seizure semiology.« less

  8. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Lim, Hongki; Fessler, Jeffrey A.; Wilderman, Scott J.; Brooks, Allen F.; Dewaraja, Yuni K.

    2018-06-01

    While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the ‘bremsstrahlung distribution’ that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.

  9. Ictal affective symptoms in temporal lobe epilepsy are related to gender and age.

    PubMed

    Toth, Vanda; Fogarasi, Andras; Karadi, Kazmer; Kovacs, Norbert; Ebner, Alois; Janszky, Jozsef

    2010-07-01

    We systematically analyzed the video-recorded and patient-reported, as well as positive and negative ictal affective symptoms (IAS) in temporal lobe epilepsy (TLE). Our aim was to assess (1) frequency, (2) gender effect, (3) lateralizing significance, (4) localizing value, and (5) prognostic significance in epilepsy surgery of IAS in patients with video-registered seizures. We reviewed ictal video recordings of 184 patients (99 women, aged 16-63). All patients had surgery for intractable TLE with video-recorded complex partial seizures (CPS) due to temporal lobe lesions visualized by high-resolution magnetic resonance imaging (MRI). Affective auras (AAs) were categorized into two groups: positive or negative. We registered AAs in 18% of patients: positive in 3%, negative in 15%. We saw ictal affective behavior (IAB) in 22% of patients; 10% had positive, whereas 14% had negative IAB. Two patients had both positive and negative IAB. AAs showed an association with IAB in case of fear expression versus fear auras (p = 0.018). IAB, especially negative IAB, occurred more often in women than in men. Patients with negative IAB were younger than others. We could not demonstrate an association between IAS and the localization, lateralization, or hemispheric dominance. Surgical outcome did not associate with IAS. Patient-reported and video-recorded negative-but not positive-affective signs are related to each other. Video-recorded negative AAs occur more often in women and young patients.

  10. Ictal dystonia and secondary generalization in temporal lobe seizures: a video-EEG study.

    PubMed

    Popovic, Ljubica; Vojvodic, Nikola; Ristic, Aleksandar J; Bascarevic, Vladimir; Sokic, Dragoslav; Kostic, Vladimir S

    2012-12-01

    The aim of this study was to determine whether the occurrence of unilateral ictal limb dystonia (ID) during complex partial seizures (CPS) reduces the possibility of contralateral propagation (CP) and secondary generalization (SG) in patients with temporal lobe epilepsy (TLE). We assessed 216 seizures recorded in 33 patients with pharmacoresistant TLE. All patients underwent video-EEG telemetry prior to surgical treatment with good postoperative outcomes (Engel I). Ictal limb dystonia was observed in 16 of the 33 patients (48%) and 58 of the 216 seizures (26.8%). We found highly significant differences in the frequency of SG between seizures with ID and seizures without ID (2/58 vs. 41/158; 3.45% vs. 25.95%; p<0.001). Contralateral propagation was seen in 13 of the 57 analyzed seizures with ID compared to 85 of the 158 seizures without ID (22.8% vs. 53.8%; p<0.001). Among the CPS without SG, we found that the mean duration of seizures with ID was significantly longer than the duration of seizures without ID (81.66±40.10 vs. 68.88±25.01 s; p=0.011). Our findings that CP and SG occur less often in patients with ID, yet the duration of CPS without SG is longer in patients with ID, suggest that the basal ganglia might inhibit propagation to the contralateral hemisphere but not ictal activity within the unilateral epileptic network. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Ictal 18F-FDG PET/MRI in a Patient With Cortical Heterotopia and Focal Epilepsy.

    PubMed

    Calabria, Ferdinando F; Cascini, Giuseppe Lucio; Gambardella, Antonio; Labate, Angelo; Cherubini, Andrea; Gullà, Domenico; Tafuri, Benedetta; Sabatini, Umberto; Vescio, Virginia; Quattrone, Aldo

    2017-10-01

    A 19-year-old man with epilepsy underwent ictal F-FDG PET/MRI, showing a 5 mm heterotopic nodule in the periventricular white matter, adjacent to the frontal horn of the left lateral ventricle (SUVmax, 5.5; glucidic cerebral metabolic rate, 0.317 μmol/mL). A repeated F-FDG PET/MRI, during seizure freedom, showed, at visual analysis, subtle decrease of the nodule metabolism. SUVmax and glucidic cerebral metabolic rate were clearly reduced to 3.7 and 0.226, respectively. Ictal F-FDG PET/MRI could be useful in epilepsy because of the added value of SUVmax and cerebral metabolic rate of glucose analysis to understand the relationship between heterotopy and epilepsy.

  12. Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.

    PubMed

    Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine

    2014-08-01

    In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Classification of ictal and seizure-free HRV signals with focus on lateralization of epilepsy.

    PubMed

    Behbahani, Soroor; Dabanloo, Nader Jafarnia; Nasrabadi, Ali Motie; Dourado, Antonio

    2016-01-01

    Epileptic onsets often affect the autonomic function of the body during a seizure, whether it is in ictal, interictal or post-ictal periods. The different effects of localization and lateralization of seizures on heart rate variability (HRV) emphasize the importance of autonomic function changes in epileptic patients. On the other hand, the detection of seizures is of primary interests in evaluating the epileptic patients. In the current paper, we analyzed the HRV signal to develop a reliable offline seizure-detection algorithm to focus on the effects of lateralization on HRV. We assessed the HRV during 5-min segments of continuous electrocardiogram (ECG) recording with a total number of 170 seizures occurred in 16 patients, composed of 86 left-sided and 84 right-sided focus seizures. Relatively high and low-frequency components of the HRV were computed using spectral analysis. Poincaré parameters of each heart rate time series considered as non-linear features. We fed these features to the Support Vector Machines (SVMs) to find a robust classification method to classify epileptic and non-epileptic signals. Leave One Out Cross-Validation (LOOCV) approach was used to demonstrate the consistency of the classification results. Our obtained classification accuracy confirms that the proposed scheme has a potential in classifying HRV signals to epileptic and non-epileptic classes. The accuracy rates for right-sided and left-sided focus seizures were obtained as 86.74% and 79.41%, respectively. The main finding of our study is that the patients with right-sided focus epilepsy showed more reduction in parasympathetic activity and more increase in sympathetic activity. It can be a marker of impaired vagal activity associated with increased cardiovascular risk and arrhythmias. Our results suggest that lateralization of the seizure onset zone could exert different influences on heart rate changes. A right-sided seizure would cause an ictal tachycardia whereas a left

  14. Intrinsic connections within the pedunculopontine tegmental nucleus are critical to the elaboration of post-ictal antinociception.

    PubMed

    Mazzei-Silva, Elaine Cristina; de Oliveira, Rithiele Cristina; dos Anjos Garcia, Tayllon; Falconi-Sobrinho, Luiz Luciano; Almada, Rafael Carvalho; Coimbra, Norberto Cysne

    2014-08-01

    This study investigated the intrinsic connections of a key-structure of the endogenous pain inhibitory system, the pedunculopontine tegmental nucleus (PPTN), in post-ictal antinociceptive process through synaptic inactivation of the PPTN with cobalt chloride. Male Wistar rats (n = 6 or 7 per group), weighing 250-280 g, had the tail-flick baseline recorded and were submitted to a stereotaxic surgery for the introduction of a guide-cannula aiming at the PPTN. After 5 days of postoperative recovery, cobalt chloride (1 mM/0.2 µL) or physiological saline (0.2 µL) were microinjected into the PPTN and after 5 min, the tail-withdrawal latency was measured again at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 min after seizures evoked by intraperitoneal injection of pentylenetetrazole (64 mg/kg). The synaptic inactivation of PPTN decreased the post-ictal antinociceptive phenomenon, suggesting the involvement of PPTN intrinsic connections in the modulation of pain, during tonic-clonic seizures. These results showed that the PPTN may be crucially involved in the neural network that organizes the post-ictal analgesia. © 2014 Wiley Periodicals, Inc.

  15. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  16. Added value of SPECT/spiral CT versus SPECT or CT alone in diagnosing solitary skeletal lesions.

    PubMed

    Zhang, Yiqiu; Li, Beilei; Shi, Hongcheng; Yu, Haojun; Gu, Yushen; Xiu, Yan

    2017-08-14

    The aim of this study was to investigate the added value of SPECT/spiral CT versus SPECT or CT alone in the differential diagnosis of solitary skeletal lesions. This was a retrospective study on a total of 69 patients who had a solitary skeletal "hot spot" that could not be definitively diagnosed using planar scintigraphy. Thus, SPECT/spiral CT was performed on the indeterminate lesions. SPECT, CT and SPECT/spiral CT images were independently interpreted by two experienced doctors who have both identification of CT and nuclear medicine. Each lesion was graded on a 4-point diagnostic scale (1: benign, 2: likely benign, 3: likely malignant, 4: malignant). The final diagnosis of each lesion was based on pathological confirmation after surgery within 3 weeks of the bone scan. Final diagnoses based on the pathological results revealed that 43 of the 69 patients were diagnosed with malignancy, and the remaining 26 patients were diagnosed as having benign lesions. For SPECT and CT scans, both of the reviewers rated 55.1 % (38/69) and 37.7 % (26/69) of lesions as equivocal, with the help of SPECT/CT, 33.3 % (23/69) of lesions were rated as equivocal. The diagnostic accuracies of SPECT, CT alone and SPECT/CT were 66.7 % (46/69) ,82.6 % (57/69) and 85.5 %(59/69), respectively. The kappa scores for the degree of agreement between SPECT, CT alone or SPECT/CT with pathological results were 0.185 (p = 0.054) , 0.612 (p < 0.001) and 0.671 (p < 0.001), respectively. Compared with SPECT or imaging alone, SPECT/spiral CT imaging was more accurate and valuable in the differential diagnosis of solitary skeletal lesions and resulted in significantly fewer equivocal findings.

  17. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera.

    PubMed

    Pourmoghaddas, Amir; Wells, R Glenn

    2016-11-01

    Dedicated cardiac SPECT scanners have improved performance over standard gamma cameras allowing reductions in acquisition times and/or injected activity. One approach to improving performance has been to use pinhole collimators, but this can cause position-dependent variations in attenuation, sensitivity, and spatial resolution. CT attenuation correction (AC) and an accurate system model can compensate for many of these effects; however, scatter correction (SC) remains an outstanding issue. In addition, in cameras using cadmium-zinc-telluride-based detectors, a large portion of unscattered photons is detected with reduced energy (low-energy tail). Consequently, application of energy-based SC approaches in these cameras leads to a higher increase in noise than with standard cameras due to the subtraction of true counts detected in the low-energy tail. Model-based approaches with parallel-hole collimator systems accurately calculate scatter based on the physics of photon interactions in the patient and camera and generate lower-noise estimates of scatter than energy-based SC. In this study, the accuracy of a model-based SC method was assessed using physical phantom studies on the GE-Discovery NM530c and its performance was compared to a dual energy window (DEW)-SC method. The analytical photon distribution (APD) method was used to calculate the distribution of probabilities that emitted photons will scatter in the surrounding scattering medium and be subsequently detected. APD scatter calculations for 99m Tc-SPECT (140 ± 14 keV) were validated with point-source measurements and 15 anthropomorphic cardiac-torso phantom experiments and varying levels of extra-cardiac activity causing scatter inside the heart. The activity inserted into the myocardial compartment of the phantom was first measured using a dose calibrator. CT images were acquired on an Infinia Hawkeye (GE Healthcare) SPECT/CT and coregistered with emission data for AC. For comparison, DEW scatter

  18. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: A meta-analysis.

    PubMed

    Chen, Tong; Guo, Liang

    2016-10-01

    To assess the specific value of subtraction ictal and inter-ictal SPECT co-registered to MRI (SISCOM) in identifying the epileptogenic zone (EZ) and predicting postoperative outcomes in epileptic surgical patients. A meta-analysis of studies published from January 1995 to June 2015 was conducted through a comprehensive literature search, and 11 studies were included. R software was first used to calculate a pooled positive rate, concordant rate and positive predictive value (PPV) for good outcomes. Stata software was then used to explore the relationship between SISCOM localization and surgical outcomes, including a subgroup analysis for extra-temporal lobe epilepsy. The unweighted positive and concordant rates of SISCOM were 85.9% and 65.3%, respectively. In 142 MRI-negative patients, the SISCOM positive rate was 83.8%. The pooled PPV of 178 surgical patients with concordant SISCOM was 56%. In the meta-analysis of 275 surgical patients, the seizure-free odds ratio was 3.28-times higher in concordant than in non-concordant SISCOM patients [95%CI (1.90, 5.67)]. For extra-temporal lobe epilepsy, the seizure-free odds ratio was 2.44-times higher in concordant than in non-concordant SISCOM patients [95%CI (1.34, 4.43)]. Our data indicate that SISCOM has moderate sensitivity in localizing the epileptogenic zone and can provide complementary information when MRI is negative. Furthermore, SISCOM localization concordant with the gold standard demonstrates slightly higher predictive value for good surgical outcomes. Further research is required to explore the influence of SISCOM localization results in temporal lobe versus extra-temporal lobe epilepsy. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  19. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  20. Xenon-enhanced CT using subtraction CT: Basic and preliminary clinical studies for comparison of its efficacy with that of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and pulmonary functional loss in smokers.

    PubMed

    Ohno, Yoshiharu; Yoshikawa, Takeshi; Takenaka, Daisuke; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Sugimura, Kazuro

    2017-01-01

    To prospectively and directly compare the capability for assessments of regional ventilation and pulmonary functional loss in smokers of xenon-ventilation CT obtained with the dual-energy CT (DE-CT) and subtraction CT (Sub-CT) MATERIALS AND METHODS: Twenty-three consecutive smokers (15 men and 8 women, mean age: 69.7±8.7years) underwent prospective unenhanced and xenon-enhanced CTs, the latter by Sub-CT and DE-CT methods, ventilation SPECT and pulmonary function tests. Sub-CT was generated from unenhanced and xenon-enhanced CT, and all co-registered SPECT/CT data were produced from SPECT and unenhanced CT data. For each method, regional ventilation was assessed by using a 11-point scoring system on a per-lobe basis. To determine the functional lung volume by each method, it was also calculated for individual sublets with a previously reported method. To determine inter-observer agreement for each method, ventilation defect assessment was evaluated by using the χ2 test with weighted kappa statistics. For evaluation of the efficacy of each method for pulmonary functional loss assessment, functional lung volume was correlated with%FEV 1 . Each inter-observer agreement was rated as substantial (Sub-CT: κ=0.69, p<0.0001; DE-CT: κ=0.64, p<0.0001; SPECT/CT: κ=0.64, p<0.0001). Functional lung volume for each method showed significant to good correlation with%FEV 1 (Sub-CT: r=0.72, p=0.0001; DE-CT: r=0.74, p<0.0001; SPECT/CT: r=0.66, p=0.0006). Xenon-enhanced CT obtained by Sub-CT can be considered at least as efficacious as that obtained by DE-CT and SPECT/CT for assessment of ventilation abnormality and pulmonary functional loss in smokers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization

    PubMed Central

    Aguirre, Andres; Guo, Puyun; Gamelin, John; Yan, Shikui; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2009-01-01

    Ovarian cancer has the highest mortality of all gynecologic cancers, with a five-year survival rate of only 30% or less. Current imaging techniques are limited in sensitivity and specificity in detecting early stage ovarian cancer prior to its widespread metastasis. New imaging techniques that can provide functional and molecular contrasts are needed to reduce the high mortality of this disease. One such promising technique is photoacoustic imaging. We develop a 1280-element coregistered 3-D ultrasound and photoacoustic imaging system based on a 1.75-D acoustic array. Volumetric images over a scan range of 80 deg in azimuth and 20 deg in elevation can be achieved in minutes. The system has been used to image normal porcine ovarian tissue. This is an important step toward better understanding of ovarian cancer optical properties obtained with photoacoustic techniques. To the best of our knowledge, such data are not available in the literature. We present characterization measurements of the system and compare coregistered ultrasound and photoacoustic images of ovarian tissue to histological images. The results show excellent coregistration of ultrasound and photoacoustic images. Strong optical absorption from vasculature, especially highly vascularized corpora lutea and low absorption from follicles, is demonstrated. PMID:19895116

  2. Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.

    PubMed

    Aydogan, F; Akbay, E; Cevik, C; Kalender, E

    2014-01-01

    The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.

  3. Nursing benefits of using an automated injection system for ictal brain single photon emission computed tomography.

    PubMed

    Vonhofen, Geraldine; Evangelista, Tonya; Lordeon, Patricia

    2012-04-01

    The traditional method of administering radioactive isotopes to pediatric patients undergoing ictal brain single photon emission computed tomography testing has been by manual injections. This method presents certain challenges for nursing, including time requirements and safety risks. This quality improvement project discusses the implementation of an automated injection system for isotope administration and its impact on staffing, safety, and nursing satisfaction. It was conducted in an epilepsy monitoring unit at a large urban pediatric facility. Results of this project showed a decrease in the number of nurses exposed to radiation and improved nursing satisfaction with the use of the automated injection system. In addition, there was a decrease in the number of nursing hours required during ictal brain single photon emission computed tomography testing.

  4. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  5. A self-adapting system for the automated detection of inter-ictal epileptiform discharges.

    PubMed

    Lodder, Shaun S; van Putten, Michel J A M

    2014-01-01

    Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form "IED nominations", each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20-30 min recordings 1 took approximately 5 min. The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.

  6. A Self-Adapting System for the Automated Detection of Inter-Ictal Epileptiform Discharges

    PubMed Central

    Lodder, Shaun S.; van Putten, Michel J. A. M.

    2014-01-01

    Purpose Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Methods Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form “IED nominations”, each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Key Findings Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20–30 min recordings 1took approximately 5 min. Significance The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents. PMID:24454813

  7. Ventilation/perfusion SPECT or SPECT/CT for lung function imaging in patients with pulmonary emphysema?

    PubMed

    Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F

    2015-07-01

    To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

  8. SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone.

    PubMed

    Sharma, Punit; Sharma, Shekhar; Ballal, Sanjana; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh

    2012-09-01

    To assess the patient radiation dose during routine clinical single-photon emission computed tomography-computed tomography (SPECT-CT) and measure the increase as compared with SPECT alone. Data pertaining to 357 consecutive patients who had undergone radioisotope imaging along with SPECT-CT of a selected volume were retrospectively evaluated. Dose of the injected radiopharmaceutical (MBq) was noted, and the effective dose (mSv) was calculated as per International Commission on Radiological Protection (ICRP) guidelines. The volume-weighted computed tomography dose index (CTDIvol) and dose length product of the CT were also assessed using standard phantoms. The effective dose (mSv) due to CT was calculated as the product of dose length product and a conversion factor depending on the region of investigation, using ICRP guidelines. The dose due to CT was compared among different investigations. The increase in effective dose was calculated as CT dose expressed as a percentage of radiopharmaceutical dose. The per-patient CT effective dose for different studies varied between 0.06 and 11.9 mSv. The mean CT effective dose was lowest for 99mTc-ethylene cysteine dimer brain SPECT-CT (0.9 ± 0.7) and highest for 99mTc-methylene diphosphonate bone SPECT-CT (4.2 ± 2.8). The increase in radiation dose (SPECT-CT vs. SPECT) varied widely (2.3-666.4% for 99mTc-tracers and 0.02-96.2% for 131I-tracers). However, the effective dose of CT in SPECT-CT was less than the values reported for conventional CT examinations of the same regions. Addition of CT to nuclear medicine imaging in the form of SPECT-CT increases the radiation dose to the patient, with the effective dose due to CT exceeding the effective dose of RP in many instances. Hence, appropriate utilization and optimization of the protocols of SPECT-CT is needed to maximize benefit to patients.

  9. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  10. Molecular imaging of angiogenesis with SPECT

    PubMed Central

    Boerman, Otto C.

    2010-01-01

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435

  11. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    PubMed

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  12. Design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals

    NASA Astrophysics Data System (ADS)

    Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.

    2011-03-01

    We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.

  13. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  14. Nicotinic and muscarinic cholinergic receptors are recruited by acetylcholine-mediated neurotransmission within the locus coeruleus during the organisation of post-ictal antinociception.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Franceschi; Falconi-Sobrinho, Luiz Luciano; Dos Anjos-Garcia, Tayllon; Coimbra, Norberto Cysne

    2016-10-01

    Post-ictal antinociception is characterised by an increase in the nociceptive threshold that accompanies tonic and tonic-clonic seizures (TCS). The locus coeruleus (LC) receives profuse cholinergic inputs from the pedunculopontine tegmental nucleus. Different concentrations (1μg, 3μg and 5μg/0.2μL) of the muscarinic cholinergic receptor antagonist atropine and the nicotinic cholinergic receptor antagonist mecamylamine were microinjected into the LC of Wistar rats to investigate the role of cholinergic mechanisms in the severity of TCS and the post-ictal antinociceptive response. Five minutes later, TCS were induced by systemic administration of pentylenetetrazole (PTZ) (64mg/kg). Seizures were recorded inside the open field apparatus for an average of 10min. Immediately after seizures, the nociceptive threshold was recorded for 130min using the tail-flick test. Pre-treatment of the LC with 1μg, 3μg and 5μg/0.2μL concentrations of both atropine and mecamylamine did not cause a significant effect on seizure severity. However, the same treatments decreased the post-ictal antinociceptive phenomenon. In addition, mecamylamine caused an earlier decrease in the post-ictal antinociception compared to atropine. These results suggest that muscarinic and mainly nicotinic cholinergic receptors of the LC are recruited to organise tonic-clonic seizure-induced antinociception. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Ferreira, Célio Marcos Dos Reis; Coimbra, Norberto Cysne

    2006-09-01

    The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and men. In this interesting post-ictal behavioral response, endogenous opioid peptides-mediated mechanisms, as well as cholinergic-mediated antinociceptive processes, have been suggested. However, considering that many serotonergic descending pathways have been implicated in antinociceptive reactions, the aim of the present work is to investigate the involvement of 5-HT(2)-serotonergic receptor subfamily in the post-ictal antinociception. The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the post-ictal period. Male Wistar rats were submitted to stereotaxic surgery for introduction of a guide-cannula in the rhombencephalon, aiming either the nucleus raphe magnus (NRM) or the gigantocellularis complex. In independent groups of animals, these nuclei were neurochemically lesioned with a unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL). The neuronal damage of either the NRM or nucleus reticularis gigantocellularis/paragigantocellularis complex decreased the post-ictal analgesia. Also, in other independent groups, central administration of ritanserin (5.0 microg/0.2 microL) or physiological saline into each of the reticular formation nuclei studied caused a statistically significant decrease in the TFL of seizing animals, as compared to controls, in all post-ictal periods studied. These results indicate that serotonin input-connected neurons of the pontine and medullarly reticular nuclei may be involved in the post-ictal analgesia.

  16. Incremental value of 99mTc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours.

    PubMed

    Trogrlic, Mate; Težak, Stanko

    2017-06-12

    The aim of this study was to evaluate the additional value of 99m Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq 99m Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.

  17. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    PubMed

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  18. Two magneto-encephalographic epileptic foci did not coincide with the electrocorticographic ictal onset zone in a patient with temporal lobe epilepsy.

    PubMed

    Hisada, K; Morioka, T; Nishio, S; Yamamoto, T; Fukui, M

    2001-12-01

    To evaluate the usefulness and limitations of magneto-encephalography (MEG) for epilepsy surgery, we compared 'interictal' epileptic spike fields on MEG with ictal electrocorticography (ECoG) using invasive chronic subdural electrodes in a patient with intractable medial temporal lobe epilepsy (MTLE) associated with vitamin K deficiency intracerebral hemorrhage. A 19-year-old male with an 8-year history of refractory complex partial seizures, secondarily generalized, and right hemispheric atrophy and porencephaly in the right frontal lobe on MRI, was studied with MEG to define the interictal paroxysmal sources based on the single-dipole model. This was followed by invasive ECoG monitoring to delineate the epileptogenic zone. MEG demonstrated two paroxysmal foci, one each on the right lateral temporal and frontal lobes. Ictal ECoG recordings revealed an ictal onset zone on the right medial temporal lobe, which was different from that defined by MEG. Anterior temporal lobectomy with hippocampectomy was performed and the patient has been seizure free for two years. Our results indicate that interictal MEG does not always define the epileptogenic zone in patients with MTLE.

  19. A guide to SPECT equipment for brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffer, P.B.; Zubal, G.

    1991-12-31

    Single photon emission computed tomography (SPECT) was started by Kuhl and Edwards about 30 years ago. Their original instrument consisted of four focused Nal probes mounted on a moving gantry. During the 1980s, clinical SPECT imaging was most frequently performed using single-headed Anger-type cameras which were modified for rotational as well as static imaging. Such instruments are still available and may be useful in settings where there are few patients and SPECT is used only occasionally. More frequently, however, dedicated SPECT devices are purchased which optimize equipment potential while being user-friendly. Modern SPECT instrumentation incorporates improvements in the detector, computers,more » mathematical formulations, electronics and display systems. A comprehensive discussion of all aspects of SPECT is beyond the scope of this article. The authors, however, discuss general concepts of SPECT, the current state-of-the-art in clinical SPECT instrumentation, and areas of common misunderstanding. 9 refs.« less

  20. A quantitative reconstruction software suite for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Namías, Mauro; Jeraj, Robert

    2017-11-01

    Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.

  1. A Multimodal Imaging Protocol, (123)I/(99)Tc-Sestamibi, SPECT, and SPECT/CT, in Primary Hyperparathyroidism Adds Limited Benefit for Preoperative Localization.

    PubMed

    Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L

    2016-03-01

    Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.

  2. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    PubMed

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone.

    PubMed

    Schindler, Kaspar; Rummel, Christian; Andrzejak, Ralph G; Goodfellow, Marc; Zubler, Frédéric; Abela, Eugenio; Wiest, Roland; Pollo, Claudio; Steimer, Andreas; Gast, Heidemarie

    2016-09-01

    To show that time-irreversible EEG signals recorded with intracranial electrodes during seizures can serve as markers of the epileptogenic zone. We use the recently developed method of mapping time series into directed horizontal graphs (dHVG). Each node of the dHVG represents a time point in the original intracranial EEG (iEEG) signal. Statistically significant differences between the distributions of the nodes' number of input and output connections are used to detect time-irreversible iEEG signals. In 31 of 32 seizure recordings we found time-irreversible iEEG signals. The maximally time-irreversible signals always occurred during seizures, with highest probability in the middle of the first seizure half. These signals spanned a large range of frequencies and amplitudes but were all characterized by saw-tooth like shaped components. Brain regions removed from patients who became post-surgically seizure-free generated significantly larger time-irreversibilities than regions removed from patients who still had seizures after surgery. Our results corroborate that ictal time-irreversible iEEG signals can indeed serve as markers of the epileptogenic zone and can be efficiently detected and quantified in a time-resolved manner by dHVG based methods. Ictal time-irreversible EEG signals can help to improve pre-surgical evaluation in patients suffering from pharmaco-resistant epilepsies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization.

    PubMed

    Ilhan, Harun; Goritschan, Anna; Paprottka, Phillip; Jakobs, Tobias F; Fendler, Wolfgang P; Bartenstein, Peter; Hacker, Marcus; Haug, Alexander R

    2015-03-01

    The aim of this study was to evaluate the (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) uptake of primary and secondary liver tumors in a large patient cohort before (90)Y radioembolization. We included 502 patients during the years 2005-2013 (55% male; mean age, 62 ± 11 y), who were examined with (99m)Tc-MAA SPECT or SPECT/CT before planned radioembolization. The patients had colorectal cancer (CRC; n = 195, 38.8%), neuroendocrine tumors (NET; n = 77, 15.3%), mammary cancer (MAM; n = 68, 13.5%), hepatocellular carcinoma (HCC; n = 59, 11.8%), cholangiocellular carcinoma (CCC; n = 40, 8.0%), or urologic tumors (URO; n = 14, 2.8%). SPECT with coregistered contrast-enhanced CT or MR imaging and SPECT/CT images of these patients were analyzed using dedicated software with regard to the (99m)Tc-MAA uptake of the liver tumors. Regions of interest were drawn around the lesions manually and quantified the uptake of up to 3 lesions per patient and also adjacent healthy liver tissue without evidence of tumor. We quantified maximum and mean counts per pixel and calculated tumor-to-background ratio (TBR). Data are reported as mean ± SD. Lesion uptake was classified as being homogeneously high (grade 1), heterogeneously high (grade 2), equal to that of the liver (grade 3), or low (grade 4). Grade 1 uptake was seen in 230 of 1,008 lesions (with the highest rates in sarcoma [47%], MAM [37%], and NET [32%]), grade 2 in 706 lesions (with the highest rates in CRC [77%], HCC [75%], and CCC [74%]), grade 4 in 57 lesions (with the highest rates in pancreatic cancer [17%], sarcoma [SAR] [13%], and MAM [8%]), and grade 3 in only 15 lesions. In quantitative analysis, the mean TBRmax of all lesions was 4.8 ± 4.1 (range, 0.2-50.1), with the highest values in HCC (6.0 ± 4.7; range, 1.4-21.6), NET (5.4 ± 4.9; range, 0.8-43.0), pancreatic cancer (4.0 ± 2.8; range, 0.9-12.2), and CCC (4.7 ± 2.9; range, 0.9-11.6), and the lowest values in SAR (3.5 ± 1.8; range, 0.8-2.7) and MAM (3.6 ± 2

  5. MR-based keyhole SPECT for small animal imaging

    PubMed Central

    Lee, Keum Sil; Roeck, Werner W; Gullberg, Grant T; Nalcioglu, Orhan

    2011-01-01

    The rationale for multi-modality imaging is to integrate the strengths of different imaging technologies while reducing the shortcomings of an individual modality. The work presented here proposes a limited-field-of-view (LFOV) SPECT reconstruction technique that can be implemented on a multi-modality MR/SPECT system that can be used to obtain simultaneous MRI and SPECT images for small animal imaging. The reason for using a combined MR/SPECT system in this work is to eliminate any possible misregistration between the two sets of images when MR images are used as a priori information for SPECT. In nuclear imaging the target area is usually smaller than the entire object; thus, focusing the detector on the LFOV results in various advantages including the use of a smaller nuclear detector (less cost), smaller reconstruction region (faster reconstruction) and higher spatial resolution when used in conjunction with pinhole collimators with magnification. The MR/SPECT system can be used to choose a region of interest (ROI) for SPECT. A priori information obtained by the full field-of-view (FOV) MRI combined with the preliminary SPECT image can be used to reduce the dimensions of the SPECT reconstruction by limiting the computation to the smaller FOV while reducing artifacts resulting from the truncated data. Since the technique is based on SPECT imaging within the LFOV it will be called the keyhole SPECT (K-SPECT) method. At first MRI images of the entire object using a larger FOV are obtained to determine the location of the ROI covering the target organ. Once the ROI is determined, the animal is moved inside the radiofrequency (rf) coil to bring the target area inside the LFOV and then simultaneous MRI and SPECT are performed. The spatial resolution of the SPECT image is improved by employing a pinhole collimator with magnification >1 by having carefully calculated acceptance angles for each pinhole to avoid multiplexing. In our design all the pinholes are focused to

  6. Radiopharmaceuticals for SPECT cancer detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernov, V. I., E-mail: chernov@oncology.tomsk.ru; Medvedeva, A. A., E-mail: tickayaAA@oncology.tomsk.ru; Zelchan, R. V., E-mail: r.zelchan@yandex.ru

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tlmore » SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.« less

  7. Orgasm-induced seizures: male studied with ictal electroencephalography.

    PubMed

    Sengupta, Anshuman; Mahmoud, Ali; Tun, Shwe Z; Goulding, Peter

    2010-06-01

    Reflex seizures can occur in response to a variety of stimuli, both sensory and emotional. Common triggers include light and music; however, in a growing number of case reports, the phenomenon of sexual activity triggering epileptic seizures is described. The majority of these case reports have been in women so far, and most have been found to localise to the right cerebral hemisphere on interictal electroencephalography (EEG). We report the case of a 34-year-old male with orgasm-induced seizures, recorded on ictal EEG. This gentleman's electrophysiology localised his seizure focus to the left cerebral hemisphere, making his case atypical in comparison with the majority of previous reports. Orgasm-induced seizures are an increasingly well-described phenomenon and we suggest that this should be taken into account when assessing patients with possible reflex seizures. Copyright 2010 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks☆

    PubMed Central

    Popescu, V.; Ran, N.C.G.; Barkhof, F.; Chard, D.T.; Wheeler-Kingshott, C.A.; Vrenken, H.

    2014-01-01

    Background In multiple sclerosis (MS), brain atrophy quantification is affected by white matter lesions. LEAP and FSL-lesion_filling, replace lesion voxels with white matter intensities; however, they require precise lesion identification on 3DT1-images. Aim To determine whether 2DT2 lesion masks co-registered to 3DT1 images, yield grey and white matter volumes comparable to precise lesion masks. Methods 2DT2 lesion masks were linearly co-registered to 20 3DT1-images of MS patients, with nearest-neighbor (NNI), and tri-linear interpolation. As gold-standard, lesion masks were manually outlined on 3DT1-images. LEAP and FSL-lesion_filling were applied with each lesion mask. Grey (GM) and white matter (WM) volumes were quantified with FSL-FAST, and deep gray matter (DGM) volumes using FSL-FIRST. Volumes were compared between lesion mask types using paired Wilcoxon tests. Results Lesion-filling with gold-standard lesion masks compared to native images reduced GM overestimation by 1.93 mL (p < .001) for LEAP, and 1.21 mL (p = .002) for FSL-lesion_filling. Similar effects were achieved with NNI lesion masks from 2DT2. Global WM underestimation was not significantly influenced. GM and WM volumes from NNI, did not differ significantly from gold-standard. GM segmentation differed between lesion masks in the lesion area, and also elsewhere. Using the gold-standard, FSL-FAST quantified as GM on average 0.4% of the lesion area with LEAP and 24.5% with FSL-lesion_filling. Lesion-filling did not influence DGM volumes from FSL-FIRST. Discussion These results demonstrate that for global GM volumetry, precise lesion masks on 3DT1 images can be replaced by co-registered 2DT2 lesion masks. This makes lesion-filling a feasible method for GM atrophy measurements in MS. PMID:24567908

  9. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    PubMed

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT

  10. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    PubMed

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a

  11. [Ictal Speech Manifesting as Sleep Talking: A Case Report].

    PubMed

    Suzuki, Takehiro; Kakisaka, Yosuke; Kitazawa, Yu; Jin, Kazutaka; Sato, Shiho; Iwasaki, Masaki; Fujikawa, Mayu; Nishio, Yoshiyuki; Kanno, Akitake; Nakasato, Nobukazu

    2017-02-01

    We present a 28-year-old female patient whose epilepsy started at the age of 19. MRI showed right perisylvian polymicrogyria. She exhibited various seizure symptoms, such as somatosensory aura involving the left leg, dyscognitive seizures, and amnesic seizures. Her mother indicated that the patient sometimes had "sleep talking", which was associated with presence of epileptic seizures of the next day. Long-term video electroencephalography (EEG) revealed that her episodes of "sleep talking" were epileptic events, specifically ictal speech, originating in the right hemisphere. The present case demonstrates the importance of considering "sleep talk" as an epileptic symptom. Careful history taking is fundamental to carry patients with possibly pathological "sleep talk" to the long-term video EEG, which will contribute correct diagnosis and treatment. (Received August 16, 2016; Accepted September 9, 2016; Published February 1, 2017).

  12. Reconstruction of truncated TCT and SPECT data from a right-angle dual-camera system for myocardial SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, B.M.W.; Frey, E.C.; Lalush, D.S.

    1996-12-31

    We investigated methods to accurately reconstruct 180{degrees} truncated TCT and SPECT projection data obtained from a right-angle dual-camera SPECT system for myocardial SPECT with attenuation compensation. The 180{degrees} data reconstruction methods would permit substantial savings in transmission data acquisition time. Simulation data from the 3D MCAT phantom and clinical data from large patients were used in the evaluation study. Different transmission reconstruction methods including the FBP, transmission ML-EM, transmission ML-SA, and BIT algorithms with and without using the body contour as support, were used in the TCT image reconstructions. The accuracy of both the TCT and attenuation compensated SPECT imagesmore » were evaluated for different degrees of truncation and noise levels. We found that using the FBP reconstructed TCT images resulted in higher count density in the left ventricular (LV) wall of the attenuation compensated SPECT images. The LV wall count density obtained using the iteratively reconstructed TCT images with and without support were similar to each other and were more accurate than that using the FBP. However, the TCT images obtained with support show fewer image artifacts than without support. Among the iterative reconstruction algorithms, the ML-SA algorithm provides the most accurate reconstruction but is the slowest. The BIT algorithm is the fastest but shows the most image artifacts. We conclude that accurate attenuation compensated images can be obtained with truncated 180{degrees} data from large patients using a right-angle dual-camera SPECT system.« less

  13. SPECT in patients with cortical visual loss.

    PubMed

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  14. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  15. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    ... can become damaged or even die. Reduced pumping efficiency. SPECT can show how completely your heart chambers ... radioactive tracer SPECT scans aren't safe for women who are pregnant or breast-feeding because the ...

  16. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    NASA Astrophysics Data System (ADS)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.

  17. Ictal visual hallucinations due to frontal lobe epilepsy in a patient with bipolar disorder☆

    PubMed Central

    Manfioli, Valeria; Saladini, Marina; Cagnin, Annachiara

    2013-01-01

    In ictal psychosis with complex visual hallucinations (VHs), widespread functional changes of cortical networks have been suggested. We describe the clinical and EEG findings of a patient with bipolar disorder who manifested complex VHs associated with intense emotional symptoms caused by frontal epileptic seizures. This description highlights the challenges of diagnosing the epileptic nature of new psychotic phenomena in patients with previous psychiatric disorders and shines light into the role of the frontal cortex in the genesis of complex VHs. PMID:25667849

  18. SPECT/CT in patients with lower back pain after lumbar fusion surgery.

    PubMed

    Sumer, Johannes; Schmidt, Daniela; Ritt, Philipp; Lell, Michael; Forst, Raimund; Kuwert, Torsten; Richter, Richard

    2013-10-01

    The aim of the study was to investigate the incremental diagnostic value of skeletal hybrid imaging with single-photon emission computed tomography and X-ray computed tomography (SPECT/CT) over conventional nuclear medical imaging in patients with lower back pain after lumbar fusion surgery (LFS). This retrospective study comprised 37 patients suffering from lower back pain after LFS in whom three-phase planar bone scintigraphies of the lumbar spine including SPECT/CT of that region had been performed. The findings visible on these imaging data sets were classified into the following five diagnostic categories: (a) metal loosening; (b) insufficient stabilizing function of the metal implants indicated by metabolically active facet joint arthritis and/or intervertebral osteochondrosis in the instrumented region; (c) adjacent instability defined as metabolically active degenerative disease in the segments adjacent to the instrumented region; (d) indeterminate; and (e) normal. In the case of eight patients no lesions were visible on their planar scintigraphy and SPECT (planar/SPECT) or SPECT/CT images. In the remaining 29 patients, planar/SPECT disclosed 62 pathological foci of uptake within the graft region and SPECT/CT revealed 55. The rate of reclassification by SPECT/CT compared with planar/SPECT was 5/12 for lesions categorized as metal loosening by planar/SPECT, 16/29 for foci with a planar/SPECT diagnosis of insufficient stabilizing function, 7/20 when the planar/SPECT diagnosis had been adjacent instability, and 1/1 for the lesions indeterminate on planar/SPECT. Two lesions had been detected on SPECT/CT only. The overall rate of reclassification was 45.2% (28/62) (95% confidence interval, 33.4-57.5%). Because of its significantly higher accuracy compared with planar/SPECT, SPECT/CT should be the conventional nuclear medical procedure of choice for patients with lower back pain after LFS.

  19. Single photon emission computed tomography (SPECT) in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promotedmore » as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.« less

  20. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners. PMID:18635899

  1. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT CT scanners

    NASA Astrophysics Data System (ADS)

    Di Filippo, Frank P.

    2008-08-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.

  2. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    PubMed

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  3. Muscle and eye movement artifact removal prior to EEG source localization.

    PubMed

    Hallez, Hans; Vergult, Anneleen; Phlypo, Ronald; Van Hese, Peter; De Clercq, Wim; D'Asseler, Yves; Van de Walle, Rik; Vanrumste, Bart; Van Paesschen, Wim; Van Huffel, Sabine; Lemahieu, Ignace

    2006-01-01

    Muscle and eye movement artifacts are very prominent in the ictal EEG of patients suffering from epilepsy, thus making the dipole localization of ictal activity very unreliable. Recently, two techniques (BSS-CCA and pSVD) were developed to remove those artifacts. The purpose of this study is to assess whether the removal of muscle and eye movement artifacts improves the EEG dipole source localization. We used a total of 8 EEG fragments, each from another patient, first unfiltered, then filtered by the BSS-CCA and pSVD. In both the filtered and unfiltered EEG fragments we estimated multiple dipoles using RAP-MUSIC. The resulting dipoles were subjected to a K-means clustering algorithm, to extract the most prominent cluster. We found that the removal of muscle and eye artifact results to tighter and more clear dipole clusters. Furthermore, we found that localization of the filtered EEG corresponded with the localization derived from the ictal SPECT in 7 of the 8 patients. Therefore, we can conclude that the BSS-CCA and pSVD improve localization of ictal activity, thus making the localization more reliable for the presurgical evaluation of the patient.

  4. Avoiding full corrections in dynamic SPECT images impacts the performance of SPECT myocardial blood flow quantitation.

    PubMed

    Wang, Lei; Wu, Dayong; Yang, Yong; Chen, Ing-Jou; Lin, Chih-Yuan; Hsu, Bailing; Fang, Wei; Tang, Yi-Da

    2017-08-01

    This study investigated the performance of SPECT myocardial blood flow (MBF) quantitation lacking full physical corrections (All Corr) in dynamic SPECT (DySPECT) images. Eleven healthy normal volunteers (HVT) and twenty-four patients with angiography-documented CAD were assessed. All Corr in 99m Tc-sestamibi DySPECT encompassed noise reduction (NR), resolution recovery (RR), and corrections for scatter (SC) and attenuation (AC), otherwise no correction (NC) or only partial corrections. The performance was evaluated by quality index (R 2 ) and blood-pool spillover index (FBV) in kinetic modeling, and by rest flow (RMBF) and stress flow (SMBF) compared with those of All Corr. In HVT group, NC diminished 2-fold flow uniformity with the most degraded quality (15%-18% reduced R 2 ) and elevated spillover effect (45%-50% increased FBV). Consistently higher RMBF and SMBF were discovered in both groups (HVT 1.54/2.31 higher; CAD 1.60/1.72; all P < .0001). Bland-Altman analysis revealed positive flow bias (HVT 0.9-2.6 mL/min/g; CAD 0.7-1.3) with wide ranges of 95% CI of agreement (HVT NC -1.9-7.1; NR -0.4-4.4; NR + SC -1.1-4.3; NR + SC + RR -0.7-2.5) (CAD NC -1.2-3.8; NR -1.0-2.8; NR + SC -1.0-2.5; NR + SC + RR -1.1-2.6). Uncorrected physical interference in DySPECT images can extensively impact the performance of MBF quantitation. Full physical corrections should be considered to warrant this tool for clinical utilization.

  5. Ictal alterations of consciousness during ecstatic seizures.

    PubMed

    Picard, Fabienne; Kurth, Florian

    2014-01-01

    Patients with ecstatic epileptic seizures report an altered consciousness, which they describe as a sense of heightened perception of themselves – they “feel very present” – and an increased vividness of sensory perceptions. Recently, the anterior insula has been proposed as the region where these seizures originate, based on the results of ictal nuclear imaging in three patients, the first induction of ecstatic auras by electrical stimulation, and the functional characteristics of the anterior insula in neuroimaging literature. Specifically, the anterior insula is thought to play a key role in integrating information from within the body, the external world, as well as the emotional states. In addition, the anterior insula is thought to convert this integrated information into successive global emotional moments, thus enabling both the construct of a sentient self as well as a mechanism for predictive coding. As part of the salience network, this region is also involved in switching from mind wandering toward attentional and executive processing. In this review, we will summarize previous patient reports and recap how insular functioning may be involved in the phenomenon of ecstatic seizures. Furthermore, we will relate these hypotheses to the results from research on meditation and effects of drug abuse.

  6. Diffuse optical tomography using semiautomated coregistered ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing

    2017-12-01

    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  7. Paroxysmal arousal in epilepsy associated with cingulate hyperperfusion.

    PubMed

    Vetrugno, R; Mascalchi, M; Vella, A; Della Nave, R; Provini, F; Plazzi, G; Volterrani, D; Bertelli, P; Vattimo, A; Lugaresi, E; Montagna, P

    2005-01-25

    A patient with nocturnal frontal lobe epilepsy characterized by paroxysmal motor attacks during sleep had brief paroxysmal arousals (PAs), complex episodes of nocturnal paroxysmal dystonia, and epileptic nocturnal wandering since childhood. Ictal SPECT during an episode of PA demonstrated increased blood flow in the right anterior cingulate gyrus and cerebellar cortex with hypoperfusion in the right temporal and frontal associative cortices.

  8. IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification.

    PubMed

    Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo

    2017-07-01

    Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p < 0.0001), and the correlation between IQ-SPECT with and without SCAC was also good (r = 0.907 and p < 0.0001). Regarding diagnostic performance, the sensitivity, specificity, and accuracy were 80.8, 78.9, and 79.4%, respectively, for the conventional SPECT; 80.8, 80.3, and 82.0%, respectively, for IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating

  9. Brain pertechnetate SPECT in perinatal asphyxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sfakianakis, G.; Curless, R.; Goldberg, R.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found inmore » all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.« less

  10. SPECT/CT imaging in general orthopedic practice.

    PubMed

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  11. Dynamic Neurovascular Coupling and Uncoupling during Ictal Onset, Propagation, and Termination Revealed by Simultaneous In Vivo Optical Imaging of Neural Activity and Local Blood Volume

    PubMed Central

    Zhao, Mingrui; Schwartz, Theodore H.

    2013-01-01

    Traditional models of ictal propagation involve the concept of an initiation site and a progressive outward march of activation. The process of neurovascular coupling, whereby the brain supplies oxygenated blood to metabolically active neurons presumably results in a similar outward cascade of hyperemia. However, ictal neurovascular coupling has never been assessed in vivo using simultaneous measurements of membrane potential change and hyperemia with wide spatial sampling. In an acute rat ictal model, using simultaneous intrinsic optical signal (IOS) and voltage-sensitive dye (VSD) imaging of cerebral blood volume and membrane potential changes, we demonstrate that seizures consist of multiple dynamic multidirectional waves of membrane potential change with variable onset sites that spread through a widespread network. Local blood volume evolves on a much slower spatiotemporal scale. At seizure onset, the VSD waves extend beyond the IOS signal. During evolution, spatial correlation with hemodynamic signal only exists briefly at the maximal spread of the VSD signal. At termination, the IOS signal extends spatially and temporally beyond the VSD waves. Hence, vascular reactivity evolves in a separate but parallel fashion to membrane potential changes resulting in a mechanism of neurovascular coupling and uncoupling, which is as dynamic as the seizure itself. PMID:22499798

  12. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    NASA Astrophysics Data System (ADS)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  13. [Myokard-Perfusions-SPECT. Myocardial perfusion SPECT - Update S1 guideline].

    PubMed

    Lindner, Oliver; Bengel, Frank; Burchert, Wolfgang; Dörr, Rolf; Hacker, Marcus; Schäfer, Wolfgang; Schäfers, Michael A; Schmidt, Matthias; Schwaiger, Markus; Vom Dahl, Jürgen; Zimmermann, Rainer

    2017-08-14

    The S1 guideline for myocardial perfusion SPECT has been published by the Association of the Scientific Medical Societies in Germany (AWMF) and is valid until 2/2022. This paper is a short summary with comments on all chapters and subchapters wich were modified and amended.

  14. Fabrication of the pinhole aperture for AdaptiSPECT

    PubMed Central

    Kovalsky, Stephen; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical pinhole SPECT imaging system under final construction at the Center for Gamma-Ray Imaging. The system is designed to be able to autonomously change its imaging configuration. The system comprises 16 detectors mounted on translational stages to move radially away and towards the center of the field-of-view. The system also possesses an adaptive pinhole aperture with multiple collimator diameters and pinhole sizes, as well as the possibility to switch between multiplexed and non-multiplexed imaging configurations. In this paper, we describe the fabrication of the AdaptiSPECT pinhole aperture and its controllers. PMID:26146443

  15. Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats.

    PubMed

    Kommajosyula, Srinivasa P; Randall, Marcus E; Faingold, Carl L

    2016-01-01

    A major cause of mortality in epilepsy patients is sudden unexpected death in epilepsy (SUDEP). Post-ictal respiratory dysfunction following generalized convulsive seizures is most commonly observed in witnessed cases of human SUDEP. DBA mouse models of SUDEP are induced by audiogenic seizures (AGSz) and show high incidences of seizure-induced death due to respiratory depression. The relatively low incidence of human SUDEP suggests that it may be useful to examine seizure-associated death in an AGSz model that rarely exhibits sudden death, such as genetically epilepsy-prone rats (GEPR-9s). Adenosine is released extensively during seizures and depresses respiration, which may contribute to seizure-induced death. The present study examined the effects of inhibiting adenosine metabolism on the durations of post-ictal depression (PID) and respiratory distress (RD), changes in blood oxygen saturation (% SpO2), and the incidence of post-seizure mortality in GEPR-9s. Systemic administration of adenosine metabolism inhibitors, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, 30 mg/kg) with 5-Iodotubericidin (5-ITU, 3mg/kg) in GEPR-9s resulted in significant changes in the duration of AGSz-induced PID as compared to vehicle in both genders. These agents also significantly increased the duration of post-seizure RD and significantly decreased the mean% SpO2 after AGSz, as compared to vehicle but only in females. Subsequently, we observed that the incidences of death in both genders 12-48 h post-seizure were significantly greater in drug vs. vehicle treatment. The incidence of death in females was also significantly higher than in males, which is consistent with the elevated seizure sensitivity of female GEPR-9s developmentally. These results support a potentially important role of elevated adenosine levels following generalized seizures in the increased incidence of death in GEPR-9s induced by adenosine metabolism inhibitors. These findings may also be relevant to human SUDEP, in

  16. Preclinical imaging characteristics and quantification of Platinum-195m SPECT.

    PubMed

    Aalbersberg, E A; de Wit-van der Veen, B J; Zwaagstra, O; Codée-van der Schilden, K; Vegt, E; Vogel, Wouter V

    2017-08-01

    In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ( 195m Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of 195m Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) 194 Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl 195m Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT + /CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq 195m Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq 195m Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify 195m Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT + . The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0.0001). Preclinical 195m Pt SPECT is

  17. Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings

    NASA Astrophysics Data System (ADS)

    Liou, Jyun-you; Smith, Elliot H.; Bateman, Lisa M.; McKhann, Guy M., II; Goodman, Robert R.; Greger, Bradley; Davis, Tyler S.; Kellis, Spencer S.; House, Paul A.; Schevon, Catherine A.

    2017-08-01

    Objective. Epileptiform discharges, an electrophysiological hallmark of seizures, can propagate across cortical tissue in a manner similar to traveling waves. Recent work has focused attention on the origination and propagation patterns of these discharges, yielding important clues to their source location and mechanism of travel. However, systematic studies of methods for measuring propagation are lacking. Approach. We analyzed epileptiform discharges in microelectrode array recordings of human seizures. The array records multiunit activity and local field potentials at 400 micron spatial resolution, from a small cortical site free of obstructions. We evaluated several computationally efficient statistical methods for calculating traveling wave velocity, benchmarking them to analyses of associated neuronal burst firing. Main results. Over 90% of discharges met statistical criteria for propagation across the sampled cortical territory. Detection rate, direction and speed estimates derived from a multiunit estimator were compared to four field potential-based estimators: negative peak, maximum descent, high gamma power, and cross-correlation. Interestingly, the methods that were computationally simplest and most efficient (negative peak and maximal descent) offer non-inferior results in predicting neuronal traveling wave velocities compared to the other two, more complex methods. Moreover, the negative peak and maximal descent methods proved to be more robust against reduced spatial sampling challenges. Using least absolute deviation in place of least squares error minimized the impact of outliers, and reduced the discrepancies between local field potential-based and multiunit estimators. Significance. Our findings suggest that ictal epileptiform discharges typically take the form of exceptionally strong, rapidly traveling waves, with propagation detectable across millimeter distances. The sequential activation of neurons in space can be inferred from clinically

  18. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning.

    PubMed

    Yu, Huan; Caldwell, Curtis; Mah, Katherine; Mozeg, Daniel

    2009-03-01

    Coregistered fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has shown potential to improve the accuracy of radiation targeting of head and neck cancer (HNC) when compared to the use of CT simulation alone. The objective of this study was to identify textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18F-FDG PET and CT images. Abnormal and typical normal tissues were manually segmented from PET/CT images of 20 patients with HNC and 20 patients with lung cancer. Texture features including some derived from spatial grey-level dependence matrices (SGLDM) and neighborhood gray-tone-difference matrices (NGTDM) were selected for characterization of these segmented regions of interest (ROIs). Both K nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers were employed to discriminate images of abnormal and normal tissues. The area under the curve (AZ) of receiver operating characteristics (ROC) was used to evaluate the discrimination performance of features in comparison to an expert observer. The leave-one-out and bootstrap techniques were used to validate the results. The AZ of DT-based KNN classifier was 0.95. Sensitivity and specificity for normal and abnormal tissue classification were 89% and 99%, respectively. In summary, NGTDM features such as PET Coarseness, PET Contrast, and CT Coarseness extracted from FDG PET/CT images provided good discrimination performance. The clinical use of such features may lead to improvement in the accuracy of radiation targeting of HNC.

  19. Performance Evaluation of a Bedside Cardiac SPECT System

    NASA Astrophysics Data System (ADS)

    Studenski, Matthew T.; Gilland, David R.; Parker, Jason G.; Hammond, B.; Majewski, Stan; Weisenberger, Andrew G.; Popov, Vladimir

    2009-06-01

    This paper reports on the initial performance evaluation of a bedside cardiac PET/SPECT system. The system was designed to move within a hospital to image critically-ill patients, for example, those in intensive care unit (ICU) or emergency room settings, who cannot easily be transported to a conventional SPECT or PET facility. The system uses two compact (25 cm times 25 cm) detectors with pixilated NaI crystals and position sensitive PMTs. The performance is evaluated for both 140 keV (Tc-99m) and 511 keV (F-18) emitters with the system operating in single photon counting (SPECT) mode. The imaging performance metrics for both 140 keV and 511 keV included intrinsic energy resolution, spatial resolution (intrinsic, system, and reconstructed SPECT), detection sensitivity, count rate capability, and uniformity. Results demonstrated an intrinsic energy resolution of 31% at 140 keV and 23% at 511 keV, a planar intrinsic spatial resolution of 5.6 mm full width half-maximum (FWHM) at 140 keV and 6.3 mm FWHM at 511 keV, and a sensitivity of 4.15 countsmiddotmuCi-1 ldr s-1 at 140 keV and 0.67 counts ldr muCi-1 ldr s-1 at 511 keV. To further the study, a SPECT acquisition using a dynamic cardiac phantom was performed, and the resulting reconstructed images are presented.

  20. Real-time co-registered ultrasound and photoacoustic imaging system based on FPGA and DSP architecture

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Li, Hai; Aguirre, Andres; Zhu, Quing

    2011-03-01

    Co-registering ultrasound (US) and photoacoustic (PA) imaging is a logical extension to conventional ultrasound because both modalities provide complementary information of tumor morphology, tumor vasculature and hypoxia for cancer detection and characterization. In addition, both modalities are capable of providing real-time images for clinical applications. In this paper, a Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) module-based real-time US/PA imaging system is presented. The system provides real-time US/PA data acquisition and image display for up to 5 fps* using the currently implemented DSP board. It can be upgraded to 15 fps, which is the maximum pulse repetition rate of the used laser, by implementing an advanced DSP module. Additionally, the photoacoustic RF data for each frame is saved for further off-line processing. The system frontend consists of eight 16-channel modules made of commercial and customized circuits. Each 16-channel module consists of two commercial 8-channel receiving circuitry boards and one FPGA board from Analog Devices. Each receiving board contains an IC† that combines. 8-channel low-noise amplifiers, variable-gain amplifiers, anti-aliasing filters, and ADC's‡ in a single chip with sampling frequency of 40MHz. The FPGA board captures the LVDSξ Double Data Rate (DDR) digital output of the receiving board and performs data conditioning and subbeamforming. A customized 16-channel transmission circuitry is connected to the two receiving boards for US pulseecho (PE) mode data acquisition. A DSP module uses External Memory Interface (EMIF) to interface with the eight 16-channel modules through a customized adaptor board. The DSP transfers either sub-beamformed data (US pulse-echo mode or PAI imaging mode) or raw data from FPGA boards to its DDR-2 memory through the EMIF link, then it performs additional processing, after that, it transfer the data to the PC** for further image processing. The PC code

  1. Hemimegalencephaly: Clinical, EEG, neuroimaging, and IMP-SPECT correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konkol, R.J.; Maister, B.H.; Wells, R.G.

    1990-11-01

    Iofetamine-single photon emission computed tomography (IMP-SPECT) was performed on 2 girls (5 1/2 and 6 years of age) with histories of intractable seizures, developmental delay, and unilateral hemiparesis secondary to hemimegalencephaly. Electroencephalography (EEG) revealed frequent focal discharges in 1 patient, while a nearly continuous burst suppression pattern over the malformed hemisphere was recorded in the other. IMP-SPECT demonstrated a good correlation with neuroimaging studies. In spite of the different EEG patterns, which had been proposed to predict contrasting clinical outcomes, both IMP-SPECT scans disclosed a similar decrease in tracer uptake in the malformed hemisphere. These results are consistent with themore » pattern of decreased tracer uptake found in other interictal studies of focal seizures without cerebral malformations. In view of recent recommendations for hemispherectomy in these patients, we suggest that the IMP-SPECT scan be used to compliment EEG as a method to define the extent of abnormality which may be more relevant to long-term prognosis than EEG alone.« less

  2. NOTE: Implementation of angular response function modeling in SPECT simulations with GATE

    NASA Astrophysics Data System (ADS)

    Descourt, P.; Carlier, T.; Du, Y.; Song, X.; Buvat, I.; Frey, E. C.; Bardies, M.; Tsui, B. M. W.; Visvikis, D.

    2010-05-01

    Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.

  3. Initial Investigation of preclinical integrated SPECT and MR imaging.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  4. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    PubMed Central

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2014-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527

  5. Validation of Left Ventricular Ejection Fraction with the IQ•SPECT System in Small-Heart Patients.

    PubMed

    Yoneyama, Hiroto; Shibutani, Takayuki; Konishi, Takahiro; Mizutani, Asuka; Hashimoto, Ryosuke; Onoguchi, Masahisa; Okuda, Koichi; Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2017-09-01

    The IQ•SPECT system, which is equipped with multifocal collimators ( SMART ZOOM) and uses ordered-subset conjugate gradient minimization as the reconstruction algorithm, reduces the acquisition time of myocardial perfusion imaging compared with conventional SPECT systems equipped with low-energy high-resolution collimators. We compared the IQ•SPECT system with a conventional SPECT system for estimating left ventricular ejection fraction (LVEF) in patients with a small heart (end-systolic volume < 20 mL). Methods: The study consisted of 98 consecutive patients who underwent a 1-d stress-rest myocardial perfusion imaging study with a 99m Tc-labeled agent for preoperative risk assessment. Data were reconstructed using filtered backprojection for conventional SPECT and ordered-subset conjugate gradient minimization for IQ•SPECT. End-systolic volume, end-diastolic volume, and LVEF were calculated using quantitative gated SPECT (QGS) and cardioREPO software. We compared the LVEF from gated myocardial perfusion SPECT to that from echocardiographic measurements. Results: End-diastolic volume, end-systolic volume, and LVEF as obtained from conventional SPECT, IQ•SPECT, and echocardiography showed a good to excellent correlation regardless of whether they were calculated using QGS or using cardioREPO. Although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (65.4% ± 13.8% vs. 68.4% ± 15.2%) ( P = 0.0002), LVEF calculated using cardioREPO did not (69.5% ± 10.6% vs. 69.5% ± 11.0%). Likewise, although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (75.0 ± 9.6 vs. 79.5 ± 8.3) ( P = 0.0005), LVEF calculated using cardioREPO did not (72.3% ± 9.0% vs. 74.3% ± 8.3%). Conclusion: In small-heart patients, the difference in LVEF between IQ•SPECT and conventional SPECT was less when calculated using cardioREPO than when calculated using QGS. © 2017 by the Society of Nuclear Medicine

  6. Performance Evaluation of a Bedside Cardiac SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.T. Studenski, D.R. Gilland, J.G. Parker, B. Hammond, S. Majewski, A.G. Weisenberger, V. Popov

    This paper reports on the initial performance evaluation of a bedside cardiac PET/SPECT system. The system was designed to move within a hospital to image critically-ill patients, for example, those in intensive care unit (ICU) or emergency room settings, who cannot easily be transported to a conventional SPECT or PET facility. The system uses two compact (25 cm times 25 cm) detectors with pixilated NaI crystals and position sensitive PMTs. The performance is evaluated for both 140 keV (Tc-99m) and 511 keV (F-18) emitters with the system operating in single photon counting (SPECT) mode. The imaging performance metrics for bothmore » 140 keV and 511 keV included intrinsic energy resolution, spatial resolution (intrinsic, system, and reconstructed SPECT), detection sensitivity, count rate capability, and uniformity. Results demonstrated an intrinsic energy resolution of 31% at 140 keV and 23% at 511 keV, a planar intrinsic spatial resolution of 5.6 mm full width half-maximum (FWHM) at 140 keV and 6.3 mm FWHM at 511 keV, and a sensitivity of 4.15 countsmiddotmuCi-1 ldr s-1 at 140 keV and 0.67 counts ldr muCi-1 ldr s-1 at 511 keV. To further the study, a SPECT acquisition using a dynamic cardiac phantom was performed, and the resulting reconstructed images are presented.« less

  7. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki; Himuro, Kazuhiko

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitativelymore » consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is

  8. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    PubMed Central

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  9. SPECT reconstruction with nonuniform attenuation from highly under-sampled projection data

    NASA Astrophysics Data System (ADS)

    Li, Cuifen; Wen, Junhai; Zhang, Kangping; Shi, Donghao; Dong, Haixiang; Li, Wenxiao; Liang, Zhengrong

    2012-03-01

    Single photon emission computed tomography (SPECT) is an important nuclear medicine imaging technique and has been using in clinical diagnoses. The SPECT image can reflect not only organizational structure but also functional activities of human body, therefore diseases can be found much earlier. In SPECT, the reconstruction is based on the measurement of gamma photons emitted by the radiotracer. The number of gamma photons detected is proportional to the dose of radiopharmaceutical, but the dose is limited because of patient safety. There is an upper limit in the number of gamma photons that can be detected per unit time, so it takes a long time to acquire SPECT projection data. Sometimes we just can obtain highly under-sampled projection data because of the limit of the scanning time or imaging hardware. How to reconstruct an image using highly under-sampled projection data is an interesting problem. One method is to minimize the total variation (TV) of the reconstructed image during the iterative reconstruction. In this work, we developed an OSEM-TV SPECT reconstruction algorithm, which could reconstruct the image from highly under-sampled projection data with non-uniform attenuation. Simulation results demonstrate that the OSEM-TV algorithm performs well in SPECT reconstruction with non-uniform attenuation.

  10. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    PubMed

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  11. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    PubMed

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Functional mechanism of lung mosaic CT attenuation: assessment with deep-inspiration breath-hold perfusion SPECT-CT fusion imaging and non-breath-hold Technegas SPECT.

    PubMed

    Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N

    2009-01-01

    The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial

  13. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  14. SPECT System Optimization Against A Discrete Parameter Space

    PubMed Central

    Meng, L. J.; Li, N.

    2013-01-01

    In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609

  15. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  16. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinholemore » SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with

  17. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs): an intriguing EEG phenomenon.

    PubMed

    Silveira, Mariana Ribeiro Marcondes da; Andrade, Joaquina; Garzon, Eliana

    2013-12-01

    SIRPIDs, an acronym for stimulus-induced rhythmic, periodic, or ictal discharges, were first named in 2004. This is a pattern observed in continuous electroencephalogram (CEEG) consistently elicited by stimulation in comatose patients. The pathophysiology of SIRPIDs probably involves dysregulation of subcortico-cortical projections, particularly thalamocortical circuit, in a markedly abnormal brain with hyperexci-table cortex. This may explain some studies found an association of prolonged periodic epileptiform discharges (PEDs) activity and a higher incidence of concurrent electrographic seizures and SIRPIDs. An association of SIRPIDs and poor prognosis has already been described. However, it is not yet possible to assert whether these discharges can cause neuronal injury or if they are simply a marker of severe brain injury. Objective of this paper is to review clinical relevance and pathophysiology of SIRPIDs, as well as its role as a brain response in the critically ill patient.

  18. Recognizing ovarian cancer from co-registered ultrasound and photoacoustic images

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Kumavor, Patrick; Aguirre, Andres; Zhu, Quing

    2013-03-01

    Unique features in co-registered ultrasound and photoacoustic images of ex vivo ovarian tissue are introduced, along with the hypotheses of how these features may relate to the physiology of tumors. The images are compressed with wavelet transform, after which the mean Radon transform of the photoacoustic image is computed and fitted with a Gaussian function to find the centroid of the suspicious area for shift-invariant recognition process. In the next step, 24 features are extracted from a training set of images by several methods; including features from the Fourier domain, image statistics, and the outputs of different composite filters constructed from the joint frequency response of different cancerous images. The features were chosen from more than 400 training images obtained from 33 ex vivo ovaries of 24 patients, and used to train a support vector machine (SVM) structure. The SVM classifier was able to exclusively separate the cancerous from the non-cancerous cases with 100% sensitivity and specificity. At the end, the classifier was used to test 95 new images, obtained from 37 ovaries of 20 additional patients. The SVM classifier achieved 76.92% sensitivity and 95.12% specificity. Furthermore, if we assume that recognizing one image as a cancerous case is sufficient to consider the ovary as malignant, then the SVM classifier achieves 100% sensitivity and 87.88% specificity.

  19. Detection of Sentinel Lymph Nodes in Gynecologic Tumours by Planar Scintigraphy and SPECT/CT

    PubMed Central

    Kraft, Otakar; Havel, Martin

    2012-01-01

    Objective: Assess the role of planar lymphoscintigraphy and fusion imaging of SPECT/CT in sentinel lymph node (SLN) detection in patients with gynecologic tumours. Material and Methods: Planar scintigraphy and hybrid modality SPECT/CT were performed in 64 consecutive women with gynecologic tumours (mean age 53.6 with range 30-77 years): 36 pts with cervical cancer (Group A), 21 pts with endometrial cancer (Group B), 7 pts with vulvar carcinoma (Group C). Planar and SPECT/CT images were interpreted separately by two nuclear medicine physicians. Efficacy of these two techniques to image SLN were compared. Results: Planar scintigraphy did not image SLN in 7 patients (10.9%), SPECT/CT was negative in 4 patients (6.3%). In 35 (54.7%) patients the number of SLNs captured on SPECT/CT was higher than on planar imaging. Differences in detection of SLN between planar and SPECT/CT imaging in the group of all 64 patients are statistically significant (p<0.05). Three foci of uptake (1.7% from totally visible 177 foci on planar images) in 2 patients interpreted on planar images as hot LNs were found to be false positive non-nodal sites of uptake when further assessed on SPECT/CT. SPECT/CT showed the exact anatomical location of all visualised sentinel nodes. Conclusion: In some patients with gynecologic cancers SPECT/CT improves detection of sentinel lymph nodes. It can image nodes not visible on planar scintigrams, exclude false positive uptake and exactly localise pelvic and paraaortal SLNs. It improves anatomic localization of SLNs. Conflict of interest:None declared. PMID:23486989

  20. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Muftuler, L Tugan; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-03-21

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B(0) field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  1. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    NASA Astrophysics Data System (ADS)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  2. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; Endres, Christopher; Foss, Catherine

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less

  3. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less

  4. Affordable CZT SPECT with dose-time minimization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hugg, James W.; Harris, Brian W.; Radley, Ian

    2017-03-01

    PURPOSE Pixelated CdZnTe (CZT) detector arrays are used in molecular imaging applications that can enable precision medicine, including small-animal SPECT, cardiac SPECT, molecular breast imaging (MBI), and general purpose SPECT. The interplay of gamma camera, collimator, gantry motion, and image reconstruction determines image quality and dose-time-FOV tradeoffs. Both dose and exam time can be minimized without compromising diagnostic content. METHODS Integration of pixelated CZT detectors with advanced ASICs and readout electronics improves system performance. Because historically CZT was expensive, the first clinical applications were limited to small FOV. Radiation doses were initially high and exam times long. Advances have significantly improved efficiency of CZT-based molecular imaging systems and the cost has steadily declined. We have built a general purpose SPECT system using our 40 cm x 53 cm CZT gamma camera with 2 mm pixel pitch and characterized system performance. RESULTS Compared to NaI scintillator gamma cameras: intrinsic spatial resolution improved from 3.8 mm to 2.0 mm; energy resolution improved from 9.8% to <4 % at 140 keV; maximum count rate is <1.5 times higher; non-detection camera edges are reduced 3-fold. Scattered photons are greatly reduced in the photopeak energy window; image contrast is improved; and the optimal FOV is increased to the entire camera area. CONCLUSION Continual improvements in CZT detector arrays for molecular imaging, coupled with optimal collimator and image reconstruction, result in minimized dose and exam time. With CZT cost improving, affordable whole-body CZT general purpose SPECT is expected to enable precision medicine applications.

  5. Automatic estimation of detector radial position for contoured SPECT acquisition using CT images on a SPECT/CT system.

    PubMed

    Liu, Ruijie Rachel; Erwin, William D

    2006-08-01

    An algorithm was developed to estimate noncircular orbit (NCO) single-photon emission computed tomography (SPECT) detector radius on a SPECT/CT imaging system using the CT images, for incorporation into collimator resolution modeling for iterative SPECT reconstruction. Simulated male abdominal (arms up), male head and neck (arms down) and female chest (arms down) anthropomorphic phantom, and ten patient, medium-energy SPECT/CT scans were acquired on a hybrid imaging system. The algorithm simulated inward SPECT detector radial motion and object contour detection at each projection angle, employing the calculated average CT image and a fixed Hounsfield unit (HU) threshold. Calculated radii were compared to the observed true radii, and optimal CT threshold values, corresponding to patient bed and clothing surfaces, were found to be between -970 and -950 HU. The algorithm was constrained by the 45 cm CT field-of-view (FOV), which limited the detected radii to < or = 22.5 cm and led to occasional radius underestimation in the case of object truncation by CT. Two methods incorporating the algorithm were implemented: physical model (PM) and best fit (BF). The PM method computed an offset that produced maximum overlap of calculated and true radii for the phantom scans, and applied that offset as a calculated-to-true radius transformation. For the BF method, the calculated-to-true radius transformation was based upon a linear regression between calculated and true radii. For the PM method, a fixed offset of +2.75 cm provided maximum calculated-to-true radius overlap for the phantom study, which accounted for the camera system's object contour detect sensor surface-to-detector face distance. For the BF method, a linear regression of true versus calculated radius from a reference patient scan was used as a calculated-to-true radius transform. Both methods were applied to ten patient scans. For -970 and -950 HU thresholds, the combined overall average root-mean-square (rms

  6. Lateralizing value of unilateral relative ictal immobility in patients with refractory focal seizures--Looking beyond unilateral automatisms.

    PubMed

    Agarwal, Priya; Kaul, Bhavna; Shukla, Garima; Srivastava, Achal; Singh, Mamta Bhushan; Goyal, Vinay; Behari, Madhuri; Suri, Ashish; Gupta, Aditya; Garg, Ajay; Gaikwad, Shailesh; Bal, C S

    2015-12-01

    Ictal motor phenomena play a crucial role in the localization of seizure focus in the management of refractory focal epilepsy. While the importance of unilateral automatisms is well established, little attention is paid to the contralateral relatively immobile limb. In cases where automatisms mimic clonic or dystonic movements and in the absence of previously well-established signs, unilateral relative ictal immobility (RII) is potentially useful as a lateralizing sign. This study was carried out to examine the lateralizing value of this sign and to define its characteristics among patients of refractory focal epilepsy. VEEGs of 69 consecutive patients of refractory focal epilepsy who had undergone epilepsy surgery at our center over last four years were reviewed and analyzed for the presence of RII. Unilateral RII was defined as a paucity of movement in one limb lasting for at least 10s while the contralateral limb showed purposive or semi-purposive movements (in the absence of tonic or dystonic posturing or clonic movements in the involved limb). The findings were seen in the light of VEEG, radiological and nuclear imaging data, and with post-surgical outcome. Unilateral RII as a lateralizing sign was found in 24 of 69 patients (34.78%), consisting of both temporal and extra temporal epilepsy, with 100% concordance with VEEG and MRI data. All patients demonstrating this sign had a good post-surgical outcome. RII, when well characterized is a frequent and reliable lateralizing sign in patients of refractory focal epilepsy. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  7. A new epileptic seizure classification based exclusively on ictal semiology.

    PubMed

    Lüders, H; Acharya, J; Baumgartner, C; Benbadis, S; Bleasel, A; Burgess, R; Dinner, D S; Ebner, A; Foldvary, N; Geller, E; Hamer, H; Holthausen, H; Kotagal, P; Morris, H; Meencke, H J; Noachtar, S; Rosenow, F; Sakamoto, A; Steinhoff, B J; Tuxhorn, I; Wyllie, E

    1999-03-01

    Historically, seizure semiology was the main feature in the differential diagnosis of epileptic syndromes. With the development of clinical EEG, the definition of electroclinical complexes became an essential tool to define epileptic syndromes, particularly focal epileptic syndromes. Modern advances in diagnostic technology, particularly in neuroimaging and molecular biology, now permit better definitions of epileptic syndromes. At the same time detailed studies showed that there does not necessarily exist a one-to-one relationship between epileptic seizures or electroclinical complexes and epileptic syndromes. These developments call for the reintroduction of an epileptic seizure classification based exclusively on clinical semiology, similar to the seizure classifications which were used by neurologists before the introduction of the modern diagnostic methods. This classification of epileptic seizures should always be complemented by an epileptic syndrome classification based on all the available clinical information (clinical history, neurological exam, ictal semiology, EEG, anatomical and functional neuroimaging, etc.). Such an approach is more consistent with mainstream clinical neurology and would avoid the current confusion between the classification of epileptic seizures (which in the International Seizure Classification is actually a classification of electroclinical complexes) and the classification of epileptic syndromes.

  8. Creation and characterization of normal myocardial perfusion imaging databases using the IQ·SPECT system.

    PubMed

    Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kondo, Chisato; Sarai, Masayoshi; Horiguchi, Yoriko; Konishi, Takahiro; Onoguchi, Masahisa; Shimizu, Takeshi; Kinuya, Seigo

    2017-01-03

    Image acquisition by short-time single-photon emission-computed tomography (SPECT) has been made feasible by IQ·SPECT. The aim of this study was to generate normal databases (NDBs) of thallium-201 ( 201 Tl) myocardial perfusion imaging for IQ·SPECT, and characterize myocardial perfusion distribution. We retrospectively enrolled 159 patients with a low likelihood of cardiac diseases from four hospitals in Japan. All patients underwent short-time 201 Tl myocardial perfusion IQ·SPECT with or without attenuation and scatter correction (ACSC) in either supine or prone position. The mean myocardial counts were calculated using 17-segment polar maps. Three NDBs were derived from supine and prone images as well as supine images with ACSC. Differences between the supine and prone positions were observed in the uncorrected sex-segregated NDBs in the mid-inferolateral counts (p ≤ 0.016 for males and p ≤ 0.002 for females). Differences between IQ·SPECT and conventional SPECT were also observed in the mid-anterior, inferolateral, and apical lateral counts (p ≤ 0.009 for males and p ≤ 0.003 for females). Apical low counts attributed to myocardial thinning were observed in the apical anterior and apex segments in the supine IQ·SPECT NDB with ACSC. There were significant differences between uncorrected supine and prone NDBs, between uncorrected supine NDB and supine NDB with ACSC, and between uncorrected supine NDB and conventional SPECT NDB. Understanding the pattern of normal distribution in IQ-SPECT short-time acquisitions with and without ACSC will be helpful for interpretation of imaging findings in patients with coronary artery disease (CAD) or low likelihood of CAD and the NDBs will aid in quantitative analysis.

  9. Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool

    PubMed Central

    Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry

    2011-01-01

    Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144

  10. Recurrence risk of ictal asystole in epilepsy.

    PubMed

    Hampel, Kevin G; Thijs, Roland D; Elger, Christian E; Surges, Rainer

    2017-08-22

    To determine the recurrence risk of ictal asystole (IA) and its determining factors in people with epilepsy. We performed a systematic review of published cases with IA in 3 databases and additionally searched our local database for patients with multiple seizures simultaneously recorded with ECG and EEG and at least one IA. IA recurrence risk was estimated by including all seizures without knowledge of the chronological order. Various clinical features were assessed by an individual patient data meta-analysis. A random mixed effect logistic regression model was applied to estimate the average recurrence risk of IA. Plausibility of the calculated IA recurrence risk was checked by analyzing the local dataset with available information in chronological order. Eighty patients with 182 IA in 537 seizures were included. Recurrence risk of IA amounted to 40% (95% confidence interval [CI] 32%-50%). None of the clinical factors (age, sex, type and duration of epilepsy, hemispheric lateralization, duration of IA per patient) appeared to have a significant effect on the short-term recurrence risk of IA. When considering the local dataset only, IA recurrence risk was estimated to 30% (95% CI 14%-53%). Information whether IA coincided with symptoms (i.e., syncope) or not was given in 60 patients: 100 out of 142 IAs were symptomatic. Our data suggest that in case of clinically suspected IA, the recording of 1 or 2 seizures is not sufficient to rule out IA. Furthermore, the high short-term recurrence risk favors aggressive treatment, including pacemaker implantation if seizure freedom cannot be achieved. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  11. Collimator design for a multipinhole brain SPECT insert for MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that canmore » operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless

  12. Application of oral contrast media in coregistered positron emission tomography-CT.

    PubMed

    Dizendorf, Elena V; Treyer, Valerie; Von Schulthess, Gustav K; Hany, Thomas F

    2002-08-01

    Coregistration of positron emission tomography (PET) and CT images results in significantly improved localization of abnormal FDG uptake compared with PET images alone. For delineation of intestinal structures, application of oral contrast media is a standard procedure in CT. The influence of oral contrast agents in PET imaging using CT data for attenuation correction was evaluated in a comparative study on an in-line PET-CT system. Sixty patients referred for PET-CT were evaluated in two groups. One group of 30 patients received oral Gastrografin 45 min before data acquisition. The second group received no contrast medium. PET images were reconstructed, using CT data for attenuation correction. Image analysis was performed by two reviewers in consensus, using a 4-point scale comparing FDG-uptake in the gastrointestinal tract in PET images of both groups. Furthermore, correlation of FDG uptake and localization of contrast media in the intestinal tract in CT images were determined. No significant difference in FDG uptake in PET images in all regions of the gastrointestinal tract except the ascending colon was seen in both groups. No correlation was found in the location of increased FDG uptake and contrast media in the CT images. An oral contrast agent can be used for coregistered PET-CT without the introduction of artifacts in PET.

  13. Novel SPECT Technologies and Approaches in Cardiac Imaging

    PubMed Central

    Slomka, Piotr; Hung, Guang-Uei; Germano, Guido; Berman, Daniel S.

    2017-01-01

    Recent novel approaches in myocardial perfusion single photon emission CT (SPECT) have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv) stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans. PMID:29034066

  14. Slow-rotation dynamic SPECT with a temporal second derivative constraint.

    PubMed

    Humphries, T; Celler, A; Trummer, M

    2011-08-01

    Dynamic tracer behavior in the human body arises as a result of continuous physiological processes. Hence, the change in tracer concentration within a region of interest (ROI) should follow a smooth curve. The authors propose a modification to an existing slow-rotation dynamic SPECT reconstruction algorithm (dSPECT) with the goal of improving the smoothness of time activity curves (TACs) and other properties of the reconstructed image. The new method, denoted d2EM, imposes a constraint on the second derivative (concavity) of the TAC in every voxel of the reconstructed image, allowing it to change sign at most once. Further constraints are enforced to prevent other nonphysical behaviors from arising. The new method is compared with dSPECT using digital phantom simulations and experimental dynamic 99mTc -DTPA renal SPECT data, to assess any improvement in image quality. In both phantom simulations and healthy volunteer experiments, the d2EM method provides smoother TACs than dSPECT, with more consistent shapes in regions with dynamic behavior. Magnitudes of TACs within an ROI still vary noticeably in both dSPECT and d2EM images, but also in images produced using an OSEM approach that reconstructs each time frame individually, based on much more complete projection data. TACs produced by averaging over a region are similar using either method, even for small ROIs. Results for experimental renal data show expected behavior in images produced by both methods, with d2EM providing somewhat smoother mean TACs and more consistent TAC shapes. The d2EM method is successful in improving the smoothness of time activity curves obtained from the reconstruction, as well as improving consistency of TAC shapes within ROIs.

  15. Direct Regularization From Co-Registered Contrast MRI Improves Image Quality of MRI-Guided Near-Infrared Spectral Tomography of Breast Lesions.

    PubMed

    Zhang, Limin; Jiang, Shudong; Zhao, Yan; Feng, Jinchao; Pogue, Brian W; Paulsen, Keith D

    2018-05-01

    An approach using direct regularization from co-registered dynamic contrast enhanced magnetic reson- ance images was used to reconstruct near-infrared spectral tomography patient images, which does not need image segmentation. 20 patients with mammography/ultrasound confirmed breast abnormalities were involved in this paper, and the resulting images indicated that tumor total hemoglobin concentration contrast differentiated malignant from benign cases (p-value = 0.021). The approach prod- uced reconstructed images, which significantly reduced surface artifacts near the source-detector locations (p-value = 4.16e-6).

  16. SPECT and PET in ischemic heart failure.

    PubMed

    Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis

    2017-03-01

    Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

  17. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  18. Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT

    PubMed Central

    Okada, David R.; Ghoshhajra, Brian B.; Blankstein, Ron; Rocha-Filho, Jose A.; Shturman, Leonid D.; Rogers, Ian S.; Bezerra, Hiram G.; Sarwar, Ammar; Gewirtz, Henry; Hoffmann, Udo; Mamuya, Wilfred S.; Brady, Thomas J.; Cury, Ricardo C.

    2010-01-01

    Introduction We have recently described a technique for assessing myocardial perfusion using adenosine-mediated stress imaging (CTP) with dual source computed tomography. SPECT myocardial perfusion imaging (SPECT-MPI) is a widely utilized and extensively validated method for assessing myocardial perfusion. The aim of this study was to determine the level of agreement between CTP and SPECT-MPI at rest and under stress on a per-segment, per-vessel, and per-patient basis. Methods Forty-seven consecutive patients underwent CTP and SPECT-MPI. Perfusion images were interpreted using the 17 segment AHA model and were scored on a 0 (normal) to 3 (abnormal) scale. Summed rest and stress scores were calculated for each vascular territory and patient by adding corresponding segmental scores. Results On a per-segment basis (n = 799), CTP and SPECT-MPI demonstrated excellent correlation: Goodman-Kruskall γ = .59 (P < .0001) for stress and .75 (P < .0001) for rest. On a per-vessel basis (n = 141), CTP and SPECT-MPI summed scores demonstrated good correlation: Pearson r = .56 (P < .0001) for stress and .66 (P < .0001) for rest. On a per-patient basis (n = 47), CTP and SPECT-MPI demonstrated good correlation: Pearson r = .60 (P < .0001) for stress and .76 (P < .0001) for rest. Conclusions CTP compares favorably with SPECT-MPI for detection, extent, and severity of myocardial perfusion defects at rest and stress. PMID:19936863

  19. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu; Yu, Zhicong; Zeng, Gengsheng L.

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmentedmore » slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary

  20. Ideal-observer analysis of lesion detectability in planar, conventional SPECT, and dedicated SPECT scintimammography using effective multi-dimensional smoothing

    NASA Astrophysics Data System (ADS)

    La Riviere, P. J.; Pan, X.; Penney, B. C.

    1998-06-01

    Scintimammography, a nuclear-medicine imaging technique that relies on the preferential uptake of Tc-99m-sestamibi and other radionuclides in breast malignancies, has the potential to provide differentiation of mammographically suspicious lesions, as well as outright detection of malignancies in women with radiographically dense breasts. In this work we use the ideal-observer framework to quantify the detectability of a 1-cm lesion using three different imaging geometries: the planar technique that is the current clinical standard, conventional single-photon emission computed tomography (SPECT), in which the scintillation cameras rotate around the entire torso, and dedicated breast SPECT, in which the cameras rotate around the breast alone. We also introduce an adaptive smoothing technique for the processing of planar images and of sinograms that exploits Fourier transforms to achieve effective multidimensional smoothing at a reasonable computational cost. For the detection of a 1-cm lesion with a clinically typical 6:1 tumor-background ratio, we find ideal-observer signal-to-noise ratios (SNR) that suggest that the dedicated breast SPECT geometry is the most effective of the three, and that the adaptive, two-dimensional smoothing technique should enhance lesion detectability in the tomographic reconstructions.

  1. Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization

    NASA Astrophysics Data System (ADS)

    Kowalczyk, L.; Goszczynska, H.; Zalewska, E.; Bajera, A.; Krolicki, L.

    2014-04-01

    This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s) missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.

  2. Evaluation of left ventricular function using electrocardiographically gated myocardial SPECT with (123)I-labeled fatty acid analog.

    PubMed

    Nanasato, M; Ando, A; Isobe, S; Nonokawa, M; Hirayama, H; Tsuboi, N; Ito, T; Hirai, M; Yokota, M; Saito, H

    2001-12-01

    Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.

  3. Hyperventilation revisited: physiological effects and efficacy on focal seizure activation in the era of video-EEG monitoring.

    PubMed

    Guaranha, Mirian S B; Garzon, Eliana; Buchpiguel, Carlos A; Tazima, Sérgio; Yacubian, Elza M T; Sakamoto, Américo C

    2005-01-01

    Hyperventilation is an activation method that provokes physiological slowing of brain rhythms, interictal discharges, and seizures, especially in generalized idiopathic epilepsies. In this study we assessed its effectiveness in inducing focal seizures during video-EEG monitoring. We analyzed the effects of hyperventilation (HV) during video-EEG monitoring (video-EEG) of patients with medically intractable focal epilepsies. We excluded children younger than 10 years, mentally retarded patients, and individuals with frequent seizures. We analyzed 97 patients; 24 had positive seizure activation (PSA), and 73 had negative seizure activation (NSA). No differences were found between groups regarding sex, age, age at epilepsy onset, duration of epilepsy, frequency of seizures, and etiology. Temporal lobe epilepsies were significantly more activated than frontal lobe epilepsies. Spontaneous and activated seizures did not differ in terms of their clinical characteristics, and the activation did not affect the performance of ictal single-photon emission computed tomography (SPECT). HV is a safe and effective method of seizure activation during monitoring. It does not modify any of the characteristics of the seizures and allows the obtaining of valuable ictal SPECTs. This observation is clinically relevant and suggests the effectiveness and the potential of HV in shortening the presurgical evaluation, especially of temporal lobe epilepsy patients, consequently reducing its costs and increasing the number of candidates for epilepsy surgery.

  4. Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction.

    PubMed

    Bexelius, Tobias; Sohlberg, Antti

    2018-06-01

    Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing. Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies. The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included. GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.

  5. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  6. Double match of 18F-fluorodeoxyglucose-PET and iomazenil-SPECT improves outcomes of focus resection surgery.

    PubMed

    Fujimoto, Ayataka; Okanishi, Tohru; Kanai, Sotaro; Sato, Keishiro; Itamura, Shinji; Baba, Shimpei; Nishimura, Mitsuyo; Masui, Takayuki; Enoki, Hideo

    2018-06-01

    When the results of electroencephalography (EEG), magnetic resonance imaging (MRI), and seizure semiology are discordant or no structural lesion is evident on MRI, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are important examinations for lateralization or localization of epileptic regions. We hypothesized that the concordance between interictal 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG)-PET and iomazenil (IMZ)-SPECT could suggest the epileptogenic lobe in patients with non-lesional findings on MRI. Fifty-nine patients (31 females, 28 males; mean age, 29 years; median age, 27 years; range, 7-56 years) underwent subdural electrode implantation followed by focus resection. All patients underwent 18 FDG-PET, IMZ-SPECT, and focus resection surgery. Follow-up was continued for ≥ 2 years. We evaluated surgical outcomes as seizure-free or not and analyzed correlations between outcomes and concordances of low-uptake lobes on PET, SPECT, or both PET and SPECT to the resection lobes. We used uni- and multivariate logistic regression analyses. In univariate analyses, all three concordances correlated significantly with seizure-free outcomes (PET, p = 0.017; SPECT, p = 0.030; both PET and SPECT, p = 0.006). In multivariate analysis, concordance between resection and low-uptake lobes in both PET and SPECT correlated significantly with seizure-free outcomes (p = 0.004). The odds ratio was 6.0. Concordance between interictal 18 FDG-PET and IMZ-SPECT suggested that the epileptogenic lobe is six times better than each examination alone among patients with non-lesional findings on MRI. IMZ-SPECT and 18 FDG-PET are complementary examinations in the assessment of localization-related epilepsy.

  7. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  8. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  9. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome

    PubMed Central

    Kim, YuJaung; Bravo, Eduardo; Thirnbeck, Caitlin K.; Smith-Mellecker, Lori A.; Kim, Se Hee; Gehlbach, Brian K.; Laux, Linda C.; Zhou, Xiuqiong; Nordli, Douglas R.

    2018-01-01

    Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly due to mutations of the sodium channel gene SCN1A. Patients with DS have a high risk of sudden unexplained death in epilepsy (SUDEP), widely believed to be due to cardiac mechanisms. Here we show that patients with DS commonly have peri-ictal respiratory dysfunction. One patient had severe and prolonged postictal hypoventilation during video EEG monitoring and died later of SUDEP. Mice with an Scn1aR1407X/+ loss-of-function mutation were monitored and died after spontaneous and heat-induced seizures due to central apnea followed by progressive bradycardia. Death could be prevented with mechanical ventilation after seizures were induced by hyperthermia or maximal electroshock. Muscarinic receptor antagonists did not prevent bradycardia or death when given at doses selective for peripheral parasympathetic blockade, whereas apnea, bradycardia, and death were prevented by the same drugs given at doses high enough to cross the blood-brain barrier. When given via intracerebroventricular infusion at a very low dose, a muscarinic receptor antagonist prevented apnea, bradycardia, and death. We conclude that SUDEP in patients with DS can result from primary central apnea, which can cause bradycardia, presumably via a direct effect of hypoxemia on cardiac muscle. PMID:29329111

  10. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer.

    PubMed

    Hamami, Monia E; Poeppel, Thorsten D; Müller, Stephan; Heusner, Till; Bockisch, Andreas; Hilgard, Philipp; Antoch, Gerald

    2009-05-01

    Radioembolization with (90)Y microspheres is a novel treatment for hepatic tumors. Generally, hepatic arteriography and (99m)Tc-macroaggregated albumin (MAA) scanning are performed before selective internal radiation therapy to detect extrahepatic shunting to the lung or the gastrointestinal tract. Whereas previous studies have used only planar or SPECT scans, the present study used (99m)Tc-MAA SPECT/CT scintigraphy (SPECT with integrated low-dose CT) to evaluate whether SPECT/CT and additional diagnostic contrast-enhanced CT before radioembolization with (90)Y microspheres are superior to SPECT or planar imaging alone for detection of gastrointestinal shunting. In a prospective study, we enrolled 58 patients (mean age, 66 y; SD, 12 y; 10 women and 48 men) with hepatocellular carcinoma who underwent hepatic arteriography and scintigraphy with (99m)Tc-MAA using planar imaging, SPECT, and SPECT with integrated low-dose CT of the upper abdomen (acquired with a hybrid SPECT/CT camera). The ability of the different imaging modalities to detect extrahepatic MAA shunting was compared. Patient follow-up of a mean of 180 d served as the standard of reference. Gastrointestinal shunting was revealed by planar imaging in 4, by SPECT in 9, and by SPECT/CT in 16 of the 68 examinations. For planar imaging, the sensitivity for detection of gastrointestinal shunting was 25%, the specificity 87%, and the accuracy 72%. For SPECT without CT, the sensitivity was 56%, the specificity 87%, and the accuracy 79%. SPECT with CT fusion had a sensitivity of 100%, a specificity of 94%, and an accuracy of 96%. In 3 patients, MAA deposits in the portal vein could accurately be attributed to tumor thrombus only with additional information from contrast-enhanced CT. The follow-up did not show any gastrointestinal complications. SPECT with integrated low-dose CT using (99m)Tc-MAA is beneficial in radioembolization with (90)Y microspheres because it increases the sensitivity and specificity of (99m

  11. Geometric Characterization of Multi-Axis Multi-Pinhole SPECT

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A geometric model and calibration process are developed for SPECT imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360° rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180° rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging. PMID:18293574

  12. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury.

    PubMed

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-10-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [(123)I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI.

  13. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury

    PubMed Central

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-01-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [123I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI. PMID:20683454

  14. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: initial experiences.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Zaki, Mohammed; Yamashita, Tomio; Seto, Aska; Matsumoto, Tsuneo; Matsunaga, Naofumi

    2004-02-01

    In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n = 15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120 degrees for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9 +/- 3.1 mm vs 19.0 +/- 9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases.

  15. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols.

    PubMed

    Verger, Antoine; Djaballah, Wassila; Fourquet, Nicolas; Rouzet, François; Koehl, Grégoire; Imbert, Laetitia; Poussier, Sylvain; Fay, Renaud; Roch, Véronique; Le Guludec, Dominique; Karcher, Gilles; Marie, Pierre-Yves

    2013-02-01

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving (201)Tl (n = 120) or (99m)Tc-sestamibi injected at low dose at stress ((99m)Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ((99m)Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, (201)Tl 92 %, (99m)Tc-Low 86 %, (99m)Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the (201)Tl or (99m)Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT.

  16. Stroma Targeting Nuclear Imaging and Radiopharmaceuticals

    PubMed Central

    Shetty, Dinesh; Jeong, Jae-Min; Shim, Hyunsuk

    2012-01-01

    Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [18F]fluorodeoxyglucose ([18F]FDG)-PET is particularly useful. However, [18F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy. PMID:22685650

  17. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    PubMed

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  18. A Prototype Instrument for Adaptive SPECT Imaging

    PubMed Central

    Freed, Melanie; Kupinski, Matthew A.; Furenlid, Lars R.; Barrett, Harrison H.

    2015-01-01

    We have designed and constructed a small-animal adaptive SPECT imaging system as a prototype for quantifying the potential benefit of adaptive SPECT imaging over the traditional fixed geometry approach. The optical design of the system is based on filling the detector with the object for each viewing angle, maximizing the sensitivity, and optimizing the resolution in the projection images. Additional feedback rules for determining the optimal geometry of the system can be easily added to the existing control software. Preliminary data have been taken of a phantom with a small, hot, offset lesion in a flat background in both adaptive and fixed geometry modes. Comparison of the predicted system behavior with the actual system behavior is presented along with recommendations for system improvements. PMID:26346820

  19. Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-02-01

    Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.

  20. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  1. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.

    1989-06-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.

  2. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT.

    PubMed

    Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji

    2002-06-01

    Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The

  3. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  4. Gender differences in the diagnostic accuracy of SPECT myocardial perfusion imaging: a bivariate meta-analysis.

    PubMed

    Iskandar, Aline; Limone, Brendan; Parker, Matthew W; Perugini, Andrew; Kim, Hyejin; Jones, Charles; Calamari, Brian; Coleman, Craig I; Heller, Gary V

    2013-02-01

    It remains controversial whether the diagnostic accuracy of single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is different in men as compared to women. We performed a meta-analysis to investigate gender differences of SPECT MPI for the diagnosis of CAD (≥50% stenosis). Two investigators independently performed a systematic review of the MEDLINE and EMBASE databases from inception through January 2012 for English-language studies determining the diagnostic accuracy of SPECT MPI. We included prospective studies that compared SPECT MPI with conventional coronary angiography which provided sufficient data to calculate gender-specific true and false positives and negatives. Data from studies evaluating <20 patients of one gender were excluded. Bivariate meta-analysis was used to create summary receiver operating curves. Twenty-six studies met inclusion criteria, representing 1,148 women and 1,142 men. Bivariate meta-analysis yielded a mean sensitivity and specificity of 84.2% (95% confidence interval [CI] 78.7%-88.6%) and 78.7% (CI 70.0%-85.3%) for SPECT MPI in women and 89.1% (CI 84.0%-92.7%) and 71.2% (CI 60.8%-79.8%) for SPECT MPI in men. There was no significant difference in the sensitivity (P = .15) or specificity (P = .23) between male and female subjects. In a bivariate meta-analysis of the available literature, the diagnostic accuracy of SPECT MPI is similar for both men and women.

  5. [Evaluation of left ventricular diastolic function using gated SPECT with 99mTc-MIBI].

    PubMed

    Toba, M; Kumita, S I; Mizumura, S; Cho, K; Kijima, T; Takahama, K; Kumazaki, T

    1996-04-01

    Development of 3 head SPECT system and 99mTc-labeled radiopharmaceuticals enable us to evaluate left ventricular systolic function on the basis of once gated SPECT routine. This study was focused on assessment of left ventricular diastolic function using 99mTc-MIBI gated SPECT data. Twenty nine patients with ischemic heart diseases underwent 99mTc-MIBI gated SPECT and 99mTc-HSAD ventriculographic assessment of left ventricular diastolic function within 1 month. Region of interests (ROI), simultaneously calculating counts per pixel within ROI, were placed over whole myocardium of 16 serial phasic images reconstructed from gated SPECT data, following selection of the central slice within short axial images. Then, 29 patients were classified into 3 patterns of phase count curve (normal, mixed, and delayed relaxation = diastolic dysfunction). Moreover, 1/3 Count Decreasing Fraction (1/3 CDF) was calculated on the same concept as 1/3 FF. The curve pattern showed significant differences between normal and abnormal group divided on the basis of established indices such as 1/3 FF and PFR, and 1/3 CDF has correlations with 1/3 FF (r = 0.61) and PFR (r = 0.58). We concluded that the new parameters drawn from 99mTc-MIBI gated SPECT data might be feasible for evaluation of diastolic function.

  6. Value of a Lower-Limb Immobilization Device for Optimization of SPECT/CT Image Fusion.

    PubMed

    Machado, Joana do Mar F; Monteiro, Marina S; Vieira, Victor Fernandes; Collinot, Jean-Aybert; Prior, John O; Vieira, Lina; Pires-Jorge, José A

    2015-06-01

    The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represents a significant diagnostic challenge. By providing information on anatomic and bone structure that cannot be obtained from functional imaging, SPECT/CT image fusion can be particularly useful in increasing diagnostic certainty about bone pathology. However, because of the lengthy duration of a SPECT acquisition, a patient's involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We designed an ankle- and foot-immobilizing device and measured its efficacy at improving image fusion. We enrolled 20 patients who underwent SPECT/CT of the ankle and foot with and without a foot support. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomic landmarks also visible on bone scintigraphy. ANOVA was performed for statistical analysis. The absolute average difference without and with support was 5.1 ± 5.2 mm (mean ± SD) and 3.1 ± 2.7 mm, respectively, which is significant (P < 0.001). The introduction of the foot support significantly decreased misalignment between SPECT and CT images, which may have a positive clinical influence in the precise localization of foot and ankle pathology. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  8. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  9. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    NASA Astrophysics Data System (ADS)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  10. Comparison of LVEF assessed by 2D echocardiography, gated blood pool SPECT, 99mTc tetrofosmin gated SPECT, and 18F-FDG gated PET with ERNV in patients with CAD and severe LV dysfunction.

    PubMed

    Raja, Senthil; Mittal, Bhagwant R; Santhosh, Sampath; Bhattacharya, Anish; Rohit, Manoj K

    2014-11-01

    Left ventricular ejection fraction (LVEF) is the single most important predictor of prognosis in patients with coronary artery disease (CAD) and left ventricular (LV) dysfunction. Equilibrium radionuclide ventriculography (ERNV) is considered the most reliable technique for assessing LVEF. Most of these patients undergo two dimensional (2D) echocardiography and myocardial viability study using gated myocardial perfusion imaging (MPI) or gated F-fluorodeoxyglucose (F-FDG) PET. However, the accuracy of LVEF assessed by these methods is not clear. This study has been designed to assess the correlation and agreement between the LVEF measured by 2D echocardiography, gated blood pool single photon emission computed tomography (SPECT), Tc tetrofosmin gated SPECT, and F-FDG gated PET with ERNV in CAD patients with severe LV dysfunction. Patients with CAD and severe LV dysfunction [ejection fraction (EF) <35 assessed by 2D echocardiography] were prospectively included in the study. These patients underwent ERNV along with gated blood pool SPECT, Tc tetrofosmin gated SPECT, and F-FDG gated PET as per the standard protocol for myocardial viability assessment and LVEF calculation. Spearman's coefficient of correlation (r) was calculated for the different sets of values with significance level kept at a P-value less than 0.05. Bland-Altman plots were inspected to visually assess the between-agreement measurements from different methods. Forty-one patients were prospectively included. LVEF calculated by various radionuclide methods showed good correlation with ERNV as follows: gated blood pool SPECT, r=0.92; MPI gated SPECT, r=0.85; and F-FDG gated PET, r=0.76. However, the correlation between 2D echocardiography and ERNV was poor (r=0.520). The Bland-Altman plot for LVEF measured by all radionuclide methods showed good agreement with ERNV. However, agreement between 2D echocardiography and ERNV is poor, as most of the values in this plot gave a negative difference for low EF

  11. Diagnostic accuracy and functional parameters of myocardial perfusion scintigraphy using accelerated cardiac acquisition with IQ SPECT technique in comparison to conventional imaging.

    PubMed

    Pirich, Christian; Keinrath, Peter; Barth, Gabriele; Rendl, Gundula; Rettenbacher, Lukas; Rodrigues, Margarida

    2017-03-01

    IQ SPECT consists of a new pinhole-like collimator, cardio-centric acquisition, and advanced 3D iterative SPECT reconstruction. The aim of this paper was to compare diagnostic accuracy and functional parameters obtained with IQ SPECT versus conventional SPECT in patients undergoing myocardial perfusion scintigraphy with adenosine stress and at rest. Eight patients with known or suspected coronary artery disease underwent [99mTc] tetrofosmin gated SPECT. Acquisition was performed on a Symbia T6 equipped with IQ SPECT and on a conventional gamma camera system. Gated SPECT data were used to calculate functional parameters. Scores analysis was performed on a 17-segment model. Coronary angiography and clinical follow-up were considered as diagnostic reference standard. Mean acquisition time was 4 minutes with IQ SPECT and 21 minutes with conventional SPECT. Agreement degree on the diagnostic accuracy between both systems was 0.97 for stress studies, 0.91 for rest studies and 0.96 for both studies. Perfusion abnormalities scores obtained by using IQ SPECT and conventional SPECT were not significant different: SSS, 9.7±8.8 and 10.1±6.4; SRS, 7.1±6.1 and 7.5±7.3; SDS, 4.0±6.1 and 3.9±4.3, respectively. However, a significant difference was found in functional parameters derived from IQ SPECT and conventional SPECT both after stress and at rest. Mean LVEF was 8% lower using IQ SPECT. Differences in LVEF were found in patients with normal LVEF and patients with reduced LVEF. Functional parameters using accelerated cardiac acquisition with IQ SPECT are significantly different to those obtained with conventional SPECT, while agreement for clinical interpretation of myocardial perfusion scintigraphy with both techniques is high.

  12. Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study.

    PubMed

    Knešaurek, Karin; Machac, Josef

    2006-10-31

    Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 +/- 0.01, 0.67 +/- 0.02 and 0.25 +/- 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 +/- 0.02, 0.37 +/- 0.02 and 0.19 +/- 0.01, respectively. For 18F SPECT the contrast values were, 0.31 +/- 0.03 and 0.20 +/- 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 +/- 0.04 and 0.24 +/- 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image

  13. Cardiac sarcoidosis demonstrated by Tl-201 and Ga-67 SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, J.; Nakajima, K.; Bunko, H.

    1990-09-01

    Ga-67 and Tl-201 SPECT was performed to evaluate cardiac sarcoidosis in a 15-year-old boy. Tl-201 SPECT imaging showed decreased uptake in the inferior to lateral wall and Ga-67 accumulation in the area of decreased Tl-201 uptake. These findings suggested cardiac sarcoidosis, and cardiac biopsy confirmed this diagnosis. After corticosteroid therapy, myocardial uptake of Ga-67 disappeared and myocardial TI-201 uptake became more homogeneous.

  14. Case Report: SPECT/CT as the New Diagnostic Tool for Specific Wrist Pathology.

    PubMed

    Linde, Musters; Ten Broek, M; Kraan, G A

    2017-01-01

    Single photon emission computed tomography has been introduced as a promising new diagnostic tool in orthopaedic pathology since the early 90'. Computed tomography, the combined with SPECT, gives insight in the specific sight of wrist pathology. Literature already supports introduction of SPECT/CT in wrist pathology, but clinical application is lagging. A 40yr old patient reported first in 2004 with persisting pain after a right distal radius fracture. Several diagnostics and operative interventions were performed, all unsuccessful. Because of the persisting pain a SPECT-CT was performed which showed a cyst in the hamate bone, which was successfully enucleated. The patient was finally pain free at recent follow-up. With a QDash-score of 43 and a PRW (H) E-DLV-score of 58/150. In this case report, SPECT/CT proved a very sensitive diagnostic tool for specific pathology of the wrist. It offered precise localisation and thereby the clinically suspected diagnosis was confirmed and the patient successfully treated.

  15. "Parkinson-dementia" diseases: a comparison by double tracer SPECT studies.

    PubMed

    Rossi, Carlo; Volterrani, Duccio; Nicoletti, Valentina; Manca, Gianpiero; Frosini, Daniela; Kiferle, Lorenzo; Unti, Elisa; De Feo, Paola; Bonuccelli, Ubaldo; Ceravolo, Roberto

    2009-12-01

    We performed 123I-FP-CIT/SPECT and ECD/SPECT in 30 patients with Parkinson's disease with dementia (PDD) and 30 patients with dementia with Lewy bodies (DLB) to evaluate whether presynaptic nigro-striatal function and/or cerebral perfusional pattern is different in these diseases. The striatal uptake of DAT tracer was statistically significantly lower in PDD and DLB with respect to control data (p < 0.0005), however no significant difference was found between PDD and DLB. Patients with PDD and DLB showed a significant reduction of rCBF (p < 0.001) in parieto-occipital and frontal areas, with respect to controls, but the comparison between the two groups did not result in any significant difference by SPM analysis. Finally no correlation was found between any regional perfusional changes and nigro-striatal dysfunction. We conclude that neither studies with 123I-FP-CIT nor ECD/SPECT were able to discriminate between DLB and PDD in vivo.

  16. High spatial resolution technique for SPECT using a fan-beam collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichihar, T.; Nambu, K.; Motomura, N.

    1993-08-01

    The physical characteristics of the collimator cause degradation of resolution with increasing distance from the collimator surface. A new convolutional backprojection algorithm has been derived for fanbeam SPECT data without rebinding into parallel beam geometry. The projections are filtered and then backprojected into the area within an isosceles triangle whose vertex is the focal point of the fan-beam and whose base is the fan-beam collimator face, and outside of the circle whose center is located midway between the focal point and the center of rotation and whose diameter is the distance between the focal point and the center of rotation.more » Consequently the backprojected area is close to the collimator surface. This algorithm has been implemented on a GCA-9300A SPECT system showing good results with both phantom and patient studies. The SPECT transaxial resolution was 4.6mm FWHM (reconstructed image matrix size of 256x256) at the center of SPECT FOV using UHR (ultra-high-resolution) fan beam collimators for brain study. Clinically, Tc-99m HMPAO and Tc-99m ECD brain data were reconstructed using this algorithm. The reconstruction results were compared with MRI images of the same slice position and showed significantly improved over results obtained with standard reconstruction algorithms.« less

  17. Temporal Sequence of Ictal discharges Propagation in the Corticolimbic Basal Ganglia System during Amygdala Kindled Seizures in Freely Moving Rats

    PubMed Central

    Shi, Li-Hong; Luo, Fei; Woodward, Donald J.; McIntyre, Dan C.; Chang, Jing-Yu

    2007-01-01

    We used a multiple channel, single unit recording technique to investigate the neural activity in different corticolimbic and basal ganglia regions in freely moving rats before and during generalized amygdala kindled seizures. Neural activity was recorded simultaneously in the sensorimotor cortex (Ctx), hippocampus, amygdala, substantia nigra pars reticulata (SNr) and the subthalamic nucleus (STN). We observed massive synchronized activity among neurons of different brain regions during seizure episodes. Neurons in the kindled amygdala led other regions in synchronized firing, revealed by time lags of neurons in other regions in crosscorrelogram analysis. While there was no obvious time lag between Ctx and SNr, the STN and hippocampus did lag behind the Ctx and SNr in correlated firing. Activity in the amygdala and SNr contralateral to the kindling stimulation site lagged behind their ipsilateral counterparts. However no time lag was found between the kindling and contralateral sides of Ctx, hippocampus and STN. Our data confirm that the amygdala is an epileptic focus that emits ictal discharges to other brain regions. The observed temporal pattern indicates that ictal discharges from the amygdala arrive first at Ctx and SNr, and then spread to the hippocampus and STN. The simultaneous activation of both sides of the Ctx suggests that the neocortex participates in kindled seizures as a unisonant entity to provoke the clonic motor seizures. Early activation of the SNr (before the STN and hippocampus) points to an important role of the SNr in amygdala kindled seizures and supports the view that different SNr manipulations may be effective ways to control seizures. PMID:17049434

  18. SU-E-I-20: Dead Time Count Loss Compensation in SPECT/CT: Projection Versus Global Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siman, W; Kappadath, S

    Purpose: To compare projection-based versus global correction that compensate for deadtime count loss in SPECT/CT images. Methods: SPECT/CT images of an IEC phantom (2.3GBq 99mTc) with ∼10% deadtime loss containing the 37mm (uptake 3), 28 and 22mm (uptake 6) spheres were acquired using a 2 detector SPECT/CT system with 64 projections/detector and 15 s/projection. The deadtime, Ti and the true count rate, Ni at each projection, i was calculated using the monitor-source method. Deadtime corrected SPECT were reconstructed twice: (1) with projections that were individually-corrected for deadtime-losses; and (2) with original projections with losses and then correcting the reconstructed SPECTmore » images using a scaling factor equal to the inverse of the average fractional loss for 5 projections/detector. For both cases, the SPECT images were reconstructed using OSEM with attenuation and scatter corrections. The two SPECT datasets were assessed by comparing line profiles in xyplane and z-axis, evaluating the count recoveries, and comparing ROI statistics. Higher deadtime losses (up to 50%) were also simulated to the individually corrected projections by multiplying each projection i by exp(-a*Ni*Ti), where a is a scalar. Additionally, deadtime corrections in phantoms with different geometries and deadtime losses were also explored. The same two correction methods were carried for all these data sets. Results: Averaging the deadtime losses in 5 projections/detector suffices to recover >99% of the loss counts in most clinical cases. The line profiles (xyplane and z-axis) and the statistics in the ROIs drawn in the SPECT images corrected using both methods showed agreement within the statistical noise. The count-loss recoveries in the two methods also agree within >99%. Conclusion: The projection-based and the global correction yield visually indistinguishable SPECT images. The global correction based on sparse sampling of projections losses allows for accurate SPECT

  19. Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.

    PubMed

    Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki

    2018-01-01

    Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.

  20. Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

    PubMed Central

    Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore

    2014-01-01

    Purpose This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). Methods After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. Results We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. Conclusions This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post

  1. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    PubMed

    Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore

    2014-01-01

    This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.

  2. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    NASA Astrophysics Data System (ADS)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum

  3. Gated-SPECT myocardial perfusion imaging as a complementary technique to magnetic resonance imaging in chronic myocardial infarction patients.

    PubMed

    Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume

    2013-09-01

    The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  4. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  5. Classification algorithm of ovarian tissue based on co-registered ultrasound and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Hai; Kumavor, Patrick D.; Alqasemi, Umar; Zhu, Quing

    2014-03-01

    Human ovarian tissue features extracted from photoacoustic spectra data, beam envelopes and co-registered ultrasound and photoacoustic images are used to characterize cancerous vs. normal processes using a support vector machine (SVM) classifier. The centers of suspicious tumor areas are estimated from the Gaussian fitting of the mean Radon transforms of the photoacoustic image along 0 and 90 degrees. Normalized power spectra are calculated using the Fourier transform of the photoacoustic beamformed data across these suspicious areas, where the spectral slope and 0-MHz intercepts are extracted. Image statistics, envelope histogram fitting and maximum output of 6 composite filters of cancerous or normal patterns along with other previously used features are calculated to compose a total of 17 features. These features are extracted from 169 datasets of 19 ex vivo ovaries. Half of the cancerous and normal datasets are randomly chosen to train a SVM classifier with polynomial kernel and the remainder is used for testing. With 50 times data resampling, the SVM classifier, for the training group, gives 100% sensitivity and 100% specificity. For the testing group, it gives 89.68+/- 6.37% sensitivity and 93.16+/- 3.70% specificity. These results are superior to those obtained earlier by our group using features extracted from photoacoustic raw data or image statistics only.

  6. Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging

    PubMed Central

    Lee, Tzu C.; Alessio, Adam M.; Miyaoka, Robert M.; Kinahan, Paul E.

    2017-01-01

    Both SPECT, and in particular PET, are unique in medical imaging for their high sensitivity and direct link to a physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique capabilities for accurately monitoring disease activity for the purposes of clinical management or therapy development. However, to achieve a direct quantitative connection between the underlying radiotracer concentration and the reconstructed image values several confounding physical effects have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality SPECT/CT, PET/CT, and PET/MR scanners, the complementary CT or MR image data can enable these corrections, although there are unique challenges for each combination. This review covers the basic physics underlying photon attenuation and scatter and summarizes technical considerations for multimodal imaging with regard to PET and SPECT quantification and methods to address the challenges for each multimodal combination. PMID:26576737

  7. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    PubMed

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  8. Evaluation of Hospitalized Intractable Epileptic Children with SPECT Scan in Ahvaz, South West of Iran

    PubMed Central

    Ahmadi, Faramarz; Malekian, Arash; Davoodzadeh, Hannaneh; Kabirinia, Hossein

    2016-01-01

    Introduction Seizures are the most frequent neurologic disorder seen in childhood. Epilepsy is a group of disorders that includes an abnormally increased susceptibility to seizures. Aim To examine the effectiveness of SPECT (Single Photon Emission Computerized Tomography) in detecting seizure foci in 21 Iranian children who had medically refractory epilepsy. Materials and Methods Children between 2 to 15 years of age with uncontrolled seizures were investigated using SPECT scan as a standardized protocol. Results In 16 cases (76.2%), likely seizure foci were evident, as were seen in the form of decreased regional blood flow, while in 5 cases (23.8%), SPECT scan results were normal. Left temporal lobe was the most common area which had decreased regional blood flow. Conclusion SPECT scan can potentially be used to investigate children with uncontrolled seizures. PMID:27891419

  9. Performance index: A method for quantitative evaluation of filters used in clinical SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contino, J.; Touya, J.J.; Corbus, H.F.

    1984-01-01

    The purpose of this study was to design a method for optimal filter selection during the reconstruction of clinical SPECT images. Hamming, Bartlett, Parzen and Butterworth filters were evaluated at different cutoff frequencies when applied to reconstruction of the Jaszczak phantom and liver SPECTs. The phantom filled with 6 mCi of Tc-99m was imaged following 4 different protocols which varied in matrix sizes (128 x 128 or 64 x 64) and in number of steps (128 or 64). Total imaging time in the 4 protocols was 24 minutes. A total of 160 reconstructions were analyzed. Liver SPECTs from 2 patientsmore » with small metastatic lesions from colon Ca were similarly studied. An ECT Performance Index (ECT PI) was defined as the product of the contrast efficiency function (ECT C) and uniformity (ECT U). ECT C as a function of the radius was measured following Rollo's approach. ECT U was measured as the ratio between min. and max. counts per pixel in a known uniform region. ECT PI was computed on a slice through the void spheres region of the phantom. In liver SPECTs the ECT U was measured over the spleen. The most favorable ECT PI (0.35, radius 7.9 mm) was obtained with images in 128 x 128 matrices, 128 steps, processed with a Butterworth cutoff frequency of 0.19, filter order 4. When images were acquired in 64 x 64 matrices using 64 steps the ECT PI was lower and influenced to a lesser degree by both choice of filter and cutoff frequency. Results in the two liver SPECT examinations were parallel to those found in the phantom studies confirming the clinical usefulness of the ECT PI in the evaluation of filters for reconstruction of SPECT images.« less

  10. [Performance of Thallium 201 rest-redistribution spect to predict viability in recent myocardial infarction].

    PubMed

    Coll, Claudia; González, Patricio; Massardo, Teresa; Sierralta, Paulina; Humeres, Pamela; Jofré, Josefina; Yovanovich, Jorge; Aramburú, Ivonne; Brugère, Solange; Chamorro, Hernán; Ramírez, Alfredo; Kunstmann, Sonia; López, Héctor

    2002-03-01

    The detection of viability after acute myocardial infarction is primordial to select the most appropriate therapy, to decrease cardiac events and abnormal remodeling. Thallium201 SPECT is one of the radionuclide techniques used to detect viability. To evaluate the use of Thallium201 rest-redistribution SPECT to detect myocardial viability in reperfused patients after a recent myocardial infarction. Forty one patients with up to of 24 days of evolution of a myocardial infarction were studied. All had angiographically demonstrated coronary artery disease and were subjected to a successful thrombolysis, angioplasty or bypass grafting. SPECT Thallium201 images were acquired at rest and after 4 h of redistribution. These results were compared with variations in wall motion score, studied at baseline and after 3 or 4 months with echocardiography. The sensitivity of rest-redistribution Thallium201 SPECT, to predict recovery of wall motion was 91% when patient analysis was performed and 79% when segmental analysis was done in the culprit region. The figures for specificity were 56 and 73% respectively. Rest-distribution Thallium201 SPECT has an excellent sensitivity to predict myocardial viability in recent myocardial infarction. The data obtained in this study is similar to that reported for chronic coronary artery disease.

  11. Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.

    PubMed

    Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin

    2017-09-01

    Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P < 0.001) for quantification of perfusion and ventilation for all right lung lobes, with a maximal mean absolute difference of 20.7% for the right middle lobe. There was no statistically significant difference in quantification of perfusion and

  12. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  13. Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Jing, Joseph; Zhang, Jun; Patel, Pranav M.; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2014-03-01

    We have developed a novel integrated optical coherence tomography (OCT)-intravascular ultrasound (IVUS) probe, with a 1.5 mm-long rigid-part and 0.9 mm outer diameter, for real-time intracoronary imaging of atherosclerotic plaques and guiding interventional procedures. By placing the OCT ball lens and IVUS 45MHz single element transducer back-to-back at the same axial position, this probe can provide automatically co-registered, co-axial OCT-IVUS imaging. To demonstrate its capability, 3D OCT-IVUS imaging of a pig's coronary artery in real-time displayed in polar coordinates, as well as images of two major types of advanced plaques in human cadaver coronary segments, was obtained using this probe and our upgraded system. Histology validation is also presented.

  14. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    PubMed

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  15. Quantitative Comparison of PET and Bremsstrahlung SPECT for Imaging the In Vivo Yttrium-90 Microsphere Distribution after Liver Radioembolization

    PubMed Central

    Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.

    2013-01-01

    Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y

  16. Myocardial Perfusion SPECT 2015 in Germany

    PubMed Central

    Burchert, Wolfgang; Schäfer, Wolfgang; Hacker, Marcus

    2016-01-01

    Summary Aim The working group Cardiovascular Nuclear Medicine of the German Society of Nuclear Medicine presents the results of the 7th survey of myocardial perfusion SPECT (MPS) of the reporting year 2015. Method 268 questionnaires (173 practices [PR], 67 hospitals [HO], 28 university hospitals [UH]) were evaluated. Results of the last survey from 2012 are set in squared brackets. Results MPS of 121 939 [105 941] patients were reported. 98 % [95 %] of all MPS were performed with Tc-99m radiopharmaceuticals and 2 % [5 %] with Tl-201. 78 % [79 %] of all patients were studied in PR, 14 % [15 %] in HO, and 8 % [6 %] in UH. A pharmacological stress test was performed in 43 % [39 %] (22 % [24 %] adenosine, 20 % [9 %] regadenoson, 1% [6 %] dipyridamole or dobutamine). Attenuation correction was applied in 25 % [2009: 10 %] of MPS. Gated SPECT was performed in 78 % [70 %] of all rest MPS, in 80 % [73 %] of all stress and in 76 % [67 %] of all stress and rest MPS. 53 % [33 %] of all nuclear medicine departments performed MPS scoring by default, whereas 24 % [41 %] did not apply any quantification. 31 % [26 %] of all departments noticed an increase in their counted MPS and 29 % [29 %] no changes. Data from 89 departments which participated in all surveys showed an increase in MPS count of 11.1 % (PR: 12.2 %, HO: 4.8 %, UH: 18.4 %). 70 % [60 %] of the MPS were requested by ambulatory care cardiologists. Conclusion The 2015 MPS survey reveals a high-grade adherence of routine MPS practice to current guidelines. The positive trend in MPS performance and number of MPS already observed in 2012 continues. Educational training remains necessary in the field of SPECT scoring. PMID:27909712

  17. A 3-dimensional mathematic cylinder phantom for the evaluation of the fundamental performance of SPECT.

    PubMed

    Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi

    2010-03-01

    Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.

  18. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    NASA Astrophysics Data System (ADS)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  19. SPECT/CT with radiolabeled somatostatin analogues in the evaluation of systemic granulomatous infections.

    PubMed

    Monteiro, Paulo Henrique Silva; de Souza, Thiago Ferreira; Moretti, Maria Luiza; Resende, Mariangela Ribeiro; Mengatti, Jair; de Lima, Mariana da Cunha Lopes; Santos, Allan Oliveira; Ramos, Celso Darío

    2017-01-01

    To evaluate SPECT/CT with radiolabeled somatostatin analogues (RSAs) in systemic granulomatous infections in comparison with gallium-67 ( 67 Ga) citrate scintigraphy. We studied 28 patients with active systemic granulomatous infections, including tuberculosis, paracoccidioidomycosis, pneumocystosis, cryptococcosis, aspergillosis, leishmaniasis, infectious vasculitis, and an unspecified opportunistic infection. Of the 28 patients, 23 had started specific treatment before the study outset. All patients underwent whole-body SPECT/CT imaging: 7 after injection of 99m Tc-EDDA-HYNIC-TOC, and 21 after injection of 111 In-DTPA-octreotide. All patients also underwent 67 Ga citrate imaging, except for one patient who died before the 67 Ga was available. In 20 of the 27 patients who underwent imaging with both tracers, 27 sites of active disease were detected by 67 Ga citrate imaging and by SPECT/CT with an RSA. Both tracers had negative results in the other 7 patients. RSA uptake was visually lower than 67 Ga uptake in 11 of the 20 patients with positive images and similar to 67 Ga uptake in the other 9 patients. The only patient who did not undergo 67 Ga scintigraphy underwent 99m Tc-EDDA-HYNIC-TOC SPECT/CT-guided biopsy of a lung cavity with focal RSA uptake, which turned to be positive for aspergillosis. SPECT/CT with 99m Tc-EDDA-HYNIC-TOC or 111 In-DTPA-octreotide seems to be a good alternative to 67 Ga citrate imaging for the evaluation of patients with systemic granulomatous disease.

  20. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    PubMed

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  1. Multimodal flexible cystoscopy for creating co-registered panoramas of the bladder urothelium

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Soper, Timothy D.; Burkhardt, Matthew R.; Porter, Michael P.; Yoon, W. Jong

    2012-02-01

    Bladder cancer is the most expensive cancer to treat due to the high rate of recurrence. Though white light cystoscopy is the gold standard for bladder cancer surveillance, the advent of fluorescence biomarkers provides an opportunity to improve sensitivity for early detection and reduced recurrence resulting from more accurate excision. Ideally, fluorescence information could be combined with standard reflectance images to provide multimodal views of the bladder wall. The scanning fiber endoscope (SFE) of 1.2mm in diameter is able to acquire wide-field multimodal video from a bladder phantom with fluorescence cancer "hot-spots". The SFE generates images by scanning red, green, and blue (RGB) laser light and detects the backscatter signal for reflectance video of 500-line resolution at 30 frames per second. We imaged a bladder phantom with painted vessels and mimicked fluorescent lesions by applying green fluorescent microspheres to the surface. By eliminating the green laser illumination, simultaneous reflectance and fluorescence images can be acquired at the same field of view, resolution, and frame rate. Moreover, the multimodal SFE is combined with a robotic steering mechanism and image stitching software as part of a fully automated bladder surveillance system. Using this system, the SFE can be reliably articulated over the entire 360° bladder surface. Acquired images can then be stitched into a multimodal 3D panorama of the bladder using software developed in our laboratory. In each panorama, the fluorescence images are exactly co-registered with RGB reflectance.

  2. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  3. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-06-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  4. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    PubMed

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  5. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization.

    PubMed

    Lenoir, Laurence; Edeline, Julien; Rolland, Yann; Pracht, Marc; Raoul, Jean-Luc; Ardisson, Valérie; Bourguet, Patrick; Clément, Bruno; Boucher, Eveline; Garin, Etienne

    2012-05-01

    Identifying gastroduodenal uptake of (99m)Tc-macroaggregated albumin (MAA), which is associated with an increased risk of ulcer disease, is a crucial part of the therapeutic management of patients undergoing radioembolization for liver tumours. Given this context, the use of MAA single photon emission computed tomography (SPECT)/CT may be essential, but the procedure has still not been thoroughly evaluated. The aim of this retrospective study was to determine the effectiveness of MAA SPECT/CT in identifying digestive extrahepatic uptake, while determining potential diagnostic pitfalls. Overall, 139 MAA SPECT/CT scans were performed on 103 patients with different hepatic tumour types. Patients were followed up for at least 6 months according to standard requirements. Digestive, or digestive-like, uptake other than free pertechnetate was identified in 5.7% of cases using planar imaging and in 36.6% of cases using SPECT/CT. Uptake sites identified by SPECT/CT included the gastroduodenal region (3.6%), gall bladder (12.2%), portal vein thrombosis (6.5%), hepatic artery (6.5%), coil embolization site (2.1%) as well as falciform artery (5.0%). For 2.1% of explorations, a coregistration error between SPECT and CT imaging could have led to a false diagnosis by erroneously attributing an uptake site to the stomach or gall bladder, when the uptake actually occurred in the liver. SPECT/CT is more efficacious than planar imaging in identifying digestive extrahepatic uptake sites, with extrahepatic uptake observed in one third of scans using the former procedure. However, more than half of the uptake sites in our study were vascular in nature, without therapeutic implications. The risk of coregistration errors must also be kept in mind.

  6. Clinical utility of MRI and SPECT in the diagnosis of cognitive impairment referred to memory clinic.

    PubMed

    Guinane, John; Ng, Boon Lung

    2018-05-01

    ABSTRACTBackground:Despite of their limited availability and potential for significant variation between and within each modality, this is the first study to prospectively measure the clinical utility of MRI and/or SPECT brain scanning in addition to the routine diagnostic workup of patients presenting to memory clinic. A single center study was conducted over a convenience of 12-month sampling period. For each patient referred for MRI and/or SPECT scanning, the primary geriatrician or psychogeriatrician was asked to assign an initial diagnosis. The initial diagnosis was then compared with the final consensus diagnosis after any scans or neuropsychology testing had been completed. During the 12-month study period, 66 patients (26%) were referred for scans out of a total of 253 patients included in the study. There were 16/44 (36%) positive MRI outcomes and 13/35 (37%) positive SPECT outcomes. The diagnosis changed consistent with the MRI scan findings in 11/44 (25%) and changed consistent with the SPECT scan findings in 9/35 (26%). Potentially reversible pathology was identified in a single patient, 1/50 (2%), via an MRI scan that suggested normal pressure hydrocephalus. The number needed to test for one positive outcome was 3.8 (95% CI 2.0-23.3), 6.0 (95% CI NA), and 1.7 (95% CI 1.3-2.5) for MRI only, SPECT only, and MRI and SPECT together, respectively. The clinical utility of MRI and/or SPECT scanning in this study may be broadly superior to the available international evidence, and further research is needed to identify predictors of positive scan outcomes.

  7. Comparison of ( sup 99m Tc)HMPAO SPECT with ( sup 18 F)fluoromethane PET in cerebrovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiss, W.D.; Herholz, K.; Podreka, I.

    1990-09-01

    Positron emission tomography (PET) of (18F)fluoromethane (FM) and single-photon emission tomography (SPECT) of (99mTc)hexamethylpropyleneamine oxime (HMPAO) were performed under identical conditions within 2 h in 22 patients suffering from cerebrovascular disease (8 ischemic infarction, 2 intracerebral hemorrhages, 7 transient ischemic attacks, and 5 multi-infarct syndrome). While gross pathological changes could be seen in the images of either procedure, focal abnormalities corresponding to transient ischemic deficits or to lesions in multi-infarct syndrome and areas of functional deactivation were sometimes missed on SPECT images. Overall, HMPAO SPECT images showed less contrast between high and low activity regions than the FM PET images,more » and differences between lesions and contralateral regions were less pronounced (6.4 vs 13.3% difference). Regional cerebral blood flow (rCBF) was calculated from FM PET studies in 14 large territorial regions and the pathological lesion, and the regional values relative to mean flow were compared to the relative HMPAO uptake in an identical set of regions defined on the SPECT images. Among individual patients, the Spearman rank-correlation coefficient between relative rCBF and HMPAO uptake varied between 0.48 and 0.89, with a mean of 0.70. While an underestimation of high flow with SPECT--which was demonstrated in a curvilinear relationship between all relative regional PET and SPECT values--could be corrected by linearization taking into account HMPAO efflux from the brain before metabolic trapping, correspondence of SPECT data with PET rCBF values was not improved since this procedure also increased the variance in high flow areas. In the cerebellum, however, a high HMPAO uptake in SPECT always overestimated CBF in relation to forebrain values; this finding might be due to high capillary density in the cerebellum.« less

  8. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    PubMed

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    PubMed Central

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  10. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    PubMed

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  11. The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0669 TITLE: The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health PRINCIPAL INVESTIGATOR...3. DATES COVERED 30 Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health 5a...amputation and subsequently evaluate the utility of non-invasive imaging for evaluating the impact of next-generation socket technologies on the health of

  12. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    PubMed Central

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  13. Ictal EEG fractal dimension in ECT predicts outcome at 2 weeks in schizophrenia.

    PubMed

    Abhishekh, Hulegar A; Thirthalli, Jagadisha; Manjegowda, Anusha; Phutane, Vivek H; Muralidharan, Kesavan; Gangadhar, Bangalore N

    2013-09-30

    Studies of electroconvulsive therapy (ECT) have found an association between ictal electroencephalographic (EEG) measures and clinical outcome in depression. Such studies are lacking in schizophrenia. Consenting schizophrenia patients receiving ECT were assessed using the Brief Psychiatric Rating Scale (BPRS) before and 2 weeks after the start of ECT. The patients' seizure was monitored using EEG. In 26 patients, completely artifact-free EEG derived from the left frontal-pole (FP1) channel and electrocardiography (ECG) were available. The fractal dimension (FD) was computed to assess 4-s EEG epochs, and the maximal value from the earliest ECT session (2nd, 3rd or 4th) was used for analysis. There was a significant inverse correlation between the maximum FD and the total score following 6th ECT. An inverse Inverse correlation was also observed between the maximum FD and the total number of ECTs administered as well as the maximum heart rate (HR) and BPRS scores following 6th ECT. In patients with schizophrenia greater intensity of seizures (higher FD) during initial sessions of ECT is associated with better response at the end of 2 weeks. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. SPECT/CT with radiolabeled somatostatin analogues in the evaluation of systemic granulomatous infections

    PubMed Central

    Monteiro, Paulo Henrique Silva; de Souza, Thiago Ferreira; Moretti, Maria Luiza; Resende, Mariangela Ribeiro; Mengatti, Jair; de Lima, Mariana da Cunha Lopes; Santos, Allan Oliveira; Ramos, Celso Darío

    2017-01-01

    Objective To evaluate SPECT/CT with radiolabeled somatostatin analogues (RSAs) in systemic granulomatous infections in comparison with gallium-67 (67Ga) citrate scintigraphy. Materials and Methods We studied 28 patients with active systemic granulomatous infections, including tuberculosis, paracoccidioidomycosis, pneumocystosis, cryptococcosis, aspergillosis, leishmaniasis, infectious vasculitis, and an unspecified opportunistic infection. Of the 28 patients, 23 had started specific treatment before the study outset. All patients underwent whole-body SPECT/CT imaging: 7 after injection of 99mTc-EDDA-HYNIC-TOC, and 21 after injection of 111In-DTPA-octreotide. All patients also underwent 67Ga citrate imaging, except for one patient who died before the 67Ga was available. Results In 20 of the 27 patients who underwent imaging with both tracers, 27 sites of active disease were detected by 67Ga citrate imaging and by SPECT/CT with an RSA. Both tracers had negative results in the other 7 patients. RSA uptake was visually lower than 67Ga uptake in 11 of the 20 patients with positive images and similar to 67Ga uptake in the other 9 patients. The only patient who did not undergo 67Ga scintigraphy underwent 99mTc-EDDA-HYNIC-TOC SPECT/CT-guided biopsy of a lung cavity with focal RSA uptake, which turned to be positive for aspergillosis. Conclusion SPECT/CT with 99mTc-EDDA-HYNIC-TOC or 111In-DTPA-octreotide seems to be a good alternative to 67Ga citrate imaging for the evaluation of patients with systemic granulomatous disease. PMID:29307928

  15. Anatomy guided automated SPECT renal seed point estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar; Kumar, Sailendra

    2010-04-01

    Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.

  16. Lung ventilation-perfusion imbalance in pulmonary emphysema: assessment with automated V/Q quotient SPECT.

    PubMed

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Koike, Hiroaki; Iwanaga, Hideyuki; Tokuda, Osamu; Okada, Munemasa; Matsunaga, Naofumi

    2010-05-01

    Tc-99m-Technegas-MAA single photon emission computed tomography (SPECT)-derived ventilation (V)/perfusion (Q) quotient SPECT was used to assess lung V-Q imbalance in patients with pulmonary emphysema. V/Q quotient SPECT and V/Q profile were automatically built in 38 patients with pulmonary emphysema and 12 controls, and V/Q distribution and V/Q profile parameters were compared. V/Q distribution on V/Q quotient SPECT was correlated with low attenuation areas (LAA) on density-mask computed tomography (CT). Parameters of V/Q profile such as the median, standard deviation (SD), kurtosis and skewness were proposed to objectively evaluate the severity of lung V-Q imbalance. In contrast to uniform V/Q distribution on V/Q quotient SPECT and a sharp peak with symmetrical V/Q distribution on V/Q profile in controls, lung areas showing heterogeneously high or low V/Q and flattened peaks with broadened V/Q distribution were frequently seen in patients with emphysema, including lung areas with only slight LAA. V/Q distribution was also often asymmetric regardless of symmetric LAA. All the proposed parameters of V/Q profile in entire lungs of patients with emphysema showed large variations compared with controls; SD and kurtosis were significantly different from controls (P < 0.0001 and P < 0.001, respectively), and a significant correlation was found between SD and A-aDO2 (P < 0.0001). V/Q quotient SPECT appears to be more sensitive to detect emphysematous lungs compared with morphologic CT in patients with emphysema. SD and kurtosis of V/Q profile can be adequate parameters to assess the severity of lung V-Q imbalance causing gas-exchange impairment in patients with emphysema.

  17. Prognostic evaluation in obese patients using a dedicated multipinhole cadmium-zinc telluride SPECT camera.

    PubMed

    De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L

    2016-02-01

    The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being <1 % with normal CZT-SPECT, and increased with the degree of scan abnormality in both obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality.

  18. Comparison of SPECT/CT and Planar Lympho-scintigraphy in Sentinel Node Biopsies of Oral Cavity Squamous Cell Carcinomas.

    PubMed

    Chandra, Piyush; Dhake, Sanket; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu; Rangarajan, Venkatesh

    2017-01-01

    Evidence supporting the use of Sentinel node biopsy (SNB) for nodal staging of early oral squamous cell carcinomas (OSCC) appears to be very promising. Pre-operative lymphatic mapping using planar lymphoscinitigraphy (PL) with or without SPECT/CT in the SNB procedure is useful in sentinel node localization and for planning appropriate surgery. Recently, a large prospective multi-centric study evaluating SNB in cutaneous melanoma, breast and pelvic malignancies, demonstrated that adding SPECT to PL leads to surgical adjustments in a considerable number of patients. Our aim of this study was to evaluate the incremental value of additional SPECT/CT over PL alone in SNB for OSCC. This was a retrospective analysis of 44 patients (40- tongue, 4- buccal mucosa) with T1-T2, clinically N0 oral cavity SCC who underwent sentinel node biopsy procedure. PL and SPECT lymphoscinitigraphy images were compared for pre-operative mapping of sentinel nodes. Using a handheld gamma probe, a total of 179 sentinel nodes were harvested, with a mean of 4.06 per patient. PL revealed 75 hotspots with a mean of 1.70 per patient, and SPECT/CT revealed 92 hotspots with a mean of 2.09 per patient. Additional hotpots were identified in 14 patients on SPECT/CT, which included 4 patients, where PL did not detect any sentinel nodes. Pre-operative SPECT/CT in addition to planar lympho-scinitigraphy in sentinel node biopsies of oral cavity SCC detects more number of sentinel nodes compared to planar imaging alone. The higher sensitivity of SPECT combined with better anatomical localization using diagnostic CT may further improve the precision of SNB procedure.

  19. Usefulness of Tc-99m MDP spine SPECT imaging in differentiating malignant from benign lesions in cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, J.S.; Moon, D.H.; Shin, M.J.

    1994-05-01

    Solitary or a few spinal abnormalities on planar bone scan pose a dilemma in cancer patients. The purpose of this study was to evaluate the usefulness of spine SPECT imaging in differential diagnosis of malignant and benign lesion. Subjects were 54 adult patients with solitary or a few equivocal vertebral lesions on planar bone scan. Spine SPECT imaging was obtained by a triple head SPECT system (TRIAD, Trionix). The final diagnoses were based on data from biopsy, other imaging studies, or minimum 1 year of follow up. Two blind observers reviewed the planar image first, then both planar and SPECTmore » images. The uptake patterns on SPECT images were analyzed, and the diagnostic performance was evaluated by the ROC analysis. Thirty three lesions of 22 patients were malignant, and 60 lesions of 32 patients were benign. Common characteristic patterns of malignant lesions were focal or segmental hot uptake in the body, hot uptake in the body and pedicle, and cold defect with surrounding hot uptake in the vertebra. Whereas marginal protruding hot uptakes in endplate, and hot uptakes in facet joints were benign. The ROC analysis showed that SPECT improved the diagnostic performance (the area under the ROC curve of two observers for planar image 0.903 and 0.791, for the combination of planar and SPECT : 0.950 and 0.976). In conclusion, the uptake pattern recognition in spine SPECT provides useful information for differential diagnosis of malignant and benign lesions in vertebra. Spine SPECT is a valuable complement in cancer patients with inconclusive findings on planar bone scan.« less

  20. Quantitative PET and SPECT performance characteristics of the Albira Trimodal pre-clinical tomograph

    NASA Astrophysics Data System (ADS)

    Spinks, T. J.; Karia, D.; Leach, M. O.; Flux, G.

    2014-02-01

    The Albira Trimodal pre-clinical scanner comprises PET, SPECT and CT sub-systems and thus provides a range of pre-clinical imaging options. The PET component consists of three rings of single-crystal LYSO detectors with axial/transverse fields-of-view (FOVs) of 148/80 mm. The SPECT component has two opposing CsI detectors (100 × 100 mm2) with single-pinhole (SPH) or multi(9)-pinhole (MPH) collimators; the detectors rotate in 6° increments and their spacing can be adjusted to provide different FOVs (25 to 120 mm). The CT sub-system provides ‘low’ (200 µA, 35 kVp) or ‘high’ (400 µA, 45 kVp) power x-rays onto a flat-panel CsI detector. This study examines the performance characteristics and quantitative accuracy of the PET and SPECT components. Using the NEMA NU 4-2008 specifications (22Na point source), the PET spatial resolution is 1.5 + 0.1 mm on axis and sensitivity 6.3% (axial centre) and 4.6% (central 70 mm). The usable activity range is ≤ 10 MBq (18F) over which good linearity (within 5%) is obtained for a uniform cylinder spanning the axial FOV; increasing deviation from linearity with activity is, however, observed for the NEMA (mouse) line source phantom. Image uniformity axially is within 5%. Spatial resolution (SPH/MPH) for the minimum SPECT FOV used for mouse imaging (50 mm) is 1.5/1.7 mm and point source sensitivity 69/750 cps MBq-1. Axial uniformity of SPECT images (%CV of regions-of-interest counts along the axis) is mostly within 8% although there is a range of 30-40% for the largest FOV. The variation is significantly smaller within the central 40 mm. Instances of count rate nonlinearity (PET) and axial non-uniformity (SPECT) were found to be reproducible and thus amenable to empirical correction.

  1. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    PubMed

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  2. Role of 99mTc-ECD SPECT in the Management of Children with Craniosynostosis

    PubMed Central

    Barik, Mayadhar; Bajpai, Minu; Das, Rashmi Ranajn; Malhotra, Arun; Panda, Shasanka Shekhar; Sahoo, Manas Kumar; Dwivedi, Sadanand

    2014-01-01

    Purpose of the Report. There is a paucity of data on correlation of various imaging modalities with clinical findings in craniosynostosis. Moreover, no study has specifically reported the role of 99mTc-ECD SPECT in a large number of subjects with craniosynostosis. Materials and Methods. We prospectively analyzed a cohort of 85 patients with craniosynostosis from year 2007 to 2012. All patients underwent evaluation with 99mTc-ECD SPECT and the results were correlated with radiological and surgical findings. Results. 99mTc-ECD SPECT revealed regional perfusion abnormalities in the cerebral hemisphere corresponding to the fused sutures preoperatively that disappeared postoperatively in all the cases. Corresponding to this, the mean mental performance quotient (MPQ) increased significantly (P < 0.05) postoperatively only in those children with absent perfusion defect postoperatively. Conclusions. Our study suggests that early surgery and release of craniosynostosis in patients with preoperative perfusion defects (absent on 99mTc-ECD SPECT study) are beneficial, as theylead to improved MPQ after surgery. PMID:24987670

  3. Diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT: a clinical follow up study.

    PubMed

    Menéndez-González, Manuel; Tavares, Francisco; Zeidan, Nahla; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    The [(123)I]ioflupane-a dopamine transporter radioligand-SPECT (DaT-SPECT) has proven to be useful in the differential diagnosis of tremor. Here, we investigate the diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT. Therefore, 30 patients with tremor and normal DaT-SPECT were followed up for 2 years. In 18 cases we were able to make a diagnosis. The residual 12 patients underwent a second DaT-SPECT, were then followed for additional 12 months and thereafter the diagnosis was reconsidered again. The final diagnoses included cases of essential tremor, dystonic tremor, multisystem atrophy, vascular parkinsonism, progressive supranuclear palsy, corticobasal degeneration, fragile X-associated tremor ataxia syndrome, psychogenic parkinsonism, iatrogenic parkinsonism and Parkinson's disease. However, for 6 patients the diagnosis remained uncertain. Larger series are needed to better establish the relative frequency of the different conditions behind these cases.

  4. High-resolution clustered pinhole (131)Iodine SPECT imaging in mice.

    PubMed

    van der Have, Frans; Ivashchenko, Oleksandra; Goorden, Marlies C; Ramakers, Ruud M; Beekman, Freek J

    2016-08-01

    High-resolution pre-clinical (131)I SPECT can facilitate development of new radioiodine therapies for cancer. To this end, it is important to limit resolution-degrading effects of pinhole edge penetration by the high-energy γ-photons of iodine. Here we introduce, optimize and validate (131)I SPECT performed with a dedicated high-energy clustered multi-pinhole collimator. A SPECT-CT system (VECTor/CT) with stationary gamma-detectors was equipped with a tungsten collimator with clustered pinholes. Images were reconstructed with pixel-based OSEM, using a dedicated (131)I system matrix that models the distance- and energy-dependent resolution and sensitivity of each pinhole, as well as the intrinsic detector blurring and variable depth of interaction in the detector. The system performance was characterized with phantoms and in vivo static and dynamic (131)I-NaI scans of mice. Reconstructed image resolution reached 0.6mm, while quantitative accuracy measured with a (131)I filled syringe reaches an accuracy of +3.6±3.5% of the gold standard value. In vivo mice scans illustrated a clear shape of the thyroid and biodistribution of (131)I within the animal. Pharmacokinetics of (131)I was assessed with 15-s time frames from the sequence of dynamic images and time-activity curves of (131)I-NaI. High-resolution quantitative and fast dynamic (131)I SPECT in mice is possible by means of a high-energy collimator and optimized system modeling. This enables analysis of (131)I uptake even within small organs in mice, which can be highly valuable for development and optimization of targeted cancer therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Clinical Usefulness of SPECT-CT in Patients with an Unexplained Pain in Metal on Metal (MOM) Total Hip Arthroplasty.

    PubMed

    Berber, Reshid; Henckel, Johann; Khoo, Michael; Wan, Simon; Hua, Jia; Skinner, John; Hart, Alister

    2015-04-01

    SPECT-CT is increasingly used to assess painful knee arthroplasties. The aim of this study was to evaluate the clinical usefulness of SPECT-CT in unexplained painful MOM hip arthroplasty. We compared the diagnosis and management plan for 19 prosthetic MOM hips in 15 subjects with unexplained pain before and after SPECT-CT. SPECT-CT changed the management decision in 13 (68%) subjects, Chi-Square=5.49, P=0.24. In 6 subjects (32%) pain remained unexplained however the result reassured the surgeon to continue with non-operative management. SPECT-CT should be reserved as a specialist test to help identify possible causes of pain where conventional investigations have failed. It can help reassure surgeons making management decisions for patients with unexplained pain following MOM hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Inter-ictal spike detection using a database of smart templates.

    PubMed

    Lodder, Shaun S; Askamp, Jessica; van Putten, Michel J A M

    2013-12-01

    Visual analysis of EEG is time consuming and suffers from inter-observer variability. Assisted automated analysis helps by summarizing key aspects for the reviewer and providing consistent feedback. Our objective is to design an accurate and robust system for the detection of inter-ictal epileptiform discharges (IEDs) in scalp EEG. IED Templates are extracted from the raw data of an EEG training set. By construction, the templates are given the ability to learn by searching for other IEDs within the training set using a time-shifted correlation. True and false detections are remembered and classifiers are trained for improving future predictions. During detection, trained templates search for IEDs in the new EEG. Overlapping detections from all templates are grouped and form one IED. Certainty values are added based on the reliability of the templates involved. For evaluation, 2160 templates were used on an evaluation dataset of 15 continuous recordings containing 241 IEDs (0.79/min). Sensitivities up to 0.99 (7.24fp/min) were reached. To reduce false detections, higher certainty thresholds led to a mean sensitivity of 0.90 with 2.36fp/min. By using many templates, this technique is less vulnerable to variations in spike morphology. A certainty value for each detection allows the system to present findings in a more efficient manner and simplifies the review process. Automated spike detection can assist in visual interpretation of the EEG which may lead to faster review times. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    PubMed

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  8. Development of a Position Decoding ASIC for SPECT using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Cho, M.; Kim, H.; Lim, K. T.; Cho, G.

    2016-01-01

    Single Photon Emission Computed Tomography(SPECT) is a widely used diagnosis modality for detecting metabolic diseases. In general, SPECT system is consisted of a sensor, a pre-amplifier, position decoding circuits(PDC) and a data acquisition(DAQ) system. Due to such complexity, it is quite costly to assemble SPECT system by putting discrete components together. Moreover, using discrete components would make the system rather bulky. In this work, we designed a channel module ASIC for SPECT system. This system was composed of a transimpedance amplifier(TIA), comparators and digital logics. In this particular module, a TIA was selected as a preamplifier because the decay time and the rise time are shorter than that of other preamplifier topologies. In the proposed module, the amplified pulse from the TIA was split into two separate signals and each signal was then fed into two comparators with different reference levels, e.g., a low and high level. Then an XOR gate combined the comparator outputs and the output of XOR gate was sent to the suceeding digital logic. Furthermore, the output of each component in the module is composed of a signal packet. The packet includes the information on the energy, the time and the position of the incident photon. The energy and position information of a detected radiation can be derived from the output of the D-flipflop(DFF) in the module via time-over-threshold(TOT). The timing information was measured using a delayed rising edge from the low-level referenced comparator. There are several advantages in developing the channel module ASIC. First of all, the ASIC has only digital outputs and thus a correction circuit for analog signal distortion can be neglected. In addition, it is possible to cut down the system production cost because the volume of the system can be reduced due to the compactness of ASIC. The benefits of channel module is not only limited to SPECT but also beneficial to many other radiation detecting systems.

  9. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  10. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment.

    PubMed

    Ahmadzadehfar, Hojjat; Sabet, Amir; Biermann, Kim; Muckle, Marianne; Brockmann, Holger; Kuhl, Christiane; Wilhelm, Kai; Biersack, Hans-Jürgen; Ezziddin, Samer

    2010-08-01

    Selective internal radiation therapy (SIRT), a catheter-based liver-directed modality for treating primary and metastatic liver cancer, requires appropriate planning to maximize its therapeutic response and minimize its side effects. (99m)Tc-macroaggregated albumin (MAA) scanning should precede the therapy to detect any extrahepatic shunting to the lung or gastrointestinal tract. Our aim was to compare the ability of SPECT/CT with that of planar imaging and SPECT in the detection and localization of extrahepatic (99m)Tc-MAA accumulation and to evaluate the impact of SPECT/CT on SIRT treatment planning and its added value to angiography in this setting. Ninety diagnostic hepatic angiograms with (99m)Tc-MAA were obtained for 76 patients with different types of cancer. All images were reviewed retrospectively for extrahepatic MAA deposition in the following order: planar, non-attenuation-corrected SPECT, and SPECT/CT. Review of angiograms and follow-up of patients with abdominal shunting served as reference standards. Extrahepatic accumulation was detected by planar imaging, SPECT, and SPECT/CT in 12%, 17%, and 42% of examinations, respectively. The sensitivity for detecting extrahepatic shunting with planar imaging, SPECT, and SPECT/CT was 32%, 41%, and 100%, respectively; specificity was 98%, 98%, and 93%, respectively. The respective positive predictive values were 92%, 93%, and 89%, and the respective negative predictive values were 71%, 73%, and 100%. The therapy plan was changed according to the results of planar imaging, SPECT, and SPECT/CT in 7.8%, 8.9%, and 29% of patients, respectively. In pre-SIRT planning, (99m)Tc-MAA SPECT/CT is valuable for identifying extrahepatic visceral sites at risk for postradioembolization complications.

  11. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    PubMed Central

    Rempel, Brian P.; Price, Eric W.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents. PMID:28927325

  12. Infective endocarditis detection through SPECT/CT images digital processing

    NASA Astrophysics Data System (ADS)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  13. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    PubMed

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  14. Added Value of SPECT/CT in the Evaluation of Benign Bone Diseases of the Appendicular Skeleton.

    PubMed

    Abikhzer, Gad; Srour, Saher; Keidar, Zohar; Bar-Shalom, Rachel; Kagna, Olga; Israel, Ora; Militianu, Daniela

    2016-04-01

    Bone scintigraphy is a sensitive technique to detect altered bone mineralization but has limited specificity. The use of SPECT/CT has improved significantly the diagnostic accuracy of bone scintigraphy, in patients with cancer as well as in evaluation of benign bone disease. It provides precise localization and characterization of tracer-avid foci, shortens the diagnostic workup, and decreases patient anxiety. Through both the SPECT and the CT components, SPECT/CT has an incremental value in characterizing benign bone lesions, specifically in the appendicular skeleton, as illustrated by present case series.

  15. [123I]beta-CIT SPECT visualizes dopamine transporter loss in de novo parkinsonian patients.

    PubMed

    Müller, T; Farahati, J; Kuhn, W; Eising, E G; Przuntek, H; Reiners, C; Coenen, H H

    1998-01-01

    Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the basal ganglia, which may be visualized by single photon emission computed tomography (SPECT) in combination with the cocaine analog methyl-3-beta-(4-beta[123I]iodophenyl)tropane-2beta-carboxylate ([123I]beta-CIT). The aim of our study was to correlate findings of SPECT with clinical data of 34 previously untreated, idiopathic parkinsonian patients [age: 59.58+/-10.03 (mean+/-SD) years; Hoehn and Yahr Scale (HYS) mean range: 1.97+/-0.83, ranges I-III; Unified PD Rating Scale 3.0 (UPDRS, 30.64+/-18.68) and 15 healthy controls (age 47.93+/-10.47 years). SPECT scans were performed with a single-head gamma-camera 24 h after intravenous injection of [123I]beta-CIT. Comparison of the striatum/cerebellum (S/C) ratio of [123I]beta-CIT uptake of controls and parkinsonian subjects, subdivided according to their HYS range, was significant. No influence of age or sex was observed. Significant correlations were found between scores of the HYS, UPDRS parts I-III, part II, part III, and the S/C ratio of [123I]-CIT uptake. Moreover, SPECT with the radiotracer [123I]beta-CIT revealed side-to-side differences in parkinsonian patients and significant associations to contralateral clinical extrapyramidal symptomatology. Our data show that SPECT with [123I]beta-CIT is a valuable tool for estimating disease severity in PD.

  16. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences.

    PubMed

    Jaszczak, Ronald Jack

    2006-07-07

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  17. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  18. Co-registered Frequency-Domain Photoacoustic Radar and Ultrasound System for Subsurface Imaging in Turbid Media

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Mandelis, Andreas

    2016-03-01

    Frequency-domain photoacoustic radar (FD-PAR) imaging of absorbers in turbid media and their comparison and/or validation as well as co-registration with their corresponding ultrasound (US) images are demonstrated in this paper. Also presented are the FD-PAR tomography and the effects of reducing the number of scan lines (or angles) on image quality, resolution, and contrast. The FD-PAR modality uses intensity-modulated (coded) continuous wave laser sources driven by frequency-swept (chirp) waveforms. The spatial cross-correlation function between the PA response and the reference signal used for laser source modulation produces the reconstructed image. Live animal testing is demonstrated, and images of comparable signal-to-noise ratio, contrast, and spatial resolution were obtained. Various image improvement techniques to further reduce absorber spread and artifacts in the images such as normalization, filtering, and amplification were also investigated. The co-registered image produced from the combined US and PA images provides more information than both images independently. The significance of this work lies in the fact that achieving PA imaging functionality on a commercial ultrasound instrument could accelerate its clinical acceptance and use. This work is aimed at functional PA imaging of small animals in vivo.

  19. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  20. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in

  1. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    PubMed

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  2. The importance of Tc-MAA SPECT/CT for therapy planning of radioembolization in a patient treated with bevacizumab.

    PubMed

    Ahmadzadehfar, Hojjat; Sabet, Amir; Meyer, Carsten; Habibi, Elham; Biersack, Hans-Jürgen; Ezziddin, Samer

    2012-11-01

    A 76-year-old man with colorectal cancer and hepatic metastases was referred to us for radioembolization of the liver. Angiography with 99mTc-MAA SPECT/CT was performed 8 weeks after the discontinuation of bevacizumab. 99mTc-MAA SPECT/CT showed a diffused intrahepatic tracer distribution with no focally accentuated accumulation in the tumorous region. The test was repeated 6 weeks later and Tc-MAA SPECT/CT showed this time a tumor accentuated tracer accumulation in the liver. Subsequently, the patient was treated with resin microspheres. Tc-MAA SPECT/CT allows a better evaluation of intrahepatic tracer accumulation of Tc-MAA and facilitates the determination of the most appropriate treatment time.

  3. Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease.

    PubMed

    Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Nieman, Koen; Meijboom, W Bob; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J; Verzijlbergen, J Fred

    2013-07-01

    Hybrid myocardial perfusion imaging with single photon emission computed tomography (SPECT) and CT coronary angiography (CCTA) has the potential to play a major role in patients with non-conclusive SPECT or CCTA results. We evaluated the performance of hybrid SPECT/CCTA vs. standalone SPECT and CCTA for the diagnosis of significant coronary artery disease (CAD) in patients with an intermediate to high pre-test likelihood of CAD. In total, 98 patients (mean age 62.5 ± 10.1 years, 68.4% male) with stable anginal complaints and a median pre-test likelihood of 87% (range 22-95%) were prospectively included in this study. Hybrid SPECT/CCTA was performed prior to conventional coronary angiography (CA) including fractional flow reserve (FFR) measurements. Hybrid analysis was performed by combined interpretation of SPECT and CCTA images. The sensitivity, specificity, positive (PPV), and negative (NPV) predictive values were calculated for standalone SPECT, CCTA, and hybrid SPECT/CCTA on per patient level, using an FFR <0.80 as a reference for significant CAD. Significant CAD was demonstrated in 56 patients (57.9%). Non-conclusive SPECT or CCTA results were found in 32 (32.7%) patients. SPECT had a sensitivity of 93%, specificity 79%, PPV 85%, and NPV 89%. CCTA had a sensitivity of 98%, specificity 62%, PPV 77%, and NPV 96%. Hybrid analysis of SPECT and CCTA improved the overall performance: sensitivity, specificity, PPV, and NPV for the presence of significant CAD to 96, 95, 96, and 95%, respectively. In > 40% of the patients with a high pre-test likelihood no significant CAD was demonstrated, emphasizing the value of accurate pre-treatment cardiovascular imaging. Hybrid SPECT/CCTA was able to accurately diagnose and exclude significant CAD surpassing standalone myocardial SPECT and CCTA, vs. a reference standard of FFR measurements.

  4. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    PubMed Central

    Benameur, S.; Mignotte, M.; Meunier, J.; Soucy, J. -P.

    2009-01-01

    Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter. PMID:19812704

  5. Review of two years of experiences with SPECT among psychiatric patients in a rural hospital setting.

    PubMed

    Sheehan, William; Thurber, Steven

    2008-09-01

    We summarize single proton emission computed tomography (SPECT) findings from 63 psychiatric patients in a small rural hospital in western Minnesota. SPECT scans were ordered only for patients in whom documentation of hypoperfusion and functional deficits might be helpful in clarifying diagnoses and treatment planning. The patients referred for SPECT scans had histories of traumatic brain injuries, atypical psychiatric symptom presentations, or conditions that were refractory to standard treatments. In the context of strict referral guidelines and close psychiatrist-radiologist collaboration, a much higher yield of significant findings was obtained compared with those noted in other reports in the literature.

  6. A new scalable modular data acquisition system for SPECT (PET)

    NASA Astrophysics Data System (ADS)

    Stenstrom, P.; Rillbert, A.; Bergquist, M.; Habte, F.; Bohm, C.; Larsson, S. A.

    1998-06-01

    Describes a modular decentralized data acquisition system that continuously samples shaped PMT pulses from a SPECT detector. The pulse waveform data are used by signal processors to accurately reconstruct amplitude and time for each scintillation event. Data acquisition for a PMT channel is triggered in two alternative ways, either when its own signal exceeds a selected digital threshold, or when it receives a trigger pulse from one of its neighboring PMTs. The triggered region is restricted to seven, thirteen or nineteen neighboring PMT channels. Each acquisition module supports three PMT channels and connects to all other modules and a reconstruction computer via Firewire to cover the 72 channels in the Stockholm University/Karolinska Hospital cylindrical SPECT camera.

  7. Performance Evaluation and Quantitative Accuracy of Multipinhole NanoSPECT/CT Scanner for Theranostic Lu-177 Imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Arun; Kim, Kyeong Yun; Hwang, Donghwi; Lee, Min Sun; Lee, Dong Soo; Lee, Jae Sung

    2018-06-01

    SPECT plays important role in peptide receptor targeted radionuclide therapy using theranostic radionuclides such as Lu-177 for the treatment of various cancers. However, SPECT studies must be quantitatively accurate because the reliable assessment of tumor uptake and tumor-to-normal tissue ratios can only be performed using quantitatively accurate images. Hence, it is important to evaluate performance parameters and quantitative accuracy of preclinical SPECT systems for therapeutic radioisotopes before conducting pre- and post-therapy SPECT imaging or dosimetry studies. In this study, we evaluated system performance and quantitative accuracy of NanoSPECT/CT scanner for Lu-177 imaging using point source and uniform phantom studies. We measured recovery coefficient, uniformity, spatial resolution, system sensitivity and calibration factor for mouse whole body standard aperture. We also performed the experiments using Tc-99m to compare the results with that of Lu-177. We found that the recovery coefficient of more than 70% for Lu-177 at the optimum noise level when nine iterations were used. The spatial resolutions of Lu-177 with and without adding uniform background was comparable to that of Tc-99m in axial, radial and tangential directions. System sensitivity measured for Lu-177 was almost three times less than that of Tc-99m.

  8. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    NASA Astrophysics Data System (ADS)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  9. High-Resolution 4D Imaging of Technetium Transport in Porous Media using Preclinical SPECT-CT

    NASA Astrophysics Data System (ADS)

    Dogan, M.; DeVol, T. A.; Groen, H.; Moysey, S. M.; Ramakers, R.; Powell, B. A.

    2015-12-01

    Preclinical SPECT-CT (single-photon emission computed tomography with integrated X-ray computed tomography) offers the potential to quantitatively image the dynamic three-dimensional distribution of radioisotopes with sub-millimeter resolution, overlaid with structural CT images (20-200 micron resolution), making this an attractive method for studying transport in porous media. A preclinical SPECT-CT system (U-SPECT4CT, MILabs BV. Utrecht, The Netherlands) was evaluated for imaging flow and transport of 99mTc (t1/2=6hrs) using a 46,5mm by 156,4mm column packed with individual layers consisting of <0.2mm diameter silica gel, 0.2-0.25, 0.5, 1.0, 2.0, 3.0, and 4.0mm diameter glass beads, and a natural soil sample obtained from the Savannah River Site. The column was saturated with water prior to injecting the 99mTc solution. During the injection the flow was interrupted intermittently for 10 minute periods to allow for the acquisition of a SPECT image of the transport front. Non-uniformity of the front was clearly observed in the images as well as the retarded movement of 99mTc in the soil layer. The latter is suggesting good potential for monitoring transport processes occurring on the timescale of hours. After breakthrough of 99mTc was achieved, the flow was stopped and SPECT data were collected in one hour increments to evaluate the sensitivity of the instrument as the isotope decayed. Fused SPECT- CT images allowed for improved interpretation of 99mTc distributions within individual pore spaces. With ~3 MBq remaining in the column, the lowest activity imaged, it was not possible to clearly discriminate any of the pore spaces.

  10. Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?

    PubMed

    Kaufmann, P A; Buechel, R R

    2016-08-01

    Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA.

  11. Early and delayed pinhole MIBI SPECT in detecting hyperfunctioning parathyroid glands: a comparison with peroperative γ probe.

    PubMed

    Gültekin, Salih Sinan; Kir, Metin; Tuğ, Tuğbay; Demirer, Seher; Genç, Yasemin

    2011-10-01

    This study was conducted to evaluate the early and delayed pinhole MIBI single photon emission computed tomography (pSPECT) images in detecting hyperfunctioning parathyroid glands, to make a comparison with peroperative γ probe (GP) findings. Planar, early, and delayed pSPECT scans and skin in-vivo and ex-vivo GP counts were obtained in 22 patients with hyperparathyroidism. All data were analyzed statistically on the basis of localization of the lesions, using the histopathological findings as the gold standard. Histopathological examinations revealed 18 of 44 adenomas, 18 of 44 hyperplasic glands, two of 44 lymph nodules, five of 44 thyroid nodules, and one of 44 normal parathyroid glands. Sensitivity and specificity were found to be 36 and 100% for planar, 69 and 75% for early pSPECT, 86 and 88% for delayed pSPECT scans, and similarly, 78 and 75% on skin, 92 and 75% in-vivo and 83 and 100% ex-vivo GP counts, respectively. For distinction ability of GP counts between three groups of lesions, there was a statistically significant difference among the three groups for ex-vivo GP counts but not between groups of adenomas and hyperplasic lesions for in-vivo GP counts. Early and delayed pSPECT scans play a complementary role on the planar scans. Delayed pSPECT scans and in-vivo GP counts are equally valuable to localize both single and multiple hyperfunctioning parathyroid glands. Ex-vivo GP counts seem to be better for making a distinction among types of lesions.

  12. [Topodiagnosis of Creutzfeldt-Jakob disease using HMPAO-SPECT].

    PubMed

    Heye, N; Farahati, J; Heinz, A; Büttner, T; Przuntek, H; Reiners, C

    1993-02-01

    An 80-year old female presented with early stage Creutzfeldt-Jakob disease with clinical, neurophysiological and neuropathological findings suggesting a focal involvement of the brain. HMPAO SPECT disclosed asymmetries of regional cerebral perfusion, thus suggesting that it may be a further diagnostic instrument in this disease.

  13. Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis.

    PubMed

    Yutani, K; Shiba, E; Kusuoka, H; Tatsumi, M; Uehara, T; Taguchi, T; Takai, S I; Nishimura, T

    2000-01-01

    The purpose of this work was to compare [18F]2-deoxy-2-fluoro-D-glucose (FDG) PET and 99mTc-methoxyisobutylisonitrile (MIBI) SPECT in the detection of breast cancer and axillary lymph node metastasis in the same patients. FDG-PET and MIBI-SPECT were performed within 3 days for 40 women (age range 25-86 years old) with suspected breast cancer, in whom biopsies and/or mastectomies were performed. Both images were visually assessed, and the count ratio between tumor and normal tissue (T/N ratio) was calculated. Thirty-eight patients had breast cancer, and the remaining two had benign breast lesions. The sensitivities of FDG-PET and MIBI-SPECT were 78.9 and 76.3% for breast cancer and 50.0 and 37.5% for axillary lymph node metastasis, respectively. The T/N ratio of breast cancer was significantly higher in FDG-PET (6.01 +/- 3.08 mean +/- SD) than that in MIBI-SPECT (3.48 +/- 1.21) (p = 0.01). Nonmalignant diffuse uptake of FDG in the breasts and the accumulation of MIBI in heart and liver occasionally obscured tumor uptake. These results indicate that MIBI-SPECT is comparable with FDG-PET in detecting breast cancer. Neither FDG-PET nor MIBI-SPECT is sufficiently sensitive to rule out axillary lymph node metastasis.

  14. Value of automatic patient motion detection and correction in myocardial perfusion imaging using a CZT-based SPECT camera.

    PubMed

    van Dijk, Joris D; van Dalen, Jorn A; Mouden, Mohamed; Ottervanger, Jan Paul; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L

    2018-04-01

    Correction of motion has become feasible on cadmium-zinc-telluride (CZT)-based SPECT cameras during myocardial perfusion imaging (MPI). Our aim was to quantify the motion and to determine the value of automatic correction using commercially available software. We retrospectively included 83 consecutive patients who underwent stress-rest MPI CZT-SPECT and invasive fractional flow reserve (FFR) measurement. Eight-minute stress acquisitions were reformatted into 1.0- and 20-second bins to detect respiratory motion (RM) and patient motion (PM), respectively. RM and PM were quantified and scans were automatically corrected. Total perfusion deficit (TPD) and SPECT interpretation-normal, equivocal, or abnormal-were compared between the noncorrected and corrected scans. Scans with a changed SPECT interpretation were compared with FFR, the reference standard. Average RM was 2.5 ± 0.4 mm and maximal PM was 4.5 ± 1.3 mm. RM correction influenced the diagnostic outcomes in two patients based on TPD changes ≥7% and in nine patients based on changed visual interpretation. In only four of these patients, the changed SPECT interpretation corresponded with FFR measurements. Correction for PM did not influence the diagnostic outcomes. Respiratory motion and patient motion were small. Motion correction did not appear to improve the diagnostic outcome and, hence, the added value seems limited in MPI using CZT-based SPECT cameras.

  15. REVIEW: The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    NASA Astrophysics Data System (ADS)

    Jaszczak, Ronald Jack

    2006-07-01

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  16. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California; Kabus, Sven

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volumemore » change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only

  17. Simultaneous CT and SPECT tomography using CZT detectors

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  18. Design and evaluation of a mobile bedside PET/SPECT imaging system

    NASA Astrophysics Data System (ADS)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  19. Compton camera study for high efficiency SPECT and benchmark with Anger system

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application

  20. Usefulness of coronary calcium scoring to myocardial perfusion SPECT in the diagnosis of coronary artery disease in a predominantly high risk population.

    PubMed

    Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J W M; Verzijlbergen, J Fred

    2013-03-01

    Coronary calcium scoring (CCS) adds to the diagnostic performance of myocardial perfusion single-photon emission computed tomography (SPECT) to assess the presence of significant coronary artery disease (CAD). Patients with a high pre-test likelihood are expected to have a high CCS which potentially could enhance the diagnostic performance of myocardial perfusion SPECT in this specific patient group. We evaluated the added value of CCS to SPECT in the diagnosis of significant CAD in patients with an intermediate to high pre-test likelihood. In total, 129 patients (mean age 62.7 ± 9.7 years, 65 % male) with stable anginal complaints and intermediate to high pre-test likelihood of CAD (median 87 %, range 22-95) were prospectively included in this study. All patients received SPECT and CCS imaging preceding invasive coronary angiography (CA). Fractional flow reserve (FFR) measurements were acquired from patients with angiographically estimated 50-95 % obstructive CAD. For SPECT a SSS > 3 was defined significant CAD. For CCS the optimal cut-off value for significant CAD was determined by ROC curve analysis. The reference standard for significant CAD was a FFR of <0.80 acquired by CA. Significant CAD was demonstrated in 64 patients (49.6 %). Optimal CCS cut-off value for significant CAD was >182.5. ROC curve analysis for prediction of the presence of significant CAD for SPECT, CCS and the combination of CCS and SPECT resulted in an area under the curve (AUC) of 0.88 (95 % CI 81-94), 0.75 (95 % CI 66-83 %) and 0.92 (95 % CI 87-97 %) respectively. The difference of the AUC between SPECT and the combination of CCS and SPECT was 0.05 (P = 0.12). The addition of CCS did not significantly improve the diagnostic performance of SPECT in the evaluation of patients with a predominantly high pre-test likelihood of CAD.

  1. Hybrid imaging by SPECT/CT for sentinel lymph node detection in patients with cancer of the uterine cervix.

    PubMed

    Martínez, A; Zerdoud, S; Mery, E; Bouissou, E; Ferron, G; Querleu, D

    2010-12-01

    Conventional lymphoscintigraphy provides planar images with little spatial information on location of pelvic sentinel lymph nodes (SLN). SPECT has better spatial resolution and, in combination with anatomic accuracy provided by CT improves SLN preoperative localization. The aim of the study was to report on the results of hybrid imaging of SLN in early cervical cancer patients treated at Claudius Regaud Cancer Center. Stages IA-IB1 cervical cancer patients undergoing preoperative SPECT/CT for SLN detection were analysed. Forty-one patients were included. A 100% SLN detection rate was achieved when a combined technique (radiotracer and blue dye) was used. At least one SLN was clearly visualized by SPECT/CT in 39 of 41 patients (95%) and full anatomic concordance with intraoperative anatomical location of SLN was found in 37 of the 39 patients with at least one SLN identified by SPECT/CT (95%). Location of removed SLN included the external and internal iliac area in 88% patients, the common iliac area in 10.5%, and the inframesenteric para-aortic area in 1.5%. No SLN was found in the infrarenal para-aortic region. Lymph node involvement was identified in 5 patients (12.1%). SLN correctly predicted lymph node involvement in all node-positive patients. However, SPECT/CT failed to identify 1 of the 5 metastatic SLN. SPECT/CT accurately detected preoperative SLN topography and enhanced diagnostic sensitivity of SLN imaging, improving surgical approach to patients with cervical cancer staging. Diagnostic quality of anatomic landmarks of CT images of SPECT/CT could be further improved by the use of contrast injected CT. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. 18F-FDG SPECT/CT in the diagnosis of differentiated thyroid carcinoma with elevated thyroglobulin and negative iodine-131 scans.

    PubMed

    Ma, C; Wang, X; Shao, M; Zhao, L; Jiawei, X; Wu, Z; Wang, H

    2015-06-01

    Aim of the present study was to investigate the usefulness of 18F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18F-FDG SPECT/CT and 18F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18F-FDG SPECT/CT or 18F-FDG PET/CT. Of these, 45 patients had 18F-FDG SPECT/CT, the other 41 patients had 18F-FDG PET/CT 3-4weeks after thyroid hormone withdrawal. The results of 18F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multikinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical application of

  3. The effect of heart motion on parameter bias in dynamic cardiac SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, S.G.; Gullberg, G.T.; Huesman, R.H.

    1996-12-31

    Dynamic cardiac SPECT can be used to estimate kinetic rate parameters which describe the wash-in and wash-out of tracer activity between the blood and the myocardial tissue. These kinetic parameters can in turn be correlated to myocardial perfusion. There are, however, many physical aspects associated with dynamic SPECT which can introduce errors into the estimates. This paper describes a study which investigates the effect of heart motion on kinetic parameter estimates. Dynamic SPECT simulations are performed using a beating version of the MCAT phantom. The results demonstrate that cardiac motion has a significant effect on the blood, tissue, and backgroundmore » content of regions of interest. This in turn affects estimates of wash-in, while it has very little effect on estimates of wash-out. The effect of cardiac motion on parameter estimates appears not to be as great as effects introduced by photon noise and geometric collimator response. It is also shown that cardiac motion results in little extravascular contamination of the left ventricle blood region of interest.« less

  4. Hybrid Parallel-Slant Hole Collimators for SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.

    2004-06-01

    We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.

  5. [Follow-up of patients with good exercise capacity in stress test with myocardial single-photon emission computed tomography (SPECT)].

    PubMed

    González, Javiera; Prat, Hernán; Swett, Eduardo; Berrocal, Isabel; Fernández, René; Zhindon, Juan Pablo; Castro, Ariel; Massardo, Teresa

    2015-11-01

    The evaluation of coronary artery disease (CAD) can be performed with stress test and myocardial SPECT tomography. To assess the predictive value of myocardial SPECT using stress test for cardiovascular events in patients with good exercise capacity. We included 102 males aged 56 ± 10 years and 19 females aged 52 ± 10 years, all able to achieve 10 METs and ≥ 85% of the theoretical maximum heart rate and at least 8 min in their stress test with gated 99mTc-sestamibi SPECT. Eighty two percent of patients were followed clinically for 33 ± 17 months. Sixty seven percent of patients were studied for CAD screening and the rest for known disease assessment. Treadmill stress test was negative in 75.4%; 37% of patients with moderate to severe Duke Score presented ischemia. Normal myocardial perfusion SPECT was observed in 70.2%. Reversible defects appeared in 24.8% of cases, which were of moderate or severe degree (> 10% left ventricular extension) in 56.6%. Only seven cases had coronary events after the SPECT. Two major (myocardial infarction and emergency coronary revascularization) and 5 minor events (elective revascularization) ere observed in the follow-up. In a multivariate analysis, SPECT ischemia was the only statistically significant parameter that increased the probability of having a major or minor event. Nearly a quarter of our patients with good exercise capacity demonstrated reversible defects in their myocardial perfusion SPECT. In the intermediate-term follow-up, a low rate of cardiac events was observed, being the isotopic ischemia the only significant predictive parameter.

  6. A line-source method for aligning on-board and other pinhole SPECT systems

    PubMed Central

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-01-01

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by

  7. A line-source method for aligning on-board and other pinhole SPECT systems.

    PubMed

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-12-01

    In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation

  8. Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model

    PubMed Central

    Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.

    2012-01-01

    Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315

  9. Experimental MRI-SPECT insert system with Hybrid Semiconductor detectors Timepix for MR animal scanner Bruker 47/20

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Burian, M.; Soukup, P.; Novak, V.; Macko, M.; Jakubek, J.

    2017-01-01

    Multimodal medical imaging based on Magnetic Resonance is mainly combinated with one of the scintigraphic method like PET or SPECT. These methods provide functional information whereas magnetic resonance imaging provides high spatial resolution of anatomical information or complementary functional information. Fusion of imaging modalities allows researchers to obtain complimentary information in a single measurement. The combination of MRI with SPECT is still relatively new and challenging in many ways. The main complication of using SPECT in MRI systems is the presence of a high magnetic field therefore (ferro)magnetic materials have to be eliminated. Furthermore the application of radiofrequency fields within the MR gantry does not allow for the use of conductive structures such as the common heavy metal collimators. This work presents design and construction of an experimental MRI-SPECT insert system and its initial tests. This unique insert system consists of an MR-compatible SPECT setup with CdTe pixelated sensors Timepix tungsten collimators and a radiofrequency coil. Measurements were performed on a gelatine and tissue phantom with an embedded radioisotopic source (57Co 122 keV γ ray) inside the RF coil by the Bruker BioSpec 47/20 (4.7 T) MR animal scanner. The project was performed in the framework of the Medipix Collaboration.

  10. Comparison of image quality, myocardial perfusion, and LV function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study

    PubMed Central

    Einstein, Andrew J.; Blankstein, Ron; Andrews, Howard; Fish, Mathews; Padgett, Richard; Hayes, Sean W.; Friedman, John D.; Qureshi, Mehreen; Rakotoarivelo, Harivony; Slomka, Piotr; Nakazato, Ryo; Bokhari, Sabahat; Di Carli, Marcello; Berman, Daniel S.

    2015-01-01

    SPECT myocardial perfusion imaging (MPI) plays a central role in coronary artery disease diagnosis; but concerns exist regarding its radiation burden. Compared to standard Anger-SPECT (A-SPECT) cameras, new high-efficiency (HE) cameras with specialized collimators and solid-state cadmium-zinc-telluride detectors offer potential to maintain image quality (IQ), while reducing administered activity and thus radiation dose to patients. No previous study has compared IQ, interpretation, total perfusion deficit (TPD), or ejection fraction (EF) in patients receiving both ultra-low-dose (ULD) imaging on a HE-SPECT camera and standard low-dose (SLD) A-SPECT imaging. Methods We compared ULD-HE-SPECT to SLD-A-SPECT imaging by dividing the rest dose in 101 patients at 3 sites scheduled to undergo clinical A-SPECT MPI using a same day rest/stress Tc-99m protocol. Patients received HE-SPECT imaging following an initial ~130 MBq (3.5mCi) dose, and SLD-A-SPECT imaging following the remainder of the planned dose. Images were scored visually by 2 blinded readers for IQ and summed rest score (SRS). TPD and EF were assessed quantitatively. Results Mean activity was 134 MBq (3.62 mCi) for ULD-HE-SPECT (effective dose 1.15 mSv) and 278 MBq (7.50 mCi, 2.39 mSv) for SLD-A-SPECT. Overall IQ was superior for ULD-HE-SPECT (p<0.0001), with twice as many studies graded excellent quality. Extracardiac activity and overall perfusion assessment were similar. Between-method correlations were high for SRS (r=0.87), TPD (r=0.91), and EF (r=0.88). Conclusion ULD-HE-SPECT rest imaging correlates highly with SLD-A-SPECT. It has improved image quality, comparable extracardiac activity, and achieves radiation dose reduction to 1 mSv for a single injection. PMID:24982439

  11. Hybrid-fusion SPECT/CT systems in parathyroid adenoma: Technological improvements and added clinical diagnostic value.

    PubMed

    Wong, K K; Chondrogiannis, S; Bowles, H; Fuster, D; Sánchez, N; Rampin, L; Rubello, D

    Nuclear medicine traditionally employs planar and single photon emission computed tomography (SPECT) imaging techniques to depict the biodistribution of radiotracers for the diagnostic investigation of a range of disorders of endocrine gland function. The usefulness of combining functional information with anatomy derived from computed tomography (CT), magnetic resonance imaging (MRI), and high resolution ultrasound (US), has long been appreciated, either using visual side-by-side correlation, or software-based co-registration. The emergence of hybrid SPECT/CT camera technology now allows the simultaneous acquisition of combined multi-modality imaging, with seamless fusion of 3D volume datasets. Thus, it is not surprising that there is growing literature describing the many advantages that contemporary SPECT/CT technology brings to radionuclide investigation of endocrine disorders, showing potential advantages for the pre-operative locating of the parathyroid adenoma using a minimally invasive surgical approach, especially in the presence of ectopic glands and in multiglandular disease. In conclusion, hybrid SPECT/CT imaging has become an essential tool to ensure the most accurate diagnostic in the management of patients with hyperparathyroidism. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  12. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  13. A case of Cotard syndrome: (123)I-IBZM SPECT imaging of striatal D(2) receptor binding.

    PubMed

    De Risio, Sergio; De Rossi, Giuseppe; Sarchiapone, Marco; Camardese, Giovanni; Carli, Vladimir; Cuomo, Chiara; Satta, Maria Antonietta; Di Giuda, Daniela

    2004-01-15

    A case of 'dèlire de nègation' that suddenly appeared in a 43-year-old male is presented. No alteration in regional cerebral blood, as measured by (99m)Tc-HMPAO-SPECT, was found, but (123)I-IBZM-SPECT analysis showed reduced striatal D(2) receptor binding that further decreased after treatment.

  14. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer: comparisons of clinical effectiveness in a randomized trial.

    PubMed

    Yi, Chin A; Lee, Kyung Soo; Lee, Ho Yun; Kim, Seonwoo; Kwon, O Jung; Kim, Hojoong; Choi, Joon Young; Kim, Byung-Tae; Hwang, Hye Sun; Shim, Young Mog

    2013-05-15

    The objective of this study was to assess whether coregistered whole brain (WB) magnetic resonance imaging-positron emission tomography (MRI-PET) would increase the number of correctly upstaged patients compared with WB PET-computed tomography (PET-CT) plus dedicated brain MRI in patients with nonsmall cell lung cancer (NSCLC). From January 2010 through November 2011, patients with NSCLC who had resectable disease based on conventional staging were assigned randomly either to coregistered MRI-PET or WB PET-CT plus brain MRI (ClinicalTrials.gov trial NCT01065415). The primary endpoint was correct upstaging (the identification of lesions with higher tumor, lymph node, or metastasis classification, verified with biopsy or other diagnostic test) to have the advantage of avoiding unnecessary thoracotomy, to determine appropriate treatment, and to accurately predict patient prognosis. The secondary endpoints were over staging and under staging compared with pathologic staging. Lung cancer was correctly upstaged in 37 of 143 patients (25.9%) in the MRI-PET group and in 26 of 120 patients (21.7%) in the PET-CT plus brain MRI group (4.2% difference; 95% confidence interval, -6.1% to 14.5%; P = .426). Lung cancer was over staged in 26 of 143 patients (18.2%) in the MRI-PET group and in 7 of 120 patients (5.8%) in the PET-CT plus brain MRI group (12.4% difference; 95% confidence interval, 4.8%-20%; P = .003), whereas lung cancer was under staged in 18 of 143 patients (12.6%) and in 28 of 120 patients (23.3%), respectively (-10.7% difference; 95% confidence interval, -20.1% to -1.4%; P = .022). Although both staging tools allowed greater than 20% correct upstaging compared with conventional staging methods, coregistered MRI-PET did not appear to help identify significantly more correctly upstaged patients than PET-CT plus brain MRI in patients with NSCLC. Copyright © 2013 American Cancer Society.

  15. Experimental validation of absolute SPECT/CT quantification for response monitoring in breast cancer.

    PubMed

    Collarino, Angela; Pereira Arias-Bouda, Lenka M; Valdés Olmos, Renato A; van der Tol, Pieternel; Dibbets-Schneider, Petra; de Geus-Oei, Lioe-Fee; van Velden, Floris H P

    2018-05-01

    Recent developments in iterative image reconstruction enable absolute quantification of SPECT/CT studies by incorporating compensation for collimator-detector response, attenuation, and scatter as well as resolution recovery into the reconstruction process (Evolution; Q.Metrix package; GE Healthcare, Little Chalfont, UK). The aim of this experimental study is to assess its quantitative accuracy for potential clinical 99m Tc-sestamibi (MIBI)-related SPECT/CT application in neoadjuvant chemotherapy response studies in breast cancer. Two phantoms were filled with MIBI and acquired on a SPECT/CT gamma camera (Discovery 670 Pro; GE Healthcare), that is, a water cylinder and a NEMA body phantom containing six spheres that were filled with an activity concentration reflecting clinical MIBI uptake. Subsequently, volumes-of-interest (VOI) of each sphere were drawn (semi)automatically on SPECT using various isocontour methods or manually on CT. Finally, prone MIBI SPECT/CT scans were acquired 5 and 90 min p.i. in a locally advanced breast cancer patient. Activity concentration in the four largest spheres converged after nine iterations of evolution. Depending on the count statistics, the accuracy of the reconstructed activity concentration varied between -4.7 and -0.16% (VOI covering the entire phantom) and from 6.9% to 10% (8.8 cm ⌀ cylinder VOI placed in the center of the phantom). Recovery coefficients of SUV max were 1.89 ± 0.18, 1.76 ± 0.17, 2.00 ± 0.38, 1.89 ± 0.35, and 0.90 ± 0.26 for spheres with 37, 28, 22, 17, and 13 mm ⌀, respectively. Recovery coefficients of SUV mean were 1.07 ± 0.06, 1.03 ± 0.09, 1.17 ± 0.21, 1.10 ± 0.20, and 0.52 ± 0.14 (42% isocontour); 1.10 ± 0.07, 1.02 ± 0.09, 1.13 ± 0.19, 1.06 ± 0.19, and 0.51 ± 0.13 (36% isocontour with local background correction); and 0.96, 1.09, 1.03, 1.03, and 0.29 (CT). Patient study results were concordant with the phantom validation. Absolute SPECT/CT quantification of breast studies using MIBI

  16. An evaluation to design high performance pinhole array detector module for four head SPECT: a simulation study

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2014-09-01

    The purpose of this study is to derive optimized parameters for a detector module employing an off-the-shelf X-ray camera and a pinhole array collimator applicable for a range of different SPECT systems. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were performed to estimate the performance of the pinhole array collimators and were compared to that of low energy high resolution (LEHR) parallel-hole collimator in a four head SPECT system. A detector module was simulated to have 48 mm by 48 mm active area along with 1mm, 1.6mm and 2 mm pinhole aperture sizes at 0.48 mm pitch on a tungsten plate. Perpendicular lead septa were employed to verify overlapping and non-overlapping projections against a proper acceptance angle without lead septa. A uniform shape cylindrical water phantom was used to evaluate the performance of the proposed four head SPECT system of the pinhole array detector module. For each head, 100 pinhole configurations were evaluated based on sensitivity and detection efficiency for 140 keV γ-rays, and compared to LEHR parallel-hole collimator. SPECT images were reconstructed based on filtered back projection (FBP) algorithm where neither scatter nor attenuation corrections were performed. A better reconstruction algorithm development for this specific system is in progress. Nevertheless, activity distribution was well visualized using the backprojection algorithm. In this study, we have evaluated several quantitative and comparative analyses for a pinhole array imaging system providing high detection efficiency and better system sensitivity over a large FOV, comparing to the conventional four head SPECT system. The proposed detector module is expected to provide improved performance in various SPECT imaging.

  17. State-of-the-art radiological techniques improve the assessment of postoperative lung function in patients with non-small cell lung cancer.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Takenaka, Daisuke; Onishi, Yumiko; Matsumoto, Keiko; Matsumoto, Sumiaki; Maniwa, Yoshimasa; Yoshimura, Masahiro; Nishimura, Yoshihiro; Sugimura, Kazuro

    2011-01-01

    The purpose of this study was to compare predictive capabilities for postoperative lung function in non-small cell lung cancer (NSCLC) patients of the state-of-the-art radiological methods including perfusion MRI, quantitative CT and SPECT/CT with that of anatomical method (i.e. qualitative CT) and traditional nuclear medicine methods such as planar imaging and SPECT. Perfusion MRI, CT, nuclear medicine study and measurements of %FEV(1) before and after lung resection were performed for 229 NSCLC patients (125 men and 104 women). For perfusion MRI, postoperative %FEV(1) (po%FEV(1)) was predicted from semi-quantitatively assessed blood volumes within total and resected lungs, for quantitative CT, it was predicted from the functional lung volumes within total and resected lungs, for qualitative CT, from the number of segments of total and resected lungs, and for nuclear medicine studies, from uptakes within total and resected lungs. All SPECTs were automatically co-registered with CTs for preparation of SPECT/CTs. Predicted po%FEV(1)s were then correlated with actual po%FEV(1)s, which were measured %FEV(1)s after operation. The limits of agreement were also evaluated. All predicted po%FEV(1)s showed good correlation with actual po%FEV(1)s (0.83≤r≤0.88, p<0.0001). Perfusion MRI, quantitative CT and SPECT/CT demonstrated better correlation than other methods. The limits of agreement of perfusion MRI (4.4±14.2%), quantitative CT (4.7±14.2%) and SPECT/CT (5.1±14.7%) were less than those of qualitative CT (6.0±17.4%), planar imaging (5.8±18.2%), and SPECT (5.5±16.8%). State-of-the-art radiological methods can predict postoperative lung function in NSCLC patients more accurately than traditional methods. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  18. SPECT bone scintigraphy for the assessment of condylar growth activity in mandibular asymmetry: is it accurate?

    PubMed

    Chan, B H; Leung, Y Y

    2018-04-01

    The comparison of serial radiographs and clinical photographs is considered the current accepted standard for the diagnosis of active condylar hyperplasia in patients with facial asymmetry. Single photon emission computed tomography (SPECT) has recently been proposed as an alternative method. SPECT can be interpreted using three reported methods absolute difference in uptake, uptake ratio, and relative uptake. SPECT findings were compared to those from serial comparisons of radiographs and clinical photographs taken at the time of SPECT and a year later; the sensitivities and specificities were determined. Two hundred patient scans were evaluated. Thirty-four patients showed active growth on serial growth assessment. On comparison with serial growth assessment, the sensitivity and specificity of the three methods ranged between 32.4% and 67.6%, and 36.1% and 78.3%, respectively. Analysis using receiver operating characteristic (ROC) curves revealed area under the curve (AUC) values of <0.58. The average age (mean±standard deviation) of patients with active growth was 18.6±2.8 years, and average growth in the anteroposterior, vertical, and transverse directions was 0.94±0.91mm, 0.88±0.86mm, and 1.4±0.66 mm, respectively. With such low sensitivity and specificity values, it is not justifiable to use SPECT in place of serial growth assessment for the determination of condylar growth status. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Pre-operative prediction of cervical nodal metastasis in papillary thyroid cancer by 99mTc-MIBI SPECT/CT; a pilot study.

    PubMed

    Tangjaturonrasme, Napadon; Vasavid, Pataramon; Sombuntham, Premsuda; Keelawat, Somboon

    2013-06-01

    Papillary thyroid cancer has a high prevalence of cervical nodal metastasis. There is no "gold standard" imaging for pre-operative diagnosis. The aim of the present study was to assess the accuracy of pre-operative 99mTc-MBI SPECT/CT in diagnosis of cervical nodal metastasis in patients with papillary thyroid cancer Fifteen patients were performed 99Tc-MlBI SPECT/CT pre-operatively. Either positive pathological report of neck dissection or positive post-treatment I-131 whole body scan with SPECT/CT of neck was concluded for definite neck metastasis. The PPV, NPV, and accuracy of 99mTc-MIBI SPECT/CT were analyzed. The PPV NPV and accuracy were 80%, 88.89%, and 85.71%, respectively. 99mTc-MIBI SPECT/CT could localize the abnormal lymph nodes groups correctly in most cases when compared with pathological results. However the authors found one false positive case with caseating granulomatous lymphadenitis and one false negative case with positive post-treatment 1-131 whole body scan with SPECT/CT of neck on cervical nodes zone II and IV CONCLUSION: 99mTc-MIBI SPECT/CTseem promising for pre-operative staging of cervical nodal involvement in patients with papillary thyroid cancer without the need of using iodinated contrast that may complicate subsequence 1-131 treatment. However, false positive result in granulomatous inflammatory nodes should be aware of especially in endemic areas. 99mTc-MIBI SPECT/CT scan shows a good result when compared with previous study of CT or MRI imaging. The comparative study between different imaging modality and the extension of neck dissection according to MIBI result seems interesting.

  20. Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.

    PubMed

    Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C

    2015-11-01

    To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  1. SPECT imaging of fibrin using fibrin-binding peptides.

    PubMed

    Starmans, Lucas W E; van Duijnhoven, Sander M J; Rossin, Raffaella; Aime, Silvio; Daemen, Mat J A P; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Noninvasive detection of fibrin in vivo using diagnostic imaging modalities may improve clinical decision-making on possible therapeutic options in atherosclerosis, cancer and thrombus-related pathologies such as pulmonary embolism and deep venous thrombosis. The aim of this study was to assess the potential of a novel (111)In-labeled fibrin-binding peptide (FibPep) to visualize thrombi in mice noninvasively using single-photon emission computed tomography (SPECT). FibPep and a negative control peptide (NCFibPep) were synthesized and their fibrin-binding properties were assessed in vitro. FibPep showed enhanced binding compared with NCFibPep to both fibrin and blood clots. FibPep bound to fibrin with a dissociation constant (K(d)) of 0.8 μ m, whereas NCFibPep displayed at least a 100-fold lower affinity towards fibrin. A FeCl3 -injury carotid artery thrombosis mouse model was used to evaluate the peptides in vivo. FibPep and NCFibPep displayed rapid blood clearance and were eliminated via the renal pathway. In vivo SPECT imaging using FibPep allowed clear visualization of thrombi. Ex vivo biodistribution showed significantly increased uptake of FibPep in the thrombus-containing carotid in comparison to the noninjured carotid (5.7 ± 0.7 and 0.6 ± 0.4% injected dose per gram (%ID g(-1)), respectively; p < 0.01; n = 4), whereas nonspecific NCFibPep did not (0.4 ± 0.2 and 0.3 ± 0.0%ID g(-1), respectively; n = 4). In conclusion, FibPep displayed high affinity towards fibrin in vitro and rapid blood clearance in vivo, and allowed sensitive detection of thrombi using SPECT imaging. Therefore, this particular imaging approach may provide a new tool to diagnose and monitor diseases such as atherosclerosis and cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  2. SPECT/CT tracer uptake is influenced by tunnel orientation and position of the femoral and tibial ACL graft insertion site.

    PubMed

    Hirschmann, Michael T; Mathis, Dominic; Rasch, Helmut; Amsler, Felix; Friederich, Niklaus F; Arnold, Markus P

    2013-02-01

    SPECT/CT is a hybrid imaging modality, which combines a 3D scintigraphy (SPECT) and a conventional computerised tomography (CT). SPECT/CT allows accurate anatomical localisation of metabolic tracer activity. It allows the correlation of surgical factors such as tunnel position and orientation with mechanical alignment, clinical outcome and biological factors. The purpose of this study was to investigate whether the SPECT/CT tracer uptake (intensity and distribution) correlates with the stability and laxity of the knee joint and the position and orientation of the tibial and femoral tunnels in patients after anterior cruciate ligament (ACL) reconstruction. A consecutive series of knees (n=66), with symptoms of pain and/or instability after ACL reconstruction were prospectively evaluated using clinical examination and 99mTc-HDP-SPECT/CT. Clinical laxity testing was performed using the Rolimeter (Ormed, Freiburg, Germany) including Lachman testing (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), anterior drawer test (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), pivot shift test (positive versus negative) and patient-based subjective instability (yes versus no). For analysis of SPECT/CT tracer uptake a previously validated SPECT/CT localisation scheme consisting of 17 tibial, nine femoral and four patellar regions on standardised axial, coronal, and sagittal slices was used. The tracer activity on SPECT/CT was localised and recorded using a 3D volumetric and quantitative analysis software. Mean, standard deviation, minimum and maximum of grading for each area of the localisation scheme were recorded. The position and orientation of the tibial and femoral tunnel was assessed using a previously published method on 3D-CT. Correlation of instability, pivot shift as well as clinical laxity testing with 99mTc-HDP-SPECT/CT tracer uptake intensity and distribution showed no significant correlation. 99mTc-HDP-SPECT/CT tracer uptake correlated significantly with the position and orientation of the ACL

  3. A line-source method for aligning on-board and other pinhole SPECT systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-12-15

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignmentmore » parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were

  4. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koral, K.F.; Zasadny, K.R.; Kessler, M.L.

    A method of performing {sup 131}I quantitative SPECT imaging is described which uses the superimposition of markers placed on the skin to accomplish fusion of computed tomography (CT) and SPECT image sets. To calculate mean absorbed dose after administration of one of two {sup 131}I-labeled monoclonal antibodies (Mabs), the shape of the time-activity curve is measured by daily diagnostic conjugate views, the y-axis of that curve is normalized by a quantitative SPECT measurement (usually intra-therapy), and the tumor mass is deduced from a concurrent CT volume measurement. The method is applied to six B-cell non-Hodgkin`s lymphoma patients. For four tumorsmore » in three patients treated with the MB1 Mab, a correlation appears to be present between resulting mean absorbed dose and disease response. Including all dosimetric estimates for both antibodies, the range for the specific absorbed dose is within that found by others in treating B-cell lymphoma patients. Excluding a retreated anti-B1 patient, the tumor-specific absorbed dose during anti-B1 therapy is from 1.4 to 1.7 mGy/MBq. For the one anti-B1 patient, where quantitative SPECT and conjugate-view imaging was carried out back to back , the quantitative SPECT-measured activity was somewhat less for the spleen and much less for the tumor than that from conjugate views. The quantitative SPECT plus conjugate views method may be of general utility for macro-dosimetry of {sup 131}If therapies. 18 refs., 3 figs., 5 tabs.« less

  5. Imaging of mild traumatic brain injury using 57Co and 99mTc HMPAO SPECT as compared to other diagnostic procedures.

    PubMed

    Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap

    2003-10-01

    Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.

  6. Pathological Laughing: Brain SPECT Findings.

    PubMed

    Morland, David; Wolff, Valérie; Blondet, Cyrille; Marescaux, Christian; Namer, Izzie Jacques

    2015-09-01

    We present the case of a 40-year-old man consulting for uncontrollable episodes of laughing related to emotional lability and not systematically linked to feelings of happiness. Seven months earlier he had presented a pontine ischemic stroke related to an occlusion of the basilar and left vertebral arteries. No epileptic activity or new MRI brain lesions were found. Brain perfusion SPECT performed showed marked hypoperfusion in the right frontal inferior and temporoinsular regions, suggesting a diaschisis phenomenon caused by pontine lesions and highlighted laughing regulation pathways. The patient was successfully treated with a serotonergic reuptake inhibitor, fluoxetine.

  7. Simulating patient-specific heart shape and motion using SPECT perfusion images with the MCAT phantom

    NASA Astrophysics Data System (ADS)

    Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.

    2001-05-01

    The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.

  8. Assessment of Treatment Response by 99mTc-MIP-1404 SPECT/CT: A Pilot Study in Patients With Metastatic Prostate Cancer.

    PubMed

    Schmidkonz, Christian; Cordes, Michael; Beck, Michael; Goetz, Theresa Ida; Schmidt, Daniela; Prante, Olaf; Bäuerle, Tobias; Cavallaro, Alexander; Uder, Michael; Wullich, Bernd; Goebell, Peter; Kuwert, Torsten; Ritt, Philipp

    2018-06-19

    We investigated the role of Tc-MIP-1404 (Progenics Pharmaceuticals, Inc, New York, NY) SPECT/CT of PSMA expression in the assessment of treatment response in patients with metastatic prostate cancer. We retrospectively analyzed Tc-MIP-1404 SPECT/CT scans from 28 patients with metastatic prostate cancer examined before initiation and after completion of therapy. Eight of these patients had been treated with androgen deprivation therapy, 10 with docetaxel, and another 10 with external beam radiotherapy. On the CT images from SPECT/CT, treatment response was assessed according to RECIST 1.1 criteria; independently from that analysis, maximal standardized uptake values (SUVmax) were quantified in representative tumor lesions and treatment response assumed at differences in SUVmax greater than 30%. Radiographic response assessment was correlated to biochemical response (BR) based on prostate-specific antigen serum levels. The concordance rate between SPECT and BR was 75% (95% confidence interval [CI], 0.55-0.89) (Cohen κ = 0.57; 95% CI, 0.29-0.85; P ≤ 0.01), higher than for that between SPECT and CT with 57% (95% CI, 0.37-0.76) (κ = 0.40; 95% CI, 0.14-0.65; P ≤ 0.01), as well as that between CT and BR with 50% (95% CI, 0.31-0.69) (κ = 0.31; 95% CI, 0.06-0.57, P ≤ 0.05). Discordant findings between SPECT and CT were most likely due to limitations of CT in assessing metastases in lymph nodes, as well as bone involvement, which was sometimes not detectable on CT scans. The high agreement between treatment response, as assessed by Tc-MIP-1404 SPECT/CT and BR, suggests a possible role of that imaging tool for monitoring treatment in metastatic prostate cancer. Larger, ideally prospective trials are needed to help to reveal the full potential of SPECT imaging of PSMA expression in that regard.

  9. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  10. A new SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases.

    PubMed

    Delcroix, Olivier; Robin, Philippe; Gouillou, Maelenn; Le Duc-Pennec, Alexandra; Alavi, Zarrin; Le Roux, Pierre-Yves; Abgral, Ronan; Salaun, Pierre-Yves; Bourhis, David; Querellou, Solène

    2018-02-12

    xSPECT Bone® (xB) is a new reconstruction algorithm developed by Siemens® in bone hybrid imaging (SPECT/CT). A CT-based tissue segmentation is incorporated into SPECT reconstruction to provide SPECT images with bone anatomy appearance. The objectives of this study were to assess xB/CT reconstruction diagnostic reliability and accuracy in comparison with Flash 3D® (F3D)/CT in clinical routine. Two hundred thirteen consecutive patients referred to the Brest Nuclear Medicine Department for non-oncological bone diseases were evaluated retrospectively. Two hundred seven SPECT/CT were included. All SPECT/CT were independently interpreted by two nuclear medicine physicians (a junior and a senior expert) with xB/CT then with F3D/CT three months later. Inter-observer agreement (IOA) and diagnostic confidence were determined using McNemar test, and unweighted Kappa coefficient. The study objectives were then re-assessed for validation through > 18 months of clinical and paraclinical follow-up. No statistically significant differences between IOA xB and IOA F3D were found (p = 0.532). Agreement for xB after categorical classification of the diagnoses was high (κ xB = 0.89 [95% CI 0.84 -0.93]) but without statistically significant difference F3D (κ F3D = 0.90 [95% CI 0.86 - 0.94]). Thirty-one (14.9%) inter-reconstruction diagnostic discrepancies were observed of which 21 (10.1%) were classified as major. The follow-up confirmed the diagnosis of F3D in 10 cases, xB in 6 cases and was non-contributory in 5 cases. xB reconstruction algorithm was found reliable, providing high interobserver agreement and similar diagnostic confidence to F3D reconstruction in clinical routine.

  11. Diagnostic and prognostic value of additional SPECT/CT in sentinel lymph node mapping in breast cancer patients.

    PubMed

    Stanzel, Susanne; Pernthaler, Birgit; Schwarz, Thomas; Bjelic-Radisic, Vesna; Kerschbaumer, Stefan; Aigner, Reingard M

    2018-06-01

    of the study was to demonstrate the diagnostic and prognostic value of SPECT/CT in sentinel lymph node mapping (SLNM) in patients with invasive breast cancer. 114 patients with invasive breast cancer with clinically negative lymph nodes were included in this retrospective study as they were referred for SLNM with 99m Tc-nanocolloid. Planar image acquisition was accomplished in a one-day or two-day protocol depending on the schedule of the surgical procedure. Low dose SPECT/CT was performed after the planar images. The sentinel lymph node biopsy (SLNB) was considered false negative if a primary recurrence developed within 12 months after SLNB in the axilla from which a tumor-free SLN had been removed. Between December 2009 and December 2011, 114 patients (pts.) underwent SLNM with additional SPECT/CT. Planar imaging identified in 109 pts. 139 SLNs, which were tumor-positive in 42 nodes (n = 41 pts.). SPECT/CT identified in 81 pts. 151 additional SLNs, of which 19 were tumor-positive and led to therapy change (axillary lymph node dissection) in 11 pts. (9.6 %). Of overall 61 tumor-positive SLNs (n = 52 pts.) SPECT/CT detected all, whereas planar imaging detected only 42 of 61 ( P < 0.0001). No patient had lymph node metastasis within 12 months after SLNB in the axilla from which a tumor-free SLN had been removed resulting in a false-negative rate of 0 %. The local relapse rate was 1.8 % leading to a 4-year disease-free survival rate of 90 %. Among patients with breast cancer, the use of SPECT/CT-aided SLNM correlated due to a better anatomical localization and identification of planar not visible SLNs with a higher detection rate of SLNs. This led to therapeutic consequences and an excellent false-negative and 4-year disease-free survival rate. Schattauer GmbH.

  12. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    PubMed

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  13. Myocardial perfusion and left ventricular function indices assessed by gated myocardial perfusion SPECT in methamphetamine abusers.

    PubMed

    Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh

    2016-12-01

    Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.

  14. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  15. Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT.

    PubMed

    Yamane, Tomohiko; Kuji, Ichiei; Seto, Akira; Matsunari, Ichiro

    2018-06-01

    Quantifying the function of the epiphyseal plate is worthwhile for the management of children with growth disorders. The aim of this retrospective study was to quantify the osteoblastic activity at the epiphyseal plate using the quantitative bone SPECT/CT. We enrolled patients under the age of 20 years who received Tc-99m hydroxymethylene diphosphonate bone scintigraphy acquired by a quantitative SPECT/CT scanner. The images were reconstructed by ordered subset conjugate-gradient minimizer, and the uptake on the distal margin of the femur was quantified by peak standardized uptake value (SUVpeak). A public database of standard body height was used to calculate growth velocities (cm/year). Fifteen patients (6.9-19.7 years, 9 female, 6 male) were enrolled and a total of 25 legs were analyzed. SUVpeak in the epiphyseal plate was 18.9 ± 2.4 (average ± standard deviation) in the subjects under 15 years and decreased gradually by aging. The SUVpeak correlated significantly with the age- and sex-matched growth velocity obtained from the database (R 2  = 0.83, p < 0.0001). The SUV measured by quantitative bone SPECT/CT was increased at the epiphyseal plates of children under the age of 15 years in comparison with the older group, corresponding to higher osteoblastic activity. Moreover, this study suggested a correlation between growth velocity and the SUV. Although this is a small retrospective pilot study, the objective and quantitative values measured by the quantitative bone SPECT/CT has the potential to improve the management of children with growth disorder.

  16. Prospective Evaluation of (99m)Tc-sestamibi SPECT/CT for the Diagnosis of Renal Oncocytomas and Hybrid Oncocytic/Chromophobe Tumors.

    PubMed

    Gorin, Michael A; Rowe, Steven P; Baras, Alexander S; Solnes, Lilja B; Ball, Mark W; Pierorazio, Phillip M; Pavlovich, Christian P; Epstein, Jonathan I; Javadi, Mehrbod S; Allaf, Mohamad E

    2016-03-01

    Nuclear imaging offers a potential noninvasive means of determining the histology of renal tumors. The aim of this study was to evaluate the accuracy of technetium-99m ((99m)Tc)-sestamibi single-photon emission computed tomography/x-ray computed tomography (SPECT/CT) for the differentiation of oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) from other renal tumor histologies. In total, 50 patients with a solid clinical T1 renal mass were imaged with (99m)Tc-sestamibi SPECT/CT prior to surgical resection. Preoperative SPECT/CT scans were reviewed by two blinded readers, and their results were compared with centrally reviewed surgical pathology data. Following surgery, 6 (12%) tumors were classified as renal oncocytomas and 2 (4%) as HOCTs. With the exception of 1 (2%) angiomyolipoma, all other tumors were renal cell carcinomas (82%). (99m)Tc-sestamibi SPECT/CT correctly identified 5 of 6 (83.3%) oncocytomas and 2 of 2 (100%) HOCTs, resulting in an overall sensitivity of 87.5% (95% confidence interval [CI], 47.4-99.7%). Only two tumors were falsely positive on SPECT/CT, resulting in a specificity of 95.2% (95% CI, 83.8-99.4%). In summary, (99m)Tc-sestamibi SPECT/CT is a promising imaging test for the noninvasive diagnosis of renal oncocytomas and HOCTs. We found that the imaging test (99m)Tc-sestamibi SPECT/CT can be used to accurately diagnose two types of benign kidney tumors. This test may be eventually used to help better evaluate patients diagnosed with a renal tumor. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Risk Stratification for Avascular Necrosis of the Femoral Head After Internal Fixation of Femoral Neck Fractures by Post-Operative Bone SPECT/CT.

    PubMed

    Han, Sangwon; Oh, Minyoung; Yoon, Seokho; Kim, Jinsoo; Kim, Ji-Wan; Chang, Jae-Suk; Ryu, Jin-Sook

    2017-03-01

    Avascular necrosis (AVN) of the femoral head is a major complication after internal fixation of a femoral neck fracture and determines the functional prognosis. We investigated postoperative bone single-photon emission computed tomography/computed tomography (SPECT/CT) for assessing the risk of femoral head AVN. We retrospectively reviewed 53 consecutive patients who underwent bone SPECT/CT within 2 weeks of internal fixation of a femoral neck fracture and follow-up serial hip radiographs over at least 12 months. Nine patients developed femoral head AVN. In 15 patients who showed normal uptake on immediate postoperative SPECT/CT, no AVN occurred, whereas 9 of 38 patients who showed cold defects of the femoral head later developed AVN. The negative predictive value of immediate postoperative SPECT/CT for AVN was 100 %, whereas the positive predictive value was 24 %. Among 38 patients with cold defects, 1 developed AVN 3 months postoperatively. A follow-up bone SPECT/CT was performed in the other 37 patients at 2-10 months postoperatively. The follow-up bone SPECT/CT revealed completely normalized femoral head uptake in 27, partially normalized uptake in 8, and persistent cold defects in 2 patients. AVN developed in 3.7 % (1/27), 62.5 % (5/8), and 100 % (2/2) of each group, respectively. According to the time point of imaging, radiotracer uptake patterns of the femoral head on postoperative bone SPECT/CT indicate the risk of AVN after internal fixation of femoral neck fractures differently. Postoperative bone SPECT/CT may help orthopedic surgeons determine the appropriate follow-up of these patients.

  18. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Touch, M; Bowsher, J

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator andmore » a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.« less

  19. 99mTc MDP SPECT-CT-Based Modified Mirels Classification for Evaluation of Risk of Fracture in Skeletal Metastasis: A Pilot Study.

    PubMed

    Riaz, Saima; Bashir, Humayun; Niazi, Imran Khalid; Butt, Sumera; Qamar, Faisal

    2018-06-01

    Mirels' scoring system quantifies the risk of sustaining a pathologic fracture in osseous metastases of weight bearing long bones. Conventional Mirels' scoring is based on radiographs. Our pilot study proposes Tc MDP bone SPECT-CT based modified Mirels' scoring system and its comparison with conventional Mirels' scoring. Cortical lysis was noted in 8(24%) by SPECT-CT versus 2 (6.3%) on X-rays. Additional SPECT-CT parameters were; circumferential involvement [1/4 (31%), 1/2 (3%), 3/4 (37.5%), 4/4 (28%)] and extra-osseous soft tissue [3%]. Our pilot study suggests the potential role of SPECT-CT in predicting risk of fracture in osseous metastases.

  20. Recognition algorithm for assisting ovarian cancer diagnosis from coregistered ultrasound and photoacoustic images: ex vivo study

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Kumavor, Patrick; Aguirre, Andres; Zhu, Quing

    2012-12-01

    Unique features and the underlining hypotheses of how these features may relate to the tumor physiology in coregistered ultrasound and photoacoustic images of ex vivo ovarian tissue are introduced. The images were first compressed with wavelet transform. The mean Radon transform of photoacoustic images was then computed and fitted with a Gaussian function to find the centroid of a suspicious area for shift-invariant recognition process. Twenty-four features were extracted from a training set by several methods, including Fourier transform, image statistics, and different composite filters. The features were chosen from more than 400 training images obtained from 33 ex vivo ovaries of 24 patients, and used to train three classifiers, including generalized linear model, neural network, and support vector machine (SVM). The SVM achieved the best training performance and was able to exclusively separate cancerous from non-cancerous cases with 100% sensitivity and specificity. At the end, the classifiers were used to test 95 new images obtained from 37 ovaries of 20 additional patients. The SVM classifier achieved 76.92% sensitivity and 95.12% specificity. Furthermore, if we assume that recognizing one image as a cancer is sufficient to consider an ovary as malignant, the SVM classifier achieves 100% sensitivity and 87.88% specificity.

  1. Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer: ex vivo and in vivo studies

    NASA Astrophysics Data System (ADS)

    Salehi, Hassan S.; Li, Hai; Merkulov, Alex; Kumavor, Patrick D.; Vavadi, Hamed; Sanders, Melinda; Kueck, Angela; Brewer, Molly A.; Zhu, Quing

    2016-04-01

    Most ovarian cancers are diagnosed at advanced stages due to the lack of efficacious screening techniques. Photoacoustic tomography (PAT) has a potential to image tumor angiogenesis and detect early neovascular changes of the ovary. We have developed a coregistered PAT and ultrasound (US) prototype system for real-time assessment of ovarian masses. Features extracted from PAT and US angular beams, envelopes, and images were input to a logistic classifier and a support vector machine (SVM) classifier to diagnose ovaries as benign or malignant. A total of 25 excised ovaries of 15 patients were studied and the logistic and SVM classifiers achieved sensitivities of 70.4 and 87.7%, and specificities of 95.6 and 97.9%, respectively. Furthermore, the ovaries of two patients were noninvasively imaged using the PAT/US system before surgical excision. By using five significant features and the logistic classifier, 12 out of 14 images (86% sensitivity) from a malignant ovarian mass and all 17 images (100% specificity) from a benign mass were accurately classified; the SVM correctly classified 10 out of 14 malignant images (71% sensitivity) and all 17 benign images (100% specificity). These initial results demonstrate the clinical potential of the PAT/US technique for ovarian cancer diagnosis.

  2. Integration of SimSET photon history generator in GATE for efficient Monte Carlo simulations of pinhole SPECT.

    PubMed

    Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J S; Tsui, Benjamin M W

    2008-07-01

    The authors developed and validated an efficient Monte Carlo simulation (MCS) workflow to facilitate small animal pinhole SPECT imaging research. This workflow seamlessly integrates two existing MCS tools: simulation system for emission tomography (SimSET) and GEANT4 application for emission tomography (GATE). Specifically, we retained the strength of GATE in describing complex collimator/detector configurations to meet the anticipated needs for studying advanced pinhole collimation (e.g., multipinhole) geometry, while inserting the fast SimSET photon history generator (PHG) to circumvent the relatively slow GEANT4 MCS code used by GATE in simulating photon interactions inside voxelized phantoms. For validation, data generated from this new SimSET-GATE workflow were compared with those from GATE-only simulations as well as experimental measurements obtained using a commercial small animal pinhole SPECT system. Our results showed excellent agreement (e.g., in system point response functions and energy spectra) between SimSET-GATE and GATE-only simulations, and, more importantly, a significant computational speedup (up to approximately 10-fold) provided by the new workflow. Satisfactory agreement between MCS results and experimental data were also observed. In conclusion, the authors have successfully integrated SimSET photon history generator in GATE for fast and realistic pinhole SPECT simulations, which can facilitate research in, for example, the development and application of quantitative pinhole and multipinhole SPECT for small animal imaging. This integrated simulation tool can also be adapted for studying other preclinical and clinical SPECT techniques.

  3. Myocardial viability assessment after acute myocardial infarction: low-dose dobutamine echocardiography versus rest-redistribution thallium-201 SPECT.

    PubMed

    Castini, D; Bestetti, A; Garbin, M; Di Leo, C; Bigi, R; Sponzilli, C; Concardi, G; Gioventù, M; Tarolo, G L; Lombardi, F; Fiorentini, C

    1999-09-01

    The presence of tissue viability is of great importance in the prognostic work-up of patients recovering from acute myocardial infarction. However, uncertainty still exists concerning the optimal tool for its assessment. The present study was undertaken in order to compare low-dose dobutamine echocardiography and rest-redistribution thallium SPECT for predicting late improvement of regional left ventricular function after acute myocardial infarction. Fifteen patients undergoing coronary angiography, low-dose dobutamine echocardiography and rest-redistribution thallium SPECT after thrombolyzed anterior acute myocardial infarction were studied. A 3 month follow-up echocardiogram was performed in all patients and 9 underwent coronary revascularization. A significant (> or = 70%) residual stenosis of the infarct-related artery was present in 14 patients, whilst a total occlusion was observed in 1. At 3 month follow-up, 41% of the dyssynergic segments improved. The sensitivity, specificity and accuracy for late wall motion improvement was 61, 89 and 77% for low-dose dobutamine echocardiography and, respectively, 76, 45 and 58% for rest-redistribution thallium SPECT. Tissue viability was detected in 65 and 31% of dyssynergic segments by rest-redistribution thallium SPECT and low-dose dobutamine echocardiography, respectively (p < 0.001). The agreement between the two techniques was 48%. Low-dose dobutamine echocardiography is more accurate than rest-redistribution thallium SPECT for predicting 3 month wall motion improvement in patients with acute anterior myocardial infarction, mainly due to its significantly better specificity.

  4. Utility of ⁹⁹mTc-human serum albumin diethylenetriamine pentaacetic acid SPECT for evaluating endoleak after endovascular abdominal aortic aneurysm repair.

    PubMed

    Nakai, Motoki; Sato, Hirotatsu; Sato, Morio; Ikoma, Akira; Sonomura, Tetsuo; Nishimura, Yoshiharu; Okamura, Yoshitaka

    2015-01-01

    The purpose of this study was to assess the utility of (99m)Tc-human serum albumin diethylenetriamine pentaacetic acid ((99m)Tc-HSAD) SPECT in the detection of endoleaks after endovascular abdominal aortic aneurysm repair. Fifteen patients (11 men, four women) with aneurysm sac expansion of 5 mm or greater after endovascular abdominal aortic aneurysm repair underwent three-phase CT, (99m)Tc-HSAD SPECT, and CT during aortography. Sensitivity calculations for three-phase CT and (99m)Tc-HSAD SPECT were performed with CT during aortography as the reference standard. The volume of each endoleak was measured with CT during aortography. Seven subjects underwent embolization with N-butyl cyanoacrylate (NBCA)-Lipiodol (ethiodized oil, Guerbet and metallic coils. Three-phase CT and (99m)Tc-HSAD SPECT were repeated after embolization to assess their efficacy. Endoleaks were interpreted as perigraft radioisotope accumulation in 12 patients (80.0%) on (99m)Tc-HSAD SPECT images, in 13 patients (86.7%) on three-phase CT images, and in 15 patients (100%) on CT during aortography. The mean endoleak volume visualized with (99m)Tc-HSAD SPECT was 8.37 cm(3) (range, 5.2-15.1 cm(3)), and the volume not visualized was 3.47 cm(3) (2.5-4.6 cm(3)), a statistically significant difference (p = 0.019). In two patients, (99m)Tc-HSAD SPECT depicted endoleaks evident at delayed phase CT during aortography but not at three-phase CT, suggesting they were slow-filling endoleaks. Accumulation of (99m)Tc-HSAD corresponding to endoleaks disappeared after embolization, but CT evaluation of embolization was impeded by artifacts of NBCA-Lipiodol and metallic coils. Technetium-99m-labeled HSAD SPECT proved less sensitive than three-phase CT but depicted endoleaks with volumes 5.2 cm(3) or greater as perigraft radioisotope accumulation. Slow-filling endoleaks can be visualized with (99m)Tc-HSAD SPECT, which can be used to evaluate the efficacy of embolization.

  5. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT.

    PubMed

    Sibille, Louis; Chambert, Benjamin; Alonso, Sandrine; Barrau, Corinne; D'Estanque, Emmanuel; Al Tabaa, Yassine; Collombier, Laurent; Demattei, Christophe; Kotzki, Pierre-Olivier; Boudousq, Vincent

    2016-07-01

    The purpose of this study was to compare a routine bone SPECT/CT protocol using CT reconstructed with filtered backprojection (FBP) with an optimized protocol using low-dose CT images reconstructed with adaptive statistical iterative reconstruction (ASiR). In this prospective study, enrolled patients underwent bone SPECT/CT, with 1 SPECT acquisition followed by 2 randomized CT acquisitions: FBP CT (FBP; noise index, 25) and ASiR CT (70% ASiR; noise index, 40). The image quality of both attenuation-corrected SPECT and CT images was visually (5-point Likert scale, 2 interpreters) and quantitatively (contrast ratio [CR] and signal-to-noise ratio [SNR]) estimated. The CT dose index volume, dose-length product, and effective dose were compared. Seventy-five patients were enrolled in the study. Quantitative attenuation-corrected SPECT evaluation showed no inferiority for contrast ratio and SNR issued from FBP CT or ASiR CT (respectively, 13.41 ± 7.83 vs. 13.45 ± 7.99 and 2.33 ± 0.83 vs. 2.32 ± 0.84). Qualitative image analysis showed no difference between attenuation-corrected SPECT images issued from FBP CT or ASiR CT for both interpreters (respectively, 3.5 ± 0.6 vs. 3.5 ± 0.6 and 3.6 ± 0.5 vs. 3.6 ± 0.5). Quantitative CT evaluation showed no inferiority for SNR between FBP and ASiR CT images (respectively, 0.93 ± 0.16 and 1.07 ± 0.17). Qualitative image analysis showed no quality difference between FBP and ASiR CT images for both interpreters (respectively, 3.8 ± 0.5 vs. 3.6 ± 0.5 and 4.0 ± 0.1 vs. 4.0 ± 0.2). Mean CT dose index volume, dose-length product, and effective dose for ASiR CT (3.0 ± 2.0 mGy, 148 ± 85 mGy⋅cm, and 2.2 ± 1.3 mSv) were significantly lower than for FBP CT (8.5 ± 3.7 mGy, 365 ± 160 mGy⋅cm, and 5.5 ± 2.4 mSv). The use of 70% ASiR blending in bone SPECT/CT can reduce the CT radiation dose by 60%, with no sacrifice in attenuation-corrected SPECT and CT image quality, compared with the conventional protocol using FBP CT

  6. Noise suppressed partial volume correction for cardiac SPECT/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chung; Liu, Chi, E-mail: chi.liu@yale.edu

    Purpose: Partial volume correction (PVC) methods typically improve quantification at the expense of increased image noise and reduced reproducibility. In this study, the authors developed a novel voxel-based PVC method that incorporates anatomical knowledge to improve quantification while suppressing noise for cardiac SPECT/CT imaging. Methods: In the proposed method, the SPECT images were first reconstructed using anatomical-based maximum a posteriori (AMAP) with Bowsher’s prior to penalize noise while preserving boundaries. A sequential voxel-by-voxel PVC approach (Yang’s method) was then applied on the AMAP reconstruction using a template response. This template response was obtained by forward projecting a template derived frommore » a contrast-enhanced CT image, and then reconstructed using AMAP to model the partial volume effects (PVEs) introduced by both the system resolution and the smoothing applied during reconstruction. To evaluate the proposed noise suppressed PVC (NS-PVC), the authors first simulated two types of cardiac SPECT studies: a {sup 99m}Tc-tetrofosmin myocardial perfusion scan and a {sup 99m}Tc-labeled red blood cell (RBC) scan on a dedicated cardiac multiple pinhole SPECT/CT at both high and low count levels. The authors then applied the proposed method on a canine equilibrium blood pool study following injection with {sup 99m}Tc-RBCs at different count levels by rebinning the list-mode data into shorter acquisitions. The proposed method was compared to MLEM reconstruction without PVC, two conventional PVC methods, including Yang’s method and multitarget correction (MTC) applied on the MLEM reconstruction, and AMAP reconstruction without PVC. Results: The results showed that the Yang’s method improved quantification, however, yielded increased noise and reduced reproducibility in the regions with higher activity. MTC corrected for PVE on high count data with amplified noise, although yielded the worst performance among all the

  7. Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2016-06-01

    While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization receiver operating characteristic (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative ordered sets expectation-maximization (OSEM) reconstruction algorithm was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning channelized nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.

  8. Improved outcomes using brain SPECT-guided treatment versus treatment-as-usual in community psychiatric outpatients: a retrospective case-control study.

    PubMed

    Thornton, John F; Schneider, Howard; McLean, Mary K; van Lierop, Muriel J; Tarzwell, Robert

    2014-01-01

    Brain single-photon emission computed tomography (SPECT) scans indirectly show functional activity via measurement of regional cerebral blood flow. Thirty patients at a community-based psychiatric clinic underwent brain SPECT scans. Changes in scoring of before-treatment and after-treatment scans correlated well with changes in patient Global Assessment of Functioning (GAF) scores before treatment and after treatment. Patients were retrospectively matched with controls with similar diagnoses and pretreatment GAF scores, and those who underwent SPECT-guided treatment improved significantly more than the control patients.

  9. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom.

    PubMed

    De Bondt, Pieter; Nichols, Kenneth; Vandenberghe, Stijn; Segers, Patrick; De Winter, Olivier; Van de Wiele, Christophe; Verdonck, Pascal; Shazad, Arsalan; Shoyeb, Abu H; De Sutter, Johan

    2003-06-01

    We have developed a biventricular dynamic physical cardiac phantom to test gated blood-pool (GBP) SPECT image-processing algorithms. Such phantoms provide absolute values against which to assess accuracy of both right and left computed ventricular volume and ejection fraction (EF) measurements. Two silicon-rubber chambers driven by 2 piston pumps simulated crescent-shaped right ventricles wrapped partway around ellopsoid left ventricles. Twenty experiments were performed at Ghent University, for which right and left ventricular true volume and EF ranges were 65-275 mL and 55-165 mL and 7%-49% and 12%-69%, respectively. Resulting 64 x 64 simulated GBP SPECT images acquired at 16 frames per R-R interval were sent to Columbia University, where 2 observers analyzed images independently of each other, without knowledge of true values. Algorithms automatically segmented right ventricular activity volumetrically from left ventricular activity. Automated valve planes, midventricular planes, and segmentation regions were presented to observers, who accepted these choices or modified them as necessary. One observer repeated measurements >1 mo later without reference to previous determinations. Linear correlation coefficients (r) of the mean of the 3 GBP SPECT observations versus true values for right and left ventricles were 0.80 and 0.94 for EF and 0.94 and 0.95 for volumes, respectively. Correlations for right and left ventricles were 0.97 and 0.97 for EF and 0.96 and 0.89 for volumes, respectively, for interobserver agreement and 0.97 and 0.98 for EF and 0.96 and 0.90 for volumes, respectively, for intraobserver agreement. No trends were detected, though volumes and right ventricular EFs were significantly higher than true values. Overall, GBP SPECT measurements correlated strongly with true values. The phantom evaluated shows considerable promise for helping to guide algorithm developments for improved GBP SPECT accuracy.

  10. Implementation of a cardiac PET stress program: comparison of outcomes to the preceding SPECT era.

    PubMed

    Knight, Stacey; Min, David B; Le, Viet T; Meredith, Kent G; Dhar, Ritesh; Biswas, Santanu; Jensen, Kurt R; Mason, Steven M; Ethington, Jon-David; Lappe, Donald L; Muhlestein, Joseph B; Anderson, Jeffrey L; Knowlton, Kirk U

    2018-05-03

    Cardiac positron emission testing (PET) is more accurate than single photon emission computed tomography (SPECT) at identifying coronary artery disease (CAD); however, the 2 modalities have not been thoroughly compared in a real-world setting. We conducted a retrospective analysis of 60-day catheterization outcomes and 1-year major adverse cardiovascular events (MACE) after the transition from a SPECT- to a PET-based myocardial perfusion imaging (MPI) program. MPI patients at Intermountain Medical Center from January 2011-December 2012 (the SPECT era, n = 6,777) and January 2014-December 2015 (the PET era, n = 7,817) were studied. Outcomes studied were 60-day coronary angiography, high-grade obstructive CAD, left main/severe 3-vessel disease, revascularization, and 1-year MACE-revascularization (MACE-revasc; death, myocardial infarction [MI], or revascularization >60 days). Patients were 64 ± 13 years old; 54% were male and 90% were of European descent; and 57% represented a screening population (no prior MI, revascularization, or CAD). During the PET era, compared with the SPECT era, a higher percentage of patients underwent coronary angiography (13.2% vs. 9.7%, P < 0.0001), had high-grade obstructive CAD (10.5% vs. 6.9%, P < 0.0001), had left main or severe 3-vessel disease (3.0% vs. 2.3%, P = 0.012), and had coronary revascularization (56.7% vs. 47.1%, P = 0.0001). Similar catheterization outcomes were seen when restricted to the screening population. There was no difference in 1-year MACE-revasc (PET [5.8%] vs. SPECT [5.3%], P = 0.31). The PET-based MPI program resulted in improved identification of patients with high-grade obstructive CAD, as well as a larger percentage of revascularization, thus resulting in fewer patients undergoing coronary angiography without revascularization. This observational study was funded using internal departmental funds.

  11. The effects of center of rotation errors on cardiac SPECT imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.

    2003-10-01

    In SPECT imaging, center of rotation (COR) errors lead to the misalignment of projection data and can potentially degrade the quality of the reconstructed images. In this work, we study the effects of COR errors on cardiac SPECT imaging using simulation, point source, cardiac phantom, and patient studies. For simulation studies, we generate projection data using a uniform MCAT phantom first without modeling any physical effects (NPH), then with the modeling of detector response effect (DR) alone. We then corrupt the projection data with simulated sinusoid and step COR errors. For other studies, we introduce sinusoid COR errors to projection data acquired on SPECT systems. An OSEM algorithm is used for image reconstruction without detector response correction, but with nonuniform attenuation correction when needed. The simulation studies show that, when COR errors increase from 0 to 0.96 cm: 1) sinusoid COR errors in axial direction lead to intensity decrease in the inferoapical region; 2) step COR errors in axial direction lead to intensity decrease in the distal anterior region. The intensity decrease is more severe in images reconstructed from projection data with NPH than with DR; and 3) the effects of COR errors in transaxial direction seem to be insignificant. In other studies, COR errors slightly degrade point source resolution; COR errors of 0.64 cm or above introduce visible but insignificant nonuniformity in the images of uniform cardiac phantom; COR errors up to 0.96 cm in transaxial direction affect the lesion-to-background contrast (LBC) insignificantly in the images of cardiac phantom with defects, and COR errors up to 0.64 cm in axial direction only slightly decrease the LBC. For the patient studies with COR errors up to 0.96 cm, images have the same diagnostic/prognostic values as those without COR errors. This work suggests that COR errors of up to 0.64 cm are not likely to change the clinical applications of cardiac SPECT imaging when using

  12. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital

  13. A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES

    EPA Science Inventory

    Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...

  14. Value of planar lymphoscintigraphy versus SPECT/CT in evaluation of sentinel lymph node in trunk melanoma - one center, large series, retrospective study.

    PubMed

    Benke, Małgorzata; Wocial, Krzysztof; Lewandowska, Weronika; Rutkowski, Piotr Łukasz; Teterycz, Paweł; Jarek, Piotr; Dedecjus, Marek

    2018-06-29

    Background Localization and histopathological examination of sentinel lymph node (SLN) is a standard of melanoma treatment. The first stage of identification of the SLN is the preoperative lymphoscintigraphy. The aim of this study was to assess and compare diagnostic value of planar lymphoscintigraphy (PL) and SPECT/CT in sentinel lymph node biopsy (SLNB) procedure performed in patients with cutaneous trunk melanoma. Material and Methods Between 2015 and 2016, patients with trunk melanoma (N=255, F/M 95/160), aged from 17 to 88 after an excisional biopsy, with primary tumor ≥ pT1b (AJCC 2009, median Breslow thickness 2.0± 3.13) were included in the study. In all the patients PL was followed by SPECT/CT 1-3 h after injection of 99mTc- colloid particles, and SLNB was performed the next day. Results SPECT-CT revealed 78 (18.6%) SLN more than PL, and in 40 patients showed additional lymph drainage regions leading to surgical adjustments. In 18 patients (7.1%) SPECT-CT revealed SLN not visible in the PL (false-negative PL) and in 22 patients (8.6%), foci of uptake interpreted in PL as hot SLNs were found to be non-nodal sites of uptake when assessed on SPECT/CT (false positive PL). SPECT-CT vs. PL mismatch was observed in 31 patients (12.2%) and was the most common in patients with primary lesions located in the anterior inferior medial region (75%). Conclusions Results of the presented study indicates the high diagnostic value of SPECT-CT in assessment of SLNs and proved that SPECT-CT increases the sensitivity and accuracy of SLN identification as compared to PL even in very experienced hands.

  15. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome.

    PubMed

    Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji

    2012-07-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.

  16. A novel SPECT camera for molecular imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  17. Characterization of a high-purity germanium detector for small-animal SPECT

    PubMed Central

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-01-01

    We present an initial evaluation of a mechanically-cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axis. Finally, a flood-corrected-flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT. PMID:21852723

  18. Characterization of a high-purity germanium detector for small-animal SPECT.

    PubMed

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  19. Development of a combined microSPECT/CT system for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  20. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  1. Etomidate accurately localizes the epileptic area in patients with temporal lobe epilepsy.

    PubMed

    Pastor, Jesús; Wix, Rybel; Meilán, María Luisa; Martínez-Chacón, José Luís; de Dios, Eva; Domínguez-Gadea, Luis; Herrera-Peco, Iván; Sola, Rafael G

    2010-04-01

    A variety of drugs have been used to activate and identify the epileptogenic area in patients during presurgical evaluation. We have evaluated the safety and usefulness of etomidate in identifying the epileptic zone by measuring bioelectrical brain activity and cerebral blood flow (CBF). We studied 13 men and 9 women under presurgical evaluation for temporal lobe epilepsy. We applied etomidate (0.1 mg/kg) while patients were monitored by video-electroencephalography (VEEG) with foramen ovale electrodes. In a subset of 15 patients, we also measured CBF with single photon emission computed tomography (SPECT). (1) Etomidate induced seizures in 2 of 22 patients. (2) The main side-effects observed were myoclonus (14 of 20) and moderate pain (3 of 20). (3) No changes in capillary oxygen saturation, respiration, or heart rate were observed. (4) Irritative activity specifically increased in the temporal mesial and lateral areas. No spikes were observed in other areas, aside from those observed under baseline conditions. (5) Irritative activity induced by etomidate correctly lateralized the ictal onset zone in 19 of 20 patients. In addition, the two etomidate-induced seizures appeared in the same regions as spontaneous ones. (6) The kinetics of pharmacologically induced activity was higher in the region of the ictal-onset zone. (7) Etomidate increased the CBF in the basal ganglia and especially in the posterior hippocampus of the temporal mesial region contralateral to the ictal-onset zone. Etomidate activation is a safe, specific, and quick test that can be used to identify the epileptic region in patients evaluated as candidates for temporal lobe epilepsy surgery.

  2. Automated localisation of Mars rovers using co-registered HiRISE-CTX-HRSC orthorectified images and wide baseline Navcam orthorectified mosaics

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Muller, Jan-Peter; Poole, William

    2016-12-01

    We present a wide range of research results in the area of orbit-to-orbit and orbit-to-ground data fusion, achieved within the EU-FP7 PRoVisG project and EU-FP7 PRoViDE project. We focus on examples from three Mars rover missions, i.e. MER-A/B and MSL, to provide examples of a new fully automated offline method for rover localisation. We start by introducing the mis-registration discovered between the current HRSC and HiRISE datasets. Then we introduce the HRSC to CTX and CTX to HiRISE co-registration workflow. Finally, we demonstrate results of wide baseline stereo reconstruction with fixed mast position rover stereo imagery and its application to ground-to-orbit co-registration with HiRISE orthorectified image. We show examples of the quantitative assessment of recomputed rover traverses, and extensional exploitation of the co-registered datasets in visualisation and within an interactive web-GIS.

  3. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR

  4. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation

    DOE PAGES

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; ...

    2015-12-29

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K 1 = F(1–Aexp(–B/F)) for K 1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less

  5. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation.

    PubMed

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T

    2017-02-01

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99m Tc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99m Tc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99m Tc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99m Tc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve [Formula: see text] for K 1 values estimated with 99m Tc-tefrofosmin using SPECT and MBF values estimated with 13 N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13 N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99m Tc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99m Tc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2  = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99m Tc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99m Tc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.

  6. Measurement of Absolute Myocardial Blood Flow in Humans Using Dynamic Cardiac SPECT and 99mTc-tetrofosmin: Method and Validation

    PubMed Central

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-01-01

    Background The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single photon emission computed tomography (SPECT). Methods Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K1=F(1−Aexp(−BF)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. Results The estimated flow extraction parameters for 99mTc-tefrofosmin was found to be A=0.91±0.11, B=0.34±0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The PS for 99mTc-tefrofosmin was (0.091 ± 0.10) * MBF = (0.32 ± 0.16). Conclusions Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF. PMID:26715603

  7. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K 1 = F(1–Aexp(–B/F)) for K 1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less

  8. A single CT for attenuation correction of both rest and stress SPECT myocardial perfusion imaging: a retrospective feasibility study

    PubMed Central

    Ahlman, Mark A; Nietert, Paul J; Wahlquist, Amy E; Serguson, Jill M; Berry, Max W; Suranyi, Pal; Liu, Songtao; Spicer, Kenneth M

    2014-01-01

    Purpose: In the effort to reduce radiation exposure to patients undergoing myocardial perfusion imaging (MPI) with SPECT/CT, we evaluate the feasibility of a single CT for attenuation correction (AC) of single-day rest (R)/stress (S) perfusion. Methods: Processing of 20 single isotope and 20 dual isotope MPI with perfusion defects were retrospectively repeated in three steps: (1) the standard method using a concurrent R-CT for AC of R-SPECT and S-CT for S-SPECT; (2) the standard method repeated; and (3) with the R-CT used for AC of S-SPECT, and the S-CT used for AC of R-SPECT. Intra-Class Correlation Coefficients (ICC) and Choen’s kappa were used to measure intra-operator variability in sum scoring. Results: The highest level of intra-operator reliability was seen with the reproduction of the sum rest score (SRS) and sum stress score (SSS) (ICC > 95%). ICCs were > 85% for SRS and SSS when alternate CTs were used for AC, but when sum difference scores were calculated, ICC values were much lower (~22% to 27%), which may imply that neither CT substitution resulted in a reproducible difference score. Similar results were seen when evaluating dichotomous outcomes (sum scores difference of ≥ 4) when comparing different processing techniques (kappas ~0.32 to 0.43). Conclusions: When a single CT is used for AC of both rest and stress SPECT, there is disproportionately high variability in sum scoring that is independent of user error. This information can be used to direct further investigation in radiation reduction for common imaging exams in nuclear medicine. PMID:24482701

  9. SPECT/CT localization of oral radioiodine activity: a retrospective study and in-vitro assessment.

    PubMed

    Burlison, Jared S; Hartshorne, Michael F; Voda, Alan M; Cocks, Franklin H; Fair, Joanna R

    2013-12-01

    We sought to further localize radioiodine activity in the mouth on post-thyroid cancer therapy imaging using single-photon emission computed tomography/computed tomography (SPECT/CT). We retrospectively reviewed all patients (58) who underwent thyroid cancer therapy with iodine-131 (131I) at our institution from August 2009 to March 2011 whose post-therapy radioiodine imaging included neck SPECT/CT. A small group (six) of diagnostic 131I scans including SPECT/CT was also reviewed. Separately, we performed in-vitro 131I (sodium iodide) binding assays with amalgam and Argenco HP 77 (77% dental gold alloy) as proof of principle for these interactions. Of the 58 post-therapy patients, 45 (78%) had undergone metallic dental restorations, and of them 41 (91%) demonstrated oral 131I activity localizing preferentially to those restorations. It was observed that radioiodine also localized to other dental restorations and to orthodontic hardware. Gum-line activity in edentulous patients suggests radioiodine interaction with denture adhesive. In vitro, dental amalgam and Argenco HP 77 bound 131I in a time-dependent manner over 1-16 days of exposure. Despite subsequent washings with normal saline, significant 131I activity (maximally 12% for amalgam and 68% for Argenco HP 77) was retained by these metals. Subsequent soaking in a saturated solution of potassium iodide partially displaced 131I from amalgam, with near-total displacement of I from Argenco HP 77. SPECT/CT shows that radioiodine in the oral cavity localizes to metallic dental restorations. Furthermore, in-vitro studies demonstrate partially reversible binding of 131I to common dental metals.

  10. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma.

    PubMed

    Wong, K K; Zarzhevsky, N; Cahill, J M; Frey, K A; Avram, A M

    2009-10-01

    Hybrid imaging modalities such as radioiodine single photon emission CT with integrated CT ((131)I SPECT-CT) and 2-(fluorine-18)-fluoro-2-deoxy-D-glucose positron emission tomography with integrated CT (FDG PET-CT) allow the rapid and efficient fusion of functional and anatomic images, and provide diagnostic information that may influence management decisions in patients with differentiated thyroid carcinoma (DTC). Diagnostic localisation and therapy of these tumours are dependent upon their capacity to concentrate radioiodine ((131)I) via uptake through the sodium-iodide symporter and retention within the tumour. The prognosis for most patients with DTC is favourable, although controversy exists regarding the role of post-operative (131)I therapy in patients at low-risk for disease. Accurate identification of functional thyroid tissue (benign or malignant) using diagnostic (131)I planar scintigraphy complemented by SPECT-CT imaging enables the completion of post-operative staging and patient risk stratification prior to (131)I therapy administration. In patients with non-iodine-avid tumours (negative (131)I scan but elevated thyroglobulin indicative of persistent or recurrent disease), FDG PET-CT is used to identify tumours with enhanced glucose metabolism and to localise the source of thyroglobulin production. The CT component of this hybrid technology provides anatomic localisation of activity and allows CT-based attenuation correction of PET images. Images from 15 patients illustrate the applications of (131)I SPECT-CT and FDG PET-CT.

  12. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    PubMed Central

    Chen, Chun; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S.; Chen, Ji

    2013-01-01

    Purpose The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2–3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Results Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p<0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p<0.01). Conclusion Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. PMID:22532253

  13. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.

    PubMed

    Grootjans, Willem; Meeuwis, Antoi P W; Slump, Cornelis H; de Geus-Oei, Lioe-Fee; Gotthardt, Martin; Visser, Eric P

    2016-12-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively

  14. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome.

    PubMed

    Lalonde, Michel; Wells, R Glenn; Birnie, David; Ruddy, Terrence D; Wassenaar, Richard

    2014-07-01

    Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were

  15. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation

  16. A template-based approach to semi-quantitative SPECT myocardial perfusion imaging: Independent of normal databases.

    PubMed

    Hughes, Tyler; Shcherbinin, Sergey; Celler, Anna

    2011-07-01

    Normal patient databases (NPDs) are used to distinguish between normal and abnormal perfusion in SPECT myocardial perfusion imaging (MPI) and have gained wide acceptance in the clinical environment, yet there are limitations to this approach. This study introduces a template-based method for semi-quantitative MPI, which attempts to overcome some of the NPD limitations. Our approach involves the construction of a 3D digital healthy heart template from the delineation of the patient's left ventricle in the SPECT image. This patient-specific template of the heart, filled with uniform activity, is then analytically projected and reconstructed using the same algorithm as the original image. Subsequent to generating bulls-eye maps for the patient image (PB) and the template image (TB), a ratio (PB/TB) is calculated, which produces a reconstruction-artifact corrected image (CB). Finally, a threshold is used to define defects within CB enabling measurements of the perfusion defect extent (EXT). The SPECT-based template (Ts) measurements were compared to those of a CT-based "ideal" template (TI). Twenty digital phantoms were simulated: male and female, each with one healthy heart and nine hearts with various defects. Four physical phantom studies were performed modeling a healthy heart and three hearts with different defects. The phantom represented a thorax with spine, lung, and left ventricle inserts. Images were acquired on General Electric's (GE) Infinia Hawkeye SPECT/CT camera using standard clinical MPI protocol. Finally, our method was applied to 14 patient MPI rest/stress studies acquired on the GE Infinia Hawkeye SPECT/CT camera and compared to the results obtained from Cedars-Sinai's QPS software. In the simulation studies, the true EXT correlated well with the TI (slope= 1.08; offset = -0.40%; r = 0.99) and Ts (slope = 0.90; offset = 0.27%; r = 0.99) methods with no significant differences between them. Similarly, strong correlations were measured for EXT

  17. Predictive value of dorso-lateral prefrontal connectivity for rTMS response in treatment-resistant depression: A brain perfusion SPECT study.

    PubMed

    Richieri, Raphaëlle; Verger, Antoine; Boyer, Laurent; Boucekine, Mohamed; David, Anthony; Lançon, Christophe; Cermolacce, Michel; Guedj, Eric

    2018-05-18

    Previous clinical trials have suggested that repetitive transcranial magnetic stimulation (rTMS) has a significant antidepressant effect in patients with treatment resistant depression (TRD). However, results remain heterogeneous with many patients without effective response. The aim of this SPECT study was to determine before treatment the predictive value of the connectivity of the stimulated area on further rTMS response in patients with TRD. Fifty-eight TRD patients performed a brain perfusion SPECT before high frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). A voxel based-analysis was achieved to compare connectivity of the left DLPFC in responders and non-responders using inter-regional correlations (p < 0.005, corrected for cluster volume). A multiple logistic regression model was thereafter used with the goal of establishing a predictive score. Before rTMS, responders exhibited increased SPECT connectivity between the left DLPFC and the right cerebellum in comparison to non-responders, independently of age, gender, severity of depression, and severity of treatment resistance. The area under the curve for the combination of these two SPECT clusters to predict rTMS response was 0.756 (p < 0.005). SPECT connectivity of the left DLPFC predicts rTMS response before treatment. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  18. Isthmocervical labelling and SPECT/CT for optimized sentinel detection in endometrial cancer: technique, experience and results.

    PubMed

    Mücke, J; Klapdor, R; Schneider, M; Länger, F; Gratz, K F; Hillemanns, P; Hertel, H

    2014-08-01

    We evaluated the clinical feasibility of a new injection technique for sentinel detection in endometrial carcinoma (EC), transcervical subepithelial injection into the isthmocervical region of the myometrium. We compared detection of sentinel lymph nodes (SLN) by single photon emission computed tomography with CT (SPECT/CT) with planar lymphoscintigraphy. This is a unicentric prospective study. In all patients, transcervical injection of 10 MBq Technetium-99m-nanocolloid was performed into the isthmocervical myometrium without anaesthesia. After 40 (30-60) min, lymphoscintigraphy and SPECT/CT were performed. Patent blue was administered before surgery. The number and localisation of SLN detected in SPECT/CT and lymphoscintigraphy were recorded and compared to the SLN and non-SLN dissected intra-operatively. Between August 2008 and March 2012, 31 patients with EC were enrolled. The new transcervical injection of labelling substances led to high intra-operative (90.3%) detection rates, pelvic bilateral (57%), para-aortic (25%). SPECT/CT significantly identified more SLN than lymphoscintigraphy (mean 2.2 (1-8) to 1.3 (1-7)) in more patients (29/31 (93.5%) to 21/31 (68%), p<0.01). If SLN were identified in one hemi-pelvis, the histological evaluation of the SLN correctly predicted lymph node (LN) metastases for this basin which led to sensitivity 100%, negative predictive value (NPV) 100%, and false negative results 0%. Transcervical SLN marking in combination with SPECT/CT is easily applicable and leads to high physiologic detection rates in pelvic and para-aortic lymphatic drainage areas. Non-affected SLN truly predicted a non-affected LN basin. Combining both methods SLN dissection may be a safe and feasible staging technique for clinical routine in EC. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    PubMed

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  20. Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.

    2016-03-01

    In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i

  1. Asymptomatic solitary cerebral metastasis from papillary carcinoma thyroid: 131I SPECT/CT for accurate staging.

    PubMed

    Jain, Tarun Kumar; Karunanithi, Sellam; Sharma, Punit; Vijay, Maneesh Kumar; Ballal, Sanjana; Bal, Chandrasekhar

    2014-11-01

    Isolated asymptomatic brain metastasis in papillary carcinoma thyroid (PCT) is extremely rare. We here present such a case of a 48-year-old woman with PCT. SPECT/CT localized the 131I radiotracer concentration seen on whole-body scan in this patient to the right posterior parietal cortex, suggesting brain metastasis. Contrast-enhanced MRI and 18F-FDG PET/CT confirmed the diagnosis and the patient was taken for gamma-knife radiosurgery. 131I SPECT/CT in this case accurately restaged the patient by detecting asymptomatic isolated brain metastasis and correctly directed the management strategy.

  2. Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field

    PubMed Central

    Olins, Heather C.; Rogers, Daniel R.; Preston, Christina; Ussler, William; Pargett, Douglas; Jensen, Scott; Roman, Brent; Birch, James M.; Scholin, Christopher A.; Haroon, M. Fauzi; Girguis, Peter R.

    2017-01-01

    Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale. PMID:28659879

  3. Towards the Experimental Assessment of the DQE in SPECT Scanners

    NASA Astrophysics Data System (ADS)

    Fountos, G. P.; Michail, C. M.

    2017-11-01

    The purpose of this work was to introduce the Detective Quantum Efficiency (DQE) in single photon emission computed tomography (SPECT) systems using a flood source. A Tc-99m-based flood source (Eγ = 140 keV) consisting of a radiopharmaceutical solution of dithiothreitol (DTT, 10-3 M)/Tc-99m(III)-DMSA, 40 mCi/40 ml bound to the grains of an Agfa MammoRay HDR Medical X-ray film) was prepared in laboratory. The source was placed between two PMMA blocks and images were obtained by using the brain tomographic acquisition protocol (DatScan-brain). The Modulation Transfer Function (MTF) was evaluated using the Iterative 2D algorithm. All imaging experiments were performed in a Siemens e-Cam gamma camera. The Normalized Noise Power spectra (NNPS) were obtained from the sagittal views of the source. The higher MTF values were obtained for the Flash Iterative 2D with 24 iterations and 20 subsets. The noise levels of the SPECT reconstructed images, in terms of the NNPS, were found to increase as the number of iterations increase. The behavior of the DQE was influenced by both MTF and NNPS. As the number of iterations was increased, higher MTF values were obtained, however with a parallel, increase of magnitude in image noise, as depicted from the NNPS results. DQE values, which were influenced by both MTF and NNPS, were found higher when the number of iterations results in resolution saturation. The method presented here is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.

  4. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    PubMed

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  5. HaNDL syndrome: Correlation between focal deficits topography and EEG or SPECT abnormalities in a series of 5 new cases.

    PubMed

    Barón, J; Mulero, P; Pedraza, M I; Gamazo, C; de la Cruz, C; Ruiz, M; Ayuso, M; Cebrián, M C; García-Talavera, P; Marco, J; Guerrero, A L

    2016-06-01

    Transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is characterised by migraine-like headache episodes accompanied by neurological deficits consisting of motor, sensory, or aphasic symptoms. Electroencephalogram (EEG) and single photon emission computed tomography (SPECT) may show focal abnormalities that correspond to the neurological deficits. We aim to evaluate the correlation between focal deficit topography and EEG or SPECT abnormalities in 5 new cases. We retrospectively reviewed patients attended in a tertiary hospital (January 2010-May 2014) and identified 5 patients (3 men, 2 women) with a mean age of 30.6 ± 7.7 (21-39) years. They presented 3.4 ± 2.6 episodes of headache (range, 2-8) of moderate to severe intensity and transient neurological deficits over a maximum of 5 weeks. Pleocytosis was detected in CSF in all cases (70 to 312 cells/mm3, 96.5-100% lymphocytes) with negative results from aetiological studies. At least one EEG was performed in 4 patients and SPECT in 3 patients. Patient 1: 8 episodes; 4 left hemisphere, 3 right hemisphere, and 1 brainstem; 2 EEGs showing left temporal and bilateral temporal slowing; normal SPECT. Patient 2: 2 episodes, left hemisphere and right hemisphere; SPECT showed decreased left temporal blood flow. Patient 3: 3 left hemisphere deficits; EEG with bilateral frontal and temporal slowing. Patient 4: 2 episodes with right parieto-occipital topography and right frontal slowing in EEG. Patient 5: 2 episodes, right hemisphere and left hemisphere, EEG with right temporal slowing; normal SPECT. The neurological deficits accompanying headache in HaNDL demonstrate marked clinical heterogeneity. SPECT abnormalities and most of all EEG abnormalities were not uncommon in our series and they did not always correlate to the topography of focal déficits. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Spatially resolved assessment of hepatic function using 99mTc-IDA SPECT

    PubMed Central

    Wang, Hesheng; Cao, Yue

    2013-01-01

    Purpose: 99mTc-iminodiacetic acid (IDA) hepatobiliary imaging is usually quantified for hepatic function on the entire liver or regions of interest (ROIs) in the liver. The authors presented a method to estimate the hepatic extraction fraction (HEF) voxel-by-voxel from single-photon emission computed tomography (SPECT)/CT with a 99mTc-labeled IDA agent of mebrofenin and evaluated the spatially resolved HEF measurements with an independent physiological measurement. Methods: Fourteen patients with intrahepatic cancers were treated with radiation therapy (RT) and imaged by 99mTc-mebrofenin SPECT before and 1 month after RT. The dynamic SPECT volumes were with a resolution of 3.9 × 3.9 × 2.5 mm3. Throughout the whole liver with approximate 50 000 voxels, voxelwise HEF quantifications were estimated and compared between using arterial input function (AIF) from the heart and using vascular input function (VIF) from the spleen. The correlation between mean of the HEFs over the nontumor liver tissue and the overall liver function measured by Indocyanine green clearance half-time (T1/2) was assessed. Variation of the voxelwise estimation was evaluated in ROIs drawn in relatively homogeneous regions of the livers. The authors also examined effects of the time range parameter on the voxelwise HEF quantification. Results: Mean of the HEFs over the liver estimated using AIF significantly correlated with the physiological measurement T1/2 (r = 0.52, p = 0.0004), and the correlation was greatly improved by using VIF (r = 0.79, p < 0.0001). The parameter of time range for the retention phase did not lead to a significant difference in the means of the HEFs in the ROIs. Using VIF and a retention phase time range of 7–30 min, the relative variation of the voxelwise HEF in the ROIs was 10% ± 6% of respective mean HEF. Conclusions: The voxelwise HEF derived from 99mTc-IDA SPECT by the deconvolution analysis is feasible to assess the spatial distribution of hepatic function in

  7. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less

  8. Integrated software for the detection of epileptogenic zones in refractory epilepsy.

    PubMed

    Mottini, Alejandro; Miceli, Franco; Albin, Germán; Nuñez, Margarita; Ferrándo, Rodolfo; Aguerrebere, Cecilia; Fernandez, Alicia

    2010-01-01

    In this paper we present an integrated software designed to help nuclear medicine physicians in the detection of epileptogenic zones (EZ) by means of ictal-interictal SPECT and MR images. This tool was designed to be flexible, friendly and efficient. A novel detection method was included (A-contrario) along with the classical detection method (Subtraction analysis). The software's performance was evaluated with two separate sets of validation studies: visual interpretation of 12 patient images by an experimented observer and objective analysis of virtual brain phantom experiments by proposed numerical observers. Our results support the potential use of the proposed software to help nuclear medicine physicians in the detection of EZ in clinical practice.

  9. Stimulus-induced, sleep-bound, focal seizures: a case report.

    PubMed

    Siclari, Francesca; Nobili, Lino; Lo Russo, Giorgio; Moscato, Alessio; Buck, Alfred; Bassetti, Claudio L; Khatami, Ramin

    2011-12-01

    In nocturnal frontal lobe epilepsy (NFLE), seizures occur almost exclusively during NREM sleep. Why precisely these seizures are sleep-bound remains unknown. Studies of patients with nonlesional familial forms of NFLE have suggested the arousal system may play a major role in their pathogenesis. We report the case of a patient with pharmaco-resistant, probably cryptogenic form of non-familial NFLE and strictly sleep-bound seizures that could be elicited by alerting stimuli and were associated with ictal bilateral thalamic and right orbital-insular hyperperfusion on SPECT imaging. Case report. University Hospital Zurich. One patient with pharmaco-resistant epilepsy. This case shows that the arousal system plays a fundamental role also in cryptogenic non-familial forms of NFLE.

  10. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    NASA Astrophysics Data System (ADS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-10-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.

  11. SPECT in Alzheimer`s disease and the dementias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.

    1991-12-31

    Among 90 patients with a clinical diagnosis of Alzheimer`s disease (AD), two subgroups were identified for special study, including 42 patients who had a history of dementia in one or more first-degree relatives, and 14 who had a diagnosis of early AD. Of the 42 patients with a family history of dementia, 34 out of the 35 patients whose final clinical diagnosis was possible or probable AD had positive SPECT rCBF studies. Studies in the 14 patients thought to have very early AD were positive in 11 cases. This finding suggests that altered cortical physiology, and hence, rCBF, occurs quitemore » early in the course of AD, perhaps before the onset of symptoms. It is possible that Xenon 133 rCBF studies might be used to detect the presence of subclinical AD in a population of individuals at risk to this disorder. Despite the drawbacks of a radionuclide with poor photon energy, Xenon 133, with its low cost and round-the-clock availability, deserves further study. Although the physical characteristics of Xenon 127 might make it preferable as a SPECT tracer, it is still not regularly available, and some instrument systems are not designed to handle its higher photon energies.« less

  12. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    DTIC Science & Technology

    2009-05-01

    sagittal slices of a breast cancer patient (42yrs, 68kg) with implant and biopsy clip and various identified tissues . Glandular Adipose Implant...Biopsy Clip 13 volumetric imaging to effectively differentiate between normal glandular, adipose tissue and the artificial implants. It is...impacting the lowered head section. A. SPECT Sub-System The main component of the SPECT sub-system is a compact 16x20cm2 field of view Cadmium - Zinc

  13. Scatter and cross-talk correction for one-day acquisition of 123I-BMIPP and 99mtc-tetrofosmin myocardial SPECT.

    PubMed

    Kaneta, Tomohiro; Kurihara, Hideyuki; Hakamatsuka, Takashi; Ito, Hiroshi; Maruoka, Shin; Fukuda, Hiroshi; Takahashi, Shoki; Yamada, Shogo

    2004-12-01

    123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and 99mTc-tetrofosmin (TET) are widely used for evaluation of myocardial fatty acid metabolism and perfusion, respectively. ECG-gated TET SPECT is also used for evaluation of myocardial wall motion. These tests are often performed on the same day to minimize both the time required and inconvenience to patients and medical staff. However, as 123I and 99mTc have similar emission energies (159 keV and 140 keV, respectively), it is necessary to consider not only scattered photons, but also primary photons of each radionuclide detected in the wrong window (cross-talk). In this study, we developed and evaluated the effectiveness of a new scatter and cross-talk correction imaging protocol. Fourteen patients with ischemic heart disease or heart failure (8 men and 6 women with a mean age of 69.4 yr, ranging from 45 to 94 yr) were enrolled in this study. In the routine one-day acquisition protocol, BMIPP SPECT was performed in the morning, with TET SPECT performed 4 h later. An additional SPECT was performed just before injection of TET with the energy window for 99mTc. These data correspond to the scatter and cross-talk factor of the next TET SPECT. The correction was performed by subtraction of the scatter and cross-talk factor from TET SPECT. Data are presented as means +/- S.E. Statistical analyses were performed using Wilcoxon's matched-pairs signed-ranks test, and p < 0.05 was considered significant. The percentage of scatter and cross-talk relative to the corrected total count was 26.0 +/- 5.3%. EDV and ESV after correction were significantly greater than those before correction (p = 0.019 and 0.016, respectively). After correction, EF was smaller than that before correction, but the difference was not significant. Perfusion scores (17 segments per heart) were significantly lower after as compared with those before correction (p < 0.001). Scatter and cross-talk correction revealed significant differences

  14. Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, Y.; Ichiya, Y.; Otsuka, M.

    1990-12-01

    This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less

  15. SPECT/CT localization of oral radioiodine activity: a retrospective study and in-vitro assessment

    PubMed Central

    Burlison, Jared S.; Hartshorne, Michael F.; Voda, Alan M.; Cocks, Franklin H.

    2013-01-01

    Purpose We sought to further localize radioiodine activity in the mouth on post-thyroid cancer therapy imaging using single-photon emission computed tomography/computed tomography (SPECT/CT). Materials and methods We retrospectively reviewed all patients (58) who underwent thyroid cancer therapy with iodine-131 (131I) at our institution from August 2009 to March 2011 whose post-therapy radioiodine imaging included neck SPECT/CT. A small group (six) of diagnostic 123I scans including SPECT/CT was also reviewed. Separately, we performed in-vitro 131I (sodium iodide) binding assays with amalgam and Argenco HP 77 (77% dental gold alloy) as proof of principle for these interactions. Results Of the 58 post-therapy patients, 45 (78%) had undergone metallic dental restorations, and of them 41 (91%) demonstrated oral 131I activity localizing preferentially to those restorations. It was observed that radioiodine also localized to other dental restorations and to orthodontic hardware. Gum-line activity in edentulous patients suggests radioiodine interaction with denture adhesive. In vitro, dental amalgam and Argenco HP 77 bound 131I in a time-dependent manner over 1–16 days of exposure. Despite subsequent washings with normal saline, significant 131I activity (maximally 12% for amalgam and 68% for Argenco HP 77) was retained by these metals. Subsequent soaking in a saturated solution of potassium iodide partially displaced 131I from amalgam, with near-total displacement of 131I from Argenco HP 77. Conclusion SPECT/CT shows that radioiodine in the oral cavity localizes to metallic dental restorations. Furthermore, in-vitro studies demonstrate partially reversible binding of 131I to common dental metals. PMID:24128897

  16. [Tumoral calcinoses in a chronic hemodialysis patient: The role of SPECT/CT hybrid imaging].

    PubMed

    Matrane, Aboubakr; Hiroual, Soufiane; Bsiss, Mohamed Aziz; Doubli, Safa Bennani

    2018-05-01

    Tumoral calcinosis is a rare benign disease, defined by the presence of calcified deposits in periarticular tissues. It can be hereditary or secondary at chronic renal failure at the stage of dialysis. This work illustrates the contribution of single-photon emission computed tomography (SPECT/CT) in the diagnosis and management of tumoral calcinoses in a chronic hemodialysis patient, based on a clinical case. A 62-year-old patient, chronic hemodialysis since 24 years, presented a mechanical pain shoulders, knees and hips with limitation of joint mobility. The clinical exam found a mass of soft tissue in the buttocks. The radiological exam showed the presence of periarticular calcifications with no bone involvement. The SPECT/CT revealed a multifocal tumoral calcinosis affecting shoulders, elbows, wrists, hips and knees, associated with alveolar and abdominal calcinosis. Tumoral calcinosis is a distinct clinicopathological entity characterised by periarticular soft tissue calcium deposits. The SPECT/CT is important in the diagnosis, the assessment of extension and monitoring of tumoral calcinosis after treatment. Copyright © 2017 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.

  17. NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Sohlberg, A.; Watabe, H.; Iida, H.

    2008-07-01

    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.

  18. SU-F-T-687: Comparison of SPECT/CT-Based Methodologies for Estimating Lung Dose from Y-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kost, S; Yu, N; Lin, S

    2016-06-15

    Purpose: To compare mean lung dose (MLD) estimates from 99mTc macroaggregated albumin (MAA) SPECT/CT using two published methodologies for patients treated with {sup 90}Y radioembolization for liver cancer. Methods: MLD was estimated retrospectively using two methodologies for 40 patients from SPECT/CT images of 99mTc-MAA administered prior to radioembolization. In these two methods, lung shunt fractions (LSFs) were calculated as the ratio of scanned lung activity to the activity in the entire scan volume or to the sum of activity in the lung and liver respectively. Misregistration of liver activity into the lungs during SPECT acquisition was overcome by excluding lungmore » counts within either 2 or 1.5 cm of the diaphragm apex respectively. Patient lung density was assumed to be 0.3 g/cm{sup 3} or derived from CT densitovolumetry respectively. Results from both approaches were compared to MLD determined by planar scintigraphy (PS). The effect of patient size on the difference between MLD from PS and SPECT/CT was also investigated. Results: Lung density from CT densitovolumetry is not different from the reference density (p = 0.68). The second method resulted in lung dose of an average 1.5 times larger lung dose compared to the first method; however the difference between the means of the two estimates was not significant (p = 0.07). Lung dose from both methods were statistically different from those estimated from 2D PS (p < 0.001). There was no correlation between patient size and the difference between MLD from PS and both SPECT/CT methods (r < 0.22, p > 0.17). Conclusion: There is no statistically significant difference between MLD estimated from the two techniques. Both methods are statistically different from conventional PS, with PS overestimating dose by a factor of three or larger. The difference between lung doses estimated from 2D planar or 3D SPECT/CT is not dependent on patient size.« less

  19. Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?

    PubMed Central

    Groen, Harald C.; Niessen, Wiro J.; Bernsen, Monique R.; de Jong, Marion; Veenland, Jifke F.

    2013-01-01

    Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog 111In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman’s rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R2>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the ‘exchange-related’ DCE-MRI-derived parameters seemed to predict peptide uptake better than the ‘contrast amount- related’ parameters. Consequently, fast and efficient diffusion

  20. Brain SPECT scans in students with specific learning disability: Preliminary results.

    PubMed

    Karande, S; Deshmukh, N; Rangarajan, V; Agrawal, A; Sholapurwala, R

    2018-06-08

    Brain single-photon emission computed tomography (SPECT) assesses brain function through measurement of regional cerebral blood flow. This study was conducted to assess whether students with newly diagnosed specific learning disability (SpLD) show any abnormalities in cerebral cortex perfusion. Cross-sectional single-arm pilot study in two tertiary care hospitals. Nine students with SpLD were enrolled. Brain SPECT scan was done twice in each student. For the first or "baseline" scan, the student was first made to sit with eyes open in a quiet, dimly lit room for a period of 30-40 min and then injected intravenously with 20 mCi of 99mTc-ECD. An hour later, "baseline scan" was conducted. After a minimum gap of 4 days, a second or "test scan" was conducted, wherein the student performed an age-appropriate curriculum-based test for a period of 30-40 min to activate the areas in central nervous system related to learning before being injected with 20 mCi of 99mTc-ECD. Cerebral cortex perfusion at rest and after activation in each student was compared qualitatively by visual analysis and quantitatively using NeuroGam TM software. Visual analysis showed reduction in regional blood flow in temporoparietal areas in both "baseline" and "test" scans. However, when normalization was attempted and comparison done by Talairach analysis using NeuroGam software, no statistically significant change in regional perfusion in temporoparietal areas was appreciated. Brain SPECT scan may serve as a robust tool to identify changes in regional brain perfusion in students with SpLD.

  1. SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging

    PubMed Central

    Marion-Letellier, Rachel; Bohn, Pierre; Modzelewski, Romain; Vera, Pierre; Aziz, Moutaz; Guérin, Charlène; Savoye, Guillaume; Savoye-Collet, Céline

    2017-01-01

    AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics. METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score. RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively). CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats. PMID:28127195

  2. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    PubMed

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  3. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by

  4. Enhanced perfusion defect clarity and inhomogeneity in smokers' lungs with deep-inspiratory breath-hold perfusion SPECT images.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Hayashi, Norio; Yamashita, Tomio; Matsunaga, Naofumi

    2005-09-01

    Deep-inspiratory breath-hold (DIBrH) Tc-99m-macroaggregated albumin (MAA) SPECT images were developed to accurately evaluate perfusion impairment in smokers' lungs. DIBrH SPECT was performed in 28 smokers with or without low attenuation areas (LAA) on CT images, using a triple-headed SPECT system and a laser light respiratory tracking device. DIBrH SPECT images were reconstructed from every 4 degrees projection of five adequate 360 degrees projection data sets with almost the same respiratory dimension at 20 sec DIBrH. Perfusion defect clarity was assessed by the lesion (defect)-to-contralateral normal lung count ratios (L/N ratios). Perfusion inhomogeneity was assessed by the coefficient of variation (CV) values of pixel counts and correlated with the diffusing capacity of the lungs for carbon monoxide/alveolar volume (DLCO/VA) ratios. The results were compared with those on conventional images. Five DIBrH projection data sets with minimal dimension differences of 2.9+/-0.6 mm were obtained in all subjects. DIBrH images enhanced perfusion defects compared with conventional images, with significantly higher L/N ratios (P<0.0001), and detected a total of 109 (26.9%) additional detects (513 vs. 404), with excellent inter-observer agreement (kappa value of 0.816). CV values in the smokers' lungs on DIBrH images were also significantly higher compared with those on conventional images (0.31+/-0.10 vs. 0.19+/-0.06, P<0.0001). CV values in smokers on DIBrH images showed a significantly closer correlation with DLCO/VA ratios compared with conventional images (R = 0.872, P<0.0001 vs. R=0.499, P<0.01). By reducing adverse effect of respiratory motion, DIBrH SPECT images enhance perfusion defect clarity and inhomogeneity, and provide more accurate assessment of impaired perfusion in smokers' lungs compared with conventional images.

  5. Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.

    PubMed

    Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S

    2008-01-01

    Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family.

  6. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard; Wells, R. Glenn

    2014-07-15

    Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: Aboutmore » 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity

  7. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  8. Optimisation of reconstruction--reprojection-based motion correction for cardiac SPECT.

    PubMed

    Kangasmaa, Tuija S; Sohlberg, Antti O

    2014-07-01

    Cardiac motion is a challenging cause of image artefacts in myocardial perfusion SPECT. A wide range of motion correction methods have been developed over the years, and so far automatic algorithms based on the reconstruction--reprojection principle have proved to be the most effective. However, these methods have not been fully optimised in terms of their free parameters and implementational details. Two slightly different implementations of reconstruction--reprojection-based motion correction techniques were optimised for effective, good-quality motion correction and then compared with each other. The first of these methods (Method 1) was the traditional reconstruction-reprojection motion correction algorithm, where the motion correction is done in projection space, whereas the second algorithm (Method 2) performed motion correction in reconstruction space. The parameters that were optimised include the type of cost function (squared difference, normalised cross-correlation and mutual information) that was used to compare measured and reprojected projections, and the number of iterations needed. The methods were tested with motion-corrupt projection datasets, which were generated by adding three different types of motion (lateral shift, vertical shift and vertical creep) to motion-free cardiac perfusion SPECT studies. Method 2 performed slightly better overall than Method 1, but the difference between the two implementations was small. The execution time for Method 2 was much longer than for Method 1, which limits its clinical usefulness. The mutual information cost function gave clearly the best results for all three motion sets for both correction methods. Three iterations were sufficient for a good quality correction using Method 1. The traditional reconstruction--reprojection-based method with three update iterations and mutual information cost function is a good option for motion correction in clinical myocardial perfusion SPECT.

  9. (99m)Tc-3PRGD 2 SPECT/CT predicts the outcome of advanced nonsquamous non-small cell lung cancer receiving chemoradiotherapy plus bevacizumab.

    PubMed

    Ma, Qingjie; Min, Kaiyin; Wang, Ting; Chen, Bin; Wen, Qiang; Wang, Fan; Ji, Tiefeng; Gao, Shi

    2015-07-01

    Functional imaging can help clinicians assess the individual response of advanced nonsquamous non-small cell lung cancer (NSCLC) to chemoradiation therapy plus bevacizumab. Our purpose is to investigate the ability of (99m)Tc-3PRGD2 single photon emission computed tomography/computed tomography (SPECT/CT) in predicting the early response to treatment. Patients with advanced nonsquamous NSCLC diagnosed by histological or cytological examination were imaged with (99m)Tc-3PRGD2 SPECT/CT at 3 time points: 1-3 days before the start of treatment (SPECT1), 40 Gy radiotherapy with 2 cycles of chemotherapy plus bevacizumab (SPECT2) and 4 weeks after chemoradiotherapy plus bevacizumab (SPECT3). The images were evaluated semiquantitatively by measuring the tumor to non-tumor ratio (T/N) and calculating the percentage change in T/N ratio. Short-term outcome was assessed by the treatment response evaluation according to the Response Evaluation Criteria in Solid Tumors criteria as: complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). Patients were divided two groups: responders (CR and PR) and nonresponders (SD and PD). To determine a threshold for percent reduction in T/N ratios, receiver-operating characteristic (ROC) curve analysis was used. Patients were grouped again based on the threshold of P1 (the change percentage from SPECT1 to SPECT2) and P2 (the change percentage from SPECT1 to SPECT3): P1 responders and P1 nonresponders; P2 responders and P2 nonresponders. Patients were followed up starting 4 weeks after completion of therapy and then every 3 months for the first 2 years and every 6 months after 2 years. OS of P1 responders, P1 nonresponders, P2 responders and P2 nonresponders was estimated and graphically illustrated using the Kaplan-Meier method and the log-rank test was used to test the null hypotheses of equal OS in subgroups of patients. A total of 28 patients completed all imaging and treatment. All primary

  10. Technetium-99m-HMPAO labeled leukocyte single photon emission computerized tomography (SPECT) for assessing Crohn's disease extent and intestinal infiltration.

    PubMed

    Biancone, L; Schillaci, O; Capoccetti, F; Bozzi, R M; Fina, D; Petruzziello, C; Geremia, A; Simonetti, G; Pallone, F

    2005-02-01

    Scintigraphy using radiolabeled leukocytes is a useful technique for assessing intestinal infiltration in Crohn's disease (CD). However, limits of planar images include overlapping activity in other organs and low specificity. To investigate the usefulness of (99m)Tc-HMPAO (hexametyl propylene amine oxime) labeled leukocyte single photon emission computerized tomography (SPECT) for assessing CD lesions, in comparison with planar images. Twenty-two inflammatory bowel disease patients (19 CD; 2 ulcerative colitis, UC; 1 ileal pouch) assessed by conventional endoscopy or radiology were enrolled. Leukocytes were labeled with (99m)Tc-HMPAO. SPECT images were acquired at 2 h and planar images at 30 min and 2 h. Bowel uptake was quantitated in nine regions (score 0-3). Both SPECT and planar images detected a negative scintigraphy (score 0) in the UC patient with no pouchitis and a positive scintigraphy (score 1-3) in the 21 patients showing active inflammation by conventional techniques. SPECT showed a higher global score than planar images (0.71 +/- 0.09 vs 0.30 +/- 0.05; p < 0.001), and in particular in the right iliac fossa (p= 0.003), right and left flank (p < 0.001; p= 0.02), hypogastrium (p= 0.002), and mesogastrium (p < 0.001). SPECT provided a better visualization and a higher uptake than planar images in patients with ileal and ileocolonic CD (6.45 +/- 0.82 vs 2.8 +/- 0.55, p < 0.001; 5.5 +/- 1.6 vs 2.6 +/- 0.7, p= 0.03), and with perianal CD (6.6 +/- 1.6 vs 3.4 +/- 1.2; p= 0.03). (99m)Tc-HMPAO labeled leukocyte SPECT provides a more detailed visualization of CD lesions than planar images. This technique may better discriminate between intestinal and bone marrow uptake, thus being useful for assessing CD lesions within the pelvis, including perianal disease.

  11. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  12. Studying Spatial Resolution of CZT Detectors Using Sub-Pixel Positioning for SPECT

    NASA Astrophysics Data System (ADS)

    Montémont, Guillaume; Lux, Silvère; Monnet, Olivier; Stanchina, Sylvain; Verger, Loïck

    2014-10-01

    CZT detectors are the basic building block of a variety of new SPECT systems. Their modularity allows adapting system architecture to specific applications such as cardiac, breast, brain or small animal imaging. In semiconductors, a high number of electron-hole pairs is produced by a single interaction. This direct conversion process allows better energy and spatial resolutions than usual scintillation detectors based on NaI(Tl). However, it remains often unclear if SPECT imaging can really benefit of that performance gain. We investigate the system performance of a detection module, which is based on 5 mm thick CZT with a segmented anode having a 2.5 mm pitch by simulation and experimentation. This pitch allows an easy assembly of the crystal on the readout board and limits the space occupied by electronics without significantly degrading energy and spatial resolution.

  13. Identifying the heterogeneity of COPD by V/P SPECT: a new tool for improving the diagnosis of parenchymal defects and grading the severity of small airways disease.

    PubMed

    Bajc, M; Chen, Y; Wang, J; Li, X Y; Shen, W M; Wang, C Z; Huang, H; Lindqvist, A; He, X Y

    2017-01-01

    Airway obstruction and possible concomitant pulmonary diseases in COPD cannot be identified conventionally with any single diagnostic tool. We aimed to diagnose and grade COPD severity and identify pulmonary comorbidities associated with COPD with ventilation/perfusion single-photon emission computed tomography (V/P SPECT) using Technegas as the functional ventilation imaging agent. 94 COPD patients (aged 43-86 years, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages I-IV) were examined with V/P SPECT and spirometry. Ventilation and perfusion defects were analyzed blindly according to the European guidelines. Penetration grade of Technegas in V SPECT measured the degree of obstructive small airways disease. Total preserved lung function and penetration grade of Technegas in V SPECT were assessed by V/P SPECT and compared to GOLD stages and spirometry. Signs of small airway obstruction in the ventilation SPECT images were found in 92 patients. Emphysema was identified in 81 patients. Two patients had no signs of COPD, but both of them had a pulmonary embolism, and in one of them we also suspected a lung tumor. The penetration grade of Technegas in V SPECT and total preserved lung function correlated significantly to GOLD stages ( r =0.63 and -0.60, respectively, P <0.0001). V/P SPECT identified pulmonary embolism in 30 patients (32%). A pattern typical for heart failure was present in 26 patients (28%). Parenchymal changes typical for pneumonia or lung tumor were present in several cases. V/P SPECT, using Technegas as the functional ventilation imaging agent, is a new tool to diagnose COPD and to grade its severity. Additionally, it revealed heterogeneity of COPD caused by pulmonary comorbidities. The characteristics of these comorbidities suggest their significant impact in clarifying symptoms, and also their influence on the prognosis.

  14. 99mTc-MDM Brain SPECT for the Detection of Recurrent/Remnant Glioma-Comparison With ceMRI and 18F-FLT PET Imaging: Initial Results.

    PubMed

    Singh, Baljinder; Kumar, Narendra; Sharma, Sarika; Watts, Ankit; Hazari, Puja P; Rani, Nisha; Vyas, Sameer; Anish, Bhattacharya; Mishra, Anil K

    2015-10-01

    To evaluate the diagnostic use of an indigenously developed single vial ready to label (with Tc) kit preparation of bis-methionine-DTPA (Tc-MDM) for the detection of recurrent/residual glioma. We prospectively studied 32 patients (21 male and 11 female subjects aged 43.0±16.0 years) with clinical suspicion of postoperative recurrent/residual glioma. After radical radiotherapy (54.0-60.0 Gy) with or without concurrent temozolomide as indicated, Tc-MDM SPECT and ceMRI of the brain was performed in all the patients and F-FLT-PET imaging in 16 of 32 patients. MDM SPECT and ceMRI findings were concordant in 28 patients (15 positive and 13 negative). The findings were discordant in the remaining 5 patients, with positive ceMRI and negative MDM-SPECT in 2 patients and negative ceMRI and positive MDM-SPECT in 3 patients. Tc-MDM-SPECT, F-FLT PET, and ceMRI scan findings were positive in 9 of 16 and negative in 5 of 16 patients. In the remaining 2 of 16 patients, both F-FLT-PET and Tc-MDM-SPECT were positive, but ceMRI was negative. Sensitivity, specificity, PPV, NPV, and DA of Tc-MDM-SPECT for diagnosing recurrent/residual glioma were 88.24%, 81.25%, 83.3%, 86.7%, and 84.8%, respectively. The diagnostic accuracy of Tc-bis-methionine (MDM)-SPECT imaging was comparable with that of ceMRI and F-FLT-PET and may be useful in the management of glioma patients in the postsurgical follow-up period. This imaging technique may be of special interest in peripheral hospitals/developing countries lacking access to expensive PET/cyclotron technology. However, comparison with the existing "gold standard" PET tracers, especially with C-11-methionine-PET imaging and histopathological correlation, is warranted in a large cohort of glioma patients through multicentric studies.

  15. rCBF-SPECT in brain infarction: When does it predict outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limburg, M.; van Royen, E.A.; Hijdra, A.

    1991-03-01

    We prospectively studied 26 patients with ischemic stroke within 24 hr, after 2 wk, and after 6 mo with thallium-201-diethyldithiocarbamate single-photon emission computed tomography (SPECT) and neurologic and functional assessments. The admission flow deficits correlated with outcome. The admission and 6-mo scores correlated with clinical conditions at each time. At 2 wk, the flow deficits were smaller and did not correlate with clinical parameters. Nor did the presence or absence of hyperfixation of the radiopharmaceutical. Six months after the infarct, the flow defect had decreased in 9 of 15 patients in whom three serial scans were available, with better clinicalmore » improvement than in the remaining six whose flow deficits increased. More patients in the first group had been treated randomly with the calcium-entry blocker flunarizine. SPECT imaging of rCBF within 24 hr after stroke correlates with clinical outcome and condition, whereas rCBF imaging at 2 wk after the stroke shows no clinical correlation.« less

  16. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    PubMed

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  17. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmins, Rachel; Klein, Ran; Petryk, Julia

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress.more » Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.« less

  18. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs

  19. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT.

    PubMed

    Abbaspour, Samira; Tanha, Kaveh; Mahmoudian, Babak; Assadi, Majid; Pirayesh Islamian, Jalil

    2018-04-22

    Collimator geometry has an important contribution on the image quality in SPECT imaging. The purpose of this study was to investigate the effect of parallel hole collimator hole-size on the functional parameters (including the spatial resolution and sensitivity) and the image quality of a HiReSPECT imaging system using SIMIND Monte Carlo program. To find a proper trade-off between the sensitivity and spatial resolution, the collimator with hole diameter ranges of 0.3-1.5 mm (in steps of 0.3 mm) were used with a fixed septal and hole thickness values (0.2 mm and 34 mm, respectively). Lead, Gold, and Tungsten as the LEHR collimator material were also investigated. The results on a 99m Tc point source scanning with the experimental and also simulated systems were matched to validate the simulated imaging system. The results on the simulation showed that decreasing the collimator hole size, especially in the Gold collimator, improved the spatial resolution to 18% and 3.2% compared to the Lead and the Tungsten, respectively. Meanwhile, the Lead collimator provided a good sensitivity in about of 7% and 8% better than that of Tungsten and Gold, respectively. Overall, the spatial resolution and sensitivity showed small differences among the three types of collimator materials assayed within the defined energy. By increasing the hole size, the Gold collimator produced lower scatter and penetration fractions than Tungsten and Lead collimator. The minimum detectable size of hot rods in micro-Jaszczak phantom on the iterative maximum-likelihood expectation maximization (MLEM) reconstructed images, were determined in the sectors of 1.6, 1.8, 2.0, 2.4 and 2.6 mm for scanning with the collimators in hole sizes of 0.3, 0.6, 0.9, 1.2 and 1.5 mm at a 5 cm distance from the phantom. The Gold collimator with hole size of 0.3 mm provided a better image quality with the HiReSPECT imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. SPECT/CT demonstrating 131I retention in Warthin tumor on thyroid cancer survey scan.

    PubMed

    Zhang, Yuyang; Minoshima, Satoshi

    2013-09-01

    A 48-year-old male patient of papillary thyroid cancer, status post-thyroidectomy and node dissection, was referred to (131)I scan prior to radioiodine treatment. The images showed 1 additional focus of (131)I uptake in the right upper neck outside of the thyroid bed. SPECT/CT demonstrated 2 separate foci of radioiodine uptake in the right parotid gland, instead of neck lymph nodes. Diagnostic CT showed 2 corresponding soft tissue nodules in the right parotid gland which were confirmed latter by fine-needle aspiration to be Warthin tumors. This case illustrates a pivotal role of SPECT/CT in differential diagnosis of abnormal neck uptake on (131)I thyroid cancer scan.

  1. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    PubMed

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-06-01

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p < 0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable

  2. Improvement of Cerebral Hypoperfusion with Levothyroxine Therapy in Hashimoto's Encephalopathy Demonstrated by 99mTc-HMPAO-SPECT

    PubMed Central

    Schnedl, Wolfgang J.; Mirzaei, Siroos; Wallner-Liebmann, Sandra J.; Tafeit, Erwin; Mangge, Harald; Krause, Robert; Lipp, Rainer W.

    2013-01-01

    Background Hashimoto's encephalopathy (HE) is a rare immune-mediated encephalopathy associated with autoimmune Hashimoto's thyroiditis. Objectives and Methods We report on a patient with HE and significant clinical improvement correlating with an increase in cerebral blood flow demonstrated by hexamethylpropyleneamine oxime (HMPAO) single-photon emission computed tomography (SPECT). HMPAO-SPECT was performed with 740 MBq of technetium-99m-HMPAO. To demonstrate the improvement in regional cerebral blood flow, individual regions of interest were drawn around visually diminished HMPAO uptake, the lesion to reference region ratio was calculated and transverse section images and semi-quantitative measurements were performed. Results We show a 5-year follow-up with significant clinical improvement, a 10-fold reduction in autoantibodies to thyroid peroxidase and an approximately 20% improvement in cerebral blood flow with HMPAO-SPECT. Conclusion Adequate levothyroxine treatment achieving and maintaining euthyroidism should be considered as therapy to lower autoantibodies and improve clinical outcome in patients with Hashimoto's thyroiditis and encephalopathy. PMID:24783049

  3. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging

    NASA Astrophysics Data System (ADS)

    Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.

    2018-01-01

    The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.

  4. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  5. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    PubMed

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  6. Diagnostic utility of 99mTc-EDDA-tricine-HYNIC-Tyr3-octreotate SPECT for differentiation of active from inactive pulmonary tuberculosis.

    PubMed

    Ahmadihosseini, Hossein; Abedi, Javad; Ghodsi Rad, Mohammad A; Zakavi, Seyed R; Knoll, Peter; Mirzaei, Siroos; Sadeghi, Ramin

    2014-12-01

    The current study was performed to evaluate the impact of Tc-EDDA-tricine-HYNIC-Tyr-octreotate in the differentiation of active from inactive pulmonary tuberculosis lesions. Ten consecutive patients (six male and four female, age range 24-83 years) with proven pulmonary tuberculosis (with a positive smear or culture) were enrolled in the study. At 120 min after injection of 740 MBq of Tc-EDDA-tricine-HYNIC-Tyr-octreotate, planar and single-photon emission computed tomography (SPECT) images of the thorax were taken. A semiquantitative evaluation of lesion and nonlesion areas was performed. The scan was repeated following the same protocol after standard treatment for tuberculosis after a negative sputum culture. Semiquantitative evaluation of the lesions showed a statistically significant higher uptake before treatment in both planar and SPECT images (P=0.005 and 0.007, respectively). Lesion-to-nonlesion ratios were also higher in the pretreatment sets on both planar and SPECT images (1.4±0.2 vs. 1.19±0.15, P=0.001, for planar images and 2.32±0.55 vs. 1.32±0.32, P=0.0001, for SPECT images). Tc-EDDA-tricine-HYNIC-Tyr-octreotate scintigraphy may help to differentiate between active and inactive pulmonary tuberculosis. SPECT imaging and semiquantitative evaluation are indispensable for increasing the diagnostic yield of this method. Larger studies are needed to corroborate our results.

  7. Kit formulated asialoglycoprotein receptor targeting tracer based on copolymer for liver SPECT imaging.

    PubMed

    Liu, Chang; Guo, Zhide; Zhang, Pu; Song, Manli; Zhao, Zuoquan; Wu, Xiaowei; Zhang, Xianzhong

    2014-08-01

    Specific targeting of galactose-carrying molecule to ASGP-R in normal hepatocytes has been demonstrated before. In this study, galactosyl polystyrene was synthesized from controllable ratio of functional monomers and radio-labelled with (99m)Tc by formulated kit for SPECT imaging of hepatic function. p(VLA-co-VNI)(46:54) was synthesized by free-radical copolymerization initiated by AIBN, purified by dialysis, lyophilized to kit with Tricine and TPPTS as co-ligands for (99m)Tc labeling. Radiotracer (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was prepared and evaluated by in vitro stability, in vivo metabolism, ex vivo biodistribution and microSPECT/CT imaging in normal KM mice. MicroSPECT/CT and microMRI imaging were also performed in C57BL/b6 mice with xenograft hepatic carcinoma for hepatic function evaluation. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was obtained in high radio chemical purity (RCP) (>99%) by using instant kit without further purification and excellent in vitro and in vivo stability. The result of biodistribution showed that liver had high uptake (90.49±10.68 ID%/g) at 30 min after injection and was blocked significantly by cold copolymer. MicroSPECT imaging in normal KM mice at 1h and 4h after injection showed good liver retention and targeting properties. Significant defect of activity was observed in the tumor site which was confirmed by MRI imaging. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) with lower ratio of targeting moiety has no observable effect on the specific binding affinity and liver uptake. This makes it possible to introduce more imaging units for multi-modality imaging. Furthermore, the instant kit preparation of (99m)Tc-labeling provides great potential for the evaluation of hepatocyte function in clinical application. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Left ventricular functional parameters by gated SPECT myocardial perfusion imaging in a Latin American country.

    PubMed

    Kapitan, Miguel; Beltran, Alvaro; Beretta, Mario; Mut, Fernando

    2018-04-01

    There is paucity of data on left ventricular (LV) functional parameters using gated SPECT myocardial perfusion imaging (MPI) from the Latin American region. This study provides detailed information in low-risk patients both at rest and during exercise. We studied 90 patients (50 men) with a very low likelihood of coronary artery disease. Gated-SPECT MPI was performed with Tc-99m MIBI using a 2-day protocol, with 16 frames/R-R cycle. The LV ejection fraction and volumes were not different between the rest and post-stress images. LVEF was 68 ± 7% post-stress and 70 ± 7% at rest in women, and 62 ± 7% and 63 ± 7%, respectively, in men (P = .19, .26). LV volumes were larger in men than women (P < .01). There were no differences in most variables obtained at rest or post-stress. Transient ischemic dilatation was similar, with upper limits of 1.20 and 1.19 in women and men, respectively (P = NS). These data could prove helpful for the interpretation of gated SPECT MPI data in Latin America using identical protocol as used in this study.

  9. Task-based design of a synthetic-collimator SPECT system used for small animal imaging.

    PubMed

    Lin, Alexander; Kupinski, Matthew A; Peterson, Todd E; Shokouhi, Sepideh; Johnson, Lindsay C

    2018-05-07

    In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSE W ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima

  10. Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT.

    PubMed

    Harteveld, Anita A; Meeuwis, Antoi P W; Disselhorst, Jonathan A; Slump, Cornelis H; Oyen, Wim J G; Boerman, Otto C; Visser, Eric P

    2011-10-01

    Several commercial small-animal SPECT scanners using multipinhole collimation are presently available. However, generally accepted standards to characterize the performance of these scanners do not exist. Whereas for small-animal PET, the National Electrical Manufacturers Association (NEMA) NU 4 standards have been defined in 2008, such standards are still lacking for small-animal SPECT. In this study, the image quality parameters associated with the NEMA NU 4 image quality phantom were determined for a small-animal multipinhole SPECT scanner. Multiple whole-body scans of the NEMA NU 4 image quality phantom of 1-h duration were performed in a U-SPECT-II scanner using (99m)Tc with activities ranging between 8.4 and 78.2 MBq. The collimator contained 75 pinholes of 1.0-mm diameter and had a bore diameter of 98 mm. Image quality parameters were determined as a function of average phantom activity, number of iterations, postreconstruction spatial filter, and scatter correction. In addition, a mouse was injected with (99m)Tc-hydroxymethylene diphosphonate and was euthanized 6.5 h after injection. Multiple whole-body scans of this mouse of 1-h duration were acquired for activities ranging between 3.29 and 52.7 MBq. An increase in the number of iterations was accompanied by an increase in the recovery coefficients for the small rods (RC(rod)), an increase in the noise in the uniform phantom region, and a decrease in spillover ratios for the cold-air- and water-filled scatter compartments (SOR(air) and SOR(wat)). Application of spatial filtering reduced image noise but lowered RC(rod). Filtering did not influence SOR(air) and SOR(wat). Scatter correction reduced SOR(air) and SOR(wat). The effect of total phantom activity was primarily seen in a reduction of image noise with increasing activity. RC(rod), SOR(air), and SOR(wat) were more or less constant as a function of phantom activity. The relation between acquisition and reconstruction settings and image quality was

  11. Five months' follow-up of patients with and without iodine-positive lymph node metastases of thyroid carcinoma as disclosed by (131)I-SPECT/CT at the first radioablation.

    PubMed

    Schmidt, Daniela; Linke, Rainer; Uder, Michael; Kuwert, Torsten

    2010-04-01

    In differentiated thyroid carcinoma (DTC), (131)I-SPECT/CT is more accurate in identifying radioiodine-positive lymph node metastases (LNM) than planar whole-body scans (WBS). The purpose of this study was to investigate the value of (131)I-SPECT/CT performed at the first radioablation to predict the occurrence and/or persistence of cervical radioiodine-positive LNM 5 months later. The study included 81 DTC patients that had had SPECT/ spiral CT after radioablation of thyroid remnants after thyroidectomy. The patients were re-examined 5 months later using (131)I-WBS performed at TSH stimulation. In addition, SPECT/CT of the neck was performed in patients with iodine-positive cervical foci to distinguish between thyroid remnant and LNM. The outcome variable of the study was the detection or exclusion of iodine-positive cervical LNM. Of 61 patients without a SPECT/CT diagnosis of (131)I-positive LNM at radioablation, 60 had no (131)I-positive LNM at follow-up. In the remaining patient of this group, a new radioiodine-positive LNM was detected. In 17 of 20 patients with a SPECT/CT diagnosis of (131)I-positive LNM (n = 19) or an indeterminate lesion (n = 1) at first radioablation, no (131)I-positive LNM were detected 5 months later. Radioiodine-positive LNM persisted in three patients of this group. (131)I-SPECT/CT has a high negative predictive value with regard to the occurrence of radioiodine-positive cervical LNM 5 months after initial therapy. The majority of iodine-positive LNM diagnosed by SPECT/CT at radioablation disappear within 5 months. These findings motivate further research into the value of (131)I-SPECT/CT of the neck for predicting recurrence and planning surgical reintervention in DTC.

  12. Comparison of Gated SPECT Myocardial Perfusion Imaging with Echocardiography for the Measurement of Left Ventricular Volumes and Ejection Fraction in Patients With Severe Heart Failure

    PubMed Central

    Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon

    2015-01-01

    Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001) and ECTb (r = 0.68, 0.79, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001). However, Bland-Altman plots indicated significantly different mean values for EF, 11.4 and 20.9 using QGS and ECTb, respectively, as compared with echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated

  13. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    PubMed Central

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639

  14. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    PubMed

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  15. [(99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors].

    PubMed

    Liu, Haiyan; Li, Sijin; Yang, Suyun; Wu, Zhifang

    2014-01-01

    To investigate the value of (99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors. CT scan, early (20 to 30 min) and delayed (2 h) imaging of NOET SPECT were performed on 61 patients suspected of lung lesions before operation. The results were compared with the pathological findings. All cases were not treated with radiotherapy, chemotherapy or surgery before checks. Moreover, all patients had pathological diagnosis. To determine the value in differential diagnosis of tumors by analyzing the tumor uptake and excretion of (99)Tc(m)N-NOET, and the results were compared with that of CT. The value of early T/N ratio (ER) in the malignant (G1) and benign (G2) groups was 1.25 ± 0.15 and 1.09 ± 0.11 (P < 0.001), respectively, and delayed T/N ratio (DR) was 1.40 ± 0.17 and 1.18 ± 0.21 (P < 0.001). The retention index (RI) of groups G1 was (12.22 ± 6.38)% and group G2 was (8.3 ± 10.91)%, with a non-significant difference between them (P > 0.05). The ER, DR and RI of NOET SPECT in the malignant patients were not significantly correlated with TNM staging, pathological types, tumor diameter, cavity in the lung tumor mass, history of smoking, tumor size and patient gender (P > 0.05). The sensitivity of NOET dual-phase SPECT and CT in the differential diagnosis of benign and malignant lung tumors was 94.1% vs. 90.2%, specificity was 70.0% vs. 80.0% , positive predictive value (PPV) was 94.1% vs. 95.8%, negative predictive value (NPV) was 70.0% vs. 61.5 %, and accuracy was 90.2%. vs. 88.5% (P > 0.05 for all). (99)Tc(m)N- NOET dual-phase SPECT could be used in differential diagnosis of benign and malignant lung tumors, with no significant differences compared with the efficacy of CT imaging. The semiquantitative indexes (ER, DR and RI) of NOET SPECT can also be used in differential diagnosis of benign and malignant lung tumors, and are not significantly correlated with TNM staging, pathological types, tumor diameter, cavity of the

  16. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and

  17. Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krengli, Marco; Ballare, Andrea; Cannillo, Barbara

    2006-11-15

    Purpose: This study aims to investigate the in vivo drainage of lymphatic spread by using the sentinel node (SN) technique and single-photon emission computed tomography (SPECT)-computed tomography (CT) image fusion, and to analyze the impact of such information on conformal pelvic irradiation. Methods and Materials: Twenty-three prostate cancer patients, candidates for radical prostatectomy already included in a trial studying the SN technique, were enrolled. CT and SPECT images were obtained after intraprostate injection of 115 MBq of {sup 99m}Tc-nanocolloid, allowing identification of SN and other pelvic lymph nodes. Target and nontarget structures, including lymph nodes identified by SPECT, were drawnmore » on SPECT-CT fusion images. A three-dimensional conformal treatment plan was performed for each patient. Results: Single-photon emission computed tomography lymph nodal uptake was detected in 20 of 23 cases (87%). The SN was inside the pelvic clinical target volume (CTV{sub 2}) in 16 of 20 cases (80%) and received no less than the prescribed dose in 17 of 20 cases (85%). The most frequent locations of SN outside the CTV{sub 2} were the common iliac and presacral lymph nodes. Sixteen of the 32 other lymph nodes (50%) identified by SPECT were found outside the CTV{sub 2}. Overall, the SN and other intrapelvic lymph nodes identified by SPECT were not included in the CTV{sub 2} in 5 of 20 (25%) patients. Conclusions: The study of lymphatic drainage can contribute to a better knowledge of the in vivo potential pattern of lymph node metastasis in prostate cancer and can lead to a modification of treatment volume with consequent optimization of pelvic irradiation.« less

  18. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  19. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    NASA Astrophysics Data System (ADS)

    Shokouhi, S.; Metzler, S. D.; Wilson, D. W.; Peterson, T. E.

    2009-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

  20. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury.

    PubMed

    Romero, Kristoffer; Lobaugh, Nancy J; Black, Sandra E; Ehrlich, Lisa; Feinstein, Anthony

    2015-01-30

    The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Concordance between (99m)Tc-ECD SPECT and 18F-FDG PET interpretations in patients with cognitive disorders diagnosed according to NIA-AA criteria.

    PubMed

    Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi

    2014-10-01

    The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    PubMed

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  3. An automatic alignment tool to improve repeatability of left ventricular function and dyssynchrony parameters in serial gated myocardial perfusion SPECT studies

    PubMed Central

    Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji

    2013-01-01

    Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996

  4. Relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism: assessment with breath-hold SPECT-CT pulmonary angiography fusion images.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi

    2008-09-01

    The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.

  5. A prospective evaluation of the repeatability of left ventricular ejection fraction measurement by gated SPECT.

    PubMed

    Kliner, Dustin; Wang, Li; Winger, Daniel; Follansbee, William P; Soman, Prem

    2015-12-01

    Gated single-photon emission computed tomography (SPECT) is widely used for myocardial perfusion imaging and provides an automated assessment of left ventricular ejection fraction (LVEF). We prospectively tested the repeatability of serial SPECT-derived LVEF. This information is essential in order to inform the interpretation of a change in LV function on serial testing. Consenting patients (n = 50) from among those referred for clinically indicated gated myocardial perfusion SPECT (MPs) were recruited. Following the clinical rest-stress study, patients were repositioned on the camera table for a second acquisition using identical parameters. Patient positioning, image acquisition and processing for the second scan were independently performed by a technologist blinded to the clinical scan. Quantitative LVEF was generated by Quantitative Gated SPECT and recorded as EF1 and EF2, respectively. Repeatability of serial results was assessed using the Bland-Altman method. The limits of repeatability and repeatability coefficients were generated to determine the maximum variation in LVEF that can be expected to result from test variability. Repeatability was tested across a broad range of LV systolic function and myocardial perfusion. The mean difference between EF1 and EF2 was 1.6% (EF units), with 95% limits of repeatability of +9.1% to -6.0% (repeatability coefficient 7.5%). Correlation between serial EF measurements was excellent (r = 0.9809). Similar results were obtained in subgroups based on normal or abnormal EF and myocardial perfusion. The largest repeatability coefficient of 8.1% was seen in patients with abnormal LV systolic function. When test protocol and acquisition parameters are kept constant, a difference of >8% EF units on serial MPs is indicative of a true change 95% of the time.

  6. SPECT and PET analysis of subthalamic stimulation in Parkinson's disease: analysis using a manual segmentation.

    PubMed

    Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier

    2010-03-01

    The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.

  7. The value of 99mTc-MAA SPECT/CT for lung shunt estimation in 90Y radioembolization: a phantom and patient study.

    PubMed

    Allred, Jonathan D; Niedbala, Jeremy; Mikell, Justin K; Owen, Dawn; Frey, Kirk A; Dewaraja, Yuni K

    2018-06-15

    A major toxicity concern in radioembolization therapy of hepatic malignancies is radiation-induced pneumonitis and sclerosis due to hepatopulmonary shunting of 90 Y microspheres. Currently, 99m Tc macroaggregated albumin ( 99m Tc-MAA) imaging is used to estimate the lung shunt fraction (LSF) prior to treatment. The aim of this study was to evaluate the accuracy/precision of LSF estimated from 99m Tc planar and SPECT/CT phantom imaging, and within this context, to compare the corresponding LSF and lung-absorbed dose values from 99m Tc-MAA patient studies. Additionally, LSFs from pre- and post-therapy imaging were compared. A liver/lung torso phantom filled with 99m Tc to achieve three lung shunt values was scanned by planar and SPECT/CT imaging with repeat acquisitions to assess accuracy and precision. To facilitate processing of patient data, a workflow that relies on SPECT and CT-based auto-contouring to define liver and lung volumes for the LSF calculation was implemented. Planar imaging-based LSF estimates for 40 patients, obtained from their medical records, were retrospectively compared with SPECT/CT imaging-based calculations with attenuation and scatter correction. Additionally, in a subset of 20 patients, the pre-therapy estimates were compared with 90 Y PET/CT-based measurements. In the phantom study, improved accuracy in LSF estimation was achieved using SPECT/CT with attenuation and scatter correction (within 13% of the true value) compared with planar imaging (up to 44% overestimation). The results in patients showed a similar trend with planar imaging significantly overestimating LSF compared to SPECT/CT. There was no correlation between lung shunt estimates and the delay between 99m Tc-MAA administration and scanning, but off-target extra hepatic uptake tended to be more likely in patients with a longer delay. The mean lung absorbed dose predictions for the 28 patients who underwent therapy was 9.3 Gy (range 1.3-29.4) for planar imaging and 3.2

  8. Clinical characterization of the pre-ictal state in the pediatric population: A caretaker's perspective.

    PubMed

    Patel, Puja; Ferastraoaru, Victor; Gold, Dov; Lipnick, Andrew; Jehle, Rana; Haut, Sheryl R

    2017-05-01

    The unpredictability of seizures causes distress to patients with epilepsy and their caretakers. To date, no studies have explored seizure prediction specifically in the pediatric population. If the period of time preceding a seizure can be reliably identified, either by child or caretaker, there may be a role for pre-emptive interventions. The aim of this study was to investigate caretaker seizure prediction. A questionnaire was distributed to caretakers of patients with epilepsy. The patients were 0-21years old and experienced ≥1 seizure within the past year. We excluded patients with non-epileptic seizures or daily seizures. One hundred and fifty of 240 questionnaires met criteria. Of these, 32 (21.6%) caretakers indicated a positive report of seizure prediction. Age of seizure onset was earlier in the positive predictive group (3.3±3.3years) than in the non-predictor group (5.3±4.8years) (p=0.01). The most common pre-ictal symptoms reported were being tired, hazy look, and sleepiness. A total of 76.6% of caretakers reported at least one seizure precipitant. The prevalence of positive caretaker seizure prediction in this study is similar to that of seizure self-prediction in adult studies. These findings will be used to design prospective online or electronic diary studies to further investigate the caretaker's, as well as children's, perspectives on seizure prediction. We anticipate that this investigation may lead to novel treatments during times of high seizure risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.

    1989-07-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determinedmore » from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake.« less

  10. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  11. Determining Surgical Candidacy in Temporal Lobe Epilepsy

    PubMed Central

    Mansouri, Alireza; Fallah, Aria; Valiante, Taufik A.

    2012-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy that is amenable to surgical treatment. In the carefully selected patient, excellent seizure outcome can be achieved with minimal or no side effects from surgery. This may result in improved psychosocial functioning, achieving higher education, and maintaining or gaining employment. The objective of this paper is to discuss the surgical selection process of a patient with TLE. We define what constitutes a patient that has medically refractory TLE, describe the typical history and physical examination, and distinguish between mesial TLE and neocortical TLE. We then review the role of routine (ambulatory/sleep-deprived electroencephalography (EEG), video EEG, magnetic resonance imaging (MRI), neuropsychological testing, and Wada testing) and ancillary preoperative testing (positron emission tomography, single-photon emission computed tomography (SPECT), subtraction ictal SPECT correlated to MRI (SISCOM), magnetoencephalography, magnetic resonance spectroscopy, and functional MRI) in selecting surgical candidates. We describe the surgical options for resective epilepsy surgery in TLE and its commonly associated risks while highlighting some of the controversies. Lastly, we present teaching cases to illustrate the presurgical workup of patients with medically refractory TLE. PMID:22957238

  12. Calibration and Validation of Nonpoint Source Pollution and Erosion Comparison Tool,N- SPECT, for Tropical Conditions

    NASA Astrophysics Data System (ADS)

    Fares, A.; Cheng, C. L.; Dogan, A.

    2006-12-01

    Impaired water quality caused by agriculture, urbanization, and spread of invasive species has been identified as a major factor in the degradation of coastal ecosystems in the tropics. Watershed-scale nonpoint source pollution models facilitate in evaluating effective management practices to alleviate the negative impacts of different land-use changes. The Non-Point Source Pollution and Erosion Comparison Tool (N-SPECT) is a newly released watershed model that was not previously tested under tropical conditions. The two objectives of this study were to: i) calibrate and validate N-SPECT for the Hanalei Watershed of the Hawai`ian island of Kaua`i; ii) evaluate the performance of N-SPECT under tropical conditions using the sensitivity analysis approach. Hanalei watershed has one of the wettest points on earth, Mt. Waialeale with an average annual rainfall of 11,000 mm. This rainfall decreases to 2,000 mm at the outlet of the watershed near the coast. Number of rain days is one of the major input parameters that influences N-SPECT's simulation results. This parameter was used to account for plant canopy interception losses. The watershed was divided into sub- basins to accurately distribute the number of rain days throughout the watershed. Total runoff volume predicted by the model compared well with measured data. The model underestimated measured runoff by 1% for calibration period and 5% for validation period due to higher intensity precipitation in the validation period. Sensitivity analysis revealed that the model was most sensitive to the number of rain days, followed by canopy interception, and least sensitive to the number of sub-basins. The sediment and water quality portion of the model is currently being evaluated.

  13. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  14. In vivo imaging of pulmonary nodule and vasculature using endoscopic co-registered optical coherence tomography and autofluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.

  15. High Sensitivity SPECT for Small Animals and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Gregory S.

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  16. Combined visual and semi-quantitative assessment of 123I-FP-CIT SPECT for the diagnosis of dopaminergic neurodegenerative diseases.

    PubMed

    Ueda, Jun; Yoshimura, Hajime; Shimizu, Keiji; Hino, Megumu; Kohara, Nobuo

    2017-07-01

    Visual and semi-quantitative assessments of 123 I-FP-CIT single-photon emission computed tomography (SPECT) are useful for the diagnosis of dopaminergic neurodegenerative diseases (dNDD), including Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. However, the diagnostic value of combined visual and semi-quantitative assessment in dNDD remains unclear. Among 239 consecutive patients with a newly diagnosed possible parkinsonian syndrome who underwent 123 I-FP-CIT SPECT in our medical center, 114 patients with a disease duration less than 7 years were diagnosed as dNDD with the established criteria or as non-dNDD according to clinical judgment. We retrospectively examined their clinical characteristics and visual and semi-quantitative assessments of 123 I-FP-CIT SPECT. The striatal binding ratio (SBR) was used as a semi-quantitative measure of 123 I-FP-CIT SPECT. We calculated the sensitivity and specificity of visual assessment alone, semi-quantitative assessment alone, and combined visual and semi-quantitative assessment for the diagnosis of dNDD. SBR was correlated with visual assessment. Some dNDD patients with a normal visual assessment had an abnormal SBR, and vice versa. There was no statistically significant difference between sensitivity of the diagnosis with visual assessment alone and semi-quantitative assessment alone (91.2 vs. 86.8%, respectively, p = 0.29). Combined visual and semi-quantitative assessment demonstrated superior sensitivity (96.7%) to visual assessment (p = 0.03) or semi-quantitative assessment (p = 0.003) alone with equal specificity. Visual and semi-quantitative assessments of 123 I-FP-CIT SPECT are helpful for the diagnosis of dNDD, and combined visual and semi-quantitative assessment shows superior sensitivity with equal specificity.

  17. Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging.

    PubMed

    Starmans, Lucas W E; van Duijnhoven, Sander M J; Rossin, Raffaella; Berben, Monique; Aime, Silvio; Daemen, Mat J A P; Nicolay, Klaas; Grüll, Holger

    2013-11-04

    Fibrin targeting is an attractive strategy for nuclear imaging of thrombosis, atherosclerosis and cancer. Recently, FibPep, an (111)In-labeled fibrin-binding peptide, was established as a tracer for fibrin SPECT imaging and was reported to allow sensitive detection of minute thrombi in mice using SPECT. In this study, we developed EPep, a novel (111)In-labeled fibrin-binding peptide containing the fibrin-binding domain of the clinically verified EP-2104R peptide, and sought to compare the potential of EPep and FibPep as tracers for fibrin SPECT imaging. In vitro, both EPep and FibPep showed high stability in serum, but were less stable in liver and kidney homogenate assays. Both peptide probes displayed comparable affinities toward human and mouse derived fibrin (Kd ≈ 1 μM), and similarly to FibPep, EPep showed fast blood clearance, low nontarget uptake and high thrombus uptake (6.8 ± 1.2% ID g(-1)) in a mouse carotid artery thrombosis model. Furthermore, EPep showed a similar affinity toward rat derived fibrin (Kd ≈ 1 μM), displayed high thrombus uptake in a rat carotid artery thrombosis model (0.74 ± 0.39% ID g(-1)), and allowed sensitive detection of thrombosis in rats using SPECT. In contrast, FibPep displayed a significantly lower affinity toward rat derived fibrin (Kd ≈ 14 μM) and low uptake in rat thrombi (0.06 ± 0.02% ID g(-1)) and did not allow clear visualization of carotid artery thrombosis in rats using SPECT. These results were confirmed ex vivo by autoradiography, which showed a 7-fold higher ratio of activity in the thrombus over the contralateral carotid artery for EPep in comparison to FibPep. These findings suggest that the FibPep binding fibrin epitope is not fully homologous between humans and rats, and that preclinical rat models of disease should not be employed to gauge the clinical potential of FibPep. In conclusion, both peptides showed approximately similar metabolic stability and affinity toward human and mouse derived fibrin

  18. Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with x-ray computed tomography.

    PubMed

    Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W

    1992-01-01

    The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.

  19. Validation of a Multimodality Flow Phantom and Its Application for Assessment of Dynamic SPECT and PET Technologies.

    PubMed

    Gabrani-Juma, Hanif; Clarkin, Owen J; Pourmoghaddas, Amir; Driscoll, Brandon; Wells, R Glenn; deKemp, Robert A; Klein, Ran

    2017-01-01

    Simple and robust techniques are lacking to assess performance of flow quantification using dynamic imaging. We therefore developed a method to qualify flow quantification technologies using a physical compartment exchange phantom and image analysis tool. We validate and demonstrate utility of this method using dynamic PET and SPECT. Dynamic image sequences were acquired on two PET/CT and a cardiac dedicated SPECT (with and without attenuation and scatter corrections) systems. A two-compartment exchange model was fit to image derived time-activity curves to quantify flow rates. Flowmeter measured flow rates (20-300 mL/min) were set prior to imaging and were used as reference truth to which image derived flow rates were compared. Both PET cameras had excellent agreement with truth ( [Formula: see text]). High-end PET had no significant bias (p > 0.05) while lower-end PET had minimal slope bias (wash-in and wash-out slopes were 1.02 and 1.01) but no significant reduction in precision relative to high-end PET (<15% vs. <14% limits of agreement, p > 0.3). SPECT (without scatter and attenuation corrections) slope biases were noted (0.85 and 1.32) and attributed to camera saturation in early time frames. Analysis of wash-out rates from non-saturated, late time frames resulted in excellent agreement with truth ( [Formula: see text], slope = 0.97). Attenuation and scatter corrections did not significantly impact SPECT performance. The proposed phantom, software and quality assurance paradigm can be used to qualify imaging instrumentation and protocols for quantification of kinetic rate parameters using dynamic imaging.

  20. Clinical application of SPECT-CT with 99mTc-Tektrotyd in bronchial and thymic neuroendocrine tumors (NETs).

    PubMed

    Sergieva, Sonya; Robev, Bozhil; Dimcheva, Milena; Fakirova, Albena; Hristoskova, Radka

    2016-01-01

    Neuroendocrine tumors (NETs) of the thorax including bronchial and thymic tumors belong to foregut NETs. Limited loco-regional thoracic NETs can be resected with surgery, but in extensive metastatic disease the treatment is mainly palliative. A high incidence and density of somatostatin receptors (SSTR2, SSTR3, and SSTR5) are found in thoracic NETs. The purpose of this study was to evaluate the role of SPECT-CT somatostatin receptor scintigraphy (SRS) with 99mTc-Tektrotyd for imaging, staging and follow up of patients with bronchial and thymic neuroendocrine tumors. Forty-one patients with thoracic tumors with neuroendocrine differentiation were studied. Sixty-eight examinations including SPECT-CT studies of the neck and chest and/or abdomen and pelvis were carried out 2-4 hrs. post i.v. administration of aver-age 740 MBq activity dose of 99mTc-EDDA/HYNIC-TOC (Tektrotyd, Polatom). In all 41 investigated patients we obtained 81.25% (13/16), 88% (22/25) and 85.36% (35/41) of sensitivity, specificity and accuracy of this diagnostic approach, respectively. Somatostatin-receptor scintigraphy correctly identified all primary NETs located in the lungs and thymus. SPECT-CT studies with 99mTc-EDDA/HYNIC-TOC resulted in exact pre-surgical and pre-treatment N/M staging of bronchial and thymic NETs, except 2 cases with multiple hepatic metastases and 1 with massive suprarenal metastasis. It can be concluded that SPECT-CT with 99mTc-EDDA/HYNIC-TOC is a valuable tool for staging and follow-up of patients with thoracic NETs.

  1. Usefulness of the convexity apparent hyperperfusion sign in 123I-iodoamphetamine brain perfusion SPECT for the diagnosis of idiopathic normal pressure hydrocephalus.

    PubMed

    Ohmichi, Takuma; Kondo, Masaki; Itsukage, Masahiro; Koizumi, Hidetaka; Matsushima, Shigenori; Kuriyama, Nagato; Ishii, Kazunari; Mori, Etsuro; Yamada, Kei; Mizuno, Toshiki; Tokuda, Takahiko

    2018-03-16

    OBJECTIVE The gold standard for the diagnosis of idiopathic normal pressure hydrocephalus (iNPH) is the CSF removal test. For elderly patients, however, a less invasive diagnostic method is required. On MRI, high-convexity tightness was reported to be an important finding for the diagnosis of iNPH. On SPECT, patients with iNPH often show hyperperfusion of the high-convexity area. The authors tested 2 hypotheses regarding the SPECT finding: 1) it is relative hyperperfusion reflecting the increased gray matter density of the convexity, and 2) it is useful for the diagnosis of iNPH. The authors termed the SPECT finding the convexity apparent hyperperfusion (CAPPAH) sign. METHODS Two clinical studies were conducted. In study 1, SPECT was performed for 20 patients suspected of having iNPH, and regional cerebral blood flow (rCBF) of the high-convexity area was examined using quantitative analysis. Clinical differences between patients with the CAPPAH sign (CAP) and those without it (NCAP) were also compared. In study 2, the CAPPAH sign was retrospectively assessed in 30 patients with iNPH and 19 healthy controls using SPECT images and 3D stereotactic surface projection. RESULTS In study 1, rCBF of the high-convexity area of the CAP group was calculated as 35.2-43.7 ml/min/100 g, which is not higher than normal values of rCBF determined by SPECT. The NCAP group showed lower cognitive function and weaker responses to the removal of CSF than the CAP group. In study 2, the CAPPAH sign was positive only in patients with iNPH (24/30) and not in controls (sensitivity 80%, specificity 100%). The coincidence rate between tight high convexity on MRI and the CAPPAH sign was very high (28/30). CONCLUSIONS Patients with iNPH showed hyperperfusion of the high-convexity area on SPECT; however, the presence of the CAPPAH sign did not indicate real hyperperfusion of rCBF in the high-convexity area. The authors speculated that patients with iNPH without the CAPPAH sign, despite showing

  2. Clinical application of 99mTc-HYNIC-TOC SPECT/CT in diagnosing and monitoring of pancreatic neuroendocrine neoplasms.

    PubMed

    Xu, Junyan; Li, Yi; Xu, Xiaoping; Zhang, Jiangang; Zhang, Yingjian; Yu, Xianjun; Huang, Dan

    2018-06-20

    Our aim of this research was to determine the value of SPECT/CT with 99m Tc-HYNIC-TOC for evaluation of the pancreatic masses which were suspected as neuroendocrine neoplasms and follow-up of patients with pancreatic neuroendocrine neoplasms. We retrospectively analyzed 184 patients who performed 99m Tc-HYNIC-TOC SPECT/CT. All the patients were divided into two groups: one for assessment of diagnostic efficiency for pancreatic suspected masses (n = 140) and another for monitoring recurrence after surgery (n = 44). The image findings acquired at 2 h postinjection were compared to final diagnoses from pathological results and clinical follow-up. Then, the correlation between ratios of tumor-to-background (TBR) and tumor grade was analyzed. In group 1, 95/140 (67.9%) patients were confirmed as neuroendocrine neoplasms including 85 neuroendocrine tumors and 10 neuroendocrine carcinomas. Patient-based analysis showed that the sensitivity, specificity and accuracy of diagnosing neuroendocrine neoplasms with SPECT/CT were 81.1, 84.4 and 82.1%. There was significant difference of TBRs among G1, G2 and G3 (F = 3.175, P = 0.048). In group 2, 22/44 (50.0%) patients occurred metastasis mainly in liver. The sensitivity, specificity and accuracy of monitoring recurrence were 87.0, 100 and 93.2%. 99m Tc-HYNIC-TOC SPECT/CT is a reliable method of diagnosing and monitoring of pancreatic neuroendocrine neoplasms, especially neuroendocrine tumors.

  3. Evaluation of reconstruction techniques in regional cerebral blood flow SPECT using trade-off plots: a Monte Carlo study.

    PubMed

    Olsson, Anna; Arlig, Asa; Carlsson, Gudrun Alm; Gustafsson, Agnetha

    2007-09-01

    The image quality of single photon emission computed tomography (SPECT) depends on the reconstruction algorithm used. The purpose of the present study was to evaluate parameters in ordered subset expectation maximization (OSEM) and to compare systematically with filtered back-projection (FBP) for reconstruction of regional cerebral blood flow (rCBF) SPECT, incorporating attenuation and scatter correction. The evaluation was based on the trade-off between contrast recovery and statistical noise using different sizes of subsets, number of iterations and filter parameters. Monte Carlo simulated SPECT studies of a digital human brain phantom were used. The contrast recovery was calculated as measured contrast divided by true contrast. Statistical noise in the reconstructed images was calculated as the coefficient of variation in pixel values. A constant contrast level was reached above 195 equivalent maximum likelihood expectation maximization iterations. The choice of subset size was not crucial as long as there were > or = 2 projections per subset. The OSEM reconstruction was found to give 5-14% higher contrast recovery than FBP for all clinically relevant noise levels in rCBF SPECT. The Butterworth filter, power 6, achieved the highest stable contrast recovery level at all clinically relevant noise levels. The cut-off frequency should be chosen according to the noise level accepted in the image. Trade-off plots are shown to be a practical way of deciding the number of iterations and subset size for the OSEM reconstruction and can be used for other examination types in nuclear medicine.

  4. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT

    PubMed Central

    Tamarappoo, Balaji; Dey, Damini; Shmilovich, Haim; Nakazato, Ryo; Gransar, Heidi; Cheng, Victor Y.; Friedman, John D.; Hayes, Sean W.; Thomson, Louise EJ; Slomka, Piotr J.; Rozanski, Alan; Berman, Daniel S.

    2010-01-01

    OBJECTIVES We evaluated the association between pericardial fat and myocardial ischemia for risk stratification. BACK GROUND Pericardial fat volume (PFV) and thoracic fat volume (TFV) measured from noncontrast computed tomography (CT) performed for calculating coronary calcium score (CCS) are associated with increased CCS and risk for major adverse cardiovascular events. METHODS From a cohort of 1,777 consecutive patients without previously known coronary artery disease (CAD) with noncontrast CT performed within 6 months of single photon emission computed tomography (SPECT), we compared 73 patients with ischemia by SPECT (cases) with 146 patients with normal SPECT (controls) matched by age, gender, CCS category, and symptoms and risk factors for CAD. TFV was automatically measured. Pericardial contours were manually defined within which fat voxels were automatically identified to compute PFV. Computer-assisted visual interpretation of SPECT was performed using standard 17-segment and 5-point score model; perfusion defect was quantified as summed stress score (SSS) and summed rest score (SRS). Ischemia was defined by: SSS – SRS ≥4. Independent relationships of PFV and TFV to ischemia were examined. RESULTS Cases had higher mean PFV (99.1 ± 42.9 cm3 vs. 80.1 ± 31.8 cm3, p = 0.0003) and TFV (196.1 ± 82.7 cm3 vs. 160.8 ± 72.1 cm3, p = 0.001) and higher frequencies of PFV >125 cm3 (22% vs. 8%, p = 0.004) and TFV >200 cm3 (40% vs. 19%, p = 0.001) than controls. After adjustment for CCS, PFV and TFV remained the strongest predictors of ischemia (odds ratio [OR]: 2.91, 95% confidence interval [CI]: 1.53 to 5.52, p = 0.001 for each doubling of PFV; OR: 2.64, 95% CI: 1.48 to 4.72, p = 0.001 for TFV. Receiver operating characteristic analysis showed that prediction of ischemia, as indicated by receiver-operator characteristic area under the curve, improved significantly when PFV or TFV was added to CCS (0.75 vs. 0.68, p = 0.04 for both). CONCLUSIONS Pericardial fat

  5. Real-Time Microfluidic Blood-Counting System for PET and SPECT Preclinical Pharmacokinetic Studies.

    PubMed

    Convert, Laurence; Lebel, Réjean; Gascon, Suzanne; Fontaine, Réjean; Pratte, Jean-François; Charette, Paul; Aimez, Vincent; Lecomte, Roger

    2016-09-01

    Small-animal nuclear imaging modalities have become essential tools in the development process of new drugs, diagnostic procedures, and therapies. Quantification of metabolic or physiologic parameters is based on pharmacokinetic modeling of radiotracer biodistribution, which requires the blood input function in addition to tissue images. Such measurements are challenging in small animals because of their small blood volume. In this work, we propose a microfluidic counting system to monitor rodent blood radioactivity in real time, with high efficiency and small detection volume (∼1 μL). A microfluidic channel is built directly above unpackaged p-i-n photodiodes to detect β-particles with maximum efficiency. The device is embedded in a compact system comprising dedicated electronics, shielding, and pumping unit controlled by custom firmware to enable measurements next to small-animal scanners. Data corrections required to use the input function in pharmacokinetic models were established using calibrated solutions of the most common PET and SPECT radiotracers. Sensitivity, dead time, propagation delay, dispersion, background sensitivity, and the effect of sample temperature were characterized. The system was tested for pharmacokinetic studies in mice by quantifying myocardial perfusion and oxygen consumption with (11)C-acetate (PET) and by measuring the arterial input function using (99m)TcO4 (-) (SPECT). Sensitivity for PET isotopes reached 20%-47%, a 2- to 10-fold improvement relative to conventional catheter-based geometries. Furthermore, the system detected (99m)Tc-based SPECT tracers with an efficiency of 4%, an outcome not possible through a catheter. Correction for dead time was found to be unnecessary for small-animal experiments, whereas propagation delay and dispersion within the microfluidic channel were accurately corrected. Background activity and sample temperature were shown to have no influence on measurements. Finally, the system was successfully

  6. [Application of SPECT/CT in neurosurgical practice].

    PubMed

    Golanov, A V; Kotel'nikova, T M; Melikian, A G; Dolgushin, M B; Sorokin, V S; Soboleva, O I; Khokhlova, E V; Gorlachev, G E; Krasnianskiĭ, S A

    2012-01-01

    The paper presents the experience of application of single-photon emission computed tomography (SPECT) and CT in neurosurgery. Combination of these two techniques in the single system provides higher precision of both methods. The novel technique allows assessment of tumor spread in the brain, differential diagnosis of tumor regrowth and radiation-induced necrosis, evaluation of cerebral perfusion in epilepsy, traumatic brain injury (TBI), and diagnostics of secondary CNS lesions. Examples of primary diagnosis, dynamic follow-up and differential diagnosis of cerebral neoplasms, localization of epileptogenic foci in planning of surgery, prediction of outcome after TBI and evaluation of spread of metastatic skeletal involvement and further application of acquire data are presented.

  7. High Resolution Pre-Clinical CT and SPECT Imaging Techniques for Investigating Flow and Transport Mechanisms in Porous Media

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Moysey, S. M.; Mamun, A. A.; DeVol, T. A.; Powell, B. A.; Murdoch, L. C.

    2017-12-01

    Single Photon Emission Computed Tomography (SPECT) and x-ray Computed Tomography (CT) are both high-resolution imaging methods for investigating laboratory scale samples. We have recently conducted several experiments to determine the capabilities of two preclinical imaging systems; the imaging resolution of the two systems studied were found to be 0.2 mm for CT and 2-4 mm for SPECT depending on the tracer and scan times. While the resolution of these instruments is not sufficient for imaging the pore structure of most soils, it is sufficient to resolve macropore structures such as cracks and root channels and to observe their impact on transport. For example, we have used CT scans to monitor the formation of desiccation cracks within soils obtained from the Savannah River Site. We were then able to observe the interaction between the crack network and pore matrix during an infiltration experiment by spiking the infiltrating water with an iodide contrast agent as a tracer. We found a complex interaction between the flow systems, where flow shifted from matrix dominated at low flow rates to macropore dominated at high flow rates. SPECT imaging is capable of monitoring the distribution of gamma-ray emitting radionuclides in 3D. It is therefore also a useful tool for monitoring transport processes, but is particularly powerful when a redox sensitive isotope like 99mTc is used as the tracer. We show an example of a transport experiment where a 99mTc solution is passed through a column containing zones with different redox properties, i.e., a zone amended with titanomagnetite, another with anatase, and a third with silica flour. The 99mTc is captured by the strongly reducing materials, but not the zone with silica flour. The example illustrates how these imaging modalities can be used to discriminate between chemical and physical processes controlling fate and transport of the radionuclide. In particular, CT and SPECT can be used to image contaminant transport in lab

  8. Variability of serial same-day left ventricular ejection fraction using quantitative gated SPECT.

    PubMed

    Vallejo, Enrique; Chaya, Hugo; Plancarte, Gerardo; Victoria, Diana; Bialostozky, David

    2002-01-01

    The accuracy of quantitative gated single photon emission computed tomography (SPECT) (QGS) and the potential limitations for estimation of left ventricular ejection fraction (LVEF) have been extensively evaluated. However, few studies have focused on the serial variability of QGS. This study was conducted to assess the serial variability of QGS for determination of LVEF between 2 sequential technetium 99m sestamibi-gated SPECT acquisitions at rest in both healthy and unhealthy subjects. The study population consisted of 2 groups: group I included 21 volunteers with a low likelihood of CAD, and group II included 22 consecutive patients with documented CAD. Both groups underwent serial SPECT imaging. The overall correlation between sequential images was high (r = 0.94, SEE = 5.3%), and the mean serial variability of LVEF was 5.15% +/- 3.51%. Serial variability was lower for images with high counts (3.45% +/- 3.23%) than for images with low counts (6.85% +/- 3.77%). The mean serial variability was not different between normal and abnormal high-dose images (3.0% +/- 1.56% vs 3.9% +/- 2.77%). However, mean serial variability for images derived from abnormal low-dose images was significantly greater than that derived from normal low-dose images (9.6% +/- 2.22% vs 3.1% +/- 2.12%, P <.05). Although QGS is an efficacious method to approximate LVEF values and is extremely valuable for incremental risk stratification of patients with coronary artery disease, it has significant variability in the estimation of LVEF on serial images. This should be taken into account when used for serial evaluation of LVEF.

  9. Prognostic study of cardiac events in Japanese high risk hemodialysis patients using I-BMIPP-SPECT: B-SAFE study design.

    PubMed

    Hasebe, Naoyuki; Moroi, Masao; Nishimura, Masato; Hara, Kazuhiro; Hase, Hiroki; Hashimoto, Akiyoshi; Kumita, Shinichiro; Haze, Kazuo; Momose, Mitsuru; Nagai, Yoji; Sugimoto, Tokuichiro; Kusano, Eiji; Akiba, Takashi; Nakata, Tomoaki; Nishimura, Tsunehiko; Tamaki, Nagara; Kikuchi, Kenjiro

    2008-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in patients undergoing hemodialysis. Such patients frequently develop complications such as asymptomatic coronary artery disease (CAD). Accordingly, CAD must ideally be diagnosed at an early stage to improve prognosis. Although myocardial perfusion single photon emission computed tomography (SPECT) is valuable for diagnosing CAD, the stress test is not always applicable to patients on hemodialysis. Thus, we proposed a multicenter, prospective cohort study called "B-SAFE" to investigate the applicability of resting (123)I-labeled beta-methyl-iodophenylpentadecanoic acid ((123)I-BMIPP)-SPECT will be used to diagnose cardiac disease and evaluate the prognosis of hemodialysis patients by imaging myocardial fatty acid metabolism. B-SAFE began enrolling patients from June 2006 at 48 facilities. We performed (123)I-BMIPP-SPECT on 702 hemodialysis patients with risk factors for CAD until 30 November 2007 and plan to follow up for three years. The primary endpoints will be cardiac death and sudden death. This study should end in 2010.

  10. PET/SPECT: Instrumentation, radiopharmaceuticals, neurology and physiological measurement. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-31

    The following collection of papers was presented at the Department of Energy sponsored symposium ``Frontiers in Nuclear Medicine - PET/SPECT 1987`` held in Washington, D.C. September 27-- 28, 1987. The meeting and these manuscripts concentrate on the techniques of tomography, useful radiopharmaceuticals, and clinical neurologic and cardiac evaluation. The authors of these papers are for the most part those who either developed the techniques or who have extensively applied them to clinical practice. Individual reports are processed separately for the databases.

  11. Correlation between clinical severity of central nervous system (CNS) lupus and findings on single photon emission computed tomographic (SPECT) images of the brain; preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, I.E.; Zeit, R.M.; Von Feldt, J.M.

    1994-05-01

    Systemic Lupus Erythematosis (SLE) commonly causes significant neuropsychiatric disorders. The purpose of this study was to review the brain SPECT studies of SLE patients with clinical evidence of CNS involvement and determine whether there is a correlation between the findings on SPECT images and the clinical manifestations of this serious phase of the disease. We enrolled 19 SLE patients and 12 normal controls in this study. The level of each patient`s disease activity was determined by the SLE Disease Activity Index (SLEDAI), an established method of scoring disease severity which is heavily weighted toward neuropsychiatric symptomatology, for 15 of themore » 19 SLE patients. The SLEDAI was calculated within a 10 day window of the date when the SPECT scan was obtained. SPECT scans were performed 30 minutes following the intravenous administration of 99mTc-HMPAO. Results are discussed.« less

  12. Perfusion network shift during seizures in medial temporal lobe epilepsy.

    PubMed

    Sequeira, Karen M; Tabesh, Ali; Sainju, Rup K; DeSantis, Stacia M; Naselaris, Thomas; Joseph, Jane E; Ahlman, Mark A; Spicer, Kenneth M; Glazier, Steve S; Edwards, Jonathan C; Bonilha, Leonardo

    2013-01-01

    Medial temporal lobe epilepsy (MTLE) is associated with limbic atrophy involving the hippocampus, peri-hippocampal and extra-temporal structures. While MTLE is related to static structural limbic compromise, it is unknown whether the limbic system undergoes dynamic regional perfusion network alterations during seizures. In this study, we aimed to investigate state specific (i.e. ictal versus interictal) perfusional limbic networks in patients with MTLE. We studied clinical information and single photon emission computed tomography (SPECT) images obtained with intravenous infusion of the radioactive tracer Technetium- Tc 99 m Hexamethylpropyleneamine Oxime (Tc-99 m HMPAO) during ictal and interictal state confirmed by video-electroencephalography (VEEG) in 20 patients with unilateral MTLE (12 left and 8 right MTLE). Pair-wise voxel-based analyses were used to define global changes in tracer between states. Regional tracer uptake was calculated and state specific adjacency matrices were constructed based on regional correlation of uptake across subjects. Graph theoretical measures were applied to investigate global and regional state specific network reconfigurations. A significant increase in tracer uptake was observed during the ictal state in the medial temporal region, cerebellum, thalamus, insula and putamen. From network analyses, we observed a relative decreased correlation between the epileptogenic temporal region and remaining cortex during the interictal state, followed by a surge of cross-correlated perfusion in epileptogenic temporal-limbic structures during a seizure, corresponding to local network integration. These results suggest that MTLE is associated with a state specific perfusion and possibly functional organization consisting of a surge of limbic cross-correlated tracer uptake during a seizure, with a relative disconnection of the epileptogenic temporal lobe in the interictal period. This pattern of state specific shift in metabolic networks in

  13. Predictors and Diagnostic Significance of the Adenosine Related Side Effects on Myocardial Perfusion SPECT/CT Imaging

    PubMed Central

    Yıldırım Poyraz, Nilüfer; Özdemir, Elif; Poyraz, Barış Mustafa; Kandemir, Zuhal; Keskin, Mutlay; Türkölmez, Şeyda

    2014-01-01

    Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI). The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD), was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10) who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG) or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6%) experienced adenosine-related side-effects (group 1); flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS) test without any side-effects (group 2). Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI) ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects. PMID:25541932

  14. Quantitation of benzodiazepine receptor binding with PET [11C]iomazenil and SPECT [123I]iomazenil: preliminary results of a direct comparison in healthy human subjects.

    PubMed

    Bremner, J D; Baldwin, R; Horti, A; Staib, L H; Ng, C K; Tan, P Z; Zea-Ponce, Y; Zoghbi, S; Seibyl, J P; Soufer, R; Charney, D S; Innis, R B

    1999-08-31

    Although positron emission tomography (PET) and single photon emission computed tomography (SPECT) are increasingly used for quantitation of neuroreceptor binding, almost no studies to date have involved a direct comparison of the two. One study found a high level of agreement between the two techniques, although there was a systematic 30% increase in measures of benzodiazepine receptor binding in SPECT compared with PET. The purpose of the current study was to directly compare quantitation of benzodiazepine receptor binding in the same human subjects using PET and SPECT with high specific activity [11C]iomazenil and [123I]iomazenil, respectively. All subjects were administered a single bolus of high specific activity iomazenil labeled with 11C or 123I followed by dynamic PET or SPECT imaging of the brain. Arterial blood samples were obtained for measurement of metabolite-corrected radioligand in plasma. Compartmental modeling was used to fit values for kinetic rate constants of transfer of radioligand between plasma and brain compartments. These values were used for calculation of binding potential (BP = Bmax/Kd) and product of BP and the fraction of free non-protein-bound parent compound (V3'). Mean values for V3' in PET and SPECT were as follows: temporal cortex 23+/-5 and 22+/-3 ml/g, frontal cortex23+/-6 and 22+/-3 ml/g, occipital cortex 28+/-3 and 31+/-5 ml/g, and striatum 4+/-4 and 7+/-4 ml/g. These preliminary findings indicate that PET and SPECT provide comparable results in quantitation of neuroreceptor binding in the human brain.

  15. Ventilation/perfusion SPECT/CT in patients with pulmonary emphysema. Evaluation of software-based analysing.

    PubMed

    Schreiter, V; Steffen, I; Huebner, H; Bredow, J; Heimann, U; Kroencke, T J; Poellinger, A; Doellinger, F; Buchert, R; Hamm, B; Brenner, W; Schreiter, N F

    2015-01-01

    The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.

  16. Toward Quantitative Small Animal Pinhole SPECT: Assessment of Quantitation Accuracy Prior to Image Compensations

    PubMed Central

    Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J. S.; Tsui, Benjamin M. W.

    2011-01-01

    Purpose We assessed the quantitation accuracy of small animal pinhole single photon emission computed tomography (SPECT) under the current preclinical settings, where image compensations are not routinely applied. Procedures The effects of several common image-degrading factors and imaging parameters on quantitation accuracy were evaluated using Monte-Carlo simulation methods. Typical preclinical imaging configurations were modeled, and quantitative analyses were performed based on image reconstructions without compensating for attenuation, scatter, and limited system resolution. Results Using mouse-sized phantom studies as examples, attenuation effects alone degraded quantitation accuracy by up to −18% (Tc-99m or In-111) or −41% (I-125). The inclusion of scatter effects changed the above numbers to −12% (Tc-99m or In-111) and −21% (I-125), respectively, indicating the significance of scatter in quantitative I-125 imaging. Region-of-interest (ROI) definitions have greater impacts on regional quantitation accuracy for small sphere sources as compared to attenuation and scatter effects. For the same ROI, SPECT acquisitions using pinhole apertures of different sizes could significantly affect the outcome, whereas the use of different radii-of-rotation yielded negligible differences in quantitation accuracy for the imaging configurations simulated. Conclusions We have systematically quantified the influence of several factors affecting the quantitation accuracy of small animal pinhole SPECT. In order to consistently achieve accurate quantitation within 5% of the truth, comprehensive image compensation methods are needed. PMID:19048346

  17. Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry.

    PubMed

    Robinson, Andrew P; Tipping, Jill; Cullen, David M; Hamilton, David; Brown, Richard; Flynn, Alex; Oldfield, Christopher; Page, Emma; Price, Emlyn; Smith, Andrew; Snee, Richard

    2016-12-01

    Patient-specific absorbed dose calculations for molecular radiotherapy require accurate activity quantification. This is commonly derived from Single-Photon Emission Computed Tomography (SPECT) imaging using a calibration factor relating detected counts to known activity in a phantom insert. A series of phantom inserts, based on the mathematical models underlying many clinical dosimetry calculations, have been produced using 3D printing techniques. SPECT/CT data for the phantom inserts has been used to calculate new organ-specific calibration factors for (99m) Tc and (177)Lu. The measured calibration factors are compared to predicted values from calculations using a Gaussian kernel. Measured SPECT calibration factors for 3D printed organs display a clear dependence on organ shape for (99m) Tc and (177)Lu. The observed variation in calibration factor is reproduced using Gaussian kernel-based calculation over two orders of magnitude change in insert volume for (99m) Tc and (177)Lu. These new organ-specific calibration factors show a 24, 11 and 8 % reduction in absorbed dose for the liver, spleen and kidneys, respectively. Non-spherical calibration factors from 3D printed phantom inserts can significantly improve the accuracy of whole organ activity quantification for molecular radiotherapy, providing a crucial step towards individualised activity quantification and patient-specific dosimetry. 3D printed inserts are found to provide a cost effective and efficient way for clinical centres to access more realistic phantom data.

  18. SPECT study of low intensity He-Ne laser intravascular irradiation therapy for brain infarction

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Chang; Dong, Jia-Zheng; Chu, Xiao-Fan; Jia, Shao-Wei; Liu, Timon C.; Jiao, Jian-Ling; Zheng, Xi-Yuan; Zhou, Ci-Xiong

    2003-12-01

    We used single photon emission computed tomography (SPECT) in brain perfusion imaging to study the changes of regional cerebral blood flow (rCBF) and cerebral function in brain infarction patients treated with intravascular laser irradiation of blood (ILIB). 17 of 35 patients with brain infarction were admitted to be treated by ILIB on the base of standard drug therapy, and SPECT brain perfusion imaging was performed before and after ILIB therapy with self-comparison. The results were analyzed in quantity with brain blood flow function change rate (BFCR%) model. Effect of ILIB during the therapy process in the other 18 patients were also observed. In the 18 patients, SPECT indicated an improvement of rCBF (both in focus and in total brain) and cerebral function after a 30 min-ILIB therapy. And the 17 patients showed an enhancement of total brain rCBF and cerebral function after ILIB therapy in comparison with that before, especially for the focus side of the brain. The enhancement for focus itself was extremely obvious with a higher significant difference (P<0.0001). The mirror regions had no significant change (P>0.05). BFCR% of foci was prominently higher than that of mirror regions (P<0.0001). In conclusion, the ILIB therapy can improve rCBF and cerebral function and activate brain cells of patients with brain infarction. The results denote new evidence of ILIB therapy for those patients with cerebral ischemia.

  19. SPECT reconstruction using DCT-induced tight framelet regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej

    2015-03-01

    Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.

  20. GATE: a simulation toolkit for PET and SPECT.

    PubMed

    Jan, S; Santin, G; Strul, D; Staelens, S; Assié, K; Autret, D; Avner, S; Barbier, R; Bardiès, M; Bloomfield, P M; Brasse, D; Breton, V; Bruyndonckx, P; Buvat, I; Chatziioannou, A F; Choi, Y; Chung, Y H; Comtat, C; Donnarieix, D; Ferrer, L; Glick, S J; Groiselle, C J; Guez, D; Honore, P F; Kerhoas-Cavata, S; Kirov, A S; Kohli, V; Koole, M; Krieguer, M; van der Laan, D J; Lamare, F; Largeron, G; Lartizien, C; Lazaro, D; Maas, M C; Maigne, L; Mayet, F; Melot, F; Merheb, C; Pennacchio, E; Perez, J; Pietrzyk, U; Rannou, F R; Rey, M; Schaart, D R; Schmidtlein, C R; Simon, L; Song, T Y; Vieira, J M; Visvikis, D; Van de Walle, R; Wieërs, E; Morel, C

    2004-10-07

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.