Sample records for icy planet misty

  1. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system

    NASA Astrophysics Data System (ADS)

    Bhatia, Gurpreet Kaur; Sahijpal, Sandeep

    2017-12-01

    Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.

  2. Stabilization of ammonia-rich hydrate inside icy planets.

    PubMed

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas

    2017-08-22

    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  3. Icy Dwarf Planets: Colored popsicles in the Solar System

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi

    2015-08-01

    In 1992 the discovery of 1992 QB1 was the starting signal of a race to characterize the trans-Neptunian belt. The detection of icy “asteroids”, similar to Pluto, in the outer Solar System had been largely hypothesized but it had also being an elusive goal. This belt was considered by the planetary scientists as the icy promised land, the largest reservoir of primordial ices in the Solar System.From 1992 to 2005 about 1000 trans-Neptunian objects and Centaurs had been discovered and a lot of “first ever” science had been published: 1996 TO66, first ever detection of the water ice bands in a TNO's spectrum; 1998 WW31, first detection of a binary; first estimation of size and albedo from thermal and visible observations, Varuna; discovery of Sedna, at that moment “the coldest most distant place known in the Solar System”2005 was the year of the discovery of three large TNOs: (136108) Haumea, (136472) Makemake and (136199) Eris (a.k.a 2003 EL61, 2005 FY9 and 2003 UB313). These three big guys entered the schoolyard showing off as colored popsicles and making a clear statement: “We are special”, and sure they are!The discovery of these large TNOs resulted in 2006 in the adoption by the IAU of a new definition of planet and in the introduction of a new category of minor bodies: the “dwarf planets”. With only three members at this moment (although this can change anytime) the exclusive club of the icy dwarf planets is formed by the TNOs at the higher end of the size distribution. By virtue of their size and low surface temperatures, these bodies can retain most of their original inventory of ices. As a consequence, their visible and near-infrared spectra show evidences of water ice, nitrogen, methane and longer chains of hydrocarbons. Moreover, they have high geometric albedo in the visible. Also the accretional and radiogenic heating for these bodies was likely more than sufficient to have caused their internal differentiation.In this talk we will

  4. MISTY PICTURE EVENT, Test Execution Report

    DTIC Science & Technology

    1987-11-30

    testbed at overpressures ranging from 10 psi (83 kPa) to 3.4 psi (23 kPa). A series of experiments were positioned near the Thermal Radiation Sources...to include scheduling, construction, photography, and recording systems. (2) Formulate and direct the safety and security plans for the test series and...ANFO stacked charges multiburst test at Planet Ranch, AZ in 1978, e. MILL RACE (MISTY CASTLE Series I) - 600 ton ANFO surface stacked charge at WSMR in

  5. Physical Conditions and Exobiology Potential of Icy Satellites of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.

    2017-05-01

    All giant planets of the Solar system have a big number of satellites. A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter's four large moons, Europa, Ganymede and Callisto have internal oceans. Formation of such satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. The most recent models of the icy satellites interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside. The putative internal water ocean provide some exobiological niches on these bodies. We can see all conditions needed for origin and evolution of biosphere - liquid water, complex organic chemistry and energy sources for support of biological processes - are on the moons. The existing of liquid water ocean within icy world can be consequences of the physical properties of water ice, and they neither require the addition of antifreeze substances nor any other special conditions. On Earth life exists in all niches where water exists in liquid form for at least a portion of the year. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for internal oceans of Titan and Jovanian satellites. Excreted products of the primary chemoautotrophic organisms could serve as a source for other types of microorganisms (heterotrophes). Subglacial life may be widespread among such planetary bodies as satellites of extrasolar giant planets, detected in our Galaxy.

  6. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  7. The Millimeter Sky Transparency Imager (MiSTI)

    NASA Astrophysics Data System (ADS)

    Tamura, Yoichi; Kawabe, Ryohei; Kohno, Kotaro; Fukuhara, Masayuki; Momose, Munetake; Ezawa, Hajime; Kuboi, Akihito; Sekiguchi, Tomohiko; Kamazaki, Takeshi; Vila-Vilaró, Baltasar; Nakagawa, Yuki; Okada, Norio

    2011-04-01

    The Millimeter Sky Transparency Imager (MiSTI) is a small millimeter-wave scanning telescope with a 25-cm diameter dish operating at 183 GHz. MiSTI is installed at Atacama, Chile, and it measures emission from atmospheric water vapor and its fluctuations to estimate atmospheric absorption in the millimeter to submillimeter range. MiSTI observes the water vapor distribution at a spatial resolution of 0.°5, and it is sensitive enough to detect an excess path length of lesssim0.05 mm for an integration time of 1 s. By comparing the MiSTI measurements with those by a 220 GHz tipper, we validated that the 183 GHz measurements of MiSTI are correct, down to the level of any residual systematic errors in the 220 GHz measurements. Since 2008, MiSTI has provided real-time (every 1 hr) monitoring of the all-sky opacity distribution and atmospheric transmission curves in the (sub)millimeter through the internet, allowing us to know the (sub)millimeter sky conditions at Atacama.

  8. Water and the Interior Structure of Terrestrial Planets and Icy Bodies

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.

    2018-02-01

    Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

  9. Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets.

    PubMed

    Lee, Kanani K M; Benedetti, L Robin; Jeanloz, Raymond; Celliers, Peter M; Eggert, Jon H; Hicks, Damien G; Moon, Stephen J; Mackinnon, Andrew; Da Silva, Luis B; Bradley, David K; Unites, Walter; Collins, Gilbert W; Henry, Emeric; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Pasley, John; Neely, David

    2006-07-07

    Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.

  10. Coagulation calculations of icy planet formation around 0.1-0.5 M {sub ☉} stars: Super-Earths from large planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu

    2014-01-01

    We investigate formation mechanisms for icy super-Earth-mass planets orbiting at 2-20 AU around 0.1-0.5 M {sub ☉} stars. A large ensemble of coagulation calculations demonstrates a new formation channel: disks composed of large planetesimals with radii of 30-300 km form super-Earths on timescales of ∼1 Gyr. In other gas-poor disks, a collisional cascade grinds planetesimals to dust before the largest planets reach super-Earth masses. Once icy Earth-mass planets form, they migrate through the leftover swarm of planetesimals at rates of 0.01-1 AU Myr{sup –1}. On timescales of 10 Myr to 1 Gyr, many of these planets migrate through the diskmore » of leftover planetesimals from semimajor axes of 5-10 AU to 1-2 AU. A few percent of super-Earths might migrate to semimajor axes of 0.1-0.2 AU. When the disk has an initial mass comparable with the minimum-mass solar nebula, scaled to the mass of the central star, the predicted frequency of super-Earths matches the observed frequency.« less

  11. Altered thermogenesis and impaired bone remodeling in Misty mice.

    PubMed

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-09-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold

  12. Altered thermogenesis and impaired bone remodeling in Misty mice

    PubMed Central

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-01-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a and less sympathetic innervation compared to wildtype (+/+)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hr), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2 and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wildtype. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wildtype and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular BV/TV loss in the distal femur of Misty mice without affecting wildtype. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling

  13. Misty Star in the Sea Serpent Artist Concept

    NASA Image and Video Library

    2011-10-20

    This artist concept, based on data from NASA Herschel telescope, illustrates an icy planet-forming disk around a young star called TW Hydrae, located about 175 light-years away in the Hydra, or Sea Serpent, constellation.

  14. Icy Profile

    NASA Image and Video Library

    2008-10-20

    The Cassini spacecraft looks toward Rhea cratered, icy landscape with the dark line of Saturn ringplane and the planet murky atmosphere as a background. Rhea is Saturn second-largest moon, at 1,528 kilometers 949 miles across.

  15. Migration of Icy Bodies to the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Sergei, I. I.; Mather, J. C.; Marov, M. Y.

    2006-05-01

    In our opinion [1-2], some trans-Neptunian objects (TNOs) and planetesimals in the feeding zone of the giant planets with diameters up to 1000 km could be formed directly by the compression of large rarefied dust condensations, but not by the accretion of smaller solid planetesimals. Migration processes of small bodies from the outer regions of the solar system, including the Edgeworth-Kuiper belt, could be responsible for the delivery of the original matter (mainly volatiles) to the terrestrial planets and thus to give rise to the life origin. As migration of TNOs to Jupiter's orbit was studied by several authors, we integrated the orbital evolution of 30,000 Jupiter-crossing objects under the gravitational influence of planets [3]. A few considered objects got Earth-crossing orbits with aphelion distances Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Collisions of cometary objects with the terrestrial planets from the Encke- type orbits with aphelia located inside the orbit of Jupiter are assumed to play a greater role than direct impacts from the Jupiter-crossing orbits. It may be possible that the fraction of 1-km former TNOs among near- Earth objects (NEOs) can exceed several tens of percents or most of former TNOs that had got NEO orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. Our estimates show that the amount of icy planetesimals impacted on the Earth during formation of the giant planets is of the order of mass of water in the Earth oceans if the total mass of these planetesimals was about 100 Earth masses. Mars acquired more water per unit of mass of a planet than Earth. During the following 4 Gyr the effectiveness of transport was much less. We integrated [4-5] the orbital evolution of 12,000 dust particles. Probabilites of collisions of particles started from Jupiter-family comets were maximum at diameter d about 100

  16. Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il

    Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, ormore » moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.« less

  17. Abrupt Climate Transition of Icy Worlds from Snowball to Moist or Runaway Greenhouse

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ding, F.; Ramirez, R. M.; Peltier, W. R.; Hu, Y.; Liu, Y.

    2017-12-01

    Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet's current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate-silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet's initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transition directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.

  18. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Ding, Feng; Ramirez, Ramses M.; Peltier, W. R.; Hu, Yongyun; Liu, Yonggang

    2017-08-01

    Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet's current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate-silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet's initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transition directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.

  19. Outer planets and icy satellites

    NASA Technical Reports Server (NTRS)

    Drobyshevski, E. M.

    1991-01-01

    The resources offered by the outer bodies in the Solar System, starting with the main belt asteroids and Jovian System, are not only larger and more diverse but may even be easier to reach than, say, those of Mars. The use of their material, including water and organic matter, depends exclusively on the general strategy of exploration of the Solar System. Of major interest in this respect are the large ice satellites - Titan, Ganymede, and Callisto. Motion through the planetary magnetospheres excites in their ice envelopes megampere currents which, in the presence of rocky, etc., inclusions with electronic conduction should lead to the bulk electrolysis of ice and accumulation in it of 2H2 + O2 in the form of a solid solution. With the concentration of 2H2 + O2 reaching about 15 wt. percent, the solution becomes capable of detonation by a strong meteoritic impact. An explosion of Ganymede's ice envelope about 0.5 By ago could account for the formation of the Trojans and irregular satellites, all known differences between Ganymede and Callisto, and many other things. The explosion of a small icy planet with M approx less than 0.5 Moon created the asteroid belt. Two to three explosions occurred on Io, and two on Europa. The specific features of the longperiod comets close to Saturn's orbit permit dating Titan's envelope explosion as 10,000 yr ago, which produced its thick atmosphere, young Saturn's rings, as well as a reservoir of ice fragments saturated by 2H2 + O2, i.e., cometary nuclei between the orbits of Jupiter and Saturn. Thus these nuclei should contain, besides organic matter, also 2H2 + O2, which could be used for their transportation as well as for fuel for spaceships. Ices of such composition can reside deep inside Deimos, the Trojans, C-asteroids, etc. The danger of a future explosion of Callisto's electrolyzed ices, which would result in a catastrophic bombardment of the Earth by comets, may be high enough to warrant a revision of the priorities and

  20. Outer planets and icy satellites

    NASA Astrophysics Data System (ADS)

    Drobyshevski, E. M.

    The resources offered by the outer bodies in the Solar System, starting with the main belt asteroids and Jovian System, are not only larger and more diverse but may even be easier to reach than, say, those of Mars. The use of their material, including water and organic matter, depends exclusively on the general strategy of exploration of the Solar System. Of major interest in this respect are the large ice satellites - Titan, Ganymede, and Callisto. Motion through the planetary magnetospheres excites in their ice envelopes megampere currents which, in the presence of rocky, etc., inclusions with electronic conduction should lead to the bulk electrolysis of ice and accumulation in it of 2H2 + O2 in the form of a solid solution. With the concentration of 2H2 + O2 reaching about 15 wt. percent, the solution becomes capable of detonation by a strong meteoritic impact. An explosion of Ganymede's ice envelope about 0.5 By ago could account for the formation of the Trojans and irregular satellites, all known differences between Ganymede and Callisto, and many other things. The explosion of a small icy planet with M approx less than 0.5 Moon created the asteroid belt. Two to three explosions occurred on Io, and two on Europa. The specific features of the longperiod comets close to Saturn's orbit permit dating Titan's envelope explosion as 10,000 yr ago, which produced its thick atmosphere, young Saturn's rings, as well as a reservoir of ice fragments saturated by 2H2 + O2, i.e., cometary nuclei between the orbits of Jupiter and Saturn. Thus these nuclei should contain, besides organic matter, also 2H2 + O2, which could be used for their transportation as well as for fuel for spaceships. Ices of such composition can reside deep inside Deimos, the Trojans, C-asteroids, etc. The danger of a future explosion of Callisto's electrolyzed ices, which would result in a catastrophic bombardment of the Earth by comets, may be high enough to warrant a revision of the priorities and

  1. POST-MAIN SEQUENCE EVOLUTION OF ICY MINOR PLANETS: IMPLICATIONS FOR WATER RETENTION AND WHITE DWARF POLLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water-depleted planetary material. Among tens of known cases, merely two involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high-luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from themore » moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results differ from previous studies, which have either underestimated or overestimated water retention. We show that water can survive in a variety of circumstances and in great quantities, and therefore other possibilities are discussed in order to explain the infrequency of water detection. We predict that the sequence of accretion is such that water accretes earlier, and more rapidly, than the rest of the silicate disk, considerably reducing the chance of its detection in H-dominated atmospheres. In He-dominated atmospheres, the scarcity of water detections could be observationally biased. It implies that the accreted material is typically intrinsically dry, which may be the result of the inside-out depopulation sequence of minor planets.« less

  2. A GEOS-Based OSSE for the "MISTiC Winds" Concept

    NASA Technical Reports Server (NTRS)

    McCarty, W.; Blaisdell, J.; Fuentes, M.; Carvalho, D.; Errico, R.; Gelaro, R.; Kouvaris, L.; Moradi, I.; Pawson, S.; Prive, N.; hide

    2018-01-01

    The Goddard Earth Observing System (GEOS) atmospheric model and data assimilation system are used to perform an Observing System Simulation Experiment (OSSE) for the proposed MISTiC Wind mission. The GEOS OSSE includes a reference simulation (the Nature Run), from which the pseudo-observations are generated. These pseuo-observations span the entire suite of in-situ and space space-based observations presently used in operational weather prediction, with the addition of the MISTiC-Wind dataset. New observation operators have been constructed for the MISTiC Wind data, including both the radiances measured in the 4-micron part of the solar spectrum and the winds derived from these radiances. The OSSE examines the impacts on global forecast skill of adding these observations to the current operational suite, showing substantial improvements in forecasts when the wind information are added. It is shown that a constellation of four MISTiC Wind satellites provides more benefit than a single platform, largely because of the increased accuracy of the feature-derived wind measurements when more platforms are used.

  3. 75 FR 59206 - Ketchikan-Misty Fiords Ranger District; Tongass National Forest; Alaska; Ketchikan-Misty Fiords...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... full environmental analysis and decision-making process so interested and affected people may...;and investigations, committee meetings, agency decisions and rulings, #0;delegations of authority... Ketchikan- Misty Fiords Ranger District. The decision on the EIS will allocate recreation carrying capacity...

  4. Large Impact Features on Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Schenk, P. M.; Korycansky, D. G.

    2017-01-01

    Impact crater morphology can be a very useful tool for probing planetary interiors, but nowhere in the solar system is a greater variety of crater morphologies observed (Fig. 1) than on the large icy Galilean satellites Ganymede and Callisto [e.g., 1- 3]. As on the rocky terrestrial planets, impact crater morphology becomes more complex with increasing size on these satellites. With increasing size, however, these same craters become less like their counterparts on the rocky planets. Several impact landforms and structures (multiring furrows, palimpsests, and central domes, for example), have no obvious analogs on any other planets. Further, several studies [e.g., 4-6] have drawn attention to impact landforms on Europa which are unusual, even by Galilean satellite standards. These radical differences in morphology suggest that impact into icy lithospheres that are mechanically distinct from silicate lithospheres may be responsible. As such, large impact structures may be important probes of the interiors of these bodies over time [e.g., 7]. The first goal of this work is to integrate and correlate the detailed morphologic and morphometric measurements and observations of craters on icy Galilean satellites [e.g., 4, 8-12] with new detailed mapping of these structures from Galileo high-resolution images. As a result, we put forward a revised crater taxonomy for Ganymede and Callisto in order to simplify the nonuniform impact crater nomenclature cluttering the literature. We develop and present an integrated model for the development of these unusual crater morphologies and their implications for the thermal evolution of these bodies.

  5. Migration of icy planetesimals to forming terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Marov, Mikhail

    2016-07-01

    Our studies of migration of planetesimals from the feeding zone of Jupiter and Saturn to forming terrestrial planets were based on computer simulations of the orbital evolution of 10^4 planetesimals under the gravitational influence of planets. In series JN, all planets were considered in present orbits with present masses, and in series JS, Uranus and Neptune were excluded. Initial eccentricities and inclinations of planetesimals were 0.3 and 0.15 rad, respectively. Their initial semi-major axes were between 4.5 and 12 AU. Masses of planets moving in the orbits of the terrestrial planets were equal to present masses of the planets in series JS and JN, and were smaller by a factor of 10 in series JS_{01} and JN_{01}. The obtained results show that the ratio of the fraction of the planetesimals collided with an embryo of the Earth's embryo was about 2\\cdot10^{-6} and 4\\cdot10^{-7} for the mass of the embryo equal to the Earth mass and to 10% of the Earth mass, respectively. We concluded that during the growth of the mass of the Earth's embryo up to a half of the present mass of the Earth, the amount of water delivered to the embryo could be about 30% of all water delivered to the Earth from the feeding zone of Jupiter and Saturn. The total mass of water delivered to the Earth from the feeding zones of the giant planets and beyond these zones could be comparable with the mass of the Earth's oceans. A half of this water could come from the feeding zone of Jupiter and Saturn, and another half from more distant regions. Most of the water that was delivered from the distant regions to the Earth's embryo came when its mass was not small (e.g., was mainly greater than a half of the Earth mass). In series JS, the ratio of the mass of water delivered to a planet to the mass of the planet for the Earth was smaller by a factor of 2, 1.25, and 1.3 than for Mars, Venus and Mercury, respectively. For series JN, the above values of the factor were equal to 3.4, 0.7 i 0.8. For

  6. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    NASA Astrophysics Data System (ADS)

    Lehmer, Owen R.; Catling, David C.; Zahnle, Kevin J.

    2017-04-01

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. At some planet-star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49-0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.

  7. Forced-folding by laccolith and saucer-shaped sill intrusions on the Earth, planets and icy satellites

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé

    2017-04-01

    Horizontal intrusions probably initially start as cracks, with negligible surface deformation. Once their horizontal extents become large enough compared to their depths, they make room for themselves by lifting up their overlying roofs, creating characteristic surface deformations that can be observed at the surface of planets. We present a model where magma flows below a thin elastic overlying layer characterized by a flexural wavelength Λ and study the dynamics and morphology of such a magmatic intrusion. Our results show that, depending on its size, the intrusion present different shapes and thickness-to-radius relationships. During a first phase, elastic bending of the overlying layer is the main source of driving pressure in the flow; the pressure decreases as the flow radius increases, the intrusion is bell-shaped and its thickness is close to being proportional to its radius. When the intrusion radius becomes larger than 4 times Λ, the flow enters a gravity current regime and progressively develops a pancake shape with a flat top. We study the effect of topography on flow spreading in particular in the case where the flow is constrained by a lithostatic barrier within a depression, such as an impact crater on planets or a caldera on Earth. We show that the resulting shape for the flow depends on the ratio between the flexural wavelength of the layer overlying the intrusion and the depression radius. The model is tested against terrestrial data and is shown to well explain the size and morphology of laccoliths and saucer-shaped sills on Earth. We use our results to detect and characterize shallow solidified magma reservoirs in the crust of terrestrial planets and potential shallow water reservoirs in the ice shell of icy satellites.

  8. Studies of Planet Formation Using a Hybrid N-Body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    2004-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: (1) icy planets: models for icy planet formation will demonstrate how the physical properties of debris disks - including the Kuiper Belt in our solar system - depend on initial conditions and input physics; and (2) terrestrial planets: calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment.

  9. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retentionmore » of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.« less

  10. Effect of dietary fibers on physico-chemical, sensory and textural properties of Misti Dahi.

    PubMed

    Raju, P Narender; Pal, Dharam

    2014-11-01

    Misti dahi, a popular ethnic delicacy of eastern India analogous to caramel coloured set style sweetened yoghurt, besides several therapeutic virtues, contains high fat and sugar. Alike people elsewhere in the world, people in India too are now becoming health conscious and are aware of the relation between diet and health. Hence, high fat and sugar contents are causes of concern for the successful marketing of misti dahi in India. With a view to enhance the health attributes of misti dahi and improve marketability, three commercial dietary fiber preparations (inulin, soy fiber and oat fiber) were incorporated and their effect on the product's quality in terms of physicochemical, sensory and textural quality was assessed. Standard method was followed for the preparation of fiber fortified misti dahi (FFMD). Among the three dietary fibers, inulin significantly decreased viscosity and instrumental firmness and increased lightness (L*), redness (a*), yellowness (b*), syneresis and work of shear values of FFMD. Oat fiber settled at the bottom and gave a poor appearance. Soy fiber did not affect the flavor of FFMD. Although overall acceptability scores of inulin and soy fiber containing FFMD were significantly lower than control, they were still above the minimum acceptable score. Based on the results obtained in the present study, it was concluded that acceptable quality FFMD could be prepared using inulin and soy fiber at 1.5 % level of fortification.

  11. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, Owen R.; Catling, David C.; Zahnle, Kevin J., E-mail: olehmer@gmail.com

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to themore » star. At some planet–star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.« less

  12. NASA's GMAO Atmospheric Motion Vectors Simulator: Description and Application to the MISTiC Winds Concept

    NASA Technical Reports Server (NTRS)

    Carvalho, David; McCarty, Will; Errico, Ron; Prive, Nikki

    2018-01-01

    An atmospheric wind vectors (AMVs) simulator was developed by NASA's GMAO to simulate observations from future satellite constellation concepts. The synthetic AMVs can then be used in OSSEs to estimate and quantify the potential added value of new observations to the present Earth observing system and, ultimately, the expected impact on the current weather forecasting skill. The GMAO AMV simulator is a tunable and flexible computer code that is able to simulate AMVs expected to be derived from different instruments and satellite orbit configurations. As a case study and example of the usefulness of this tool, the GMAO AMV simulator was used to simulate AMVs envisioned to be provided by the MISTiC Winds, a NASA mission concept consisting of a constellation of satellites equipped with infrared spectral midwave spectrometers, expected to provide high spatial and temporal resolution temperature and humidity soundings of the troposphere that can be used to derive AMVs from the tracking of clouds and water vapor features. The GMAO AMV simulator identifies trackable clouds and water vapor features in the G5NR and employs a probabilistic function to draw a subset of the identified trackable features. Before the simulator is applied to the MISTiC Winds concept, the simulator was calibrated to yield realistic observations counts and spatial distributions and validated considering as a proxy instrument to the MISTiC Winds the Himawari-8 Advanced Imager (AHI). The simulated AHI AMVs showed a close match with the real AHI AMVs in terms of observation counts and spatial distributions, showing that the GMAO AMVs simulator synthesizes AMVs observations with enough quality and realism to produce a response from the DAS equivalent to the one produced with real observations. When applied to the MISTiC Winds scanning points, it can be expected that the MISTiC Winds will be able to collect approximately 60,000 wind observations every 6 hours, if considering a constellation composed of

  13. Planetary Analogs in Antarctica: Icy Satellites

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1985-01-01

    As part of a study to provide semi-quantitative techniques to date past Antarctic glaciations, sponsored by the Antarctic Research Program, field observations pertinent to other planets were also acquired. The extremely diverse surface conditions, marked by extreme cold and large amounts of ice, provide potential terrain and process analogs to the icy satellites of Jupiter and Saturn. Thin ice tectonic features and explosion craters (on sea ice) and deformation features on thicker ice (glaciers) are specifically addressed.

  14. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owingmore » to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.« less

  15. Studies of Planet Formation using a Hybrid N-body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Bromley, Benjamin C.; Salamon, Michael (Technical Monitor)

    2005-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: 1) icy planets - models for icy planet formation will demonstrate how the physical properties of debris disks, including the Kuiper Belt in our solar system, depend on initial conditions and input physics; and 2) terrestrial planets - calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment. During the past year, we made progress on each issue. Papers published in 2004 are summarized. Summaries of work to be completed during the first half of 2005 and work planned for the second half of 2005 are included.

  16. Trident and MISTY: a universal pipeline for generating and sharing synthetic spectra

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron; Smith, Britton; Silvia, Devin; Peeples, Molly; Prochaska, X.; Tejos, Nicolas

    2016-03-01

    Astrophysical simulations are useful insofar as they aid in the interpretation of telescopic observations. Thus, a primary task in simulation analysis is in producing synthetic observations for direct comparison against observational data. Furthermore, we as a field need an effective means for storing these synthetic observable data products, such that they are accessible and searchable by the entire population of researchers. In this talk, we present Trident, a universal pipeline for producing synthetic spectra from any of the major hydrodynamics codes, and MISTY, a means of storing these spectra on the HST MAST data archive. Trident and MISTY are our attempts to solve the difficult problems of synthetic data production and publicly-accessible storage for the scientific communities studying the intergalactic medium and circumgalactic medium.

  17. Magmatic gas percolation through the old lava dome of El Misti volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Peters, Nial; Masias, Pablo; Apaza, Fredy; Barnie, Talfan; Ian Schipper, C.; Curtis, Aaron; Tamburello, Giancarlo; Aiuppa, Alessandro; Bani, Philipson; Giudice, Gaetano; Pieri, David; Davies, Ashley Gerard; Oppenheimer, Clive

    2017-06-01

    The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.

  18. Emergence of Habitable Environments in Icy World Interiors

    NASA Astrophysics Data System (ADS)

    Neveu, Marc

    2016-07-01

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life [1]. Such environments include hydrothermal systems, spatially confined systems where hot aqueous fluid circulates through rock by convection. Hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are icy moons and dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core [2]. By improving an icy world evolution code [3] to include the effects of core fracturing and hydrothermal circulation, I show that several icy moons and dwarf planets likely have undergone extensive water-rock interaction [4,5]. This supports observations of aqueous products on their surfaces [6,7]. I simulated the alteration of chondritic rock [8] by pure water or fluid of cometary composition [9] to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets [10]. Hydrothermal circulation also efficiently transports heat from the core into the ocean, thereby increasing ocean persistence [4]. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of icy world evolution and the emergence of liquid environments in chemical disequilibrium with underlying rock in their interiors. Habitable settings also require a suitable supply of bioessential elements; but what constitutes "suitable"? I sought to quantify the bulk elemental composition of hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA. To do so, one must minimize the contribution of non-biological material to the samples analyzed. This was achieved using a

  19. The Icy Mountains of Pluto

    NASA Image and Video Library

    2015-07-15

    New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building. That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. The youthful age estimate is based on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. The mountains are probably composed of Pluto's water-ice "bedrock." Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. http://photojournal.jpl.nasa.gov/catalog/PIA19710

  20. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Soko; Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk

    2016-02-10

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of thesemore » elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.« less

  1. Laboratory Simulations of Ammonia-Rich Oceans in Icy Worlds

    NASA Technical Reports Server (NTRS)

    Vance, S. D.; Brown, J. M.

    2011-01-01

    Improved equations of state for ammonia-water solutions are important for properly understanding the interiors of large icy satellites hosting deep interior oceans. Titan is the primary example of such a world, but water-rich dwarf planets Measurements of solution density are now possible at relevant pressures (above approx. 250 megapascals) using the Simulator for Icy World Interiors. Analysis of sound velocity measurements in aqueous magnesium sulfate obtained in our laboratory, shows a correction on the order of 5% to 700 megapascals (7 kilobar) from -20 to 100 C and to 3 m (approx. 30 percentage by weight) concentration. Accurate prediction of density as a function of pressure, temperature, and ammonia concentration are needed for interpretation of remote observations to address questions of interior liquid layer depth, composition, and fluid dynamics.

  2. Icy Dwarf Planets: Colored Popsicles in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi

    2016-10-01

    We update the list of candidates to be considered by the IAU as dwarf planets using the criterium suggested by Tancredi & Favre (2008). We add here the information collected in the last 10 years (mostly the sizes and albedos by the herschel hey program TNOs Are Cool). We compare the physical characteristics of these candidates with the physical characteristics of the rest of the TNOs. Our goal is to study if there are common physical properties among the candidates that enable the identification of a dwarf planet.

  3. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  4. The Icy Cold Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2015-11-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy; familiar examples include the polar caps of Earth and Mars. For planets tilted by more than 45 degrees, however, the poles actually receive more energy than some other latitudes. Pluto, with its current obliquity of 119 degrees, has minima in its average annual insolation at +/- 27 degrees latitude, with ~1.5% more energy flux going to the equator and ~15% more to the poles. Remarkably, the fraction of annual solar energy incident on different latitudes depends only on the obliquity of the planet and not on any of its orbital parameters.Over millions of years, Pluto's obliquity varies sinusoidally from 102-126 degrees, significantly affecting the latitudinal profile of solar energy deposition. Roughly 1Myr ago, the poles received 15% more energy that today while the equator received 13% less. The energy flux to latitudes between 25-35 degrees is far more stable, remaining low over the presumably billions of years since Pluto acquired its current spin properties. Like the poles at Earth, these mid latitudes on Pluto should be favored for the long-term deposition of volatile ices. This is, indeed, the location of the bright icy heart of Pluto, Sputnik Planum.Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal infrared radiation is easily absorbed by icy deposits on Pluto, slowing deposition and facilitating sublimation of volatiles. We argue that the slight but persistent preference for ices to form and survive in the anti-Charon Pluto's heart.

  5. Modeling of light scattering by icy bodies

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.

    2014-07-01

    As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM

  6. Long-term multi-hazard assessment for El Misti volcano (Peru)

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto

    2014-02-01

    We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods

  7. Seismic Wave Propagation in Icy Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  8. Compositional Remote Sensing of Icy Planets and Satellites Beyond Jupiter

    NASA Technical Reports Server (NTRS)

    Roush, T. L.

    2002-01-01

    The peak of the solar energy distribution occurs at visual wavelengths and falls off rapidly in the infrared. This fact, improvements in infrared detector technology, and the low surface temperatures for most icy objects in the outer solar system have resulted in the bulk of telescopic and spacecraft observations being performed at visual and near-infrared wavelengths. Such observations, begun in the early 1970's and continuing to present, have provided compositional information regarding the surfaces of the satellites of Saturn and Uranus, Neptune's moon Triton, Pluto, Pluto's moon Charon, Centaur objects, and Kuiper belt objects. Because the incident sunlight penetrates the surface and interacts with the materials present there, the measured reflected sunlight contains information regarding the surface materials, and the ratio of the reflected to incident sunlight provides a mechanism of identifying the materials that are present.

  9. The long-period librations of large synchronous icy moons

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Van Hoolst, Tim

    2014-11-01

    A moon in synchronous rotation has longitudinal librations because of its non-spherical mass distribution and its elliptical orbit around the planet. We study the long-period librations of the Galilean satellites and Titan and include deformation effects and the existence of a subsurface ocean. We take into account the fact that the orbit is not keplerian and has other periodicities than the main period of orbital motion around Jupiter or Saturn due to perturbations by the Sun, other planets and moons. An orbital theory is used to compute the orbital perturbations due to these other bodies. For Titan we also take into account the large atmospheric torque at the semi-annual period of Saturn around the Sun.We numerically evaluate the amplitude and phase of the long-period librations for many interior structure models of the icy moons constrained by the mass, radius and gravity field.

  10. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  11. Birth of an Earth-like Planet (Artist concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's conception shows a binary-star, or two-star, system, called HD 113766, where astronomers suspect a rocky Earth-like planet is forming around one of the stars. At approximately 10 to 16 million years old, astronomers suspect this star is at just the right age for forming rocky planets. The system is located approximately 424 light-years away from Earth.

    The two yellow spots in the image represent the system's two stars. The brown ring of material circling closest to the central star depicts a huge belt of dusty material, more than 100 times as much as in our asteroid belt, or enough to build a Mars-size planet or larger. The rocky material in the belt represents the early stages of planet formation, when dust grains clump together to form rocks, and rocks collide to form even more massive rocky bodies called planetesimals. The belt is located in the middle of the system's terrestrial habitable zone, or the region around a star where liquid water could exist on any rocky planets that might form. Earth is located in the middle of our sun's terrestrial habitable zone.

    Using NASA's Spitzer Space Telescope, astronomers learned that the belt material in HD 113866 is more processed than the snowball-like stuff that makes up infant solar systems and comets, which contain pristine ingredients from the early solar system. However, it is not as processed as the stuff found in mature planets and asteroids. This means that the dust belt is made out of just the right mix of materials to be forming an Earth-like planet. It is composed mainly of rocky silicates and metal sulfides (like fool's gold), similar to the material found in lava flows.

    The white outer ring shows a concentration of icy dust also detected in the system. This material is at the equivalent position of the asteroid belt in our solar system, but only contains about one-sixth as much material as the inner ring. Astronomers say it is not clear from the Spitzer observations if

  12. Meet-in-the-Middle Preimage Attacks on Hash Modes of Generalized Feistel and Misty Schemes with SP Round Function

    NASA Astrophysics Data System (ADS)

    Moon, Dukjae; Hong, Deukjo; Kwon, Daesung; Hong, Seokhie

    We assume that the domain extender is the Merkle-Damgård (MD) scheme and he message is padded by a ‘1’, and minimum number of ‘0’s, followed by a fixed size length information so that the length of padded message is multiple of block length. Under this assumption, we analyze securities of the hash mode when the compression function follows the Davies-Meyer (DM) scheme and the underlying block cipher is one of the plain Feistel or Misty scheme or the generalized Feistel or Misty schemes with Substitution-Permutation (SP) round function. We do this work based on Meet-in-the-Middle (MitM) preimage attack techniques, and develop several useful initial structures.

  13. Convection and plate tectonics on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Grasset, O.; Schubert, G.

    2012-04-01

    The number of potential Earth-like exoplanets is still very limited compared to the overall number of detected exoplanets. But the different methods keep improving, giving hope for this number to increase significantly in the coming years. Based on the relationship between mass and radius, two of the easiest parameters that can be known for exoplanets, four categories of planets have been identified: (i) the gas giants including hot Jupiters, (ii) the icy giants that can be like their solar system cousins Uranus and Neptune or that can have lost their H2-He atmosphere and have become the so-called ocean planets, (iii) the Earth-like planets with a fraction of silicates and iron similar to that of the Earth, and (iv) the Mercury like planet that have a much larger fraction of iron. The hunt for exoplanets is very much focused on Earth-like planets because of the desire to find alien forms of life and the science goal to understand how life started and developed on Earth. One science question is whether heat transfer by subsolidus convection can lead to plate tectonics, a process that allows material to be recycled in the interior on timescales of hundreds of millions of years. Earth-like exoplanets may have conditions quite different from Earth. For example, COROT-7b is so close to its star that it is likely locked in synchronous orbit with one very hot hemisphere and one very cold hemisphere. It is also worth noting that among the three Earth-like planets of the solar system (Earth, Venus and Mars), only Earth is subject to plate tectonics at present time. Venus may have experienced plate tectonics before the resurfacing event that erased any clue that such a process existed. This study investigates some of the parameters that can influence the transition from stagnant-lid convection to mobile-lid convection. Numerical simulations of convective heat transfer have been performed in 3D spherical geometry in order to determine the stress field generated by convection

  14. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    NASA Astrophysics Data System (ADS)

    Chambers, John

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  15. COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15-150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu

    2012-03-15

    We investigate whether coagulation models of planet formation can explain the observed size distributions of trans-Neptunian objects (TNOs). Analyzing published and new calculations, we demonstrate robust relations between the size of the largest object and the slope of the size distribution for sizes 0.1 km and larger. These relations yield clear, testable predictions for TNOs and other icy objects throughout the solar system. Applying our results to existing observations, we show that a broad range of initial disk masses, planetesimal sizes, and fragmentation parameters can explain the data. Adding dynamical constraints on the initial semimajor axis of 'hot' Kuiper Beltmore » objects along with probable TNO formation times of 10-700 Myr restricts the viable models to those with a massive disk composed of relatively small (1-10 km) planetesimals.« less

  16. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds

    PubMed Central

    Garcia-Lopez, Eva; Cid, Cristina

    2017-01-01

    Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active. PMID:28804477

  17. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds.

    PubMed

    Garcia-Lopez, Eva; Cid, Cristina

    2017-01-01

    Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.

  18. Anelastic tidal dissipation in multi-layer planets

    NASA Astrophysics Data System (ADS)

    Remus, F.; Mathis, S.; Zahn, J.-P.; Lainey, V.

    2012-09-01

    Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on its internal structure. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets interiors, whose properties are still quite uncertain. Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We derive the different Love numbers that describe its deformation and discuss the dependence of the quality factor Q on the chosen anelastic model and the size of the core. Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the solid dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we present the way to implement the results in the equations that describe the dynamical evolution of planetary systems.

  19. Unraveling the Reaction Chemistry of Icy Ocean World Surfaces

    NASA Astrophysics Data System (ADS)

    Hudson, R.; Loeffler, M. J.; Gerakines, P.

    2017-12-01

    The diverse endogenic chemistry of ocean worlds can be divided among interior, surface, and above-surface process, with contributions from exogenic agents such as solar, cosmic, and magnetospheric radiation. Bombardment from micrometeorites to comets also can influence chemistry by both delivering new materials and altering pre-existing ones, and providing energy to drive reactions. Geological processes further complicate the chemistry by transporting materials from one environment to another. In this presentation the focus will be on some of the thermally driven and radiation-induced changes expected from icy materials, primarily covalent and ionic compounds. Low-temperature conversions of a few relatively simple molecules into ions possessing distinct infrared (IR) features will be covered, with an emphasis on such features as might be identified through either orbiting spacecraft or landers. The low-temperature degradation of a few bioorganic molecules, such as DNA nucleobases and some common amino acids, will be used as examples of the more complex, and potentially misleading, chemistry expected for icy moons of the outer solar system. This work was supported by NASA's Emerging Worlds and Outer Planets Research programs, as well as the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  20. TRAPPIST-1 Planets - Flyaround Animation

    NASA Image and Video Library

    2017-02-22

    This frame from a video depicts artist concepts of each of the seven planets orbiting TRAPPIST-1, an ultra-cool dwarf stars. Over 21 days, NASA's Spitzer Space Telescope measured the drop in light as each planet passed in front of the star. Spitzer was able to identify a total of seven rocky worlds, including three in the habitable zone where life is possible. The study established the planets' size, distance from their sun and, for some of them, their approximate mass and density. It also established that some, if not all, these planets are tidally locked, meaning one face of the planet permanently faces their sun. The planets appear in the order of innermost to outermost planets. These artist's concepts were designed as follows: TRAPPIST-1b, closest to the star, was modeled on Jupiter's moon Io, which has volcanic features due to strong gravitational tugs. TRAPPIST-1c is shown as a rocky, warm world with a small ice cap on the side that never faces the star. TRAPPSIT-1d is rocky and has water only in a thin band along the terminator, dividing the day side and night side. TRAPPIST-1e and TRAPPIST-1f are both shown covered in water, but with progressively larger ice caps on the night side. TRAPPIST-1g is portrayed with an atmosphere like Neptune's, although it is still a rocky world. The farthest planet, TRAPPIST-1h, is shown as covered in ice, similar to Jupiter's icy moon Europa. The background stars are what you would see if you were in the TRAPPIST-1 system. Orion passes behind the planets, recognizable but distorted from what we're familiar with, in addition to Taurus and Pleiades. A video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21468

  1. TRAPPIST-1 Planet Lineup

    NASA Image and Video Library

    2017-02-22

    This artist's concept shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets' diameters, masses and distances from the host star. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial, according to research published in 2017 in the journal Nature. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. They are likely all tidally locked, meaning the same face of the planet is always pointed at the star, as the same side of our moon is always pointed at Earth. This creates a perpetual night side and perpetual day side on each planet. TRAPPIST-1b and c receive the most light from the star and would be the warmest. TRAPPIST-1e, f and g all orbit in the habitable zone, the area where liquid water is most likely to be detected. But any of the planets could potentially harbor liquid water, depending on their compositions. In the imagined planets shown here, TRAPPIST-1b is shown as a larger analogue to Jupiter's moon Io. TRAPPIST-1d is depicted with a narrow band of water near the terminator, the divide between a hot, dry day and an ice-covered night side. TRAPPIST-1e and TRAPPIST-1f are both shown covered in water, but with progressively larger ice caps on the night side. TRAPPIST-1g is portrayed with an atmosphere like Neptune's, although it is still a rocky world. TRAPPIST-1h, the farthest from the star, would be the coldest. It is portrayed here as an icy world, similar to Jupiter's moon Europa, but the least is known about it. http://photojournal.jpl.nasa.gov/catalog/PIA21422

  2. ICI Showcase House Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-02-16

    Building Science Corporation collaborated with ICI Homes in Daytona Beach, FL on a 2008 prototype Showcase House that demonstrates the energy efficiency and durability upgrades that ICI currently promotes through its in-house efficiency program called EFactor.

  3. Development and Testing of a Laser-Powered Cryobot for Outer Planet Icy Moon Exploration

    NASA Astrophysics Data System (ADS)

    Siegel, V.; Stone, W.; Hogan, B.; Lelievre, S.; Flesher, C.

    2013-12-01

    Project VALKYRIE (Very-deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer) is a NASA-funded effort to develop the first laser powered cryobot - a self-contained intelligent ice penetrator capable of delivering science payloads through ice caps of the outer planet icy moons. The long range objective is to enable a full-scale Europa lander mission in which an autonomous life-searching underwater vehicle is transported by the cryobot and launched into the sub-surface Europan ocean. Mission readiness testing will involve an Antarctic sub-glacial lake cryobot sample return through kilometers of ice cap thickness. A key element of VALKYRIE's design is the use of a high energy laser as the primary power source. 1070 nm laser light is transmitted at a power level of 5 kW from a surface-based laser and injected into a custom-designed optical waveguide that is spooled out from the descending cryobot. Light exits the downstream end of the fiber, travels through diverging optics, and strikes a beam dump, which channels thermal power to hot water jets that melt the descent hole. Some beam energy is converted, via photovoltaic cells, to electricity for running onboard electronics and jet pumps. Since the vehicle can be sterilized prior to deployment and the melt path freezes behind it, preventing forward contamination, expansions on VALKYRIE concepts may enable cleaner and faster access to sub-glacial Antarctic lakes. Testing at Stone Aerospace between 2010 and 2013 has already demonstrated high power optical energy transfer over relevant (kilometer scale) distances as well as the feasibility of a vehicle-deployed optical waveguide (through which the power is transferred). The test vehicle is equipped with a forward-looking synthetic aperture radar (SAR) that can detect obstacles out to 1 kilometer from the vehicle. The initial ASTEP test vehicle will carry a science payload consisting of a DUV flow cytometer and a water sampling sub-system that will be

  4. The search for other planets: clues from the solar system.

    PubMed

    Owen, T

    1994-01-01

    Studies of element abundances and values of D/H in the atmospheres of the outer planets and Titan support a two-step model for the formation of these bodies. This model suggests that the dimensions of Uranus provide a good index for the sensitivity required to detect planets around other stars. The high proportion of N2 on the surfaces of Pluto and Triton indicates that this gas was the dominant reservoir of nitrogen in the early solar nebula. It should also be abundant on pristine comets. There is evidence that some of these comets may well have brought a large store of volatiles to the inner planets, while others were falling into the sun. In other systems, icy planetesimals falling into stars should reveal themselves through high values of D/H.

  5. Planet Formation Instrument for the Thirty Meter Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B; Troy, M; Graham, J

    2006-02-22

    In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. Thesemore » systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.« less

  6. Planetary Protection for future missions to Europa and other icy moons: the more things change...

    NASA Astrophysics Data System (ADS)

    Conley, C. A.; Race, M.

    2007-12-01

    NASA maintains a planetary protection policy regarding contamination of extraterrestrial bodies by terrestrial microorganisms and organic compounds, and sets limits intended to minimize or prevent contamination resulting from spaceflight missions. Europa continues to be a high priority target for astrobiological investigations, and other icy moons of the outer planets are becoming increasingly interesting as data are returned from current missions. In 2000, a study was released by the NRC that provided recommendations on preventing the forward contamination of Europa. This study addressed a number of issues, including cleaning and sterilization requirements, the applicability of protocols derived from Viking and other missions to Mars, and the need to supplement spore based culture methods in assessing spacecraft bioload. The committee also identified a number of future studies that would improve knowledge of Europa and better define issues related to forward contamination of that body. The standard recommended by the 2000 study and adopted by NASA uses a probabilistic approach, such that spacecraft sent to Europa must demonstrate a probability less than 10-4 per mission of contaminating an europan ocean with one viable terrestrial organism. A number of factors enter into the equation for calculating this probability, including at least bioload at launch, probability of survival during flight, probability of reaching the surface of Europa, and probability of reaching an europan ocean. Recently, the NASA Planetary Protection Subcommittee of the NASA Advisory Council has recommended that the probabilistic approach recommended for Europa be applied to all outer planet icy moons, until another NRC study can be convened to reevaluate the issues in light of recent data. This presentation will discuss the status of current and anticipated planetary protection considerations for missions to Europa and other icy moons.

  7. ICI/BASF PP for acrylics swap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    ICI (London) and BASF (Ludwigshafen) have announced their long-awaited polypropylene (PP) for acrylics swap deal. ICI is buying BASF's European acrylic resin business, and the German firm will acquire ICI's European PP operations. The deal is due for completion by mid-1993, subject to regulatory approvals. BASF, hitherto a small-scale PP producer, doubles capacity to 600,000 m.t./year and moves up the European PP league to number three, behind Himont and Shell. BASF, whose process is used in the plants, secures a foothold in the UK PP market, where Shell - planning a merger with Himont - is the only other producer,more » with 170,000 m.t./year. ICI's purchase involves BASF's Resart GmbH and Critesa SA subsidiaries, located at Mainz, Germany and near Barcelona, Spain, respectively. The business - which will add about [Brit pounds]60 million ($93 million) to ICI Acrylics [Brit pounds]300-million revenues - employs 400 people, who will transfer to ICI.« less

  8. A DEFINITION FOR GIANT PLANETS BASED ON THE MASS–DENSITY RELATIONSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzes, Artie P.; Rauer, Heike, E-mail: artie@tls-tautenburg.de, E-mail: Heike.Rauer@dlr.de

    We present the mass–density relationship (log M − log ρ) for objects with masses ranging from planets (M ≈ 0.01 M{sub Jup}) to stars (M > 0.08 M{sub ⊙}). This relationship shows three distinct regions separated by a change in slope in the log M − log ρ plane. In particular, objects with masses in the range 0.3 M{sub Jup}–60 M{sub Jup} follow a tight linear relationship with no distinguishing feature to separate the low-mass end (giant planets) from the high-mass end (brown dwarfs). We propose a new definition of giant planets simply based on changes in the slope ofmore » the log M versus log ρ relationship. By this criterion, objects with masses less than ≈0.3 M{sub Jup} are low-mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M{sub Jup}–60 M{sub Jup}. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as “high-mass giant planets,” while planets with masses near that of Jupiter can be called “low-mass giant planets.”.« less

  9. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  10. External supply of oxygen to the atmospheres of the giant planets.

    PubMed

    Feuchtgruber, H; Lellouch, E; de Graauw, T; Bézard, B; Encrenaz, T; Griffin, M

    1997-09-11

    The atmospheres of the giant planets are reducing, being mainly composed of hydrogen, helium and methane. But the rings and icy satellites that surround these planets, together with the flux of interplanetary dust, could act as important sources of oxygen, which would be delivered to the atmospheres mainly in the form of water ice or silicate dust. Here we report the detection, by infrared spectroscopy, of gaseous H2O in the upper atmospheres of Saturn, Uranus and Neptune. The implied H2O column densities are 1.5 x 10(15), 9 x 10(13) and 3 x 10(14) molecules cm(-2) respectively. CO2 in comparable amounts was also detected in the atmospheres of Saturn and Neptune. These observations can be accounted for by external fluxes of 10(5)-10(7) H2O molecules cm(-2) s(-1) and subsequent chemical processing in the atmospheres. The presence of gaseous water and infalling dust will affect the photochemistry, energy budget and ionospheric properties of these atmospheres. Moreover, our findings may help to constrain the injection rate and possible activity of distant icy objects in the Solar System.

  11. Large Impact Features on Saturn's Middle-sized Icy Satellites: Global Image Mosaics and Topography

    NASA Technical Reports Server (NTRS)

    Schenk, P. M.; Moore, J. M.; McKinnon, W. B.

    2003-01-01

    With the approach of Cassini to the Saturn system, attention naturally focuses on the planet, its rings and Titan, but the Saturn system is also populated by a number of smaller satellites. The seven middle-sized icy satellites, along with those of Uranus, (between 400 and 1500 km wide) are distinctly different geophysically and geologically from their much larger Galilean-class brethren [e.g., 1]. Topographic mapping of these bodies is a critical part of understanding their geologic evolution. Here we describe our recent efforts to map the topography of these satellites using Voyager data.

  12. Misty picture weather-watch and microbarograph project: Experiments 9412-14-18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J.W.; Church, H.W.; Huck, T.W.

    1987-01-01

    Special meteorological observations and predictions for MISTY PICTURE are described. Ground zero measurements of winds and temperatures were used to develop predictions for needed light winds during the night for deployment of the helium bag for the precursor experiment. This also entailed correlations with the White Sands network of automated surface observation stations as well as general circulation and upper air reports from the regional synoptic weather observing and reporting network. Pilot balloon observations of upper winds and Tethersonde observations were made during bag deployment to further document local circulation developments. During the test countdown, radiosonde balloon observations of uppermore » air temperatures and winds were made to allow prediction of atmospheric effects on airblast propagation that could break windows to nearly 200 km range from the MISTY PICTURE explosion yield. These data indicated that there would be no strong off-site propagations on shot day, but at shot time the weak convergence zone in the shot area disturbed the wind pattern and generated a northwestward sound duct. Some banded airblast focusing resulted that gave relatively high overpressures just south of the Admin Park, at the Observer's Area, and in San Antonio where a number of windows were claimed broken. Relatively weak blasts, between caustics or foci, were recorded by microbarographs at Admin Park, Stallion, and Socorro. Very weak and barely detectable waves were propagated eastward to Carrizozo where MINOR SCALE had broken windows in 1985, and to the southeast toward Tularosa and Alamogordo. Five microbarograph stations were also operated around the west side of a 200 km radius circle, to document airblast waves ducted and focused by relatively high temperatures and easterly monsoon winds near 50 km altitudes. 15 refs., 39 figs., 16 tabs.« less

  13. Satellites of giant planets — possible sites for origin and existence of biospheres

    NASA Astrophysics Data System (ADS)

    Simakov, Michael B.

    All giant planets of the Solar system have a big number of satellites (61 of Jupiter, 52 of Saturn, known in 2003). A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Some from them have an atmosphere. E.g., the mass of a column of the Titan’s atmosphere exceeds 15 times the mass of the Earth atmosphere column. Formation (or capture) of satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. As an example, we can see on Titan, the largest satellite of Saturn, which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance. The most recent models of the Titan’s interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside Titan. The putative internal water ocean along with complex atmospheric photochemistry provide some exobiological niches on this body: (1) an upper layer of the internal water ocean; (2) pores, veins, channels and pockets filled with brines inside of the lowest part of the icy layer; (3) the places of cryogenic volcanism; (4) set of caves in icy layer connecting with cryovolcanic processes; (5) the brine-filled cracks in icy crust caused by tidal forces; (6) liquid water pools on the surface originated from meteoritic strikes; (7) the sites of hydrothermal activity on the bottom of the ocean. We can see all conditions needed for origin and evolution of biosphere — liquid water, complex organic chemistry and energy sources for support of biological processes — are on the Saturnian moon. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter’s four large moons, Europa, Ganymede and Callisto have such oceans also. The existing of liquid water ocean within icy world can be consequences of the physical

  14. To melt is not enough: Retention of volatile species through internal processing in icy bodies

    NASA Astrophysics Data System (ADS)

    Sarid, G.; Stewart-Mukhopadhyay, S.

    2014-07-01

    The outer Solar System hosts a vast population of small icy bodies, considered to be primitive remnants from the planet-formation epoch. Early thermal and collisional processes affected such planetesimals to varying degrees depending on the time scale and dynamics of early planet growth. Recent observations have revealed that many large (>˜1000 km in diameter) transneptunian objects (TNOs) exhibit features of crystalline water ice in their surface spectra [1], as well as spectral features of more volatile ices, such as methane or hydrated ammonia [2]. These telltale observations should be accounted for when considering the alteration history and bulk processing of dwarf planets and their icy progeny. We will discuss preliminary calculations of early evolution scenarios for small icy-rocky bodies formed beyond the water-ice snow line. Such objects should also contain non-negligible fractions of pre-organic volatile compounds. The volatile composition and interior structure of these objects may change considerably due to internal heating and/or collisional modification prior to settling in their current (relatively quiescent) dynamical niches. Our initial model for the objects in question is that of a porous aggregate of various volatile compounds (as ices or trapped gases) and refractory silicate-metal solid grains, comprising the bulk matrix [3]. Chemical compositions for these objects are taken from existing simulations of chemical and dynamical evolution of disk material [4]. The key volatile species (e.g., H_2O, CO, CO_2, NH_3, CH_4, and CH_3OH) are also the most commonly observed in comets [5], which are remnants of such an early planetesimal population. Thermal and chemical internal evolution is examined self-consistently, as the abundances and locations of all species evolve, and we record mass ratios, temperatures, pressures, and porosity variations. The presence of volatile species in the interior can affect the overall heat balance and accompanied phase

  15. New Extra-Solar Planet - thermal state and structure

    NASA Astrophysics Data System (ADS)

    Valencia, D.; O'Connell, R. J.; Sasselov, D.

    2005-12-01

    For the last decade astronomers have found more than 160 planets orbiting stars other than our sun. All but three of them are gaseous planets. The variety of characteristics of these newly discovered planets opens a new field with questions about planetary formation, structure and evolution, as well as the possibility of existence of life beyond our solar system. Planetary formation models suggested the existence of terrestrial extra-solar planets with masses up to 10 times the mass of the Earth. In June of 2005 the first Super-Earth was discovered orbiting a star 15 light years away with a mass that is about 7.5 times the mass of the Earth and a period of 1.94 days. The composition of this planet is unknown but probably has an Earth-like composition. Astronomers believe the surface temperature ranges between ~500 K and ~700 K. Liquid water can exist at temperatures above T=400K at high pressures (above 10 MPa) allowing for the possibility of a water layer on top of a rocky core. Our work focuses on determining scaling relationships with mass, internal structure parameters and thermal state. We explore the effects of a water/icy layer above a rocky core as well as other types of compositions in determining the internal structure. This water layer may convect causing the planet to have two layer convection. We explore the effects of a layer convection mode versus whole mantle convection for a Super-Earth. Due to the closeness of this planet to its parent star we can expect substantial tidal heating that can affect the thermal state of this planet. We explore the effects of tidal heating in the internal structure of a planet. Differences in composition have much larger effects in the mass-radius relationship than the uncertainties in thermodynamic parameters of the minerals composing the planet.

  16. ICIS Model

    EPA Pesticide Factsheets

    The Integrated Compliance Information System (ICIS) is a web-based system that provides information for the federal enforcement and compliance (FE&C) and the National Pollutant Discharge Elimination System (NPDES) programs.

  17. Sizing up the planets

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1985-01-01

    Visual, scaled comparisons are made among prominent volcanic, tectonic, crater and impact basin features photographed on various planets and moons in the solar system. The volcanic formation Olympus Mons, on Mars, is 27 km tall, while Io volcanic plumes reach 200-300 km altitude. Valles Marineris, a tectonic fault on Mars, is several thousand kilometers long, and the Ithasa Chasma on the Saturnian moon Tethys extends two-thirds the circumference of the moon. Craters on the Saturnian moons Tethys and Mimas are large enough to suggest a collision by objects which almost shattered the planetoids. Large meteorite impacts may leave large impact basins or merely ripples, such as found on Callisto, whose icy surface could not support high mountains formed by giant body impacts.

  18. MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soubiran, François; Militzer, Burkhard

    2015-06-20

    We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that amore » substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.« less

  19. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, John, E-mail: jchambers@carnegiescience.edu

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planetsmore » with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.« less

  20. Titan's Impact Cratering Record: Erosion of Ganymedean (and other) Craters on a Wet Icy Landscape

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Moore, J.; Howard, A.

    2012-04-01

    We examine the cratering record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact crater morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest crater, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact craters as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede craters can be eroded to resemble Titan craters and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact crater shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the cratering record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.

  1. Hemispheric and Topographic Asymmetry of Magnetospheric Particle Irradiation for Icy Moon Surfaces

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, S. J.

    2007-01-01

    All surfaces of icy moons without significant atmospheres, i.e. all except Titan in the giant planet systems, are irradiated by hot plasma and more energetic charged particles from the local magnetospheric environments. This irradiation can significantly impact the chemical composition, albedo, and detectable presence of signs of life on the sensible surfaces, while also limiting lifetimes and science operations of orbital spacecraft for extreme radiation environments as at Europa. Planning of surface remote sensing and lander operations, and interpretation of remote sensing and in-situ measurements, should include consideration of natural shielding afforded by the body of the moon, by any intrinsic or induced magnetic fields as at Ganyrnede, and by topographic structures.

  2. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  3. Astrobiology of Jupiter's icy moons

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.; Delory, Gregory; Pitman, Joseph T.; Rieboldt, Sarah

    2004-11-01

    Jupiter's Icy Moons, Europa, Ganymede and Callisto, may possess energy sources, biogenic molecules, and oceans below their icy crusts, thus indicating a strong possibility that they were abodes for present or past life. Life in Earth's icy areas lives in a wide variety of habitats associated with the ice, in the water column below the ice, and on the floor of the ocean below the ice. Similar habitats may exist on JIM, have been transported to the icy crust, and be exposed in tectonic or impact features. Europa has a young, dynamic surface with many outcrops exposing older ice, fresh ice, possible materials from the subsurface ocean, and a few impact craters. Ganymede has older, darker, tectonized terrains surrounded by light ice. Callisto has a much older, heavily impacted surface devoid of significant tectonic structures. Past and present life habitats may be exposed in these features, making Europa the most favorable target while Ganymede is of interest, and Callisto seems more unlikely to have detectable life. A proper search strategy requires detailed orbital imaging and spectrometry of the likely places, and surface data collection with microscopic, spectrometric, and biochemical instruments.

  4. Habitability potential of icy moons: a comparative study

    NASA Astrophysics Data System (ADS)

    Solomonidou, Anezina; Coustenis, Athena; Encrenaz, Thérèse; Sohl, Frank; Hussmann, Hauke; Bampasidis, Georgios; Wagner, Frank; Raulin, François; Schulze-Makuch, Dirk; Lopes, Rosaly

    2014-05-01

    Looking for habitable conditions in the outer solar system our research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally con-ceived. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the interiors of orbiting icy moons. The outer solar system satellites then provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the de-velopment and/or maintenance of life. Europa, Callisto and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [3] which, in the case of Europa [2], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in gey-sers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated

  5. EPA Facility Registry Service (FRS): ICIS

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Integrated Compliance Information System (ICIS). When complete, ICIS will provide a database that will contain integrated enforcement and compliance information across most of EPA's programs. The vision for ICIS is to replace EPA's independent databases that contain enforcement data with a single repository for that information. Currently, ICIS contains all Federal Administrative and Judicial enforcement actions and a subset of the Permit Compliance System (PCS), which supports the National Pollutant Discharge Elimination System (NPDES). ICIS exchanges non-sensitive enforcement/compliance activities, non-sensitive formal enforcement actions and NPDES information with FRS. This web feature service contains the enforcement/compliance activities and formal enforcement action related facilities; the NPDES facilities are contained in the PCS_NPDES web feature service. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on f

  6. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  7. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    NASA Technical Reports Server (NTRS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  8. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  9. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  10. Localized sources of water vapour on the dwarf planet (1) Ceres.

    PubMed

    Küppers, Michael; O'Rourke, Laurence; Bockelée-Morvan, Dominique; Zakharov, Vladimir; Lee, Seungwon; von Allmen, Paul; Carry, Benoît; Teyssier, David; Marston, Anthony; Müller, Thomas; Crovisier, Jacques; Barucci, M Antonietta; Moreno, Raphael

    2014-01-23

    The 'snowline' conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Models suggest that some of the icy bodies may have migrated into the asteroid belt. Recent observations indicate the presence of water ice on the surface of some asteroids, with sublimation a potential reason for the dust activity observed on others. Hydrated minerals have been found on the surface of the largest object in the asteroid belt, the dwarf planet (1) Ceres, which is thought to be differentiated into a silicate core with an icy mantle. The presence of water vapour around Ceres was suggested by a marginal detection of the photodissociation product of water, hydroxyl (ref. 12), but could not be confirmed by later, more sensitive observations. Here we report the detection of water vapour around Ceres, with at least 10(26) molecules being produced per second, originating from localized sources that seem to be linked to mid-latitude regions on the surface. The water evaporation could be due to comet-like sublimation or to cryo-volcanism, in which volcanoes erupt volatiles such as water instead of molten rocks.

  11. Polygonal Craters on Dwarf-Planet Ceres

    NASA Astrophysics Data System (ADS)

    Otto, K. A.; Jaumann, R.; Krohn, K.; Buczkowski, D. L.; von der Gathen, I.; Kersten, E.; Mest, S. C.; Preusker, F.; Roatsch, T.; Schenk, P. M.; Schröder, S.; Schulzeck, F.; Scully, J. E. C.; Stepahn, K.; Wagner, R.; Williams, D. A.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    With approximately 950 km diameter and a mass of #1/3 of the total mass of the asteroid belt, (1) Ceres is the largest and most massive object in the Main Asteroid Belt. As an intact proto-planet, Ceres is key to understanding the origin and evolution of the terrestrialplanets [1]. In particular, the role of water during planet formation is of interest, because the differentiated dwarf-planet is thought to possess a water rich mantle overlying a rocky core [2]. The Dawn space craft arrived at Ceres in March this year after completing its mission at (4) Vesta. At Ceres, the on-board Framing Camera (FC) collected image data which revealed a large variety of impact crater morphologies including polygonal craters (Figure 1). Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material. Simple polygonal craters develop during the excavation stage when the excavation flow propagates faster along preexisting fractures [3, 5]. Complex polygonal craters adopt their shape during the modification stage when slumping along fractures is favoured [3]. Polygonal craters are known from a variety of planetary bodies including Earth [e.g. 4], the Moon [e.g. 5], Mars [e.g. 6], Mercury [e.g. 7], Venus [e.g. 8] and outer Solar System icy satellites [e.g. 9].

  12. Raman Life Detection Instrument Development for Icy Worlds

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.

    2017-01-01

    The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.

  13. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of

  14. PCS-ICIS Model

    EPA Pesticide Factsheets

    The Integrated Compliance Information System (ICIS) is a web-based system that provides information for the federal enforcement and compliance (FE&C) and the National Pollutant Discharge Elimination System (NPDES) programs.

  15. Astronomical studies of the major planets, natural satellites and asteroids using the 2.24 m telescope

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1982-01-01

    Directional features in the Jovian sodium torus, high quality CCD images of the major planets, methane bands in the spectrum of Triton, the central wavelength of the SO2 absorption band on Io, a component on the icy surfaces of the satellites of Uranus, fluctuation of Io's volcanic radiation, standard stars, and thermal radiation from the four brightest satellites of Uranus are discussed.

  16. United theory of planet formation (i): Tandem regime

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Imaeda, Yusuke

    2017-07-01

    The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely

  17. Theoretical studies of the radar properties of the icy Galilean moons of Jupiter

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1993-01-01

    The icy Galilean satellites of Jupiter - Europa, Ganymede, and Callisto - have unusual radar scattering properties compared with those of the terrestrial planets or Earth's Moon. There are three main features of the data that distinguish these targets: (1) the radar cross-section normalized by the geometrical cross-section is an order of magnitude larger than that of any terrestrial planet; (2) the reflected power is almost evenly distributed between two orthogonal polarizations with more power being returned in the same circular polarization as was transmitted whereas virtually all of the power returned from the terrestrial planets is contained in the opposite circular polarization to the one that was transmitted; and (3) the echo power spectra have a broad shape indicating a nearly uniformly radar-bright surface in contrast to the spectra from the terrestrial planets that contain a strong quasi-specular component from the vicinity of the sub-radar point and very little reflected power from the rest of the surface. The normalized radar cross-sections decrease as the areal water ice coverage decreases from Europa to Ganymede to Callisto. Recently, radar echoes from the polar caps of Mars and Mercury, and from Saturn's satellite Titan imply similarly strong cross-sections and have classically unexpected polarization properties and it is also thought that this is due to the presence of ice on the surface. A model called the radar glory model is analyzed and it is shown that the main features of the radar echoes calculated from this model agree well with the observations from all three icy Galilean satellites. This model involves long radar paths in the ice below the surface and special structures in which the refractive index decreases abruptly at a hemispherical boundary. It is not known whether such structures exist or how they could be created, but possible scenarios can be imagined such as the formation of an impact crater followed by deposition of a frost layer

  18. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  19. Laboratory studies on low-energy electron penetration depths into amorphous ice - consequence to astrobiology on icy surfaces

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Li, I.; Lignell, A. A.

    2009-12-01

    Penetration of electrons through icy surfaces plays an important role in radiation processing of solar system icy bodies. However, to date, there is no quantitative data available on the penetration depths of electrons through cryogenic water-ices. Penetration of high-energy incident electrons also results in the in-situ formation of secondary low-energy electrons, such as on the surface of Europa (Herring-Captain et al., 2005; Johnson et al., 2004). Low-energy electrons can also be produced through photoionization process such as on comet surfaces, or through bombardment by solar wind on icy surfaces (Bodewits et al., 2004). Present models use the laboratory penetration data of high-energy (>10 keV) electrons through silicon as a proxy for the ice (Cooper et al., 2001), normalized by the density of the medium. So far no laboratory studies have been conducted that deal with the penetration of electrons through amorphous or crystalline ices. In order to address this issue, we adopted a new experimental strategy by using aromatic molecules as probes. To begin with, we carried out systematic studies on the penetration depths of low-energy electrons (5 eV - 2 keV) through amorphous ice films of defined thickness at cryogenic temperatures (5 - 30 K). The results of these experiments will be analyzed and their relevance to survival of organic material on solar system icy surfaces will be presented. References: Bodewits, D., et al., 2004. X-ray and Far-Ultraviolet emission from comets: Relevant charge exchange processes. Physica Scripta. 70, C17-C20. Cooper, J. F., et al., 2001. Energetic ion and electron irradiation of the icy Galilean satellites. Icarus. 149, 133-159. Herring-Captain, J., et al., 2005. Low-energy (5-250 eV) electron-stimulated desorption of H+, H2+, and H+(H2O)nfrom low-temperature water ice surfaces. Physical Review B. 72, 035431-10. Johnson, R. E., et al., Radiation Effects on the Surfaces of the Galilean Satellites. In: F. Bagenal, et al., Eds

  20. Observing outer planet satellites (except Titan) with JWST: Science justification and observational requirements

    USGS Publications Warehouse

    Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  1. Seeding life on the moons of the outer planets via lithopanspermia.

    PubMed

    Worth, R J; Sigurdsson, Steinn; House, Christopher H

    2013-12-01

    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  2. Analyses of sweep-up, ejecta, and fallback material from the 4250 metric ton high explosive test ''MISTY PICTURE'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohletz, K.H.; Raymond, R. Jr.; Rawson, G.

    1988-01-01

    The MISTY PICTURE surface burst was detonated at the White Sands Missle range in May of 1987. The Los Alamos National Laboratory dust characterization program was expanded to help correlate and interrelate aspects of the overall MISTY PICTURE dust and ejecta characterization program. Pre-shot sampling of the test bed included composite samples from 15 to 75 m distance from Surface Ground Zero (SGZ) representing depths down to 2.5 m, interval samples from 15 to 25 m from SGZ representing depths down to 3m, and samples of surface material (top 0.5 cm) out to distances of 190 m from SGZ. Sweep-upmore » samples were collected in GREG/SNOB gages located within the DPR. All samples were dry-sieved between 8.0 mm and 0.045 mm (16 size fractures); selected samples were analyzed for fines by a contrifugal settling technique. The size distributions were analyzed using spectral decomposition based upon a sequential fragmentation model. Results suggest that the same particle size subpopulations are present in the ejecta, fallout, and sweep-up samples as are present in the pre-shot test bed. The particle size distribution in post-shot environments apparently can be modelled taking into account heterogeneities in the pre-shot test bed and dominant wind direction during and following the shot. 13 refs., 12 figs., 2 tabs.« less

  3. Icy Particle Spray

    NASA Image and Video Library

    2010-11-18

    Images obtained by NASA EPOXI mission spacecraft show an active end of the nucleus of comet Hartley 2. Icy particles spew from the surface. Most of these particles are traveling with the nucleus; fluffy nowballs about 3 centimeters to 30 centimeters.

  4. Debris disks as signposts of terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  5. The display of sexual behaviors by female rats administered ICI 182,780.

    PubMed

    Clark, Ann S; Guarraci, Fay A; Megroz, Alison B; Porter, Donna M; Henderson, Leslie P

    2003-04-01

    ICI 182,780 (ICI) is a pure antiestrogen that when administered systemically does not cross the blood-brain barrier, thus its actions are limited to the periphery. Four experiments were conducted to test the effects of ICI on the display of sexual behaviors in ovariectomized rats. Experiment 1 examined the effects of three doses of ICI (250, 500, and 750 micro g/rat) on sexual receptivity and paced mating behavior in rats primed with estradiol benzoate (EB) in combination with progesterone (P). Experiments 2 and 3 compared the display of sexual behaviors in rats primed with EB+P or EB alone and administered either 250 micro g ICI (Experiment 2) or 500 micro g ICI (Experiment 3). Experiment 4 tested the effects of ICI (250 and 500 micro g) on the expression of estrogen-induced progestin receptors in the uterus. ICI did not affect the display of sexual receptivity in any experiment. In rats primed with EB+P, paced mating behavior was altered by the 500 and 750 micro g, but not the 250 micro g, doses of ICI. The lowest (250 micro g) dose of ICI did alter paced mating behavior in rats primed with EB alone. The effects of ICI on paced mating behavior were manifested by a substantial lengthening of contact-return latencies following intromissions and ejaculations. The percentage of exits were not affected by ICI. Estrogen stimulation of uterine weight and induction of uterine progestin receptors was suppressed by ICI (250 and 500 micro g). ICI effects on paced mating behavior in hormone-primed female rats are likely to reflect antiestrogenic actions in the periphery, including interference with the estrogen induction of progestin receptors.

  6. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  7. Modeling Spectra of Icy Satellites and Cometary Icy Particles Using Multi-Sphere T-Matrix Code

    NASA Astrophysics Data System (ADS)

    Kolokolova, Ludmilla; Mackowski, Daniel; Pitman, Karly M.; Joseph, Emily C. S.; Buratti, Bonnie J.; Protopapa, Silvia; Kelley, Michael S.

    2016-10-01

    The Multi-Sphere T-matrix code (MSTM) allows rigorous computations of characteristics of the light scattered by a cluster of spherical particles. It was introduced to the scientific community in 1996 (Mackowski & Mishchenko, 1996, JOSA A, 13, 2266). Later it was put online and became one of the most popular codes to study photopolarimetric properties of aggregated particles. Later versions of this code, especially its parallelized version MSTM3 (Mackowski & Mishchenko, 2011, JQSRT, 112, 2182), were used to compute angular and wavelength dependence of the intensity and polarization of light scattered by aggregates of up to 4000 constituent particles (Kolokolova & Mackowski, 2012, JQSRT, 113, 2567). The version MSTM4 considers large thick slabs of spheres (Mackowski, 2014, Proc. of the Workshop ``Scattering by aggregates``, Bremen, Germany, March 2014, Th. Wriedt & Yu. Eremin, Eds., 6) and is significantly different from the earlier versions. It adopts a Discrete Fourier Convolution, implemented using a Fast Fourier Transform, for evaluation of the exciting field. MSTM4 is able to treat dozens of thousands of spheres and is about 100 times faster than the MSTM3 code. This allows us not only to compute the light scattering properties of a large number of electromagnetically interacting constituent particles, but also to perform multi-wavelength and multi-angular computations using computer resources with rather reasonable CPU and computer memory. We used MSTM4 to model near-infrared spectra of icy satellites of Saturn (Rhea, Dione, and Tethys data from Cassini VIMS), and of icy particles observed in the coma of comet 103P/Hartley 2 (data from EPOXI/DI HRII). Results of our modeling show that in the case of icy satellites the best fit to the observed spectra is provided by regolith made of spheres of radius ~1 micron with a porosity in the range 85% - 95%, which slightly varies for the different satellites. Fitting the spectra of the cometary icy particles requires icy

  8. The Cold and Icy Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2015-12-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at +/- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by +15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.

  9. Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM

    NASA Astrophysics Data System (ADS)

    Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng

    2015-07-01

    We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.

  10. JUICE: A European Mission to Jupiter and its Icy Moons

    NASA Astrophysics Data System (ADS)

    Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire

    2016-10-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and

  11. Radiation Induced Chemistry of Icy Surfaces: Laboratory Simulations

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Lignell, Antti; Li, Irene; Yang, Rui; Jacovi, Ronen

    2011-01-01

    We will discuss laboratory experiments designed to enhance our understanding the chemical processes on icy solar system bodies, enable interpretation of in-situ and remote-sensing data, and help future missions to icy solar system bodies, such as comets, Europa, Ganymede, Enceladus etc.

  12. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  13. Modeling planetary seismic data for icy worlds and terrestrial planets with AxiSEM/Instaseis: Example data and a model for the Europa noise environment

    NASA Astrophysics Data System (ADS)

    Panning, Mark Paul; Stähler, Simon; Kedar, Sharon; van Driel, Martin; Nissen-Meyer, Tarje; Vance, Steve

    2016-10-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and seismometers are likely to be considered for future lander missions to other planetary bodies after the planned landing of InSight on Mars in 2018. In order to guide instrument design and mission requirements, however, it is essential to model likely seismic signals in advance to determine the most promising data needed to meet science goals. Seismic data for multiple planetary bodies can now be simulated rapidly for arbitrary source-receiver configurations to frequencies of 1 Hz and above using the numerical wave propagation codes AxiSEM and Instaseis (van Driel et al., 2015) using 1D models derived from thermodynamic constraints (e.g. Cammarano et al., 2006). We present simulations for terrestrial planets and icy worlds to demonstrate the types of seismic signals we may expect to retrieve. We also show an application that takes advantage of the computational strengths of this method to construct a model of the thermal cracking noise environment for Europa under a range of assumptions of activity levels and elastic and anelastic structure.M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015), "Instaseis: instant global seismograms based on a broadband waveform database," Solid Earth, 6, 701-717, doi: 10.5194/se-6-701-2015.F. Cammarano, V. Lekic, M. Manga, M.P. Panning, and B.A. Romanowicz (2006), "Long-period seismology on Europa: 1. Physically consistent interior models," J. Geophys. Res., 111, E12009, doi: 10.1029/2006JE002710.

  14. Seeding Life on the Moons of the Outer Planets via Lithopanspermia

    PubMed Central

    Sigurdsson, Steinn; House, Christopher H.

    2013-01-01

    Abstract Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1–2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment. Key Words: Panspermia—Impact—Meteorites—Titan—Europa. Astrobiology 13, 1155–1165. PMID:24341459

  15. IPPF Co-operative Information Service (ICIS). August 1977.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    The pooling of documentation service resources has resulted in the creation of an International Planned Parenthood Federation (IPPF) integrated bibliographic information system. The former Library Bulletin has become IPPF Cooperative Information Service (ICIS). Entries in ICIS are classified according to the following nine categories: (0) General…

  16. IPPF Co-operative Information Service (ICIS). May 1977.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    The pooling of documentation service resources has resulted in the creation of an International Planned Parenthood Federation (IPPF) integrated bibliographic information system. Thus, the former Library Bulletin has become IPPF Cooperative Information Service (ICIS). This is the first such publication. Entries in ICIS are classified according to…

  17. Cost-Effective Icy Bodies Exploration using Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Jonsson, Jonas; Mauro, David; Stupl, Jan; Nayak, Michael; Aziz, Jonathan; Cohen, Aaron; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Klamm, Benjamin; hide

    2015-01-01

    It has long been known that Saturn's moon Enceladus is expelling water-rich plumes into space, providing passing spacecraft with a window into what is hidden underneath its frozen crust. Recent discoveries indicate that similar events could also occur on other bodies in the solar system, such as Jupiter's moon Europa and the dwarf planet Ceres in the asteroid belt. These plumes provide a possible giant leap forward in the search for organics and assessing habitability beyond Earth, stepping stones toward the long-term goal of finding extraterrestrial life. The United States Congress recently requested mission designs to Europa, to fit within a cost cap of $1B, much less than previous mission designs' estimates. Here, innovative cost-effective small spacecraft designs for the deep-space exploration of these icy worlds, using new and emerging enabling technologies, and how to explore the outer solar system on a budget below the cost horizon of a flagship mission, are investigated. Science requirements, instruments selection, rendezvous trajectories, and spacecraft designs are some topics detailed. The mission concepts revolve around a comparably small-sized and low-cost Plume Chaser spacecraft, instrumented to characterize the vapor constituents encountered on its trajectory. In the event that a plume is not encountered, an ejecta plume can be artificially created by a companion spacecraft, the Plume Maker, on the target body at a location timed with the passage of the Plume Chaser spacecraft. Especially in the case of Ceres, such a mission could be a great complimentary mission to Dawn, as well as a possible future Europa Clipper mission. The comparably small volume of the spacecraft enables a launch to GTO as a secondary payload, providing multiple launch opportunities per year. Plume Maker's design is nearly identical to the Plume Chaser, and fits within the constraints for a secondary payload launch. The cost-effectiveness of small spacecraft missions enables the

  18. IPPF Co-operative Information Service (ICIS). November 1977.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    This ICIS bulletin replaces the formal Library Bulletin of the International Planned Parenthood Federation (IPPF). It represents the integration of a bibliographic information network. Entries in ICIS are classified according to the following nine categories: (0) General Reference; (1) IPPF; (2) Family Planning and Health Care; (3) Biomedical…

  19. OASIS: Organics Analyzer for Sampling Icy Surfaces

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Dworkin, J. P.; Glavin, D. P.; Martin, M.; Zheng, Y.; Balvin, M.; Southard, A. E.; Ferrance, J.; Malespin, C.

    2012-01-01

    Liquid chromatography mass spectrometry (LC-MS) is a well established laboratory technique for detecting and analyzing organic molecules. This approach has been especially fruitful in the analysis of nucleobases, amino acids, and establishing chirol ratios [1 -3]. We are developing OASIS, Organics Analyzer for Sampling Icy Surfaces, for future in situ landed missions to astrochemically important icy bodies, such as asteroids, comets, and icy moons. The OASIS design employs a microfabricated, on-chip analytical column to chromatographically separate liquid ana1ytes using known LC stationary phase chemistries. The elution products are then interfaced through electrospray ionization (ESI) and analyzed by a time-of-flight mass spectrometer (TOF-MS). A particular advantage of this design is its suitability for microgravity environments, such as for a primitive small body.

  20. Two-phase convection in the high-pressure ice layer of the large icy moons: geodynamical implications

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.

    2015-12-01

    The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of

  1. Methods of Estimating Initial Crater Depths on Icy Satellites using Stereo Topography

    NASA Astrophysics Data System (ADS)

    Persaud, D. M.; Phillips, C. B.

    2014-12-01

    Stereo topography, combined with models of viscous relaxation of impact craters, allows for the study of the rheology and thermal history of icy satellites. An important step in calculating relaxation of craters is determining the initial depths of craters before viscous relaxation. Two methods for estimating initial crater depths on the icy satellites of Saturn have been previously discussed. White and Schenk (2013) present the craters of Iapetus as relatively unrelaxed in modeling the relaxation of craters of Rhea. Phillips et al. (2013) assume that Herschel crater on Saturn's satellite Mimas is unrelaxed in relaxation calculations and models of Rhea and Dione. In the second method, the depth of Herschel crater is scaled based on the different crater diameters and the difference in surface gravity on the large moons to predict the initial crater depths for Rhea and Dione. In the first method, since Iapetus is of similar size to Dione and Rhea, no gravity scaling is necessary; craters of similar size on Iapetus were chosen and their depths measured to determine the appropriate initial crater depths for Rhea. We test these methods by first extracting topographic profiles of impact craters on Iapetus from digital elevation models (DEMs) constructed from stereo images from the Cassini ISS instrument. We determined depths from these profiles and used them to calculate initial crater depths and relaxation percentages for Rhea and Dione craters using the methods described above. We first assumed that craters on Iapetus were relaxed, and compared the results to previously calculated relaxation percentages for Rhea and Dione relative to Herschel crater (with appropriate scaling for gravity and crater diameter). We then tested the assumption that craters on Iapetus were unrelaxed and used our new measurements of crater depth to determine relaxation percentages for Dione and Rhea. We will present results and conclusions from both methods and discuss their efficacy for

  2. Deep ice and salty oceans of icy worlds, how high pressures influence their thermodynamics and provide constrains on extraterrestrial habitability

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Brown, J. M.; Bollengier, O.; Abramson, E.

    2017-12-01

    As in Earth arctic and Antarctic regions, suspected extraterrestrial deep oceans in icy worlds (i.e. icy moons and water-rich exoplanets) chemistry and thermodynamic state will strongly depend on their equilibrium with H2O ice and present solutes. Na-Mg-Cl-SO4 salt species are currently the main suspected ionic solutes to be present in deep oceans based on remote sensing, magnetic field measurements, cryovolcanism ice grains chemical analysis and chondritic material aqueous alteration chemical models. Unlike on our planet, deep extraterrestrial ocean might also be interacting at depth with high pressure ices (e.g. III, V, VI, VI, X) which have different behavior compared to ice Ih. Unfortunately, the pressures and temperatures inside these hydrospheres differ significantly from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions. High pressure in-situ measurements using diamond anvil cell apparatus were operated both at the University of washington and at the European Synchrotron Radiation Facility on aqueous systems phase diagrams with Na-Mg-Cl-SO4 species, salt incorporation in high pressure ices and density inversions between the solid and the fluids. These results suggest a more complex picture of the interior structure, dynamic and chemical evolution of large icy worlds hydrospheres when solutes are taken into account, compared to current models mainly using pure water. Based on our in-situ experimental measurements, we propose the existence of new liquid environments at greater depths and the possibility of solid state transport of solute through the high pressure ices

  3. Laboratory Reference Spectroscopy of Icy Satellite Candidate Surface Materials (Invited)

    NASA Astrophysics Data System (ADS)

    Dalton, J. B.; Jamieson, C. S.; Shirley, J. H.; Pitman, K. M.; Kariya, M.; Crandall, P.

    2013-12-01

    Pitman, 2012). We will report on recent results, including spectra of sulfate hydrates, simple organic molecules, and volatile ices measured at PICL in support of past, present and planned missions. We gratefully acknowledge the support of JPL's Research and Technology Development and Strategic Hire Programs, and of the NASA Outer Planets Research and Planetary Geology and Geophysics programs. Dalton, III, J.B., Spectroscopy of icy moon surface materials, Space Sci. Rev. 153:219-247, 2010. Dalton, III, J.B., and Pitman, K.M., Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces, J. Geophys. Res. 117:E09001, doi:10.1029/2011JE004036, 2012. Hapke, B.W., Bidirectional reflectance spectroscopy I. Theory, J. Geophys. Res. 86, 3039-3054, 1981. Shkuratov, Y., L. Starukhina, H. Hoffmann, and G. Arnold, A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, Icarus 137, 235-246, 1999.

  4. Volcanoes and atmospheres; catastrophic influences on the planets

    USGS Publications Warehouse

    Kieffer, S.W.

    1986-01-01

    For a rare and brief instant in geologic time, we can imagine that the sulfurous, chromatic surface of Io (one of the satellites of Jupiter) lies quiet. Perhaps stars glisten brilliantly through the tenuous nigh sky. Here and there, thick icy fogs enshroud fumaroles where sulfur dioxide leaks from the underworld. Suddenly, a fissure splits the surface and billowing clouds of sulfurous gases and ice hurl orange and black ash into the atmosphere. Minute by minute, the intensity of the eruption builds; stars begin disappearing from the night sky. The rising plume inhales the nearby atmosphere, mixing it with the exhalations from the volcano. Particles of sulfur, sulfur dioxide snow and ash rise to 300 kilometers, later raining down across the planet a thousand kilometers away. 

  5. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  6. Ion implantation in ices and its relevance to the icy moons of the external planets

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Leto, G.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    Solid, atmosphere-less objects in the Solar System are continuously irradiated by energetic ions mostly in the keV-MeV energy range. Being the penetration depth of the incoming ions usually much lower than the thickness of the target, they are stopped into the ice. They deposit energy in the target induce the breaking of molecular bonds. The recombination of fragments produce different molecules. Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form new species containing the projectile. An ongoing research program performed at our laboratory has the aim to investigate ion implantation of reactive ions in many relevant ice mixtures. The results obtained so far indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by implantation of reactive ions. In particular we present data obtained after: • C, N and S implantation in water ice • H implantation in carbon and sulfur dioxide

  7. Peripheral kappa-opioid agonist, ICI 204448, evokes hypothermia in cold-exposed rats.

    PubMed

    Rawls, Scott M; Ding, Zhe; Gray, Alex M; Cowan, Alan

    2005-05-01

    ICI 204448, a selective kappa-opioid agonist with limited CNS access, can be used to discriminate central and peripheral opioid actions on physiological systems such as pain and thermoregulation. Therefore, we investigated the effect of ICI 204448 (2.5, 5, and 10 mg/kg, s.c.) on male Sprague-Dawley rats exposed to ambient temperatures of 5, 20, or 32 degrees C. ICI 204448 did not alter the body temperature of rats maintained at 20 or 32 degrees C. However, 5 and 10 mg/kg of ICI 204448 evoked significant hypothermia in rats exposed to 5 degrees C. The i.c.v. administration of nor-BNI, a kappa-opioid antagonist, did not affect the hypothermia produced by the systemic injection of ICI 204448. Thus, an involvement of brain kappa-opioid receptors in ICI 204448-evoked hypothermia is unlikely. The present data demonstrate for the first time that ICI 204448 produces hypothermia in cold-exposed rats and suggest that the role of peripheral kappa-opioid receptors in thermoregulation becomes more significant at cold ambient temperatures. Copyright (c) 2005 S. Karger AG, Basel.

  8. IcyTree: rapid browser-based visualization for phylogenetic trees and networks

    PubMed Central

    2017-01-01

    Abstract Summary: IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. Availability and Implementation: IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree. Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. Contact: tgvaughan@gmail.com PMID:28407035

  9. IcyTree: rapid browser-based visualization for phylogenetic trees and networks.

    PubMed

    Vaughan, Timothy G

    2017-08-01

    IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree . Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. tgvaughan@gmail.com. © The Author(s) 2017. Published by Oxford University Press.

  10. Phase behavior and thermodynamic modeling of ices - implications for the geophysics of icy satellites. (Invited)

    NASA Astrophysics Data System (ADS)

    Choukroun, M.

    2010-12-01

    Ground-based observations and space missions to the outer Solar System (Voyager, Galileo, Cassini-Huygens) have evidenced recent geologic activity on many satellites of the giant planets. The diversity in surface expression of these icy moons’ activity is striking: from a scarred and young surface on Europa,1 with hydrated salts that may originate from a liquid layer buried at depth,2 to the South Polar plumes of Enceladus,3 where water ice particles are expelled along with a myriad of more complex molecules,4 to Titan, largest satellite of Saturn, with a dense atmosphere and a hydrocarbon cycle similar to the hydrological cycle on Earth.5 Large icy moons, i.e. with a radius greater than 500 km, share two particularities: a high content in water (on the order of a 30-70% bulk composition), and an interior segregated between a water-dominated mantle and a silicate-dominated core. The many forms water may have beneath the surface (ice polymorphs, liquid, hydrated compounds) bear a crucial role in the detected or alleged activity, and in the potential for astrobiological relevance. Indeed, any endogenic activity can only be approached through geophysical modelling of the internal structure and the thermal evolution. Current internal structure models for the icy moonse.g.,6 rely mainly on the contribution of each internal layer to the moment of inertia, generating non-unique solutions due to the large variability in density of H2O-bearing phases. Thermal evolution models,e.g.,7 can help constrain further the internal structure and geophysical activity, by starting with a given initial composition and state and investigating the thickening of icy layers through time. However, such models require both observational datasets and a precise description, as a function of pressure, temperature, and composition, of the thermophysical properties of the individual layers. Over the past century, experimental studies have provided a comprehensive view of the phase diagram of

  11. The Role of Comets as Possible Contributors of Water and Prebiotic Organics to Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Charnley, S. B.

    2011-01-01

    The question of exogenous delivery of organics and water to Earth and other young planets is of critical importance for understanding the origin of Earth's water, and for assessing the prospects for existence of Earth-like exo-planets. Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth's water? The deuterium content of comets is key to ,assessing their role as contributors of water to Earth. Icy bodies today reside in two distinct reservoirs, the Oort Cloud and the Kuiper Disk (divided into the classical disk, the scattered disk, and the detached or extended disk populations). Orbital parameters can indicate the cosmic storage reservoir for a given comet. Knowledge of the diversity of comets within a reservoir assists in assessing their possible contribution to early Earth, but requires quantitative knowledge of their components - dust and ice. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical dispersion of an outer disk of icy planetesimals, imply that comets from KD and OC reservoirs should have diverse composition. The primary volatiles (native to the nucleus) provide the preferred metric for building a taxonomy for comets, and the number of comets so quantified is growing rapidly. Taxonomies based on native species (primary volatiles) are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3 and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional tests of the origin of cometary material. I will provide an overview of these aspects, and implications for the origin of Earth's water and prebiotic organics.

  12. ICIS Activity Subject Area Model

    EPA Pesticide Factsheets

    The Integrated Compliance Information System (ICIS) is a web-based system that provides information for the federal enforcement and compliance (FE&C) and the National Pollutant Discharge Elimination System (NPDES) programs.

  13. ICIS Contacts Subject Area Model

    EPA Pesticide Factsheets

    The Integrated Compliance Information System (ICIS) is a web-based system that provides information for the federal enforcement and compliance (FE&C) and the National Pollutant Discharge Elimination System (NPDES) programs.

  14. Planet Imager Discovers Young Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new

  15. Plume Collection Strategies for Icy World Sample Return

    NASA Technical Reports Server (NTRS)

    Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.

    2015-01-01

    Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.

  16. Un-Earth-like interiors of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.

    2015-12-01

    A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.

  17. Systemic ICI 182,780 alters the display of sexual behaviors in the female rat.

    PubMed

    Gardener, H E; Clark, A S

    2001-03-01

    The present study investigates the effects of the antiestrogen ICI 182,780 (ICI) on the display of sexual behaviors in female rats. ICI 182,780 is a pure anti-estrogen and when given systemically, ICI is thought to act only in the periphery, and is not believed to cross the blood brain barrier. The present study examines the effects of ICI on sexual receptivity and on paced mating behavior following treatment with estradiol benzoate (EB) and progesterone (P) (Experiment 1) or with EB alone (Experiment 2). In Experiment 1, ICI (250.0 microg) did not affect the display of receptivity or paced mating behavior induced by EB and P. In contrast, in Experiment 2 female rats receiving EB alone displayed a decrease in the level of sexual receptivity following treatment with 500.0 and 750.0 microg ICI (but not 250.0 microg ICI). In addition, in Experiment 2 EB-treated female rats receiving 250.0 microg ICI spent more time away from the male rat following an intromission and were more likely to exit from the male compartment following a mount. Last, ICI had potent antiestrogenic effects on vaginal cytology (Experiment 2) and on the uterus (Experiments 1 and 2). The present study supports a role for peripheral estrogen receptors in sexual receptivity and paced mating behavior and suggests that estrogen receptor activation may decrease the aversive sensation associated with sexual stimulation. Copyright 2001 Academic Press.

  18. ICI optical data storage tape: An archival mass storage media

    NASA Technical Reports Server (NTRS)

    Ruddick, Andrew J.

    1993-01-01

    At the 1991 Conference on Mass Storage Systems and Technologies, ICI Imagedata presented a paper which introduced ICI Optical Data Storage Tape. This paper placed specific emphasis on the media characteristics and initial data was presented which illustrated the archival stability of the media. More exhaustive analysis that was carried out on the chemical stability of the media is covered. Equally important, it also addresses archive management issues associated with, for example, the benefits of reduced rewind requirements to accommodate tape relaxation effects that result from careful tribology control in ICI Optical Tape media. ICI Optical Tape media was designed to meet the most demanding requirements of archival mass storage. It is envisaged that the volumetric data capacity, long term stability and low maintenance characteristics demonstrated will have major benefits in increasing reliability and reducing the costs associated with archival storage of large data volumes.

  19. Laboratory permittivity measurements of icy planetary analogs in the millimeter and submillimeter domains, in relation with JUICE mission.

    NASA Astrophysics Data System (ADS)

    Brouet, Y.; Jacob, K.; Murk, A.; Poch, O.; Pommerol, A.; Thomas, N.; Levasseur-Regourd, A. C.

    2015-12-01

    The European Space Agency's JUpiter ICy moons Explorer (JUICE) spacecraft is planned for launch in 2022 and arrival at Jupiter in 2030. It will observe the planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. One instrument on the JUICE spacecraft is the Sub-millimeter Wave Instrument (SWI), which will measure brightness temperatures from Jupiter's stratosphere and troposphere, and from subsurfaces of Jupiter's icy moons. In the baseline configuration SWI consists of two tunable sub-millimeter wave receivers operating from 530 to 625 GHz. As an alternative one of the receivers could cover the range of 1080 and 1275 GHz. Inversion models are strongly dependent on the knowledge of the complex relative permittivity (hereafter permittivity) of the target material to retrieve the physical properties of the subsurface (e.g. [1][2]). We set up a laboratory experiment allowing us to perform reproducible measurements of the complex scattering parameters S11 and S21 in the ranges of 70 to 110 GHz, of 100 to 160 GHz, of 140 to 220 GHz, of 140 to 220 GHz and of 510 to 715 GHz. These scattering parameters can be used to retrieve the permittivity of icy analogs of the surfaces and subsurfaces of Jupiter's icy moons in order to prepare the data interpretation of SWI [3]. The measurements are performed under laboratory conditions with a quasi-optical bench (Institute of Applied Physics, University of Bern). The icy analogs that we prepare in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy, Physics Institute, University of Bern), include two different porous water ice samples composed of fine-grained ice particles with a size range of 4 to 6 microns and ice particles with a size range of 50 to 100 microns [4][5]; and possibly CO2 ice. We will present the general experimental set-up and the first results in the context to prepare the data interpretation of SWI. [1] Ulaby, F. T., Long, D. G., 2014. Microwave radar and radiometric remote

  20. The comparative effects of ICI 118551 and propranolol on essential tremor.

    PubMed Central

    Jefferson, D; Wharrad, H J; Birmingham, A T; Patrick, J M

    1987-01-01

    1. The effects of the selective beta 2-adrenoceptor antagonist ICI 118551 on essential tremor, heart rate and blood pressure were compared with those of propranolol. 2. ICI 118551 (150 mg daily for 7 days) and propranolol (120 mg daily for 7 days) were about equally effective in reducing essential tremor (by about 40%) and were more effective than placebo. 3. When compared with the effect of placebo, propranolol reduced blood pressure and exercise heart rate whereas ICI 118551 had no significant effect on blood pressure and produced a small but significant reduction in exercise-induced tachycardia. 4. ICI 118551 may be useful in the management of essential tremor while having fewer cardiovascular side-effects than non-selective beta-adrenoceptor antagonists. PMID:2894217

  1. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  2. Polymerization of Building Blocks of Life on Europa and Other Icy Moons.

    PubMed

    Kimura, Jun; Kitadai, Norio

    2015-06-01

    The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons--Europa, Ganymede, and possibly Callisto--may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life.

  3. Some laboratory investigations on Bayer 73 and ICI 24223 as molluscicides*

    PubMed Central

    Meyling, A. H.; Schutte, C. H. J.; Pitchford, R. J.

    1962-01-01

    The authors report on laboratory tests of the chemical properties and molluscicidal activity of the compounds Bayer 73 (70% wettable powder) and ICI 24223 (acid salt and emulsion), and describe the method used for the determination of ICI 24223. It is suggested that field applications of the ICI 24223 acid salt and of Bayer 73 should produce similar results in running and stagnant soft water. Bayer 73 showed a diminution of molluscicidal activity in hard water. PMID:14473215

  4. Integrated Compliance Information System (ICIS)

    EPA Pesticide Factsheets

    The purpose of ICIS is to meet evolving Enforcement and Compliance business needs for EPA and State users by integrating information into a single integrated data system that supports both management and programmatic requirements of the Enforcement and Compliance programs.

  5. It's Far, It's Small, It's Cool: It's an Icy Exoplanet!

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Using a network of telescopes scattered across the globe, including the Danish 1.54m telescope at ESO La Silla (Chile), astronomers [1] discovered a new extrasolar planet significantly more Earth-like than any other planet found so far. The planet, which is only about 5 times as massive as the Earth, circles its parent star in about 10 years. It is the least massive exoplanet around an ordinary star detected so far and also the coolest [2]. The planet most certainly has a rocky/icy surface. Its discovery marks a groundbreaking result in the search for planets that support life. ESO PR Photo 03a/06 ESO PR Photo 03a/06 Artist's Impression of the Newly Found Exoplanet The new planet, designated by the unglamorous identifier of OGLE-2005-BLG-390Lb, orbits a red star five times less massive than the Sun and located at a distance of about 20,000 light years, not far from the centre of our Milky Way galaxy. Its relatively cool parent star and large orbit implies that the likely surface temperature of the planet is 220 degrees Centigrade below zero, too cold for liquid water. It is likely to have a thin atmosphere, like the Earth, but its rocky surface is probably deeply buried beneath frozen oceans. It may therefore more closely resemble a more massive version of Pluto, rather than the rocky inner planets like Earth and Venus. "This planet is actually the first and only planet that has been discovered so far that is in agreement with the theories for how our Solar System formed ", said Uffe Gråe Jørgensen (Niels Bohr Institute, Copenhagen, Denmark), member of the team. The favoured theoretical explanation for the formation of planetary systems proposes that solid 'planetesimals' accumulate to build up planetary cores, which then accrete nebular gas - to form giant planets - if they are sufficiently massive. Around red dwarfs, the most common stars of our Galaxy, this model favours the formation of Earth- to Neptune-mass planets being between 1 and 10 times the Earth

  6. Exchange processes from the deep interior to the surface of icy moons

    NASA Astrophysics Data System (ADS)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  7. Far Ultraviolet Spectroscopy of Saturn's Icy Moon Rhea

    NASA Astrophysics Data System (ADS)

    Elowitz, Mark; Hendrix, Amanda; Mason, Nigel J.; Sivaraman, Bhalamurugan

    2018-01-01

    We present an analysis of spatially resolved, far-UV reflectance spectra of Saturn’s icy satellite Rhea, collected by the Cassini Ultraviolet Imaging Spectrograph (UVIS). In recent years ultraviolet spectroscopy has become an important tool for analysing the icy satellites of the outer solar system (1Hendrix & Hansen, 2008). Far-UV spectroscopy provides unique information about the molecular structure and electronic transitions of chemical species. Many molecules that are suspected to be present in the icy surfaces of moons in the outer solar system have broad absorption features due to electronic transitions that occur in the far-UV portion of the spectrum. The studies show that Rhea, like the other icy satellites of the Saturnian system are dominated by water-ice as evident by the 165-nm absorption edge, with minor UV absorbing contaminants. Far-UV spectra of several Saturnian icy satellites, including Rhea and Dione, show an unexplained weak absorption feature centered near 184 nm. To carry out the geochemical survey of Rhea’s surface, the UVIS observations are compared with vacuum-UV spectra of thin-ice samples measured in laboratory experiments. Thin film laboratory spectra of water-ice and other molecular compounds in the solid phase were collected at near-vacuum conditions and temperatures identical to those at the surface of Rhea. Comparison between the observed far-UV spectra of Rhea’s surface ice and modelled spectra based on laboratory absorption measurements of different non-water-ice compounds show that two possible chemical compounds could explain the 184-nm absorption feature. The two molecular compounds include simple chlorine molecules and hydrazine monohydrate. Attempts to explain the source(s) of these compounds on Rhea and the scientific implications of their possible discovery will be summarized.[1] Hendrix, A. R. & Hansen, C. J. (2008). Icarus, 193, pp. 323-333.

  8. 76 FR 28950 - Lynn Canal/Icy Straits Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lynn Canal/Icy Straits Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lynn Canal/Icy Straits Resource Advisory Committee will hold a teleconference, June 9, 2011. The purpose of this meeting is to discuss metrics and...

  9. Tilted geostrophic convection in icy world oceans caused by the horizontal component of the planetary rotation vector

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2012-12-01

    The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume

  10. Proposal of ICI cancellation using opposite weightings on symmetric subcarrier pairs in CO-OFDM systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Chen, Xuemei; Deng, Mingliang; Zeng, Dengke; Yang, Heming; Qiu, Kun

    2015-08-01

    We propose a novel ICI cancellation using opposite weighting on symmetric subcarrier pairs to combat the linear phase noise of laser source and the nonlinear phase noise resulted from the fiber nonlinearity. We compare the proposed ICI cancellation scheme with conventional OFDM and the ICI self-cancellation at the same raw bit rate of 35.6 Gb/s. In simulations, the proposed ICI cancellation scheme shows better phase noise tolerance compared with conventional OFDM and has similar phase noise tolerance with the ICI self-cancellation. The laser linewidth is about 13 MHz at BER of 2 × 10-3 with ICI cancellation scheme while it is 5 MHz in conventional OFDM. We also study the nonlinearity tolerance and find that the proposed ICI cancellation scheme is better compared with the other two schemes which due to the first order nonlinearity mitigation. The launch power is 7 dBm for the proposed ICI cancellation scheme and its SNR improves by 4 dB or 3 dB compared with the ICI self-cancellation or conventional OFDM at BER of 1.1 × 10-3, respectively.

  11. Exobiology of icy satellites

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.

    At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer

  12. Polymerization of Building Blocks of Life on Europa and Other Icy Moons

    PubMed Central

    Kitadai, Norio

    2015-01-01

    Abstract The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons—Europa, Ganymede, and possibly Callisto—may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life. Key Words: Planetary science—Europa—Planetary habitability and biosignatures—Extraterrestrial life—Extraterrestrial organic compounds. Astrobiology 15, 430–441. PMID:26060981

  13. ICIS Facility Interest Subject Area Model

    EPA Pesticide Factsheets

    The Integrated Compliance Information System (ICIS) is a web-based system that provides information for the federal enforcement and compliance (FE&C) and the National Pollutant Discharge Elimination System (NPDES) programs.

  14. ICIS FE&C Compliance Monitoring Screens

    EPA Pesticide Factsheets

    Web Based Training for Integrated Compliance Information System Updated Compliance Monitoring Training for ICIS Federal Enforcement and Compliance User. This training goes through the changes in the screens for the application.

  15. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Dougherty, M. K.; Coustenis, A.; Bunce, E. J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L. N.; Hussmann, H.; Jaumann, R.; Krupp, N.; Lebreton, J.-P.; Prieto-Ballesteros, O.; Tortora, P.; Tosi, F.; Van Hoolst, T.

    2013-04-01

    Past exploration of Jupiter's diverse satellite system has forever changed our understanding of the unique environments to be found around gas giants, both in our solar system and beyond. The detailed investigation of three of Jupiter's Galilean satellites (Ganymede, Europa, and Callisto), which are believed to harbour subsurface water oceans, is central to elucidating the conditions for habitability of icy worlds in planetary systems in general. The study of the Jupiter system and the possible existence of habitable environments offer the best opportunity for understanding the origins and formation of the gas giants and their satellite systems. The JUpiter ICy moons Explorer (JUICE) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015-2025, will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. The investigations of the neighbouring moons, Europa and Callisto, will complete a comparative picture of the Galilean moons and their potential habitability. Here we describe the scientific motivation for this exciting new European-led exploration of the Jupiter system in the context of our current knowledge and future aspirations for exploration, and the paradigm it will bring in the study of giant (exo) planets in general.

  16. Survival of extrasolar giant planet moons in planet-planet scattering

    NASA Astrophysics Data System (ADS)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  17. Asteroid Icy Regolith Excavation and Volatile Capture Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mantovani, James; Swanger, Adam; Townsend, Ivan

    2015-01-01

    Icy regolith simulants will be produced in a relevant vacuum environment using various minerals, including hydrated minerals, that are found in C-type meteorites and in other types of planetary regolith. This will allow us to characterize the mechanical strength of the icy regolith as a function of ice content using penetration, excavation, and sample capture devices. The results of this study will benefit engineers in designing efficient regolith excavators and ISRU processing systems for future exploration missions to asteroids and other planetary bodies.

  18. Icy Moon Absorption Signatures: Probes of Saturnian Magnetospheric Dynamics and Moon Activity

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Jones, G. H.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Motschmann, U.; Dougherty, M. K.; Lagg, A.; Woch, J.

    2006-12-01

    After the first flybys at the outer planets by the Pioneer and Voyager probes, it became evident that energetic charged particle absorption features in the radiation belts are important tracers of magnetospheric dynamical features and parameters. Absorption signatures are especially important for characterizing the Saturnian magnetosphere. Due to the spin and magnetic axes' near-alignment, losses of particles to the icy moon surfaces and rings are higher compared to the losses at other planetary magnetospheres. The refilling rate of these absorption features (termed "micorsignatures") can be associated with particle diffusion. In addition, as these microsignatures drift with the properties of the pre-depletion electrons, they provide us direct information on the drift shell structure in the radiation belts and the factors that influence their shape. The multiple icy moon L-shell crossings by the Cassini spacecraft during the first 2 years of the mission provided us with almost 100 electron absorption events by eight different moons, at various longitudinal separations from each one and at various electron energies. Their analysis seems to give a consistent picture of the electron diffusion source and puts aside a lot of inconsistencies that resulted from relevant Pioneer and Voyager studies. The presence of non-axisymmetric particle drift shells even down to the orbit of Enceladus (3.98 Rs), also revealed through this analysis, suggests either large ring current disturbances or the action of global or localized electric fields. Finally, despite these absorption signatures being observed far from the originating moons, they can give us hints on the nature of the local interaction between each moon and the magnetospheric plasma. It is, nevertheless, beyond any doubt that energetic charged particle absorption signatures are a very powerful tool that can be used to effectively probe a series of dynamical processes in the Saturnian magnetosphere.

  19. Heating of Porous Icy Dust Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirono, Sin-iti

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. Themore » mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.« less

  20. Layered Craters and Icy Plains

    NASA Image and Video Library

    2015-12-05

    This highest-resolution image from NASA's New Horizons spacecraft reveals new details of Pluto's rugged, icy cratered plains. Notice the layering in the interior walls of many craters (the large crater at upper right is a good example) -- layers in geology usually mean an important change in composition or event but at the moment New Horizons team members do not know if they are seeing local, regional or global layering. The darker crater in the lower center is apparently younger than the others, because dark material ejected from within -- its "ejecta blanket" -- have not been erased and can still be made out. The origin of the many dark linear features trending roughly vertically in the bottom half of the image is under debate, but may be tectonic. Most of the craters seen here lie within the 155-mile (250-kilometer)-wide Burney Basin, whose outer rim or ring forms the line of hills or low mountains at bottom. The basin is informally named after Venetia Burney, the English schoolgirl who first proposed the name "Pluto" for the newly discovered planet in 1930. The top of the image is to Pluto's northwest. These images were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, in a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto-- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20200

  1. Thermal Conductivity Measurements on Icy Satellite Analogs

    NASA Technical Reports Server (NTRS)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  2. The ICI classification for calcaneal injuries: a validation study.

    PubMed

    Frima, Herman; Eshuis, Rienk; Mulder, Paul; Leenen, Luke

    2012-06-01

    The integral classification of injuries (ICI), by Zwipp et al. has been developed as a classification system for injuries of the bones, joints, cartilage and ligaments of the foot. It follows the principles of the comprehensive classification of fractures by Müller et al. The ICI was developed for 'everyday use' and scientific purposes. Our aim was to perform a validation study for this classification system applied to the calcaneal injuries. A panel of five experienced trauma and orthopaedic surgeons evaluated the ICI score in 20 calcaneal injuries. After 2 months, a second classification was performed in a different order. Inter- and intra-observer variability were evaluated by kappa statistics. Panel members were not able to evaluate capsule and ligamental injuries based on X-ray and computed tomography (CT) films. Two injuries were excluded for logistical reasons. The inter-observer agreement based on 18 injuries of bone and joints was slight; kappa 0.14 (90% confidence interval (CI): 0.05-0.22). The intra-observer agreement was fair; kappa 0.31 (90% CI: 0.22-0.41). Overall, the panel rated the system as very complicated and not practical. The ICI is a complicated classification system with slight to fair inter- and intra-observer variabilities. It might not be a practical classification system for calcaneal injuries in 'everyday use' or scientific purposes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Flow and fracture of ices, with application to icy satellites (Invited)

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; Stern, L. A.; Pathare, A.; Golding, N.

    2013-12-01

    Exploration of the outer planets and their satellites by spacecraft over the past 4 decades has revealed that the prevailing low temperatures in the outer solar system have not produced "dead" cryoworlds of generic appearance. Rather, there is an extraordinary diversity in average densities, presence/absence and compositions of atmospheres and planetary rings, average albedos and their seasonal changes, near-surface compositions, and surface records of impact cratering and endogenic tectonic and igneous processes. One reason for this diversity is that the icy minerals present in abundance on many of these worlds are now or once were at significant fractions of their melting temperatures. Hence, a host of thermally activated processes related to endogenic activity (such as crystal defect migration, mass diffusion, surface transport, solid-solid changes of state, and partial melting) may occur that can enable inelastic flow on the surfaces and in the interiors of these bodies. Planetary manifestations include viscous crater relaxation in ice-rich terrain, cryovolcanism, the presence of a stable subsurface ocean, and the effects of solid-ice convection in deep interiors. We make the connection between theoretical mechanisms of deformation and planetary geology through laboratory experiment. Specifically, we develop quantitative constitutive flow laws (strain rate vs. stress) that describe the effects of relevant environmental variables (hydrostatic pressure, temperature, phase composition, chemical impurities). Our findings speak to topics including (1) the behavior of an outer ice I layer, its thickness, the depth to which a stagnant lid might extend, and possibility of wholesale overturn; (2) softening effects of dissolved species such as ammonia and perchlorate; (3) hardening effects of enclathration and of rock dust; and (4) effects of grain size on strength and factors affecting grain size. Other applications of lab data include dynamics of the deep interiors of

  4. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  5. ICIS Perm Storm Water Subject Area Model

    EPA Pesticide Factsheets

    The Integrated Compliance Information System (ICIS) is a web-based system that provides information for the federal enforcement and compliance (FE&C) and the National Pollutant Discharge Elimination System (NPDES) programs.

  6. The Scattering Properties of Natural Terrestrial Snows versus Icy Satellite Surfaces

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah; Hartman, Beth; Verbiscer, Anne

    1997-01-01

    Our comparisons of the single particle scattering behavior of terrestrial snows and icy satellite regoliths to the laboratory particle scattering measurements of McGuire and Hapke demonstrate that the differences between icy satellite regoliths and their terrestrial counterparts are due to particle structures and textures. Terrestrial snow particle structures define a region in the single particle scattering function parameter space separate from the regions defined by the McGuire and Hapke artificial laboratory particles. The particle structures and textures of the grains composing icy satellites regoliths are not simple or uniform but consist of a variety of particle structure and texture types, some of which may be a combination of the particle types investigated by McGuire and Hapke.

  7. Scattering properties of natural snow and frost - Comparison with icy satellite photometry

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne J.; Veverka, Joseph

    1990-01-01

    The Hapke (1986) equation is presently fit to ascertain the single-scattering albedo of the icy satellites of Uranus and Neptune and the one-term Henyey-Greenstein particle-phase function g for each of the Middleton and Mungall (1952) goniophotometric data samples. There emerge both very high single-scattering albedos and strongly forward-scattering particle phase functions; while these are in keeping with Mie theory-based theoretical considerations, they contrast with the observed backscattering behavior of icy satellites. It is suggested the icy satellite frost grains are aggregated into particles of complex texture, which produce the unusual backscattering behavior.

  8. Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  9. Ultraviolet Spectroscopy of the Surfaces of the Inner Icy Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.

    2008-12-01

    The Cassini mission has provided a unique opportunity to make high-resolution, multi-spectral measurements of Saturn's icy moons, to investigate their surface compositions, processes and evolution. Here we present results from the Ultraviolet Imaing Spectrograph (UVIS). This instrument allows for the first measurements of the icy satellites in the extreme ultraviolet (EUV) to far-ultraviolet (FUV) wavelength range. The icy satellites of the Saturn system exhibit a remarkable amount of variability: Dark, battered Phoebe orbiting at a distant 200 RS, black-and-white Iapetus, the wispy streaks of Dione, cratered Rhea and Mimas, bright Tethys and geologically active Enceladus. Phoebe, Iapetus and Hyperion all orbit largely outside Saturn's magnetosphere, while the inner icy satellites Mimas, Enceladus, Dione Tethys and Rhea all orbit within the magnetosphere. Furthermore, the inner icy satellites all orbit within the E-ring - so the extent of exogenic effects on these icy satellites is wide-ranging. We present an overview of UVIS results from Tethys, Dione, Mimas, Enceladus and Rhea, focusing on surface investigations. We expect that the UV signatures of these icy satellites are strongly influenced not only by their water ice composition, but by external effects and magnetospheric environments. We study the FUV reflectance spectra to learn about the surface composition, map out water ice grain size variations, investigate effects of coating by E-ring grains, examine disk-resolved and hemispheric compositional and brightness variations, and investigate the presence of radiation products. This is new work: FUV spectra of surfaces have not been well-studied in the past. Spectra of the inner icy moons have been used to better develop spectral models, to further understand existing lab data of water ice and to help with understanding instrument performance. Analysis is challenged by a lack of laboratory data in this wavelength region, but intriguing results are being found

  10. ICI 204448: a kappa-opioid agonist with limited access to the CNS.

    PubMed Central

    Shaw, J. S.; Carroll, J. A.; Alcock, P.; Main, B. G.

    1989-01-01

    1. A number of compounds were evaluated in an attempt to identify a kappa-opioid receptor agonist with limited access to the central nervous system. 2. Quaternary derivatives of the kappa-opioid agonists tifluadom, U-50488H and ethylketocyclazocine were essentially devoid of opioid activity in a range of isolated tissue preparations. 3. A novel compound - ICI 204448 - is described which produced a potent and naloxone-reversible inhibition of electrically-evoked contraction of the guinea-pig ileum, mouse vas deferens and rabbit vas deferens preparations. ICI 204448 was shown to displace the binding of the kappa-opioid ligand [3H]-bremazocine from guinea-pig cerebellum membranes. 4. Ex vivo binding studies in mice showed ICI 204448 to be well absorbed following subcutaneous administration. The brain levels achieved by ICI 20448 were substantially lower than those produced by kappa-agonists such as U-50488H and tifluadom. 5. A good correlation was found for a range of opioids between lipophilicity and degree of CNS penetration. PMID:2568146

  11. Exploring medium gravity icy planetary bodies: an opportunity in the Inner System by landing at Ceres high latitudes

    NASA Astrophysics Data System (ADS)

    Poncy, J.; Grasset, O.; Martinot, V.; Tobie, G.

    2009-04-01

    With potentially up to 25% of its mass as H2O and current indications of a differentiated morphology, 950km-wide "dwarf planet" Ceres is holding the promise to be our closest significant icy planetary body. Ceres is within easier reach than the icy moons, allowing for the use of solar arrays and not lying inside the deep gravity well of a giant planet. As such, it would represent an ideal step stone for future in-situ exploration of other airless icy bodies of major interest such as Europa or Enceladus. But when NASA's Dawn orbits Ceres and maps it in 2015, will we be ready to undertake the next logical step: landing? Ceres' gravity at its poles, at about one fifth of the Moon's gravity, is too large for rendezvous-like asteroid landing techniques to apply. Instead, we are there fully in the application domain of soft precision landing techniques such as the ones being developed for ESA's MoonNext mission. These latter require a spacecraft architecture akin to robotic lunar Landers or NASA's Phoenix, and differing from missions to comets and asteroids. If Dawn confirms the icy nature of Ceres under its regolith-covered surface, the potential presence of some ice spots on the surface would call for specific attention. Such spots would indeed be highly interesting landing sites. They are more likely to lie close to the poles of Ceres where cold temperatures should prevent exposed ice from sublimating and/or may limit the thickness of the regolith layer. Also the science and instruments suite should be fitted to study a large body that has probably been or may still be geologically active: its non-negligible gravity field combined with its high volatile mass fraction would then bring Ceres closer in morphology and history to an "Enceladus" or a frozen or near-frozen "Europa" than to a rubble-pile-structured asteroid or a comet nucleus. Thales Alenia Space and the "Laboratoire de Planétologie et Géodynamique" of the University of Nantes have carried out a preliminary

  12. Why Europa's icy shell may convect, but ice sheets do not: a glaciological perspective

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.

    2016-12-01

    Jupiter's moon Europa is covered in an icy shell that lies over a liquid ocean. Geological evidence and numerical models suggest that Europa's icy shell convects, providing the possibility that Europa may experience a form of plate tectonics and could even harbor life in its subsurface ocean. The hypothesis that Europa convects is supported by both models and geological evidence. Surprisingly, when we apply similar calculations and (assumptions) used by planetary scientists to infer convection in icy moons like Europa we find that these models also predict that vigorous convection should also occur in portions of our own terrestrial ice sheets and ice shelves where we have firm evidence to the contrary. We can explain the lack of convection within our own ice sheets by recognizing that instead of the diffusion creep limited rheology frequently invoked by planetary scientists, terrestrial ice undergoes power-law creep down to very low strain rates. Glaciological studies find that power-law creep is required to explain the structure of vertical strain rate near ice sheet divides and shape of the ice sheets near an ice divide. However, when we now apply a rheology that is consistent with terrestrial ice sheet dynamics to icy moon conditions, we find conditions are far less favorable for convection in icy moons, with only a very limited parameter regime where convection can occur. Given the many unknowns (grain size, impurities etc.) it is challenging to draw strong conclusions about the behavior of icy moons . Nonetheless, the lack of convection in terrestrial ice sheets provides an important constraint on the dynamics of icy moons and models that explain convection of icy moons should also explain the lack of convection on terrestrial ice sheets.

  13. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  14. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation.

    PubMed

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2016-03-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented.

  15. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1991-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Several other optical tape drive development programs are underway, including one using the IBM 3480 style cartridge at LaserTape Systems. In order to understand the significance and potential of this step change in recording technology, it is useful to review the historical progress of optical storage. This has been slow to encroach on magnetic storage, and has not made any serious dent on the world's mountains of paper and microfilm. Some of the reasons for this are the long time needed for applications developers, systems integrators, and end users to take advantage of the potential storage capacity; access time and data transfer rate have traditionally been too slow for high-performance applications; and optical disk media has been expensive compared with magnetic tape. ICI's strategy in response to these concerns was to concentrate its efforts on flexible optical media; in particular optical tape. The manufacturing achievements, media characteristics, and media lifetime of optical media are discussed.

  16. [High non-specific binding of the beta(1) -selective radioligand 2-(125)I-ICI-H].

    PubMed

    Riemann, B; Law, M P; Kopka, K; Wagner, St; Luthra, S; Pike, V W; Neumann, J; Kirchhefer, U; Schmitz, W; Schober, O; Schäfers, M

    2003-08-01

    As results of cardiac biopsies suggest, myocardial beta(1) -adrenoceptor density is reduced in patients with chronic heart failure. However, changes in cardiac beta(2)-adrenoceptors vary. With suitable radiopharmaceuticals single photon emission computed tomography (SPECT) and positron emission tomography (PET) offer the opportunity to assess beta-adrenoceptors non-invasively. Among the novel racemic analogues of the established beta(1)-selective adrenoceptor antagonist ICI 89.406 the iodinated 2-I-ICI-H showed high affinity and selectivity to beta(1)-adrenoceptors in murine ventricular membranes. The aim of this study was its evaluation as a putative sub-type selective beta(1)-adrenergic radioligand in cardiac imaging. Competition studies in vitro and in vivo were used to investigate the kinetics of 2-I-ICI-H binding to cardiac beta-adrenoceptors in mice and rats. In addition, the radiosynthesis of 2-(125)I-ICI-H from the silylated precursor 2-SiMe(3)-ICI-H was established. The specific activity was 80 GBq/ micro mol, the radiochemical yield ranged from 70 to 80%. The unlabelled compound 2-I-ICI-H showed high beta(1)-selectivity and -affinity in the in vitro competition studies. In vivo biodistribution studies apparently showed low affinity to cardiac beta-adrenoceptors. The radiolabelled counterpart 2-(125)I-ICI-H showed a high degree of non-specific binding in vitro and no specific binding to cardiac beta(1)-adrenoceptors in vivo. Because of its high non-specific binding 2-(125)I-ICI-H is no suitable radiotracer for imaging in vivo.

  17. Preclinical evaluation of an 18F-labelled beta1-adrenoceptor selective radioligand based on ICI 89,406.

    PubMed

    Law, Marilyn P; Wagner, Stefan; Kopka, Klaus; Renner, Christiane; Pike, Victor W; Schober, Otmar; Schäfers, Michael

    2010-05-01

    Radioligand binding studies indicate a down-regulation of myocardial beta(1)-adrenoceptors (beta(1)-AR) in cardiac disease which may or may not be associated with a decrease in beta(2)-ARs. We have chosen ICI 89,406, a beta(1)-selective AR antagonist, as the lead structure to develop new beta(1)-AR radioligands for PET and have synthesised a fluoro-ethoxy derivative (F-ICI). (S)-N-[2-[3-(2-Cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]-N'-[4-(2-[(18)F]fluoro-ethoxy)-phenyl]-urea ((S)-[(18)F]F-ICI) was synthesised. Myocardial uptake of radioactivity after intravenous injection of (S)-[(18)F]F-ICI into adult CD(1) mice or Wistar rats was assessed with positron emission tomography (PET) and postmortem dissection. Metabolism was assessed by high-performance liquid chromatography analysis of plasma and urine. The heart was visualised with PET after injection of (S)-[(18)F]F-ICI but neither unlabelled F-ICI nor propranolol (non-selective beta-AR antagonist) injected 15 min after (S)-[(18)F]F-ICI affected myocardial radioactivity. Ex vivo dissection demonstrated that predosing with propranolol or CGP 20712 (beta(1)-selective AR-antagonist) did not affect myocardial radioactivity. Radiometabolites rapidly appeared in plasma and both (S)-[(18)F]F-ICI and radiometabolites accumulated in urine. Myocardial uptake of (S)-[(18)F]F-ICI after intravenous injection was mainly at sites unrelated to beta(1)-ARs. (S)-[(18)F]F-ICI is not a suitable beta(1)-selective-AR radioligand for PET. (c) 2010 Elsevier Inc. All rights reserved.

  18. Preclinical evaluation of an 18F-labelled β1-adrenoceptor selective radioligand based on ICI 89,406

    PubMed Central

    Law, Marilyn P.; Wagner, Stefan; Kopka, Klaus; Renner, Christiane; Pike, Victor W.; Schober, Otmar; Schäfers, Michael

    2010-01-01

    Purpose Radioligand binding studies indicate a down-regulation of myocardial β1-adrenoceptors (β1-AR) in cardiac disease which may or may not be associated with a decrease in β2-ARs. We have chosen ICI 89,406, a β1-selective AR antagonist, as the lead structure to develop new β1-AR radioligands for PET and have synthesised a fluoro-ethoxy derivative (F-ICI). Methods (S)-N-[2-[3-(2-Cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]-N′-[4-(2-[18F]fluoro-ethoxy)-phenyl]-urea ((S)-[18F]F-ICI) was synthesised. Myocardial uptake of radioactivity after intravenous injection of (S)-[18F]F-ICI into adult CD1 mice or Wistar rats was assessed with positron emission tomography (PET) and postmortem dissection. Metabolism was assessed by high-performance liquid chromatography analysis of plasma and urine. Results The heart was visualised with PET after injection of (S)-[18F]F-ICI but neither unlabelled F-ICI nor propranolol (non-selective β-AR antagonist) injected 15 min after (S)-[18F]F-ICI affected myocardial radioactivity. Ex vivo dissection demonstrated that predosing with propranolol or CGP 20712 (β1-selective AR-antagonist) did not affect myocardial radioactivity. Radiometabolites rapidly appeared in plasma and both (S)-[18F]F-ICI and radiometabolites accumulated in urine. Conclusions Myocardial uptake of (S)-[18F]F-ICI after intravenous injection was mainly at sites unrelated to β1-ARs. (S)-[18F]F-ICI is not a suitable β1-selective-AR radioligand for PET. PMID:20447564

  19. Photometric Properties of Icy Bodies: A Comparison

    NASA Technical Reports Server (NTRS)

    Arakalian, B. J.; Buratti, T.

    1997-01-01

    Photometry is the quantitative measurement of reflected or emitted radiation. In the past 15 years, the classical study on planetary surfaces of arbitrary albedo, including bright icy satellites (e.g., Hapke, 1981 JGR, 1984 and 1986, Icarus).

  20. The evolution of icy satellite interiors and surfaces

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Lewis, J. S.

    1978-01-01

    The results obtained by Consolmagno (1975) with regard to the interiors of the smaller icy satellites are presented and the evolution of the surfaces of these objects in the light of the considered models is discussed. In the discussion the icy satellites are divided into two groups. Those with radii larger than 1000 km are composed primarily of high-pressure phases of ice. In the case of satellites of this group, internal heating may produce significant melting and solid-state convection may not be important. Those satellites with radii less than 1000 km will be composed primarily of ice I and rock. They will not significantly melt and internal convection is likely to be important.

  1. ICI bites demerger bullet, Zeneca guns for [Brit pounds]1. 3-billion rights issue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.; Alperowicz, N.

    1993-03-03

    Any lingering doubts as to ICI's (London) intentions to follow through its demerger proposals were dispelled last week. The company will hive off its bioscience business into Zeneca Group plc, which will make a [Brit pounds]1.3-billion ($1.9 billion) rights issue in June 1993. Shareholders, whose approval for the historic move will be sought in late May, will receive one fully paid Zeneca share for each ICI share. Proceeds from the rights issue will be used to reduce Zeneca's indebtedness to ICI by about 70%. Acknowledging that ICI had spread the jam too thinly' during its expansion in the 1980s, chiefmore » executive Ronnie Hampel says the new ICI will be a cost-conscious, no-frills' organization and that businesses that failed to perform would be restructured or closed. He is not expecting any help from the economy' in 1993. Of ICI's remaining petrochemicals and plastics businesses, Hampel says that despite stringent measures to reduce the cost base[hor ellipsis]it is clear they will not reach a return on capital that will justify reinvestment by ICI.' He does not see them as closure candidates but as 'businesses that will require further restructuring.' Hampel notes a dozen clearly identified areas for expansion,' including paints, catalysts, titanium dioxide, and chlorofluorocarbon replacements. Losses in materials, where substantial rationalization has failed to halt the slide, will be reduced on completion of the DuPont deal - expected by midyear. Further measures' would be necessary for the residual bit of advanced materials in the US,' he says.« less

  2. Sublimation of Ices Containing Organics and/or Minerals and Implications for Icy Bodies Surface Structure and Spectral Properties

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.

    2015-12-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977

  3. Space Environmental Erosion of Polar Icy Regolith

    NASA Technical Reports Server (NTRS)

    Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.

    2011-01-01

    While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].

  4. Long-term satisfaction and predictors of use in patients using intracorporeal injections (ICI) for post-prostatectomy erectile dysfunction (PPED)

    PubMed Central

    Prabhu, Vinay; Alukal, Joseph; Laze, Juliana; Makarov, Danil V.; Lepor, Herbert

    2013-01-01

    Purpose ICI has low utilization and high discontinuation rates. We examined factors associated with ICI use, long-term satisfaction with ICI, and reasons for discontinuation in men having undergone radical prostatectomy. Materials and Methods Between October 2000 and September 2003, 731 men undergoing open radical retropubic prostatectomy were enrolled in a prospective outcomes study. The eight-year follow-up evaluation included the UCLA-PCI and a survey capturing ICI use, satisfaction, and reasons for discontinuation. Logistic regression was utilized to determine associations between ICI use and pre-operative variables. Results Eight-year self-assessment was completed by 368 (50.4%) men; 140 (38%) of these indicated prior or current ICI use, with only 34 using ICI at eight years. Forty four percent of men were satisfied with ICI. Discontinuation reasons included: dislike (47%), pain (33%), return of erection (19%), inefficacy (14%), and no partner (6%). Men trying ICI had greater pre-operative UCLA-PCI sexual function scores (75.2 vs. 65.62, p = 0.00005) and greater declines in this score at three months (p = 0.0002) and two years (p = 0.003). Higher pre-operative sexual function scores were independently associated with utilization of ICI in a model adjusted for age, marital status, nerve sparing status, and BMI (OR =1.021, 95% CI 1.008–1.035). Conclusions Men pursuing ICI have better baseline erectile function and experience greater deterioration in erectile function during the early post-operative period. Despite high efficacy, many discontinue ICI due to dislike or discomfort. Satisfaction rates with ICI indicate its long-term role in restoring sexual function in men with PPED. PMID:23174252

  5. ICI and Penspen in Nigerian and Qatari methanol deals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    The U.K. consulting and engineering company Penspen Ltd. (London) has signed a second joint venture agreement in Qatar and has selected the ICI (London) methanol process. The technology will also be used in a world-scale methanol plant in Nigeria that Penspen is helping to set up. Under the first agreement, signed on January 1 with Qatar General Petroleum Corp. (QGPC), a 50/50 venture is being formed to build a $370-million, 2,000-m.t./day methanol plant at Umm Said. ICI will provide its low-pressure technology and help market 75% of the output. Completion is due late 1994.

  6. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  7. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    PubMed Central

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2015-01-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. PMID:26858981

  8. Former 9th and possible future 9th planet in the Solar system

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-12-01

    4 terrestrial planets and 4 giant planets were formed in the Solar system. The Main asteroid belt is located between them, and the Kuiper belt and Oort cloud are located beyond the giant planets. Therefore, the planetary system is surrounded by a swarm of rocky-icy bodies up to a distance of 105 AU. The former 9th planet in the Solar system, Pluto, is the first known object of the Kuiper Belt. Due to data from the spacecraft "New Horizons" we made significant progress in the study of the physical characteristics of the object and its surface. Numerous observations have shown that the Kuiper belt itself is dynamically stable. And the source of cometary nuclei is a disk scattered by the gravitational perturbation of the giant planets more than 4 billion years ago. Recently, it was reported on indirect evidence of the existence of a new 9th planet in the Solar system with a mass 10 times greater than the mass of the Earth, a distance from the Sun ∼200 AU at perihelion, 600-1200 AU at aphelion, and an orbital period of ∼15000 years. These conclusions are based on the calculation of the orbits of 6 presently known objects of the scattered disc. We pay attention that, in moments close to their discovery, they were located near the perihelion, had a maximum brightness and a maximum orbital velocity. On the basis of probabilistic assumptions, we estimated that the probable number of the same bodies with eccentric orbits should be estimated at many thousands rather than at a few. For the initial evaluation, we used observational data from the Infrared Space Telescope "WISE". They showed that any Saturn's analog has not been registered at distances up to 30 000 AU. Therefore, a super-Earth with a radius of <11000 km (with a mass of ∼10 Earth masses) would have been seen at a distance up to 1000 AU. Thus, either unknown 9th planet is now at a greater distance, or these results cannot be directly scaled to the super-Earth with a disproporti! onately lower internal heat

  9. Planet formation: constraints from transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    Ten extrasolar planets with masses between 105 and 430M⊕ are known to transit their star. The knowledge of their mass and radius allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. This is illustrated by HD209458b and XO-1b, two planets that appear to be larger than models would predict. Using a relatively simple evolution model, we show that the radius anomaly, i.e. the difference between the measured and theoretically calculated radii, is anticorrelated with the metallicity of the parent star. This implies that the present size, structure and composition of these planets is largely determined by the initial metallicity of the protoplanetary disk, and not, or to a lesser extent, by other processes such as the differences in the planets' orbital evolutions, tides due to finite eccentricities/inclinations and planet evaporation. Using evolution models including the presence of a core and parametrized missing physics, we show that all nine planets belong to a same ensemble characterized by a mass of heavy elements MZ that is a steep function of the stellar metallicity: from ˜ 10 M⊕ around a solar composition star, to ˜ 100 M⊕ for twice the solar metallicity. Together with the observed lack of giant planets in close orbits around metal-poor stars, these results imply that heavy elements play a key role in the formation of close-in giant planets. The large values of MZ and of the planet enrichments for metal-rich stars shows the need for alternative theories of planet formation including migration and subsequent collection of planetesimals.

  10. Synergistic effects of ICI 182,780 on the cytotoxicity of cisplatin in cervical carcinoma cell lines.

    PubMed

    García-López, Patricia; Rodríguez-Dorantes, Mauricio; Pérez-Cárdenas, Enrique; Cerbón, Marco; Mohar-Betancourt, Alejandro

    2004-06-01

    We investigated the ability of the novel pure antiestrogen ICI 182,780 to modulate the cytotoxic effects of cisplatin in several cervical cancer cell lines. The effect of cisplatin alone and cisplatin combined with ICI 182,780 on cellular death was studied using an assay based on a tetrazolium dye (sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium], XTT). Before and after treatment with ICI 182,780, expression of the estrogen and progesterone receptor genes were assessed by a reverse transcriptase polymerase chain reaction (RT-PCR). Cell-cycle modifications after combined treatment with cisplatin and ICI 182,780 were studied by flow cytometry. Analysis of the data by the isobologram method showed that the combination of ICI 182,780 and cisplatin produced a synergistic antiproliferative effect in cervical cancer cells. The effect of ICI 182,780 on the cytotoxicity of cisplatin could be mediated, at least partially, by inhibition of estrogen and progesterone gene expression and by arresting the cell cycle at the G(2)/M phase. Our results suggest that ICI 182,780 can improve the efficacy of cisplatin in cancer cells and that this antihormonal drug therapy may be a useful candidate for further evaluation in combination with antineoplastic drugs, particularly cisplatin, in the treatment of cancer.

  11. Porosity and the ecology of icy satellites

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    The case for a significant role for porosity in the structure and evolution of icy bodies in the Solar System has been difficult to establish. We present a relevant new data set and a series of structure models including a mechanical compression, not thermal creep, model for porosity that accounts satisfactorily for observed densities, moments of inertia, geologic activity, and sizes of tectonic features on icy satellites. Several types of observational data sets have been used to infer significant porosity, but until recently, alternative explanations have been preferred. Our first area of concern is the occurrence of cryovolcanism as a function of satellite radius; simple radiogenic heating models of icy satellites suggest minimum radii for melting and surface cryovolcanism to be 400 to 500 km, yet inferred melt deposits are seen on satellites half that size. One possible explanation is a deep, low conductivity regolith which lowers conductivity and raises internal temperatures, but other possibilities include tidal heating or crustal compositions of low conductivity. Our second area of concern is the occurrence and magnitude of tectonic strain; tectonic structures have been seen on icy satellites as small as Mimas and Proteus. The structures are almost exclusively extensional, with only a few possible compression Al features, and inferred global strains are on the order of 1 percent expansion. Expansions of this order in small bodies like Mimas and prevention of late compressional tectonics due to formation of ice mantles in larger bodies like Rhea are attained only in structure models including low-conductivity, and thus possibly high porosity, crusts. Thirdly, inferred moments of inertia less than 0.4 in Mimas and Tethys can be explained by high-porosity crusts, but also by differentiation of a high density core. Finally, the relatively low densities of smaller satellites like Mimas and Miranda relative to larger neighbors can be explained by deep porosity

  12. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  13. The Sensitivity to Trans-Neptunian Dwarf Planets of the Siding Spring Survey

    NASA Astrophysics Data System (ADS)

    Bannister, Michele; Brown, M. E.; Schmidt, B. P.; Francis, P.; McNaught, R.; Garrad, G.; Larson, S.; Beshore, E.

    2012-10-01

    The last decade has seen considerable effort in assessing the populations of icy worlds in the outer Solar System, with major surveys in the Northern and more recently, in the Southern Hemisphere skies. Our archival search of more than ten thousand square degrees of sky south of the ecliptic observed over five years is a bright-object survey, sensitive to dwarf-planet sized trans-Neptunian objects. Our innovative survey analyses observations of the Siding Spring Survey, an ongoing survey for near-Earth asteroids at the 0.5 m Uppsala telescope at Siding Spring Observatory. This survey observed each of 2300 4.55 square degree fields on between 30 and 90 of the nights from early 2004 to late 2009, creating a dataset with dense temporal coverage, which we reprocessed for TNOs with a dedicated pipeline. We assess our survey's sensitivity to trans-Neptunian objects by simulating the observation of the synthetic outer Solar System populations of Grav et al. (2011): Centaurs, Kuiper belt and scattered disk. As our fields span approx. -15 to -70 declination, avoiding the galactic plane by 10 degrees either side, we are particularly sensitive to dwarf planets in high-inclination orbits. Partly due to this coverage far from the ecliptic, all known dwarf planets, including Pluto, do fall outside our survey coverage in its temporal span. We apply the widest plausible range of absolute magnitudes to each observable synthetic object, measuring each subsequent apparent magnitude against the magnitude depth of the survey observations. We evaluate our survey's null detection of new dwarf planets in light of our detection efficiencies as a function of trans-Neptunian orbital parameter space. MTB appreciates the funding support of the Joan Duffield Postgraduate Scholarship, an Australian Postgraduate Award, and the Astronomical Society of Australia.

  14. ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis.

    PubMed

    Pinto, Patrícia I S; Singh, Pratap B; Condeça, João B; Teodósio, Helena R; Power, Deborah M; Canário, Adelino V M

    2006-12-27

    ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response.

  15. Fluffy dust forms icy planetesimals by static compression

    NASA Astrophysics Data System (ADS)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  16. Comets: Dirty snowballs or icy dirtballs

    NASA Astrophysics Data System (ADS)

    Keller, H. U.

    1989-12-01

    The observations of comet Halley show that the non-volatile (dust) component of the cometary nucleus has become more dominant if compared to the perception based on the icy conglomerate nucleus. The in-situ observations on the Giotto spacecraft revealed an excess of large dust particles that dominate the mass distribution. Even larger particles were derived from the attitude changes of the spacecraft bridging the gap to the cloud of particles observed by radar techniques. A dust to gas ratio larger than one was derived for comet Halley. The importance of dust for the structure of the nucleus is corroborated by the amount of particles and their lifetime in meteor streams. Fireballs show that large (meter size) objects separate from the nucleus and are stable enough to survive hundreds of orbital periods. From the various lines of evidence it is concluded that the structure of cometary nuclei is determined by the non-volatile component rather than by ice or snow. Laboratory models based on icy agglomerations do not seem realistic as nucleus analogs.

  17. Ocean-bearing planets near the ice line: How far does the water's edge go?

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Seager, S.; Gaudi, S.

    2008-12-01

    A leading theory for giant planet formation involves the accretion of a solid core, probably ice-rich, that in turn accretes a massive mantle of hydrogen-helium gas from a primordial disk. The relative timing of core formation and disappearance of nebular gas in a few millions of years is critical; the correlation between heavy element abundance in stellar photospheres and their propensity to host giant planets is cited as support for the theory. Conversely, systems that are relatively heavy element-poor or lose their gas earlier should contain either "failed" cores or a set of icy planetary embryos that did not accrete. Indeed, Uranus and Neptune may represent similar embryos that were scattered by Jupiter into the outer disk where they efficiently accreted planetesimals rich in volatiles with low condensation temperatures. We propose that a region straddling the "snowline" (3-5~AU for solar-mass stars) could frequently be inhabited by one or more water ice-rich, super-Earth-mass objects that accreted only a modest amount of nebular gas. We predict that metal-poor bulge and halo stars are more likely to host such objects. Current and future microlensing surveys will be able to determine the population of Earth-mass planets in this range of semimajor axes and test this hypothesis. If they are sufficiently frequent, the nearest examples will be detectable by the Space Interferometer Mission and perhaps a visible-light Terrestrial Planet Finder mission. We show that retention of a ~1~bar hydrogen-helium atmosphere is sufficient to maintain a surface water ocean, depending on semimajor axis and thermal history, and that sufficiently massive, "naked" ice planets can have interior oceans a la Europa. Planets with more substantial (>200~bar) atmospheres will be devoid of a liquid water phase at the surface. The existence of a surface water ocean could be inferred by the absence of highly soluble molecules such as NH3 or SO2 in the atmosphere. Objects with such oceans

  18. ICI to float tioxide in portfolio shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    1997-02-12

    This article discusses the economic plans for ICI, the second largest producer of titanium dioxide, TiO{sub 2}. The reallocation of funds by separating paint and TiO{sub 2} production should help to transform the company in the next century.

  19. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  20. Are [O-methyl-11C]derivatives of ICI 89,406 beta1-adrenoceptor selective radioligands suitable for PET?

    PubMed

    Law, Marilyn P; Wagner, Stefan; Kopka, Klaus; Pike, Victor W; Schober, Otmar; Schäfers, Michael

    2008-01-01

    Radioligand binding studies show that beta(1)-adrenoceptor (beta(1)-AR) density may be reduced in heart disease without down regulation of beta(2)-ARs. Radioligands are available for measuring total beta-AR density non-invasively with clinical positron emission tomography (PET) but none are selective for beta(1)- or beta(2)-ARs. The aim was to evaluate ICI 89,406, a beta(1)-AR-selective antagonist amenable to labelling with positron emitters, for PET. The S-enantiomer of an [O-methyl-(11)C] derivative of ICI 89,406 ((S)-[(11)C]ICI-OMe) was synthesised. Tissue radioactivity after i.v. injection of (S)-[(11)C]ICI-OMe (< 2 nmol x kg(-1)) into adult Wistar rats was assessed by small animal PET and post mortem dissection. Metabolism was assessed by HPLC of extracts prepared from plasma and tissues and by measuring [(11)C]CO(2) in exhaled air. The heart was visualised by PET after injection of (S)-[(11)C]ICI-OMe but neither unlabelled (S)-ICI-OMe nor propranolol (non-selective beta-AR antagonist) injected 15 min after (S)-[(11)C]ICI-OMe affected myocardial radioactivity. Ex vivo dissection showed that injecting unlabelled (S)-ICI-OMe, propranolol or CGP 20712A (beta(1)-selective AR antagonist) at high dose (> 2 mumol x kg(-1)) before (S)-[(11)C]ICI-OMe had a small effect on myocardial radioactivity. HPLC demonstrated that radioactivity in myocardium was due to unmetabolised (S)-[(11)C]ICI-OMe although (11)C-labelled metabolites rapidly appeared in plasma and liver and [(11)C]CO(2) was detected in exhaled air. Myocardial uptake of (S)-[(11)C]ICI-OMe after i.v. injection was low, possibly due to rapid metabolism in other tissues. Injection of unlabelled ligand or beta-AR antagonists had little effect indicating that binding was mainly to non-specific myocardial sites, thus precluding the use of (S)-[(11)C]ICI-OMe to assess beta(1)-ARs with PET.

  1. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  2. Analyzing surface features on icy satellites using a new two-layer analogue model

    NASA Astrophysics Data System (ADS)

    Morales, K. M.; Leonard, E. J.; Pappalardo, R. T.; Yin, A.

    2017-12-01

    The appearance of similar surface morphologies across many icy satellites suggests potentially unified formation mechanisms. Constraining the processes that shape the surfaces of these icy worlds is fundamental to understanding their rheology and thermal evolution—factors that have implications for potential habitability. Analogue models have proven useful for investigating and quantifying surface structure formation on Earth, but have only been sparsely applied to icy bodies. In this study, we employ an innovative two-layer analogue model that simulates a warm, ductile ice layer overlain by brittle surface ice on satellites such as Europa and Enceladus. The top, brittle layer is composed of fine-grained sand while the ductile, lower viscosity layer is made of putty. These materials were chosen because they scale up reasonably to the conditions on Europa and Enceladus. Using this analogue model, we investigate the role of the ductile layer in forming contractional structures (e.g. folds) that would compensate for the over-abundance of extensional features observed on icy satellites. We do this by simulating different compressional scenarios in the analogue model and analyzing whether the resulting features resemble those on icy bodies. If the resulting structures are similar, then the model can be used to quantify the deformation by calculating strain. These values can then be scaled up to Europa or Enceladus and used to quantity the observed surface morphologies and the amount of extensional strain accommodated by certain features. This presentation will focus on the resulting surface morphologies and the calculated strain values from several analogue experiments. The methods and findings from this work can then be expanded and used to study other icy bodies, such as Triton, Miranda, Ariel, and Pluto.

  3. ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis

    PubMed Central

    Pinto, Patrícia IS; Singh, Pratap B; Condeça, João B; Teodósio, Helena R; Power, Deborah M; Canário, Adelino VM

    2006-01-01

    Background ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). Methods Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. Results E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. Conclusion These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing

  4. ICI 182,780 penetrates brain and hypothalamic tissue and has functional effects in the brain after systemic dosing.

    PubMed

    Alfinito, Peter D; Chen, Xiaohong; Atherton, James; Cosmi, Scott; Deecher, Darlene C

    2008-10-01

    Previous reports suggest the antiestrogen ICI 182,780 (ICI) does not cross the blood-brain barrier (BBB). However, this hypothesis has never been directly tested. In the present study, we tested whether ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and affects known neuroendocrine functions in ovariectomized rats. Using HPLC with mass spectrometry, ICI (1.0 mg/kg.d, 3 d) was detected in plasma and brain and hypothalamic tissues for up to 24 h with maximum concentrations of 43.1 ng/ml, and 31.6 and 38.8 ng/g, respectively. To evaluate antiestrogenic effects of ICI in the brain after systemic dosing, we tested its ability to block the effect of 17 alpha-ethinyl estradiol (EE) (0.3 mg/kg, 8 d) on tail-skin temperature abatement in the morphine-dependent model of hot flush and on body weight change. In the morphine-dependent model, EE abated 64% of the naloxone-induced tail-skin temperature increase. ICI pretreatment (1.0, 3.0 mg/kg.d) dose dependently inhibited this effect. ICI (3.0 mg/kg.d) alone showed estrogenic-like actions, abating 30% the naloxone-induced flush. In body weight studies, EE-treated rats weighed 58.5 g less than vehicle-treated rats after 8 d dosing. This effect was partially blocked by ICI (3.0 mg/kg.d) pretreatment. Similar to EE treatment, rats receiving 1.0 or 3.0 mg/kg.d ICI alone showed little weight gain compared with vehicle-treated controls. Thus, ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and has both antiestrogenic and estrogenic-like actions on neuroendocrine-related functions.

  5. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that most single stars should have rocky planets in orbit about them; the frequency of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models for the formation of the giant planets found in recent radial velocity searches are discussed.

  6. Flow of Planets, Not Weak Tidal Evolution, Produces the Short-Period Planet Distribution with More Planets than Expected

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2013-01-01

    The most unexpected planet finding is arguably the number of those with shorter periods than theorists had expected, because most such close planets had been expected to migrate into the star in shorter timescales than the ages of the stars. Subsequent effort has been made to show how tidal dissipation in stars due to planets could be weaker than expected, but we show how the occurrence distribution of differently-sized planets is more consistent with the explanation that these planets have more recently arrived as a flow of inwardly migrating planets, with giant planets more likely to be found while gradually going through a short period stage. This continual ``flow'' of new planets arriving from further out is presumably supplied by the flow likely responsible for the short period pileup of giant planets (Socrates+ 2011). We have previously shown that the shortest period region of the exoplanet occurrence distribution has a fall-off shaped by inward tidal migration due to stellar tides, that is, tides on the star caused by the planets (Taylor 2011, 2012). The power index of the fall-off of giant and intermediate radius planet candidates found from Kepler data (Howard+ 2011) is close to the index of 13/3 which is expected for planets in circular orbits undergoing tidal migration. However, there is a discrepancy of the strength of the tidal migration determined using fits to the giant and medium planets distributions. This discrepancy is best resolved by the explanation that more giant than medium radii planets migrate through these short period orbits. We also present a correlation between higher eccentricity of planetary orbits with higher Fe/H of host stars, which could be explained by high eccentricity planets being associated with recent episodes of other planets into stars. By the time these planets migrate to become hot Jupiters, the pollution may be mixed into the star. The clearing of other planets by migrating hot giant planets may result in hot Jupiters

  7. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  8. Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells.

    PubMed

    Bhattacharyya, Rumi S; Krishnan, Aruna V; Swami, Srilatha; Feldman, David

    2006-06-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer. Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory or androgen-independent prostate cancer. In the present study, we showed that the antiestrogen fulvestrant [ICI 182,780 (ICI)] effectively suppressed AR expression in several human prostate cancer cells, including androgen-independent cells. In LNCaP cells, ICI (10 micromol/L) treatment decreased AR mRNA expression by 43% after 24 hours and AR protein expression by approximately 50% after 48 hours. We further examined the mechanism of AR down-regulation by ICI in LNCaP cells. ICI did not bind to the T877A-mutant AR present in the LNCaP cells nor did it promote proteasomal degradation of the AR. ICI did not affect AR mRNA or protein half-life. However, ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription. As a result of AR down-regulation by ICI, androgen induction of prostate-specific antigen mRNA and protein expression were substantially attenuated. Importantly, LNCaP cell proliferation was significantly inhibited by ICI treatment. Following 6 days of ICI treatment, a 70% growth inhibition was seen in androgen-stimulated LNCaP cells. These data show that the antiestrogen ICI is a potent AR down-regulator that causes significant inhibition of prostate cancer cell growth. Our study suggests that AR down-regulation by ICI would be an effective strategy for the treatment of all prostate cancer, especially AR-dependent androgen-independent prostate cancer.

  9. Jupiter icy moons orbiteer mission design overview

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.

    2006-01-01

    An overview of the design of a mission to three large moons of Jupiter is presented. the Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons.

  10. Crater Relaxation and Stereo Imaging of the Icy Satellites of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Beyer, R. A.; Nimmo, F.; Roberts, J. H.; Robuchon, G.

    2010-12-01

    Crater relaxation has been used as a probe of subsurface temperature structure for over thirty years, both on terrestrial bodies and icy satellites. We are developing and testing two independent methods for processing stereo pairs to produce digital elevation models, to address how crater relaxation depends on crater diameter, geographic location, and stratigraphic position on the icy satellites of Jupiter and Saturn. Our topographic profiles will then serve as input into two numerical models, one viscous and one viscoelastic, to allow us to probe the subsurface thermal profiles and relaxation histories of these satellites. We are constructing stereo topography from Galileo and Cassini image pairs using the NASA Ames Stereo Pipeline (Moratto et al. 2010), an automated stereogrammetry tool designed for processing planetary imagery captured from orbiting and landed robotic explorers on other planets. We will also be using the commercial program SOCET SET from BAE Systems (Miller and Walker 1993; 1995). Qualitatively, it is clear that there are large spatial variations in the degree of crater relaxation among Jupiter’s and Saturn’s satellites. However, our use of stereo topography will allow quantitative measures of crater relaxation (e.g. depth:diameter ratio or equivalent) to be derived. Such measures are essential to derive quantitative estimates of the heat fluxes responsible for this relaxation. Estimating how surface heat flux has varied with time provides critical constraints on satellite thermal (and orbital) evolution. Craters undergo viscous relaxation over time at a rate that depends on the temperature gradient and crater scale. We are investigating how the near-surface satellite heat flux varied in time and space, based on our crater relaxation observations. Once we have crater profiles from our DEMs, we use them as input to two theoretical approaches: a relatively simple (viscous) numerical model in which time-varying heat fluxes can be included, and

  11. The Anglo-Australian Planet Search. XXII. Two New Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Horner, J.; Tuomi, Mikko; Salter, G. S.; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Jenkins, J. S.; Zhang, Z.; Vogt, S. S.; Rivera, Eugenio J.

    2012-07-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 ± 427 days, and a minimum mass of 5.3 M Jup. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 ± 0.07). The second planet in the HD 159868 system has a period of 352.3 ± 1.3 days and m sin i = 0.73 ± 0.05 M Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  12. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems

  13. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines.

    PubMed

    Woode, Denzel R; Aiyer, Harini S; Sie, Nicole; Zwart, Alan L; Li, Liya; Seeram, Navindra P; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1-100 μg/mL) or with a sub-lethal dose of ICI (ICI in sensitive ZR75-1 and BT474 cells primarily in an additive fashion (measured by relative index (RI)~1). In ZR75-1R cells, both EJAE and RRE synergistically enhanced the effects of ICI (15-50%; P < 0.05; RI > 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses.

  14. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines

    PubMed Central

    Woode, Denzel R.; Aiyer, Harini S.; Sie, Nicole; Zwart, Alan L.; Li, Liya; Seeram, Navindra P.; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1–100 μg/mL) or with a sub-lethal dose of ICI (ICI in sensitive ZR75-1 and BT474 cells primarily in an additive fashion (measured by relative index (RI)~1). In ZR75-1R cells, both EJAE and RRE synergistically enhanced the effects of ICI (15–50%; P < 0.05; RI > 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses. PMID:23346406

  15. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of thesemore » systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.« less

  16. Icy Satellites of the Planets, and the Work of V.I. Moroz

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2006-01-01

    The satellites of the giant planets are highly varied in size and density, indicating a wide range of compositions. The principal components of these satellites are ices of many different compositions (with H2O the most abundant) and varying amounts of silicate rocky material. Many different ices have been found by spectroscopic techniques both from Earth-based observatories and from planetary spacecraft. Three of the Galilean satellites of Jupiter exhibit H2O ice on their surfaces, while small amounts of CO2 are present on Ganymede and Callisto. The volcanic satellite Io has abundant SO2 ice and frost deposits. Saturn s satellites have surfaces dominated by H2O ice, but CO2 is also present on most of them, and in the cases of the low-albedo satellites Iapetus and Phoebe, there is evidence of complex hydrocarbons mixed with the surface materials. The large Uranian satellites also have H2O-dominated surfaces, but CO2 has also been discovered on two of them. Neptune s largest satellite, Triton, show spectroscopic evidence for six different ices, including N2, CH4, CO, CO2, H2O, and C2H6. The latter ice is a photochemical product from the action of sunlight on Triton's atmosphere. Pluto is similar to Triton, although CO2 has not been found. Pluto s large satellite, Charon, shows evidence for an ammonia hydrate on part of its surface. V. I. Moroz was a pioneer in the application of near-infrared detectors to astronomical sources. Using a prism spectrometer he measured the spectra of the Galilean satellites of Jupiter, and in 1966 he published the first near-infrared spectra, noting the appearance of H2O ice as a major component of Europa and Ganymede. This discovery, and the techniques of Moroz measurements help set the stage for the broad extension of the study of planetary, satellite, and asteroid surfaces through reflectance spectroscopy in the near-infrared.

  17. Differential effects of centrally-administered oestrogen antagonist ICI-182,780 on oestrogen-sensitive functions in the hypothalamus.

    PubMed

    Steyn, F J; Anderson, G M; Grattan, D R

    2007-01-01

    Oestrogen actions within the hypothalamus are essential for a range of reproductive functions. In this study, we sought to develop a method for suppressing central oestrogen action without affecting peripheral oestrogenic effects. We administered the oestrogen receptor antagonist ICI-182,780 (ICI) via crystalline implants into the left lateral ventricle or the arcuate nucleus and measured the effectiveness of this drug on three endpoints known to be regulated by oestrogen: gonadotrophin-releasing hormone (GnRH) pulse frequency, progesterone receptor expression and the generation of a sustained prolactin surge during late pregnancy. To confirm that central ICI administration had no effect on peripheral actions of oestrogen, we monitored changes in uterine weight. Intracerebroventricular ICI treatment reversed the inhibitory effects of oestrogen on GnRH pulse frequency, as measured by plasma luteinising hormone pulse frequency. No effect on the oestrogenic induction of progesterone receptors within the arcuate nucleus or ventromedial hypothalamus was observed; however, a small yet significant reduction in progesterone receptor expression within dopaminergic neurones in the arcuate nucleus was observed. Intracerebroventricular or direct crystalline ICI administration to the arcuate nucleus did not change the serum prolactin level during late pregnancy. Central administration of ICI did not affect uterine weight, and thus did not have a peripheral effect. These data suggest that central administration of ICI can overcome some actions of oestrogen in the brain, such as GnRH pulse frequency, but does not affect other oestrogen mediated actions, including the induction of progesterone receptors or the antepartum prolactin surge. Thus, it appears that there is a differential sensitivity to the inhibition of central oestrogen actions by ICI.

  18. Asymmetric reproductive barriers and mosaic reproductive isolation: insights from Misty lake–stream stickleback

    PubMed Central

    Räsänen, Katja; Hendry, Andrew P

    2014-01-01

    Ecological speciation seems to occur readily but is clearly not ubiquitous – and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this “conundrum of missing reproductive isolation”, we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems. PMID:24772291

  19. Distinct Aqueous and Hydrocarbon Cryovolcanism on Titan and Other Icy Satellites (Invited)

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Furfaro, R.; Candelaria, P.

    2010-12-01

    Almost as soon as low-temperature solar nebula condensation sequences were first computed, it was realized that icy satellites have an internal heat source in long-lived radioactivities and could undergo differentiation; furthermore, freezing-point depressants, such as ammonia, and apolar gases, such as methane, could enable icy satellites to undergo aqueous cryovolcanism. The subsequent recognition of tidal and gravitational potential energy sources increased expectations for cryovolcanism. Voyager imaging and discovery of apparent cryovolcanic landforms—best exhibited by Triton, more ambiguous elsewhere-- motivated studies of the phase relations, phase densities and other thermodynamic properties, solid- and liquid-state rheologies, and possible cryovolcanic eruptive behaviors and landform characteristics. Ironically, the closer we examined Jovian icy moons with Galileo, the rarer cryovolcanic landforms appeared to be, with only a few compelling and very well characterized cases found mainly on Europa. Compelling examples of effusive cryovolcanism mainly occupied local topographic lows, whereas cases not in low spots tended to exhibit signs of explosive emplacement. Spectacular evidence of explosive cryovolcanism or geyser-like behavior was found by Cassini on Enceladus, but most other icy Saturnian moons did not reveal any compelling indicators of eruptions. Titan has so far been a mixed case, where some indicators of cryovolcanism have been reported, but there is scant compelling evidence for the process. We think that the sparseness of compelling effusive cryovolcanic features on icy satellites is because free, unreacted ammonia is less common than previously thought, and the main aqueous liquids are salt-water solutions denser than ice I; hence, they tend not to erupt, or they erupt only if driven by gas exsolution; even then, a thin ice shell and high heat flow is needed to allow aqueous liquids near enough to the surface to erupt. On satellites with thick

  20. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  1. Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Christensen, U. R.

    2009-04-01

    Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts

  2. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/`Oumuamua

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno

    2018-06-01

    In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.

  3. How should bladder sensation be measured? ICI-RS 2011.

    PubMed

    De Wachter, S; Smith, Philip P; Smith, P; Tannenbaum, C; Van Koeveringe, G; Drake, M; Wyndaele, J J; Chapple, C

    2012-03-01

    Disturbed bladder sensations, or in broader terms, sensory dysfunctions are increasingly recognized as key elements in the origin and manifestation of symptom syndromes of urinary dysfunction. Adequate assessment of bladder sensation is crucial to improve our understanding of the pathophysiology and treatment of urinary dysfunction. This manuscript summarizes the discussions of a think tank on "How to measure bladder sensation" held at the ICI-RS meeting in 2011. Based upon literature reviews on bladder sensation presented at the think tank in the ICI-RS meeting, discussions evolved which were summarized in the ICI-RS report. Different physicians/researchers further elaborated on this report, which is presented in this manuscript. Bladder sensations are not merely the result of bladder distension. Other factors inside the bladder or bladder wall: central processing and/or cognitive manipulation may play an important role. Current methods to measure sensations such as urodynamics, voiding diaries, forced diuresis, electrical stimulation and brain imaging are likely sub-optimal as they only consider part of these factors in isolation. Different methods to measure bladder sensations have been described and are used in clinical practice. Current methods only address part of the parameters responsible for the generation and perception of urinary sensations. Further focused research is required, and several recommendations are provided. Copyright © 2012 Wiley Periodicals, Inc.

  4. Experimental Constraints on the Fatigue of Icy Satellite Lithospheres by Tidal Forces

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Cooper, Reid F.; Caswell, Tess E.; Hirth, Greg

    2018-02-01

    Fatigue can cause materials that undergo cyclic loading to experience brittle failure at much lower stresses than under monotonic loading. We propose that the lithospheres of icy satellites could become fatigued and thus weakened by cyclical tidal stresses. To test this hypothesis, we performed a series of laboratory experiments to measure the fatigue of water ice at temperatures of 198 K and 233 K and at a loading frequency of 1 Hz. We find that ice is not susceptible to fatigue at our experimental conditions and that the brittle failure stress does not decrease with increasing number of loading cycles. Even though fatigue was not observed at our experimental conditions, colder temperatures, lower loading frequencies, and impurities in the ice shells of icy satellites may increase the likelihood of fatigue crack growth. We also explore other mechanisms that may explain the weak behavior of the lithospheres of some icy satellites.

  5. Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction

    NASA Astrophysics Data System (ADS)

    Hay, H.; Matsuyama, I.

    2015-12-01

    Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).

  6. The ODINUS Mission Concept: a Mission to the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Politi, Romolo; Peron, Roberto; Grassi, Davide; Plainaki, Christina; Barbieri, Mauro; Massimo Lucchesi, David; Magni, Gianfranco; Altieri, Francesca; Cottini, Valeria; Gorius, Nicolas; Gaulme, Patrick; Schmider, François-Xavier; Adriani, Alberto; Piccioni, Giuseppe

    2014-05-01

    We present the scientific case and the mission concept for the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of the ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, the ODINUS mission concept proposed the use of two twin spacecraft to be put in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that 'the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  7. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production.

    PubMed

    Pashkova, Tatiana M; Vasilchenko, Alexey S; Khlopko, Yuriy A; Kochkina, Elena E; Kartashova, Olga L; Sycheva, Maria V

    2018-03-08

    We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. Copyright © 2018 Pashkova et al.

  8. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production

    PubMed Central

    Pashkova, Tatiana M.; Vasilchenko, Alexey S.; Khlopko, Yuriy A.; Kochkina, Elena E.; Kartashova, Olga L.

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. PMID:29519833

  9. High Latitude Scintillations during the ICI-4 Rocket Campaign.

    NASA Astrophysics Data System (ADS)

    Patra, S.; Moen, J.

    2015-12-01

    We present the first results from the Norwegian ICI-4 sounding rocket campaign in February 2015. The ICI-4 was launched into F-region auroral blobs from the Andøya Space Center. The multi needle langmuir probe (m-NLP) on board the rocket sampled the ionospheric density structures at a sub-meter spatial resolution. A multi-phase screen model has been developed to estimate the scintillations from the density measurements acquired on-board spacecrafts. The phase screen model is validated and the comparison of the estimated values with scintillations measured by ground receivers during the campaign will be presented. A combination of scintillation receivers in Svalbard and surrounding areas as well as all sky imagers at Ny Ålesund, Longyerbyen, and Skibotn are used to improve the performance of the model.

  10. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less

  11. Mineralogy of Sediments on a Cold and Icy Early Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-12-01

    The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.

  12. THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Yanxiang; Zhou Jilin; Xie Jiwei

    2013-05-20

    Compared to the giant planets in the solar system, exoplanets have many remarkable properties, such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism to interpret the above and other observed properties. If the observed giant planet architectures are indeed outcomes of PPS, such a drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of PPS on the survival of exoplanets' regular moons. From an observational viewpoint, some preliminary conclusions are drawn from the simulations. (1) PPSmore » is a destructive process to the moon systems; single planets on eccentric orbits are not ideal moon-search targets. (2) If hot Jupiters formed through PPS, their original moons have little chance of survival. (3) Planets in multiple systems with small eccentricities are more likely to hold their primordial moons. (4) Compared with lower-mass planets, massive planets in multiple systems may not be the preferred moon-search targets if the system underwent a PPS history.« less

  13. 10 years of mapping the icy saturnian satellites

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Porco, Carolyn

    2014-05-01

    The Cassini spacecraft started its tour through the Saturnian system in July 2004. The Imaging Science Subsystem onboard the orbiter con-sists of a high-resolution Narrow Angle Camera (NAC) with a focal length of 2000 mm and a Wide Angle Camera (WAC) with a focal length of 200 mm [1]. One of the main objectives of the Cassini mission is to investigate the icy Saturnian satellites. These satellites were imaged in many flybys during the no-minal mission between 2004 and 2008. The imaging campaign continued during the first extended mission (''Equinox mission'') between 2008 and 2010 and continues during the current second extended mission (''Solstice mission''). It is now possible to image also the Northern parts of the Icy satellites which were not illuminated during the nominal mission. Mosaicking: The image data processing chain con-sists of the same steps as described in [2]: radiometric calibration, geometric correction, map projection, and mosaicking. Spacecraft position and camera pointing data are available in the form of SPICE kernels (http://naif.jpl.nasa.gov). While the orbit information is sufficiently accurate to be used directly for mapping purposes, the pointing information must be corrected using limb fits (semi-controlled mosaics) or by photo-grammetric bundle adjustment (controlled mosaics). The coordinate system adopted by the Cassini mis-sion for satellite mapping is the IAU ''planetographic'' system, consisting of planetographic latitude and posi-tive West longitude. The surface position of the prime meridian as defined by the IAU cartography working group [3] is defined by small craters. New values for the rotational parameter W0 which defines the location of the prime meridian at January 1, 2000 were calcula-ted based on the high-resolution mosaics to be consis-tent with this definition [4] and approved by the IAU [3]. Cartographic maps: Three different quadrangle schemes were used for the generation of the maps and the atlases [5]: • A

  14. Applications of High Etendue Line-Profile Spectro-Polarimetry to the Study of the Atmospheric and Magnetospheric Environments of the Jovian Icy Moons

    NASA Technical Reports Server (NTRS)

    Harris, Walter M.; Roesler, Fred L.; Jaffel, Lotfi Ben; Ballester, Gilda E.; Oliversen, Ronald J.; Morgenthaler, Jeffrey P.; Mierkiewicz, Edwin

    2003-01-01

    Electrodynamic effects play a significant, global role in the state and energization of the Earth's ionosphere/magnetosphere, but even more so on Jupiter, where the auroral energy input is four orders of magnitude greater than on Earth. The Jovian magnetosphere is distinguished from Earth's by its rapid rotation rate and contributions from satellite atmospheres and internal plasma sources. The electrodynamic effects of these factors have a key role in the state and energization of the ionosphere-corona- plasmasphere system of the planet and its interaction with Io and the icy satellites. Several large scale interacting processes determine conditions near the icy moons beginning with their tenuous atmospheres produced from sputtering, evaporative, and tectonic/volcanic sources, extending out to exospheres that merge with ions and neutrals in the Jovian magnetosphere. This dynamic environment is dependent on a complex network of magnetospheric currents that act on global scales. Field aligned currents connect the satellites and the middle and tail magnetospheric regions to the Jupiter's poles via flux tubes that produce as bright auroral and satellite footprint emissions in the upper atmosphere. This large scale transfer of mass, momentum, and energy (e.g. waves, currents) means that a combination of complementary diagnostics of the plasma, neutral, and and field network must be obtained near simultaneously to correctly interpret the results. This presentation discusses the applicability of UV spatial heterodyne spectroscopy (SHS) to the broad study of this system on scales from satellite surfaces to Jupiter's aurora and corona.

  15. Alternative control techniques document: NOx emissions from industrial/commercial/institutional (ICI) boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    Industrial, commercial, and institutional (ICI) boilers have been identified as a category that emits more than 25 tons of oxides of nitrogen (NOx) per year. This alternative control techniques (ACT) document provides technical information for use by State and local agencies to develop and implement regulatory programs to control NOx emissions from ICI boilers. Additional ACT documents are being developed for other stationary source categories. Chapter 2 summarizes the findings of this study. Chapter 3 presents information on the ICI boiler types, fuels, operation, and industry applications. Chapter 4 discusses NOx formation and uncontrolled NOx emission factors. Chapter 5 coversmore » alternative control techniques and achievable controlled emission levels. Chapter 6 presents the cost and cost effectiveness of each control technique. Chapter 7 describes environmental and energy impacts associated with implementing the NOx control techniques. Finally, Appendices A through G provide the detailed data used in this study to evaluate uncontrolled and controlled emissions and the costs of controls for several retrofit scenarios.« less

  16. Certification of ICI 1012 optical data storage tape

    NASA Technical Reports Server (NTRS)

    Howell, J. M.

    1993-01-01

    ICI has developed a unique and novel method of certifying a Terabyte optical tape. The tape quality is guaranteed as a statistical upper limit on the probability of uncorrectable errors. This is called the Corrected Byte Error Rate or CBER. We developed this probabilistic method because of two reasons why error rate cannot be measured directly. Firstly, written data is indelible, so one cannot employ write/read tests such as used for magnetic tape. Secondly, the anticipated error rates need impractically large samples to measure accurately. For example, a rate of 1E-12 implies only one byte in error per tape. The archivability of ICI 1012 Data Storage Tape in general is well characterized and understood. Nevertheless, customers expect performance guarantees to be supported by test results on individual tapes. In particular, they need assurance that data is retrievable after decades in archive. This paper describes the mathematical basis, measurement apparatus and applicability of the certification method.

  17. Bis(ethyl)norspermine potentiates the apoptotic activity of the pure antiestrogen ICI 182780 in breast cancer cells.

    PubMed

    Balabhadrapathruni, Srivani; Santhakumaran, Latha M; Thomas, T J; Shirahata, Akira; Gallo, Michael A; Thomas, Thresia

    2005-01-01

    We studied the effects of ICI 182780 and bis(ethyl)norspermine (BE-3-3-3) on cell growth and apoptosis of estrogen receptor-positive MCF-7 breast cancer cells. Combination treatment with 100 nM ICI 182780 and 5 microM BE-3-3-3 for 6 days inhibited cell growth by 74.3+/-8.4% in MCF-7 cells, compared to that of 25.4+/-5.8 and 45.8+/-12.2%, respectively, when ICI 182780 and BE-3-3-3 were used as single agents. Treatment with 100 nM ICI 182780 and 5 microM BE-3-3-3 as single agents resulted in 9.1+/-1.0% and 35.1+/-4.5% apoptosis, respectively, as measured by APO-BRDU assay. When ICI 182780 and BE-3-3-3 were used in combination, the percentage of apoptosis was 60.6+/-3.8%. Improved efficacy of ICI 182780 and BE-3-3-3 combination on growth inhibition was observed for T-47D cells also. Western blot analysis showed that combinations of ICI 182780 and BE-3-3-3 caused down-regulation of the anti-apoptotic Bcl-2 and Bcl-XL proteins and increased the level of the pro-apoptotic Bax protein. Combination treatment also increased caspase-8 activation. Analysis of polyamine levels 48 h after combination treatment showed that spermidine and spermine levels were down regulated significantly. These studies indicate a potentially effective combination strategy for breast cancer treatment. Our results also link the down-regulation of polyamine pathway to apoptotic cell death and regulation of mediators of cell death.

  18. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  19. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  20. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  1. ICI-III sounding rocket investigation of a Reversed flow event seen by the EISCAT Svalbard Radar

    NASA Astrophysics Data System (ADS)

    Dåbakk, Y.; Moen, J. I.; Carlson, H. C.; Saito, Y.; Abe, T.

    2014-12-01

    The Investigation of Cusp Irregularities (ICI)- III Sounding rocket was launched from Ny-Ålesund, Svalbard on December 3rd, 2011. The aim of the ICI-III mission was to investigate the physics of RFE class of cusp flow events. ICI-III intersected the first RFE (RFE1) in a sequence of in total 3 consecutive RFEs seen by the EISCAT Svalbard Radar (ESR). The ESR and ICI-III were geographically looking at the same region of the ionosphere both at the time ICI-III entered RFE1 on its poleward boundary and left it on its equatorward boundary, hence ESR tracked the rocket perfectly on entering and leaving RFE1. ICI-III measured hence for the first time detailed flows and precipitation within an RFE with a resolution down to tens of meters. The observations presented are used to test the various explanations that have been proposed as generation mechanisms for this phenomenon. The only consistent explanation that remains seems to be the theory suggested by Rinne et al. 2007, where an asymmetric version of the Southwood FTE twin cell model was proposed in which return flow develops predominantly on the poleward side of newly open flux since it is inhibited by the open-closed boundary (OCB) on the equatorward side to explain the RFE. By zooming into the RFE, detailed structure and dynamics within the RFE are revealed, previously unseen due to instrument resolution.

  2. Performance Comparison between CDTD and STTD for DS-CDMA/MMSE-FDE with Frequency-Domain ICI Cancellation

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuaki; Kojima, Yohei; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide a better bit error rate (BER) performance than rake combining. However, the residual inter-chip interference (ICI) is produced after MMSE-FDE and this degrades the BER performance. Recently, we showed that frequency-domain ICI cancellation can bring the BER performance close to the theoretical lower bound. To further improve the BER performance, transmit antenna diversity technique is effective. Cyclic delay transmit diversity (CDTD) can increase the number of equivalent paths and hence achieve a large frequency diversity gain. Space-time transmit diversity (STTD) can obtain antenna diversity gain due to the space-time coding and achieve a better BER performance than CDTD. Objective of this paper is to show that the BER performance degradation of CDTD is mainly due to the residual ICI and that the introduction of ICI cancellation gives almost the same BER performance as STTD. This study provides a very important result that CDTD has a great advantage of providing a higher throughput than STTD. This is confirmed by computer simulation. The computer simulation results show that CDTD can achieve higher throughput than STTD when ICI cancellation is introduced.

  3. Planet Formation - Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2005-01-01

    Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.

  4. Interactions Between Ocean Circulation and Topography in Icy Worlds

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2018-05-01

    To what extent does topography at the water-rock interface control the general circulation patterns of icy world oceans? And contrariwise, to what extent does liquid flow control the topography at the ice-water interface (or interfaces)?

  5. IPPF Co-operative Information Service (ICIS). February 1978.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    This publication is a catalogue of document descriptions that may be of use to national family planning/population organizations. The International Planned Parenthood Federation (IPPF) Cooperative Information Service (ICIS) has developed this quarterly series as a service to population documentation centers so that these centers can acquire the…

  6. Observsational Planet Formation

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  7. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    PubMed

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  8. Sex differences in the analgesic effects of ICI 182,780 and Flutamide on ureteral calculosis in rats.

    PubMed

    Affaitati, Giannapia; Ceccarelli, Ilaria; Fiorenzani, Paolo; Rossi, Cosmo; Pace, Maria Caterina; Passavanti, Maria Beatrice; Aurilio, Caterina; Sorda, Giuseppina; Danielli, Barbara; Giamberardino, Maria Adele; Aloisi, Anna Maria

    2011-01-01

    To better define the involvement of gonadal hormones in the sex differences observed in experimental visceral pain, we administered antagonists of estrogen receptors (ICI 182,780 [ICI]) or androgen receptors (Flutamide [FLU]) to adult male and female rats suffering from artificial ureteral calculosis. Subjects were divided into groups and treated with one of the substances (ICI, FLU) or sweet almond oil (OIL, vehicle) for 5 days, starting 2 days before surgery. On day 3, animals underwent surgery, with half receiving an artificial calculosis (Stone) and half only a sham procedure. The animals' behavior (number and duration of ureteral crises) and blood hormone levels (estradiol and testosterone) were determined in all groups. In OIL-treated rats the number and duration of crises were higher in females than in males. The administration of ICI or FLU resulted in hormonal effects in males and behavioral effects in females. In males ICI treatment increased estradiol plasma levels and FLU increased testosterone plasma levels; in females ICI and FLU treatments both decreased the number and duration of the ureteral crises. These results, confirming previous findings of higher sensitivity of females than males to urinary tract pain, showed the modulatory effects of estrogen and androgen antagonists on the behavioral responses induced by pain but only in females. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  10. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio andmore » the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.« less

  11. Identifying new surface constituents of icy moons using mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, Cindy L.; Wray, James J.; Hand, Kevin P.; Poston, Michael J.; Carlson, Robert W.; Clark, Roger N.; Spencer, John R.; Jennings, Donald E.

    2015-11-01

    Spectroscopic compositional studies of the icy satellites can help us to better understand the formation and evolution of material in the outer solar system. The spectral complexity of the Saturnian satellite system as seen in reflected visible light suggests additional complexity may be present at mid-infrared wavelengths from which unique compositional information can be gleaned [1]. In addition, the mid-infrared is the region of the stronger fundamental diagnostic vibrational modes of many compounds. However, Cassini Composite Infrared Spectrometer (CIRS) surface compositional studies have received little attention to date.We are exploring the suitability of mid-infrared spectroscopy for discovering non-H2O compounds on icy moon surfaces. On the dark terrain of Iapetus, we find an emissivity feature at ~855 cm-1 and a potential doublet at 660 and 690 cm-1 that do not correspond to any known instrument artifacts [2]. We attribute the 855 cm-1 feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths [3]. Although silicates on the dark terrains of Saturn’s icy moons have been suspected for decades, there have been no definitive prior detections. Serpentines measured at ambient conditions have features near 855 cm-1 and 660 cm-1 [4]. However, peaks can shift depending on temperature, pressure, and grain size, so measurements at Iapetus-like conditions are necessary for more positive identifications [e.g., 5].We measured the vacuum, low temperature (125 K) spectra of various fine-grained powdered silicates. We find that some of these materials do have emissivity features near 855 cm-1 and match the doublet. Identifying a specific silicate would provide clues into the sources and sinks of the dark material in the Saturnian system. We report on our ongoing exploration of the CIRS icy moon dataset and plans for future measurements in JPL’s Icy Worlds Simulation Lab.[1] Flasar, F

  12. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    NASA Astrophysics Data System (ADS)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (< 1000 m) with a higher depth resolution of ˜ 10-15 m. In addition to its subsurface exploration goals, MARSIS, that has a frequency range between 0.1 to 5.5 MHz, will study the ionosphere of Mars and providing a wealth of new information on Martian ionosphere. Both MARSIS and SHARAD have the potential of providing answers to a number of questions such as depth of ice-layers in the polar region and recently discovered ice-rich regions in both northern and southern hemispheres of Mars. The next generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides

  13. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  14. Inhibitory action of ICI-182,780, an estrogen receptor antagonist, on BK(Ca) channel activity in cultured endothelial cells of human coronary artery.

    PubMed

    Liu, Yen-Chin; Lo, Yi-Ching; Huang, Chin-Wei; Wu, Sheng-Nan

    2003-11-15

    ICI-182,780 is known to be a selective inhibitor of the intracellular estrogen receptors. The effect of ICI-182,780 on ion currents was studied in cultured endothelial cells of human coronary artery. In whole-cell current recordings, ICI-182,780 reversibly decreased the amplitude of K(+) outward currents. The decrease in outward current caused by ICI-182,780 could be counteracted by further application of magnolol or nordihydroguaiaretic acid, yet not by 17beta-estradiol. Under current-clamp condition, ICI-182,780 (3microM) depolarized the membrane potentials of the cells, and magnolol (10 microM) or nordihydroguaiaretic acid (10 microM) reversed ICI-182,780-induced depolarization. In inside-out patches, ICI-182,780 added to the bath did not alter single-channel conductance of large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels), but decreased their open probability. ICI-182,780 reduced channel activity in a concentration-dependent manner with an IC(50) value of 3 microM. After BK(Ca) channel activity was suppressed by 2-methoxyestradiol (3 microM), subsequent application of ICI-182,780 (3 microM) did not further reduce the channel activity. The application of ICI-182,780 shifted the activation curve of BK(Ca) channels to positive potentials. Its decrease in the open probability primarily involved a reduction in channel open duration. ICI-182,780 also suppressed the proliferation of these endothelial cells with an IC(50) value of 2 microM. However, in coronary smooth muscle cells, a bell-shaped concentration-response curve for the ICI-182,780 effect on BK(Ca) channel activity was observed. This study provides evidence that ICI-182,780 can inhibit BK(Ca) channels in vascular endothelial cells in a mechanism unlikely to be linked to its anti-estrogen activity. The inhibitory effects on these channels may partly contribute to the underlying mechanisms by which ICI-182,780 affects endothelial function.

  15. JUICE: a European mission to Jupiter and its icy moons

    NASA Astrophysics Data System (ADS)

    Titov, D.; Erd, C.; Duvet, L.; Wielders, A.; Torralba-Elipe, I.; Altobelli, N.

    2013-09-01

    JUICE (JUpiter ICy moons Explorer) is the first L-class mission selected for the ESA's Cosmic Vision programme 2015-2025 which has just entered the definition phase. JUICE will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. Investigations of Europa and Callisto will complete a comparative picture of the Galilean moons. By performing detailed investigations of Jupiter's system, JUICE will address in depth two key questions of the ESA's Cosmic Vision programme: (1) What are the conditions for planet formation and the emergence of life? and (2) How does the Solar System work? The overarching theme for JUICE has been formulated as: The emergence of habitable worlds around gas giants. At Ganymede the mission will characterize in detail the ocean layers; provide topographical, geological and compositional mapping of the surface; study the physical properties of the icy crusts; characterize the internal mass distribution, investigate the exosphere; study Ganymede's intrinsic magnetic field and its interactions with the Jovian magnetosphere. For Europa, the focus will be on the non-ice chemistry, understanding the formation of surface features and subsurface sounding of the icy crust over recently active regions. Callisto will be explored as a witness of the early solar system. JUICE will perform a comprehensive multidisciplinary investigation of the Jupiter system as an archetype for gas giants including exoplanets. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions and their response to the solar wind will be

  16. Effects of the antiestrogen fulvestrant (ICI 182,780) on gene expression of the rat efferent ductules.

    PubMed

    Yasuhara, Fabiana; Gomes, Gisele Renata Oliveira; Siu, Erica Rosanna; Suenaga, Cláudia Igushi; Maróstica, Elisabeth; Porto, Catarina Segreti; Lazari, Maria Fatima Magalhaes

    2008-09-01

    The efferent ductules express the highest amount of estrogen receptors ESR1 (ERalpha) and ESR2 (ERbeta) within the male reproductive tract. Treatment of rats with the antiestrogen fulvestrant (ICI 182,780) causes inhibition of fluid reabsorption in the efferent ductules, leading to seminiferous tubule atrophy and infertility. To provide a more comprehensive knowledge about the molecular targets for estrogen in the rat efferent ductules, we investigated the effects of ICI 182,780 treatment on gene expression using a microarray approach. Treatment with ICI 182,780 increased or reduced at least 2-fold the expression of 263 and 98 genes, respectively. Not surprisingly, several genes that encode ion channels and macromolecule transporters were affected. Interestingly, treatment with ICI 182,780 markedly altered the expression of genes related to extracellular matrix organization. Matrix metalloproteinase 7 (Mmp7), osteopontin (Spp1), and neuronal pentraxin 1 (Nptx1) were among the most altered genes in this category. Upregulation of Mmp7 and Spp1 and downregulation of Nptx1 were validated by Northern blot. Increase in Mmp7 expression was further confirmed by immunohistochemistry and probably accounted for the decrease in collagen content observed in the efferent ductules of ICI 182,780-treated animals. Downregulation of Nptx1 probably contributed to the extracellular matrix changes and decreased amyloid deposition in the efferent ductules of ICI 182,780-treated animals. Identification of new molecular targets for estrogen action may help elucidate the regulatory role of this hormone in the male reproductive tract.

  17. A passive low frequency instrument for radio wave sounding the subsurface oceans of the Jovian icy moons: An instrument concept

    NASA Astrophysics Data System (ADS)

    Hartogh, P.; Ilyushin, Ya. A.

    2016-10-01

    Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.

  18. The compression behavior of blödite at low and high temperature up to ~10GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra

    of blödite can be determined at conditions of the mantle of the large icy satellites of Jupiter. Blödite has higher density, bulk modulus and thermal stability than similar hydrous sulfates (e.g. mirabilite and epsomite) implying, therefore, a different contribution of these minerals to the extent of deep oceans in icy planets and their distribution over the local geotherms.« less

  19. Multi-layer hydrostatic equilibrium of planets and synchronous moons: theory and application to Ceres and to solar system moons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tricarico, Pasquale

    2014-02-20

    The hydrostatic equilibrium of multi-layer bodies lacks a satisfactory theoretical treatment despite its wide range of applicability. Here we show that by using the exact analytical potential of homogeneous ellipsoids we can obtain recursive analytical solutions and an exact numerical method for the hydrostatic equilibrium shape problem of multi-layer planets and synchronous moons. The recursive solutions rely on the series expansion of the potential in terms of the polar and equatorial shape eccentricities, while the numerical method uses the exact potential expression. These solutions can be used to infer the interior structure of planets and synchronous moons from their observedmore » shape, rotation, and gravity. When applied to the dwarf planet Ceres, we show that it is most likely a differentiated body with an icy crust of equatorial thickness 30-90 km and a rocky core of density 2.4-3.1 g cm{sup –3}. For synchronous moons, we show that the J {sub 2}/C {sub 22} ≅ 10/3 and the (b – c)/(a – c) ≅ 1/4 ratios have significant corrections of order Ω{sup 2}/(πGρ), with important implications for how their gravitational coefficients are determined from fly-by radio science data and for how we assess their hydrostatic equilibrium state.« less

  20. Origins and Destinations: Tracking Planet Composition through Planet Formation Simulations

    NASA Astrophysics Data System (ADS)

    Chance, Quadry; Ballard, Sarah

    2018-01-01

    There are now several thousand confirmed exoplanets, a number which far exceeds our resources to study them all in detail. In particular, planets around M dwarfs provide the best opportunity for in-depth study of their atmospheres by telescopes in the near future. The question of which M dwarf planets most merit follow-up resources is a pressing one, given that NASA’s TESS mission will soon find hundreds of such planets orbiting stars bright enough for both ground and spaced-based follow-up.Our work aims to predict the approximate composition of planets around these stars through n-body simulations of the last stage of planet formation. With a variety of initial disk conditions, we investigate how the relative abundances of both refractory and volatile compounds in the primordial planetesimals are mapped to the final planet outcomes. These predictions can serve to provide a basis for making an educated guess about (a) which planets to observe with precious resources like JWST and (b) how to identify them based on dynamical clues.

  1. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  2. δ opioid receptor antagonist, ICI 174,864, is suitable for the early treatment of uncontrolled hemorrhagic shock in rats.

    PubMed

    Liu, Liangming; Tian, Kunlun; Zhu, Yu; Ding, Xiaoli; Li, Tao

    2013-08-01

    Fluid resuscitation is the essential step for early treatment of traumatic hemorrhagic shock. However, its implementation is greatly limited before hospital or during evacuation. The authors investigated whether δ opioid receptor antagonist ICI 174,864 was suitable for the early treatment of traumatic hemorrhagic shock. With uncontrolled hemorrhagic-shock rats, the antishock effects of six dosages of ICI 174,864 (0.1, 0.3, 0.5, 1, 3, and 5 mg/kg) infused with or without a small volume of lactated Ringer's solution (LR) before bleeding controlled or bleeding cessation at different times were observed. ICI 174,864 (0.1-3 mg/kg) with or without 1/4 volume of LR infusion showed dose-dependent increase in the mean arterial blood pressure, and significantly prolonged the survival time and 8-h survival rate, as compared with ICI 174,864 plus 1/2 volume of LR infusion. The best effect was shown with 3 mg/kg of ICI 174,864. Bleeding cessation at 1, 2, or 3 h during infusion of ICI 174,864 (3 mg/kg) plus 1/4 volume of LR improved subsequent treatment (70% 24-h survival rate vs. 50 and 10% 24-h survival rate in hypotensive resuscitation and LR group, respectively). There was significant improvement in hemodynamic parameters, oxygen delivery, and tissue perfusion of hemorrhagic-shock rats with 3 mg/kg of ICI 174,864 plus 1/4 volume of LR infusion. δ Opioid receptor antagonist ICI 174,864 alone or with small volume of fluid infusion has good beneficial effect on uncontrolled hemorrhagic shock. Its early application can "buy" time for subsequent treatment of traumatic shock.

  3. Pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase.

    PubMed Central

    McMillan, R. M.; Spruce, K. E.; Crawley, G. C.; Walker, E. R.; Foster, S. J.

    1992-01-01

    1. This paper describes the pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase which is undergoing clinical evaluation. 2. ICI D2138 potently inhibited leukotriene synthesis in murine peritoneal macrophages (IC50 = 3 nM) and human blood (IC50 = 20 nM). In human and dog blood, ICI D2138 did not inhibit thromboxane B2 synthesis at a concentration of 500 microM, thus the selectivity ratio (cyclo-oxygenase: 5-lipoxygenase) was greater than 20,000. In contrast, zileuton (a 5-lipoxygenase inhibitor also undergoing clinical evaluation) exhibited a selectivity ratio of 15-100. 3. ICI D2138 potently and dose-dependently inhibited ex vivo leukotriene B4 (LTB4) synthesis by rat blood with ED50 values of 0.9, 4.0 and 80.0 mg kg-1 p.o. at 3, 10 and 20 h respectively after dosing. Similar activity was observed for inhibition of LTB4 production in a zymosan-inflamed rat air pouch model. Zileuton produced ED50 values of 5 and 20 mg kg-1 at 3 and 10 h respectively. 4. Oral administration of 1, 3 or 10 mg kg-1 ICI D2138 to dogs produced maximal inhibition of ex vivo LTB4 synthesis by blood for 5, 9 and 31 h respectively. A dose of 5 mg kg-1 p.o. of zileuton caused maximal inhibition of LTB4 for 24 h. 5. Oral administration of 10 mg kg-1 ICI D2138 caused total inhibition of LTB4 production in zymosan-inflamed rabbit knee joint. 6. Topical administration of ICI D2138 to rabbit skin caused a dose-related inhibition of arachidonic acid-induced plasma extravasation with an ID30 of 1.08 nmol per site.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1334748

  4. Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells.

    PubMed

    Garofalo, Cecilia; Sisci, Diego; Surmacz, Eva

    2004-10-01

    Obesity is a risk factor for breast cancer development in postmenopausal women and correlates with shorter disease-free and overall survival in breast cancer patients, regardless of menopausal status. Adipose tissue is a major source of leptin, a cytokine regulating energy balance and controlling different processes in peripheral tissues, including breast cancer cell growth. Here, we investigated whether leptin can counteract antitumorigenic activities of the antiestrogen ICI 182,780 in breast cancer cells. Mitogenic response to leptin and the effects of leptin on ICI 182,780-dependent growth inhibition were studied in MCF-7 estrogen receptor alpha-positive breast cancer cells. The expression of leptin receptor and the activation of signaling pathways were studied by Western immunoblotting. The interference of leptin with ICI 182,780-induced estrogen receptor alpha degradation was probed by Western immunoblotting, fluorescence microscopy, and pulse-chase experiments. Leptin effects on estrogen receptor alpha-dependent transcription in the presence and absence of ICI 182,780 were studied by luciferase reporter assays and chromatin immunoprecipitation. MCF-7 cells were found to express the leptin receptor and respond to leptin with cell growth and activation the signal transducers and activators of transcription 3, extracellular signal-regulated kinase-1/2, and Akt/GSK3/pRb pathways. The exposure of cells to 10 nmol/L ICI 182,780 blocked cell proliferation, induced rapid estrogen receptor alpha degradation, inhibited nuclear estrogen receptor alpha expression, and reduced estrogen receptor alpha-dependent transcription from estrogen response element-containing promoters. All of these effects of ICI 182,780 were significantly attenuated by simultaneous treatment of cells with 100 ng/mL leptin. Leptin interferes with the effects of ICI 182,780 on estrogen receptor alpha in breast cancer cells. Thus, high leptin levels in obese breast cancer patients might contribute to

  5. Poor response to alprostadil ICI test is associated with arteriogenic erectile dysfunction and higher risk of major adverse cardiovascular events.

    PubMed

    Rastrelli, Giulia; Corona, Giovanni; Monami, Matteo; Melani, Cecilia; Balzi, Daniela; Sforza, Alessandra; Forti, Gianni; Mannucci, Edoardo; Maggi, Mario

    2011-12-01

    Intracavernous alprostadil injection (ICI) test has been considered useless in assessing the vascular status of subjects with erectile dysfunction (ED). To analyze the clinical correlates of ICI test in patients with ED and to verify the value of this test in predicting major adverse cardiovascular events (MACE). A consecutive series of 2,396 men (mean age 55.9 ± 11.9 years) attending our outpatient clinic for sexual dysfunction was retrospectively studied. A subset of this sample (N = 1,687) was enrolled in a longitudinal study. Several clinical, biochemical, and instrumental (penile color Doppler ultrasound; PCDU) factors were evaluated. All patients underwent an ICI test, and responses were recorded on a four-point scale ranging from 1 = no response to 4 = full erection. Among the patients studied, 16.4%, 41.2%, 40.2% and 2.2% showed grade 4, 3, 2, and 1 ICI test response, respectively. After adjusting for confounders, subjects with grade 1 ICI test response showed reduced perceived sleep-related, masturbation-related, and sexual-related erections when compared with the rest of the sample. In addition, a worse response to ICI test was associated with a higher prevalence of hypogonadism-related symptoms and signs along with lower testosterone levels. The prevalence of both diabetes mellitus and metabolic syndrome was inversely related to ICI test response. Accordingly, dynamic and basal peak systolic velocity (PSV), as well as acceleration at PCDU, decreased as a function of ICI test response. In the longitudinal study, after adjusting for confounders, grade 1 response was independently associated with a higher incidence of MACE (hazard ratio = 2.745 [1.200-6.277]; P < 0.05). These data were confirmed even when only subjects with normal PSV (>25 cm/s) were considered. Our results demonstrate that poor ICI test response is associated with several metabolic disturbances and higher incidence of MACE. We strongly recommend performing ICI test with alprostadil in all

  6. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  7. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  8. Systems of Multiple Planets

    NASA Astrophysics Data System (ADS)

    Marcy, G. W.; Fischer, D. A.; Butler, R. P.; Vogt, S. S.

    To date, 10 stars are known which harbor two or three planets. These systems reveal secular and mean motion resonances in some systems and consist of widely separated, eccentric orbits in others. Both of the triple planet systems, namely Upsilon And and 55 Cancri, exhibit evidence of resonances. The two planets orbiting GJ 876 exhibit both mean-motion and secular resonances and they perturb each other so strongly that the evolution of the orbits is revealed in the Doppler measurements. The common occurrence of resonances suggests that delicate dynamical processes often shape the architecture of planetary systems. Likely processes include planet migration in a viscous disk, eccentricity pumping by the planet-disk interaction, and resonance capture of two planets. We find a class of "hierarchical" double-planet systems characterized by two planets in widely separated orbits, defined to have orbital period ratios greater than 5 to 1. In such systems, resonant interactions are weak, leaving high-order interactions and Kozai resonances plausibly important. We compare the planets that are single with those in multiple systems. We find that neither the two mass distributions nor the two eccentricity distributions are significantly different. This similarity in single and multiple systems suggests that similar dynamical processes may operate in both. The origin of eccentricities may stem from a multi-planet past or from interactions between planets and disk. Multiple planets in resonances can pump their eccentricities pumping resulting in one planet being ejected from the system or sent into the star, leaving a (more massive) single planet in an eccentric orbit. The distribution of semimajor axes of all known extrasolar planets shows a rise toward larger orbits, portending a population of gas-giant planets that reside beyond 3 AU, arguably in less perturbed, more circular orbits.

  9. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable

  10. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  11. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  12. Laboratory studies on the rheology of cryogenic slurries with implications for icy satellites

    NASA Astrophysics Data System (ADS)

    Carey, Elizabeth; Mitchell, Karl; Choukroun, Mathieu; Zhong, Fang

    2015-04-01

    Interpretation of Cassini RADAR and VIMS data has suggested some landforms on Titan may be due to effusive cryovolcanic processes that created cones, craters and flows. High-resolution Voyager 2 images of Triton also show strong evidence of cryovolcanic features. Fundamental to modeling of cryovolcanic features is the understanding of the rheological properties of cryogenic icy slurries in a thermodynamic and fluid mechanical context, i.e., how they deform and flow or stall under an applied stress. A series of measurements were performed on methanol-water mixtures and ammonia-water mixtures. We measured the rheology of the slurries as a function of temperature and strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions. Visualization of icy slurries supports the current hypothesis that crystallization dominates rheological properties. We shall discuss these findings and their implications for cryovolcanism on icy satellites.

  13. Evolution of Icy Dust Grains in the Vicinity of a Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.

    2009-12-01

    From late 2014 onwards, ESA's cornerstone mission ROSETTA will orbit the comet 67P/Churyumov-Gerasimenko. One instrument, COSIMA, will collect cometary dust grains and analyze the grains via secondary mass spectrometry. Models of the evolution of icy dust, accelerated by drag forces of subliming gas and exposed to solar radiation, should set constrains on the detection limits of the COSIMA instrument for volatile icy components. A straightforward modeling approach is applied as a baseline for the observational planing schedule of the instrument operations in the years 2014/2015 as ROSETTA escorts the comet nucleus up to perihelion and beyond.

  14. The compression behavior of blödite at low and high temperature up to ∼10 GPa: Implications for the stability of hydrous sulfates on icy planetary bodies

    NASA Astrophysics Data System (ADS)

    Comodi, Paola; Stagno, Vincenzo; Zucchini, Azzurra; Fei, Yingwei; Prakapenka, Vitali

    2017-03-01

    ödite can be determined at conditions of the mantle of the large icy satellites of Jupiter. Blödite has higher density, bulk modulus and thermal stability than similar hydrous sulfates (e.g. mirabilite and epsomite) implying, therefore, a different contribution of these minerals to the extent of deep oceans in icy planets and their distribution over the local geotherms.

  15. Tamoxifen and ICI 182, 780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats

    PubMed Central

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-01-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30 minutes compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. PMID:28063803

  16. Tamoxifen and ICI 182,780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats.

    PubMed

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-03-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. Published by Elsevier Inc.

  17. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  18. Planet traps and first planets: The critical metallicity for gas giant formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a functionmore » of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.« less

  19. ICI optical data storage tape

    NASA Technical Reports Server (NTRS)

    Mclean, Robert A.; Duffy, Joseph F.

    1992-01-01

    Optical data storage tape is now a commercial reality. The world's first successful development of a digital optical tape system is complete. This is based on the Creo 1003 optical tape recorder with ICI 1012 write-once optical tape media. Flexible optical media offers many benefits in terms of manufacture; for a given capital investment, continuous, web-coating techniques produce more square meters of media than batch coating. The coated layers consist of a backcoat on the non-active side; on the active side there is a subbing layer, then reflector, dye/polymer, and transparent protective overcoat. All these layers have been tailored for ease of manufacture and specific functional characteristics.

  20. 9 CFR 83.5 - Interstate Certificate of Inspection (ICI).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Interstate Certificate of Inspection (ICI). 83.5 Section 83.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS VIRAL...

  1. 9 CFR 83.5 - Interstate Certificate of Inspection (ICI).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Interstate Certificate of Inspection (ICI). 83.5 Section 83.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS VIRAL...

  2. 9 CFR 83.5 - Interstate Certificate of Inspection (ICI).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Interstate Certificate of Inspection (ICI). 83.5 Section 83.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS VIRAL...

  3. 9 CFR 83.5 - Interstate Certificate of Inspection (ICI).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Interstate Certificate of Inspection (ICI). 83.5 Section 83.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS VIRAL...

  4. 9 CFR 83.5 - Interstate Certificate of Inspection (ICI).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Interstate Certificate of Inspection (ICI). 83.5 Section 83.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS VIRAL...

  5. Benzene Formation on Interstellar Icy Mantles Containing Propargyl Alcohol

    NASA Astrophysics Data System (ADS)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.; Banerjee, S. B.

    2015-01-01

    Propargyl alcohol (CHCCH2OH) is a known stable isomer of the propenal (CH2CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm-1. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM. Moreover, our experiments clearly show benzene (C6H6) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C3H3) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C6H6 in the interstellar icy mantles.

  6. The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  7. FREE TRANSLATIONAL OSCILLATIONS OF ICY BODIES WITH A SUBSURFACE OCEAN USING A VARIATIONAL APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escapa, A.; Fukushima, T.

    2011-03-15

    We analyze the influence of the interior structure of an icy body with an internal ocean on the relative translational motions of its solid constituents. We consider an isolated body differentiated into three homogeneous layers with spherical symmetry: an external ice-I layer, a subsurface ammonia-water ocean, and a rocky inner core. This composition represents icy bodies such as Europa, Titania, Oberon, and Triton, as well as Pluto, Eris, Sedna, and 2004 DW. We construct the equations of motion by assuming that the solid constituents are rigid and that the ocean is an ideal fluid, the internal motion being characterized bymore » the relative translations of the solids and the induced flow in the fluid. Then we determine the dynamics of the icy body using the methods of analytical mechanics, that is, we compute the kinetic energy and the gravitational potential energy, and obtain the Lagrangian function. The resulting solution of the Lagrange equations shows that the solid layers perform translational oscillations of different amplitudes with respect to the barycenter of the body. We derive the dependence of the frequency of the free oscillations of the system on the characteristics of each layer, expressing the period of the oscillations as a function of the densities and masses of the ocean and the rocky inner core, and the mass of the icy body. We apply these results to previously developed subsurface models and obtain numerical values for the period and the ratio between the amplitudes of the translational oscillations of the solid components. The features obtained are quite different from the cases of Earth and Mercury. Our analytical formulas satisfactorily explain the source of these differences. When models of the same icy body, compatible with the existence of an internal ocean, differ in the thickness of the ice-I layer, their associated periods experience a relative variation of at least 10%. In particular, the different models for Titania and Oberon

  8. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    PubMed Central

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    Abstract Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global

  9. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less

  10. Effect of ThermaCare HeatWraps and Icy Hot Cream/Patches on Skin and Quadriceps Muscle Temperature and Blood Flow.

    PubMed

    Petrofsky, Jerrold Scott; Laymon, Michael; Berk, Lee; Bains, Gurinder

    2016-03-01

    The purpose of this study was to compare the effects of over-the-counter treatments-ThermaCare HeatWraps (chemical reaction to produce heat above the skin), Icy Hot Patch, and Icy Hot Cream (topically applied menthol)-on skin and deep tissue temperature. This was a longitudinal crossover study. On each of 3 days, a ThermaCare HeatWrap, Icy Hot Cream, or Icy Hot Patch was applied randomly over the quadriceps muscle in 15 healthy volunteers with normal body mass. Skin and muscle temperature and blood flow were measured by laser flowmetry every 15 minutes for 2 hours. After 2 hours, mean temperature decreased by 2.1°C (7.0%; P = .02) in skin and 1.0°C (2.9%; P = .01) in muscle with Icy Hot Cream. Icy Hot Patch decreased skin and muscle temperature by 1.7°C (5.4%; P = .03) and 1.3°C (3.8%; P = .01), respectively. In contrast, ThermaCare raised skin and muscle temperature by 7.8°C (25.8%; P = .001) and 2.7°C (7.7%; P = .002), respectively; both were significantly warmer with ThermaCare vs either Icy Hot product (all P < .007). Icy Hot products produced a net decrease in skin blood flow (Cream: 56.7 flux [39.3%; P = .003]; Patch: 19.1 flux [16.7%; P = .045]). Muscle blood flow decreased with the Patch (6.7 flux [7.0%; P = .02]). After a period of fluctuations, Icy Hot Cream produced a net increase vs baseline of 7.0 flux (16.9%; P = .02). ThermaCare more than doubled blood flow in skin (83.3 flux [109.7%; P = .0003]) and muscle (25.1 flux [148.5%; P = .004]). In this group of 15 healthy volunteers, ThermaCare HeatWraps provided the greatest degree of tissue warming and increase in tissue blood flow.

  11. Non-uniform thickness in Europa's icy shell: implications for astrobiology mission design

    NASA Astrophysics Data System (ADS)

    Fairén, A.; Amils, R.

    /or ocean through time. Our results have a direct deal with the investigation of Europa's interior. Mission design will need to incorporate a drill system routine well suited to penetrate the ice shell tens of meters in the thinner areas, allowing to deep subsurface access and sampling. Landing and drilling targets should be selected among the zones where mapping indicates the presence of a thinner ice shell, as it may potentially suggest the existence of nutrient-rich hydrothermal plumes rising from the rocky interior and melting the ice from below, probably creating chaotic terrains [14]. Little-cratered, thin-crust areas would consequently be interpreted as key pacemakers to detect both the ice/ocean interface and the most complex environments under the ice shell. Additionally, drilling processes will be clearly easier in such zones. References: [1] Hoppa, G., et al. Science 285, 1899-1903 (1999). [2] Schenk, P.M. Nature 417, 419-421 (2002). [3] Anderson J.D. et al. Science 276, 1236-1239 (1997). [4] Anderson J.D. et al. Science 281, 2019-2022 (1998). [5] Carr, M.H., et al. Nature 391, 363-365 (1998). [6] Zahnle, K., et al. Icarus 163, 263-289 (2003). [7] Smith, B.A., et al. Science 206, 927-950 (1979). [8] Zahnle, K., et al. Icarus 136, 202-222 (1998). [9] Levison, H.F., et al. Icarus 143, 415-420 (2000). [10] Schenk, P.M. Lunar Planet. Sci. Conf. XXVII, #1137-1138 (1996). [11] Farrar, K.S. & Collins, G.C. Lunar Planet Sci. Conf. XXXIII, #1450 (2002). [12] Greenberg, R., et al. Icarus 141, 263-286 (1999). [13] Ojakangas, G.W. & Stevenson, D.J. Icarus 81, 220-241 (1989). [14] Collins, G.C. & Goodman, J.C. Europa's Icy Shell Conf., #7032 (2004). [15] Tobie, G., et al. J. Geophys. Res. 108, doi: 10.1029/2003JE002099 (2003). [16] Stevenson, D.J. Lunar Planet Sci. Conf. XXXI, #1506 (2000). [17] O'Brien, D.P., et al. Icarus 156, 152-161 (2002). [18] Buck, L., et al. Geophys. Res. Lett. 29, doi: 10.1029/2002GL016171 (2002). [19] Nimmo, F. Icarus in press (2004). [20] Pierazzo

  12. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  13. Mid-infrared spectroscopy to better characterize icy moon surface compositions

    NASA Astrophysics Data System (ADS)

    Young, Cindy L.; Wray, James J.; Hand, Kevin P.; Poston, Michael; Carlson, Robert W.; Clark, Roger Nelson; Spencer, John R.; Jennings, Donald

    2016-10-01

    Previous spectroscopy work on icy moons has focused primarily on the visible and near-IR portion of the spectrum due to challenges presented by a low signal to noise ratio at the longer wavelengths. However, the mid-IR is the region of the strongest fundamental vibrations of many important types of molecules (e.g., organics) and has the potential to reveal unique compositional information [1]. We use the wealth of data that is now available from Cassini's Composite Infrared Spectrometer (CIRS) to average spectra over similar regions to improve the signal to noise, helping to reveal spectral features never before observed.Our initial work has already led to the detection and tentative laboratory identification of the first spectral features observed for any icy moon in the mid-IR [2]. On Iapetus' dark terrain, we found an emissivity feature at ~855 cm-1 and a possible doublet at 660 and 690 cm-1 that does not correspond to any known instrument artifacts. We attributed the 855 cm-1 feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths [e.g., 3, 4]. Silicates on the dark terrains of Saturn's icy moons have been suspected for decades, but there have been no definitive detections until this work.We measured the vacuum, low temperature mid-IR spectra of various fine-grained powdered silicates, including Mg-rich serpentines, often present in meteorites. Some of these materials do have emissivity features near 855 cm-1 and exhibit a doublet. Presently, we are continuing to comb the CIRS icy moon database for spectral features (particularly focusing on the warmer surfaces in the Saturn system) and are performing further vacuum chamber measurements to experiment with more sample types and ice/sample mixtures to determine the impacts of changing conditions in the chamber on features. We are also working to understand how surface porosity and mixing with various darkening agents may

  14. Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Durisen, R. H.; Lissauer, J. J.

    2010-12-01

    Gas giant planets play a fundamental role in shaping the orbital architecture of planetary systems and in affecting the delivery of volatile materials to terrestrial planets in the habitable zones. Current theories of gas giant planet formation rely on either of two mechanisms: the core accretion model and the disk instability model. In this chapter, we describe the essential principles upon which these models are built and discuss the successes and limitations of each model in explaining observational data of giant planets orbiting the Sun and other stars.

  15. Preliminary Design of ICI-based Multimedia for Reconceptualizing Electric Conceptions at Universitas Pendidikan Indonesia

    NASA Astrophysics Data System (ADS)

    Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.

    2016-08-01

    Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.

  16. Workshop on Europa's Icy Shell: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the workshop on Europa's Icy Shell: Past, Present, and Future, February 6-8,2004, Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  17. 17β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes

    PubMed Central

    Jallow, Fatou; Brockman, Jennifer L; Helzer, Kyle T; Rugowski, Debra E; Goffin, Vincent; Alarid, Elaine T; Schuler, Linda A

    2018-01-01

    Abstract Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer. PMID:29594259

  18. The hottest planet.

    PubMed

    Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy

    2007-06-07

    Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

  19. Low Force Penetration of Icy Regolith

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  20. Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2006-01-01

    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment.

  1. THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katherina Feng, Y.; Wright, Jason T.; Nelson, Benjamin

    2015-02-10

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative of an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1more » M {sub Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2 M {sub Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period greater than 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.« less

  2. 2.7- to 4.1-micron spectrophotometry of icy satellites of Saturn and Jupiter

    NASA Technical Reports Server (NTRS)

    Lebofsky, L. A.; Feierberg, M. A.

    1985-01-01

    Spectrophotometry is presented in the 2.7-4.1 micrometer spectral region for icy satellites of Saturn (Tethys, Dione, Rhea, Iapetus and Hyperion) and Jupiter (Europa, Ganymede and Callisto). The 3.6-micrometer reflectance peak characteristic of fine-grained water ice is observed prominently on the satellites of Saturn, faintly on the leading side of Europa, and not at all on Ganymede, Callisto or the dark side of Iapetus. The spectral reflectances of these icy satellites may be affected by their equilibrium surface temperatures and magnetospheric effects.

  3. Europa's Icy Shell: A Bridge Between Its Surface and Ocean

    NASA Technical Reports Server (NTRS)

    Schenk, Paul; Mimmo, Francis; Prockter, Louise

    2004-01-01

    Europa, a Moon-sized, ice-covered satellite of Jupiter, is second only to Mars in its astrobiological potential. Beneath the icy surface, an ocean up to 150 km deep is thought to exist, providing a potential habitat for life,and a tempting target for future space missions. The Galileo mission to the Jovian system recently ended, but there are already long-range plans to send much more capable spacecraft,such as the proposed Jupiter Icy Moons Orbiter (JIMO), to take a closer look at Europa and her siblings, Ganymede and Callisto, some time in the next two decades. Europak outer icy shell is the only interface between this putative ocean and the surface, but many aspects of this shell are presently poorly understood; in particular, its composition, thickness, deformational history, and mechanical properties. To discuss the ice shell and our current understanding of it, 78 scientists from the terrestrial and planetary science communities in the United States and Europe gathered for a 3-day workshop hosted by the Lunar and Planetary Institute in Houston in February. A key goal was to bring researchers from disparate disciplines together to discuss the importance and limitations of available data on Europa with a post-Galileo perspective. The workshop featured 2 days of reviews and contributed talks on the composition, physical properties, stratigraphy, tectonics, and future exploration of the ice shell and underlying ocean. The final morning included an extended discussion period, moderated by a panel of noted experts, highlighting outstanding questions and areas requiring future research.

  4. Dance of the Planets

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  5. Inside-out Planet Formation. III. Planet-Disk Interaction at the Dead Zone Inner Boundary

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zhu, Zhaohuan; Tan, Jonathan C.; Chatterjee, Sourav

    2016-01-01

    The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location of formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet-disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.

  6. Exploring Disks Around Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  7. ICI 182,780-regulated gene expression in DU145 prostate cancer cells is mediated by estrogen receptor-beta/NFkappaB crosstalk.

    PubMed

    Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei

    2006-04-01

    Estrogen receptor (ER)-beta is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-beta-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 microM ICI. Semiquantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12alpha chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-beta antisense oligonucleotide reduced cellular ER-beta mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFkappaB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-beta and the NFkappaB signaling pathway, denoting a novel mechanism of ER-beta-mediated ICI action. Therefore, combined therapies targeting ER-beta and NFkappaB signaling may be synergistic as treatment for PCa.

  8. The Jupiter Icy Moons Orbiter reference trajectory

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.; Lam, Try

    2006-01-01

    The proposed NASA Jupiter Icy Moons Orbiter (JIMO) mission would have used a single spacecraft to orbit Callisto, Ganymede, and Europa in succession. The enormous Delta-Velocity required for this mission (nearly [25 km/s]) would necessitate the use of very high efficiency electric propulsion. The trajectory created for the proposed baseline JIMO mission may be the most complex trajectory ever designed. This paper describes the current reference trajectory in detail and describes the processes that were used to construct it.

  9. BENZENE FORMATION ON INTERSTELLAR ICY MANTLES CONTAINING PROPARGYL ALCOHOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.

    Propargyl alcohol (CHCCH{sub 2}OH) is a known stable isomer of the propenal (CH{sub 2}CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm{sup –1}. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM.more » Moreover, our experiments clearly show benzene (C{sub 6}H{sub 6}) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C{sub 3}H{sub 3}) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C{sub 6}H{sub 6} in the interstellar icy mantles.« less

  10. Planet formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1993-01-01

    Models of planetary formation are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the smaller bodies present in the solar system. The formation of solid bodies of planetary size should be a common event, at least around young stars which do not have binary companions orbiting at planetary distances. Stochastic impacts of large bodies provide sufficient angular momentum to produce the obliquities of the planets. The masses and bulk compositions of the planets can be understood in a gross sense as resulting from planetary growth within a disk whose temperature and surface density decreased with distance from the growing sun.

  11. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  12. The Trojan minor planets

    NASA Astrophysics Data System (ADS)

    Spratt, Christopher E.

    1988-08-01

    There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.

  13. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed Central

    Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.

    1991-01-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  14. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  15. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  16. ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2011-12-01

    We investigated the formation of close-in planets (hot Jupiters) by a combination of mutual scattering, Kozai effect, and tidal circularization, through N-body simulations of three gas giant planets, and compared the results with discovered close-in planets. We found that in about 350 cases out of 1200 runs ({approx}30%), the eccentricity of one of the planets is excited highly enough for tidal circularization by mutual close scatterings followed by secular effects due to outer planets, such as the Kozai mechanism, and the planet becomes a close-in planet through the damping of eccentricity and semimajor axis. The formation probability of close-in planetsmore » by such scattering is not affected significantly by the effect of the general relativity and inclusion of inertial modes in addition to fundamental modes in the tides. Detailed orbital distributions of the formed close-in planets and their counterpart distant planets in our simulations were compared with observational data. We focused on the possibility for close-in planets to retain non-negligible eccentricities ({approx}> 0.1) on timescales of {approx}10{sup 9} yr and have high inclinations, because close-in planets in eccentric or highly inclined orbits have recently been discovered. In our simulations we found that as many as 29% of the close-in planets have retrograde orbits, and the retrograde planets tend to have small eccentricities. On the other hand, eccentric close-in planets tend to have orbits of small inclinations.« less

  17. Planet Hunters: New Kepler Planet Candidates from Analysis of Quarter 2

    NASA Astrophysics Data System (ADS)

    Lintott, Chris J.; Schwamb, Megan E.; Barclay, Thomas; Sharzer, Charlie; Fischer, Debra A.; Brewer, John; Giguere, Matthew; Lynn, Stuart; Parrish, Michael; Batalha, Natalie; Bryson, Steve; Jenkins, Jon; Ragozzine, Darin; Rowe, Jason F.; Schwainski, Kevin; Gagliano, Robert; Gilardi, Joe; Jek, Kian J.; Pääkkönen, Jari-Pekka; Smits, Tjapko

    2013-06-01

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R ⊕. The latter star has an additional known planet candidate with a radius of 5.05 R ⊕ and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged. .

  18. ESA scientist discovers a way to shortlist stars that might have planets

    NASA Astrophysics Data System (ADS)

    2002-02-01

    . Planets form near the central star, where the material is densest. However, at great distances from the star, the gas and dust is sparse and can coalesce only into a vast band of small, icy bodies. In our Solar System, they form the so-called Edgeworth-Kuiper belt that extends out beyond the orbit of Neptune. Any remaining dust is lost to deep space. Ordinarily, dust is either incorporated into larger celestial bodies or ejected from the Solar System. For it still to be present today, means that something is replenishing it. "In order to sustain such a ring, 50 tonnes of dust have to be generated every second," says Landgraf. He and his colleagues believe that collisions between the icy remnants of the Edgeworth-Kuiper belt create the Solar System's dust ring. If the same is going on in other planetary systems, then those stars will also have dusty rings around them. "If you have a dust disc around a star that's not particularly young, then it's extremely interesting because the dust has to come from somewhere. The only explanation is that the star has planets, comets, asteroids or other bodies that collide and generate the dust," says Malcolm Fridlund, ESA's study scientist for Darwin, the mission under development to search for life-supporting planets around other stars. To trace the collisions in the Edgeworth-Kuiper Belt, Landgraf and colleagues had to do some celestial detective work. They began by sifting through data from the 1970s and early 1980s, when NASA space probes Pioneer 10 and 11 first found dust particles of unknown origin beyond Saturn's orbit. The hypothesis of dust coming from comets was discarded: in fact near the Earth, comets give off dust; beyond Saturn, however, they freeze and shed little material. So, no one knew whether the Pioneer dust grains were coming from inside the Solar System - from a source other than comets - or beyond it from the interstellar space. Now, using data from ESA's Ulysses spacecraft, which has been orbiting the poles of

  19. Hexagons in Icy Terrain

    NASA Image and Video Library

    2018-01-23

    Ground cemented by ice cover the high latitudes of Mars, much as they do on Earth's cold climates. A common landform that occurs in icy terrain are polygons as shown in this image from NASA's Mars Reconnaissance Orbiter (MRO). Polygonal patterns form by winter cooling and contraction cracking of the frozen ground. Over time these thin cracks develop and coalesce into a honeycomb network, with a few meters spacing between neighboring cracks. Shallow troughs mark the locations of the underground cracks, which are clearly visible form orbit. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 30.2 centimeters (11.9 inches) per pixel (with 1 x 1 binning); objects on the order of 91 centimeters (35.8 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22180

  20. A Rocky Planet Forms

    NASA Image and Video Library

    2018-01-25

    An artist's rendition of how a rocky planet forms. As a rocky planet forms, the planet-forming material gathers in a process known as "accretion." It grows larger in size, and increases in temperature, along with the pressure at its core. The energy from this initial planet forming process causes the planet's elements to heat up and melt. Upon melting, layers form and separate. The heavier elements sink to the bottom, the lighter ones float to the top. This material then separates into layers as it cools, which is known as "differentiation." A fully formed planet slowly emerges, with an upper layer known as the crust, the mantle in the middle, and a solid iron core. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. The InSight mission will help answer key questions about how the rocky planets of the solar system, as well as how rocky exoplanets, formed. So while InSight is a Mars mission, it's also more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22233

  1. Giant planet magnetospheres

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran

    1992-01-01

    The classification of the giant planet magnetospheres into two varieties is examined: the large symmetric magnetospheres of Jupiter and Saturn and the smaller irregular ones of Uranus and Neptune. The characteristics of the plasma and the current understanding of the magnetospheric processes are considered for each planet. The energetic particle populations, radio emissions, and remote sensing of magnetospheric processes in the giant planet magneotospheres are discussed.

  2. beta(2)-adrenoceptor antagonist ICI 118,551 decreases pulmonary vascular tone in mice via a G(i/o) protein/nitric oxide-coupled pathway.

    PubMed

    Wenzel, Daniela; Knies, Ralf; Matthey, Michaela; Klein, Alexandra M; Welschoff, Julia; Stolle, Vanessa; Sasse, Philipp; Röll, Wilhelm; Breuer, Johannes; Fleischmann, Bernd K

    2009-07-01

    beta(2)-adrenoceptors are important modulators of vascular tone, particularly in the pulmonary circulation. Because neurohormonal activation occurs in pulmonary arterial hypertension, we have investigated the effect of different adrenergic vasoactive substances on tone regulation in large and small pulmonary arteries, as well as in systemic vessels of mice. We found that the beta(2)-adrenoceptor antagonist ICI 118,551 (ICI) evoked a decrease of vascular tone in large pulmonary arteries and reduced the sensitivity of pulmonary arteries toward different contracting agents, eg, norepinephrine, serotonin, or endothelin. ICI proved to act specifically on pulmonary vessels, because it shifted the dose-response curve of norepinephrine to the right in pulmonary arteries, whereas there was no effect in the aorta. Pharmacological experiments proved that the right shift of the norepinephrine dose-response curve by ICI was mediated via a beta(2)-adrenoceptor/G(i/o) protein-dependent pathway enhancing NO production in the endothelium; these results were corroborated in beta-adrenoceptor and endothelial NO synthase knockout mice where ICI had no effect. ICI increased vascular lumen diameter in lung sections and reduced pulmonary arterial pressure under normoxia and under hypoxia in the isolated perfused lung model. These effects were found to be physiologically relevant, because ICI specifically decreased pulmonary but not systemic blood pressure in vivo. Thus, the beta(2)-adrenoceptor antagonist ICI is a pulmonary arterial-specific vasorelaxant and, therefore, a potentially interesting novel therapeutic agent for the treatment of pulmonary arterial hypertension.

  3. NASA's terrestial planet finder: the search for (habitable) planets

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.

    2000-01-01

    One of the primary goals of NASA's Origins program is the search for hospitable planets. I will describe how the Terrestrial Planet Finder (TPF) will revolutionize our understanding of the origin and evolution of planetary systems, and possibly even find signs of life beyond Earth.

  4. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  5. Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2017-09-01

    The geophysical evolution of many icy moons and dwarf planets seems to have provided opportunities for interaction between liquid water and rock (silicate and organic solids). Here, we explore two ways by which water-rock interaction can feed back on geophysical evolution: the production or consumption of antifreeze compounds, which affect the persistence and abundance of cold liquid; and the potential leaching into the fluid of lithophile radionuclides, affecting the distribution of a long-term heat source. We compile, validate, and use a numerical model, implemented with the PHREEQC code, of the interaction of chondritic rock with pure water and with C, N, S-bearing cometary fluid, thought to be the materials initially accreted by icy worlds, and describe the resulting equilibrium fluid and rock assemblages at temperatures, pressures, and water-to-rock ratios of 0-200 ° C, 1-1000 bar, and 0.1-10 by mass, respectively. Our findings suggest that water-rock interaction can strongly alter the nature and amount of antifreezes, resulting in solutions rich in reduced nitrogen and carbon, and sometimes dissolved H2, with additional sodium, calcium, chlorine, and/or oxidized carbon. Such fluids can remain partially liquid down to 176 K if NH3 is present. The prominence of Cl in solution seems to hinge on its primordial supply in ices, which is unconstrained by the meteoritical record. Equilibrium assemblages, rich in serpentine and saponite clays, retain thorium and uranium radionuclides unless U-Cl or U-HCO3 complexing, which was not modeled, significantly enhances U solubility. However, the radionuclide 40 K can be leached at high water:rock ratio and/or low temperature at which K is exchanged with ammonium in minerals. We recommend the inclusion of these effects in future models of the geophysical evolution of ocean-bearing icy worlds. Our simulation products match observations of chloride salts on Europa and Enceladus; CI chondrites mineralogies; the observation of

  6. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  7. PLANET HUNTERS: NEW KEPLER PLANET CANDIDATES FROM ANALYSIS OF QUARTER 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintott, Chris J.; Schwamb, Megan E.; Schwainski, Kevin, E-mail: cjl@astro.ox.ac.uk

    2013-06-15

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R{sub Circled-Plus }. The latter star has an additional known planet candidate with a radius of 5.05 R{sub Circled-Plus} and a period of 134.49 days,more » which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.« less

  8. NASA's Terrestrial Planet Finder: The Search for (Habitable) Planets

    NASA Technical Reports Server (NTRS)

    Beichman, C.

    1999-01-01

    One of the primary goals of NASA's Origins program is the search for habitable planets. I will describe how the Terrestrial Planet Finder (TPF) will revolutionize our understanding of the origin and evolution of planetary systems, and possibly even find signs of life beyond the Earth.

  9. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2006-05-01

    This volume addresses fundamental questions concerning the formation of planetary systems in general, and of our solar system in particular. Drawing from recent advances in observational, experimental, and theoretical research, it summarises our current understanding of the planet formation processes, and addresses major open questions and research issues. Chapters are written by leading experts in the field of planet formation and extrasolar planet studies. The book is based on a meeting held at Ringberg Castle in Bavaria, where experts gathered together to present and exchange their ideas and findings. It is a comprehensive resource for graduate students and researchers, and is written to be accessible to newcomers to the field.

  10. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  11. ICI 182,780-Regulated Gene Expression in DU145 Prostate Cancer Cells Is Mediated by Estrogen Receptor-β/NFκB Crosstalk1

    PubMed Central

    Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei

    2006-01-01

    Abstract Estrogen receptor (ER)-β is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-β-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 µM ICI. Semi-quantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12α chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-β antisense oligonucleotide reduced cellular ER-β mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFκB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-α and the NFκB signaling pathway, denoting a novel mechanism of ER-β-mediated ICI action. Therefore, combined therapies targeting ER-β and NFκB signaling may be synergistic as treatment for PCa. PMID:16756716

  12. Pluto Icy Plains Captured in Highest-Resolution Views from New Horizons

    NASA Image and Video Library

    2016-01-08

    NASA's New Horizons spacecraft continues to transmit the sharpest views of Pluto that it obtained (and recorded) during its flyby of the distant planet on July 14, 2015. The newest image, returned on Dec. 24, 2015, extends New Horizons' highest-resolution swath of Pluto to the very center of the informally named Sputnik Planum, and nearly completes the set of highest-resolution images taken by New Horizons last July. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's surface. The images shown here form a strip 50 miles (80 kilometers) wide and more than 400 miles (700 kilometers) long, trending from the northwestern shoreline of Sputnik Planum and out across its icy plains. The images illustrate the polygonal or cellular pattern of the plains, which are thought to result from the convective churning of a deep layer solid, but mobile, nitrogen ice. The surface of Sputnik Planum appears darker toward the shore (at top), possibly implying a change in composition or surface texture. The occasional raised, darker blocks at the cell edges are probably dirty water "icebergs" floating in denser solid nitrogen. The pictures were taken with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, from a range of approximately 10,000 miles (17,000 kilometers) over a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20336

  13. Kidnapping small icy asteroids in Earth near encounter to harbour life and to deflect trajectory

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The inter-planetary flight for human being is under danger because of unscreened and lethal solar flare radioactive showers. The screening of the astronauts by huge superconducting magnetic fields is unrealistic by many reasons. On the contrary the ability to reach nearby icy asteroids, to harbour there a complete undergound room where ecological life systems are first set, this goal may offer a later natural and safe currier for future human stations and enterprise. The need to deflect such a small size (a few thousands tons objects) maybe achieved by micro nuclear engines able to dig the asteroid icy skin, to heat and propel the soil by a synchronous jet engine array, bending and driving it to any desired trajectories. The need for such a wide collection of icy asteroid stations, often in a robotic ibernated state, it will offer the safe help station, raft in the wide space sea, where to collect material or energy in long human planetary travels.

  14. Impact of coastal processes on resource development with an example from Icy Bay, Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    1978-01-01

    The coastline of Alaska is dynamic and continually readjusting to changes in the many processes that operate in the coastal zone. Because of this dynamic nature, special consideration must be made in planning for development, and. caution must be exercised in site selection for facilities to be emplaced in the coastal zone. All types of coastal processes from continuously active normal processes to the low frequency-high intensity rare event must be considered. Site-specific evaluation-s considering the broad range of possible processes must precede initiation of development. An example of the relation between coastal processes and a proposed resource treatment facility is presented for Icy Bay, Alaska. Icy Bay is the only sheltered bay near many of the offshore tracts leased for petroleum exploration in the 1976 northern Gulf of Alaska OCS (Outer Continental Shelf) lease sale. Consequently, it has been selected as a primary onshore staging site for the support of offshore exploration and development. The environment of Icy Bay has many potentially hazardous features, including a submarine moraine at the bay mouth and actively calving glaciers at the bay's head which produce many icebergs. But most significant from the point of view of locating onshore facilities and pipeline corridors are the high rates of shoreline erosion and sediment deposition. If pipelines or any onshore staging facilities are to be placed in the coastal areas of Icy Bay, then the dynamic changes in shoreline position must be considered so that man-made structures will not be eroded away or be silted in before the completion of development.

  15. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  16. Yeasts for Global Happiness: report of the 14th International Congress on Yeasts (ICY14) held in Awaji Island.

    PubMed

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-02-01

    The 14th International Congress on Yeasts (ICY14) was held at Awaji Yumebutai International Conference Center (Awaji, Hyogo) in Japan from 11 to 15 September 2016. The main slogan of ICY14 was 'Yeasts for Global Happiness', which enabled us to acknowledge the high-potential usefulness of yeasts contributing to the global happiness in terms of food/beverage, health/medicine and energy/environment industries, as well as to basic biosciences. In addition, two more concepts were introduced: 'from Japan to the world' and 'from senior to junior'. As it was the first ICY meeting held in Japan or other Asian countries, ICY14 provided a good opportunity to widely spread the great achievements by Japanese and Asian yeast researchers, such as those by the 2016 Nobel Laureate Dr. Yoshinori Ohsumi, and also, to convey the fun and importance of yeasts to the next generation of researchers from Asia and all over the world. As a result, a total of 426 yeast lovers from 42 countries (225 overseas and 201 domestic participants) with different generations attended ICY14 to share the latest knowledge of a wide range of yeast research fields and to join active and constructive scientific discussions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. iCI: Iterative CI toward full CI.

    PubMed

    Liu, Wenjian; Hoffmann, Mark R

    2016-03-08

    It is shown both theoretically and numerically that the minimal multireference configuration interaction (CI) approach [Liu, W.; Hoffmann, M. R. Theor. Chem. Acc. 2014, 133, 1481] converges quickly and monotonically from above to full CI by updating the primary, external, and secondary states that describe the respective static, dynamic, and again static components of correlation iteratively, even when starting with a rather poor description of a strongly correlated system. In short, the iterative CI (iCI) is a very effective means toward highly correlated wave functions and, ultimately, full CI.

  18. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  19. The Gemini Planet-finding Campaign: The Frequency Of Giant Planets around Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew; Ftaclas, Christ; Chun, Mark; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; de Gouveia Dal Pino, Elisabete M.; Alencar, Silvia H. P.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; Toomey, Douglas W.

    2013-08-01

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >=5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a >=3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < -0.8 and/or α > 1.7. Likewise, we find that β < -0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >=3 M Jup planet beyond 10 AU, and β < -0.8 and/or α < -1.5. Likewise, β < -0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet

  20. Revealing a universal planet-metallicity correlation for planets of different solar-type stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A., E-mail: ji.wang@yale.edu

    2015-01-01

    The metallicity of exoplanet systems serves as a critical diagnostic of planet formation mechanisms. Previous studies have demonstrated the planet–metallicity correlation for large planets (R{sub P} ⩾ 4 R{sub E}); however, a correlation has not been found for smaller planets. With a sample of 406 Kepler objects of interest whose stellar properties are determined spectroscopically, we reveal a universal planet–metallicity correlation: not only gas-giant planets (3.9 R{sub E}

  1. Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Vance, S.

    2011-12-01

    The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"

  2. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  3. Peeking at the Planets.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2002-01-01

    Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)

  4. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  5. The pure anti-oestrogen ICI 182,780 (Faslodex™) activates large conductance Ca2+-activated K+ channels in smooth muscle

    PubMed Central

    Dick, Gregory M

    2002-01-01

    Oestrogen and tamoxifen activate large conductance Ca2+-activated K+ (BKCa) channels in smooth muscle through a non-genomic mechanism that depends on the regulatory β1 subunit and an extracellular binding site. It is unknown whether a ‘pure' anti-oestrogen such as ICI 182,780 (Faslodex™), that has no known oestrogenic properties, would have any effect on BKCa channels. Using single channel patch clamp techniques on canine colonic myocytes, the hypothesis that ICI 182,780 would activate BKCa channels was tested. ICI 182,780 increased the open probability of BKCa channels in inside-out patches with an EC50 of 1 μM. These data suggest that molecules with the ability to bind nuclear oestrogen receptors, regardless of oestrogenic or anti-oestrogenic nature, activate BKCa channels through this nongenomic, membrane-delimited mechanism. The identity and characteristics of this putative binding site remain unclear; however, it has pharmacological similarity to oestrogen receptors α and β, as ICI 182,780 interacts with it. PMID:12145095

  6. Formation of Outer Planets: Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2003-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.

  7. SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timpe, Miles; Barnes, Rory; Kopparapu, Ravikumar

    2013-09-15

    If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We thenmore » performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.« less

  8. Agonistic activity of ICI 182 780 on activation of GSK 3β/AKT pathway in the rat uterus during the estrous cycle.

    PubMed

    Baranda-Avila, Noemi; Mendoza-Rodríguez, C Adriana; Morimoto, Sumiko; Camacho-Arroyo, Ignacio; Guerra-Araiza, Christian; Langley, Elizabeth; Cerbón, Marco

    2013-07-01

    We examined the ability of ICI 182,780 (ICI) to block uterine cell proliferation via protein kinase b/AKT pathway in the uterus of the rat during the estrous cycle. Intact rats, with regular estrous cycles, received a subcutaneous (s.c.) injection of either vehicle or ICI at 08:00 h on the day of proestrus or at 00:00 h on the day of estrus and sacrificed at 13:00 h of metaestrus. Estradiol (E₂) and progesterone (P₄) plasma levels were measured by radioimmunoassay. Both ICI treatments, induced a significant decrease (p<0.01) in uterine estrogen receptor alpha (ERα) content, had no effect on uterine progesterone receptor (PR) protein expression and caused marked nuclear localization of cyclin D1, in both luminal and glandular uterine epithelium, as compared to vehicle-treated animals. Furthermore, we detected that ICI treatment induced glycogen synthase kinase (Gsk3-β) Ser 9 phosphorylation, which correlates with cyclin D1 nuclear localization. However, some differences were observed between the two different time schedules of administration. We observed that the administration of ICI at 08:00 h on proestrus day produced a 15% inhibition of luminal epithelial cell proliferation, reduced uterine wet weight by 21% and caused reduction of Akt phosphorylation at Ser 473 as compared to vehicle-treated animals, whereas ICI treatment at 00:00 h on estrus day had no effect on these parameters. The overall results indicate that ICI may exert agonistic and antagonistic effects on uterine cell proliferation through differential activation of the Akt pathway depending on the administration period during the estrous cycle, and indicates that the mechanism of cell proliferation during the physiological conditions of the estrous cycle, is under a different and more complex regulation than in the ovariectomized + E₂ animal model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Giant Transiting Planets Observations GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  10. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  11. A 1-D evolutionary model for icy satellites, applied to Enceladus

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Prialnik, Dina

    2016-04-01

    We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.

  12. Exospheres from asteroids to planets

    NASA Astrophysics Data System (ADS)

    Killen, R.; Burger, M.; Hurley, D.; Sarantos, M.; Farrell, W.

    2014-07-01

    The study of exospheres can give us a handle on the long-term loss of volatiles from planetary bodies due to interaction of planets, satellites and small bodies with the interplanetary medium such as the solar wind, meteors and dust, the solar radiant flux, and internal forces like diffusion and outgassing. Recent evidence for water and OH on the Moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to some asteroids including Vesta and Ceres, and ESA sent Rosetta to asteroids Lutetia and Steins. OSIRIS- Rex will return a sample from a primitive asteroid, Bennu, to the Earth. It is possible that a Phobos-Deimos flyby will be a precursor to a manned mission to Mars. Exospheric particles are derived from the surface and thus reflect the composition of the body's regolith, although not in a one-to-one ratio. Observation of an escaping exosphere, termed a corona, is challenging. We therefore have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, the mass of the exospheric species, the heliocentric distance, the rotation rate of the primary, the composition of the body (asteroid type or icy body). These parameters will be useful for mission planning as well as quick-look data to determine the size and location of bodies likely to retain their exospheres and observability of exospheric species. It is also of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements.

  13. Instrumentation for Testing Whether the Icy Moons of the Gas and Ice Giants Are Inhabited.

    PubMed

    Chela-Flores, Julian

    2017-10-01

    Evidence of life beyond Earth may be closer than we think, given that the forthcoming missions to the jovian system will be equipped with instruments capable of probing Europa's icy surface for possible biosignatures, including chemical biomarkers, despite the strong radiation environment. Geochemical biomarkers may also exist beyond Europa on icy moons of the gas giants. Sulfur is proposed as a reliable geochemical biomarker for approved and forthcoming missions to the outer solar system. Key Words: JUICE mission-Clipper mission-Geochemical biomarkers-Europa-Moons of the ice giants-Geochemistry-Mass spectrometry. Astrobiology 17, 958-961.

  14. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20more » are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.« less

  15. DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Gregory, E-mail: kbatygin@gps.caltech.ed

    Tidal dissipation within a short-period transiting extrasolar planet perturbed by a companion object can drive orbital evolution of the system to a so-called tidal fixed point, in which the apses of the transiting planet and its perturber are aligned, and variations in orbital eccentricities vanish. Significant contribution to the apsidal precession rate is made by gravitational quadrupole fields, created by the transiting planets tidal and rotational distortions. The fixed-point orbital eccentricity of the inner planet is therefore a strong function of its interior structure. We illustrate these ideas in the specific context of the recently discovered HAT-P-13 exoplanetary system, andmore » show that one can already glean important insights into the physical properties of the inner transiting planet. We present structural models of the planet, which indicate that its observed radius can be maintained for a one-parameter sequence of models that properly vary core mass and tidal energy dissipation in the interior. We use an octupole-order secular theory of the orbital dynamics to derive the dependence of the inner planet's eccentricity, e{sub b} , on its tidal Love number, k {sub 2b}. We find that the currently measured eccentricity, e{sub b} = 0.021 +- 0.009, implies 0.116 < k {sub 2b} < 0.425, 0 M {sub +} < M {sub core} < 120 M {sub +}, and 10, 000 < Q{sub b} < 300, 000. Improved measurement of the eccentricity will soon allow for far tighter limits to be placed on all of these quantities, and will provide an unprecedented probe into the interior structure of an extrasolar planet.« less

  16. Volatile inventory and early evolution of the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Ipatov, Sergei I.

    Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

  17. Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets

    NASA Astrophysics Data System (ADS)

    Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George

    2018-01-01

    A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.

  18. Topics in Extrasolar Planet Characterization

    NASA Astrophysics Data System (ADS)

    Howe, Alex Ryan

    I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.

  19. Reduction of post injury neointima formation due to 17β-estradiol and phytoestrogen treatment is not influenced by the pure synthetic estrogen receptor antagonist ICI 182,780 in vitro

    PubMed Central

    Finking, Gerald; Lenz, Christina; Schochat, Thomas; Hanke, Hartmut

    2002-01-01

    Background Animal and organ culture experiments have shown beneficial inhibitory estrogen effects on post injury neointima development. The purpose of this study was to investigate whether such estrogen effects are influenced by the estrogen receptor antagonist ICI 182,780. Different concentrations of 17β-estradiol and the phytoestrogens genistein and daidzein were tested. Methods F emale New Zealand White rabbits were benumbed. In situ vascular injury of the thoracic and abdominal aorta was performed by a 3F Fogarty catheter. Segments of 5 mm were randomised and held in culture for 21 days. Three test series were performed: 1) control group – 20 μM ICI – 30 μM ICI – 40 μM ICI. 2) control group – 20 μM ICI – 40 μM 17β-estradiol – 40 μM 17β-estradiol + 20 μM ICI. 3) control group – 20 μM ICI – 40 μM daidzein – 40 μM daidzein + 20 μM ICI – 20 μM genistein – 20 μM genistein + 20 μM ICI. After 21 days the neointima-media-ratio was evaluated. Results 1) Treatment with ICI 182,780 did not reduce neointima formation significantly (p = 0.05). 2) 40 μM 17β-estradiol alone (p < 0.0001) and in combination with 20 μM ICI (p < 0.0001) reduced neointima formation significantly. 3) 20 μM genistein alone (p = 0.0083) and combined with 20 μM ICI (p = 0.0053) reduced neointima formation significantly. 40 μM daidzein did not have a significant (p = 0.0637) effect. Conclusions The estrogen receptor antagonist ICI 182,780 did not modulate the inhibitory estrogen effects on post injury neointima formation. These results do not support the idea that such effects are mediated by vascular estrogen receptors. PMID:12162794

  20. Planet Traps and Planetary Cores: Origins of the Planet-Metallicity Correlation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Pudritz, Ralph E.

    2014-10-01

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ~= 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = -0.2 to -0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M c, crit) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > -0.6, our models predict that the most likely value of the "mean" critical core mass of Jovian planets is langM c, critrang ~= 5 M ⊕ rather than 10 M ⊕. This implies that grain opacities in accreting envelopes should be reduced in order to lower M c, crit.

  1. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  2. Giant Transiting Planets Observations - GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.

    2006-08-01

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  3. Iceball Planet Artist's Concept

    NASA Image and Video Library

    2017-04-26

    This artist's concept shows OGLE-2016-BLG-1195Lb, a planet discovered through a technique called microlensing. The planet was reported in a 2017 study in the Astrophysical Journal Letters. Study authors used the Korea Microlensing Telescope Network (KMTNet), operated by the Korea Astronomy and Space Science Institute, and NASA's Spitzer Space Telescope, to track the microlensing event and find the planet. Although OGLE-2016-BLG-1195Lb is about the same mass as Earth, and the same distance from its host star as our planet is from our sun, the similarities may end there. This planet is nearly 13,000 light-years away and orbits a star so small, scientists aren't sure if it's a star at all. https://photojournal.jpl.nasa.gov/catalog/PIA21430

  4. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; hide

    2011-01-01

    dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper Belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

  5. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; hide

    2012-01-01

    constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

  6. The Origins and Evolution of Molecules in Icy Solids

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    2010-01-01

    Astronomical observations of the past few decades have revealed the existence of a variety of molecules in extraterrestrial ices. These molecules include H2O, CO, and CO2, and organics such as CH4, CH30H, and C2H6. Some ices are dominated by polar molecules, while non-polar species appear to dominate others. Observations, mainly in the radio and IR regions, have allowed the inference of other solid-phase molecules whose formation remains difficult to explain by gas-phase chemistry alone. Several laboratory research groups have reported on extensive experiments on the solid-phase reaction chemistry of icy materials, generally as initiated by either ionizing radiation or vacuum-UV photons. These experiments not only permit molecular identifications to be made from astronomical observations, but also allow predictions of yet unidentified molecules. This laboratory approach has evolved over more than 30 years with much of the earliest work focusing on complex mixtures thought to represent either cometary or interstellar ices. Although those early experiments documented a rich solid-state photo- and radiation chemistry, they revealed few details of reactions for particular molecules, partly due to the multi-component nature of the samples. Since then, model systems have been examined that allow the chemistry of individual species and specific reactions to be probed. Reactions involving most of the smaller astronomical molecules have now been studied and specific processes identified. Current laboratory work suggests that a variety of reactions occur in extraterrestrial ices, including acid-base processes, radical dimerizations, proton transfers, oxidations, reductions, and isomerizations. This workshop presentation will focus on chemical reactions relevant to solar system and interstellar ices. While most of the work will be drawn from that to which the speaker has contributed, results from other laboratories also will be included. Suggestions for future studies will be

  7. TRAPPIST-1 Planet Animations

    NASA Image and Video Library

    2018-02-05

    This still from a video shows illustrations of the seven Earth-size planets of TRAPPIST-1, an exoplanet system about 40 light-years away, based on data current as of February 2018. Each planet is shown in sequence, starting with the innermost TRAPPIST-1b and ending with the outermost TRAPPIST-1h. The video presents the planets' relative sizes as well as the relative scale of the central star as seen from each planet. The art highlights possibilities for how the surfaces of these intriguing worlds might look based on their newly calculated properties. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. In the background, slightly distorted versions our familiar constellations, including Orion and Taurus, are shown as they would appear from the location of TRAPPIST-1 (backdrop image courtesy California Academy of Sciences/Dan Tell). An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22098

  8. Jupiter Icy Moons Orbiter Mission design overview

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.

    2006-01-01

    An overview of the design of a possible mission to three large moons of Jupiter (Callisto, Ganymede, and Europa) is presented. The potential Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons. The combination of very limited control authority and significant multibody dynamics resulted in some aspects of the trajectory design being different than for any previous mission. The results of several key trades, innovative trajectory types and design processes, and remaining issues are presented.

  9. Hypothetical Rejuvenated Planets Artist Concept

    NASA Image and Video Library

    2015-06-25

    This artist's concept shows a hypothetical "rejuvenated" planet -- a gas giant that has reclaimed its youthful infrared glow. NASA's Spitzer Space Telescope found tentative evidence for one such planet around a dead star, or white dwarf, called PG 0010+280 (depicted as white dot in illustration). When planets are young, they are warm and toasty due to internal heat left over from their formation. Planets cool over time -- until they are possibly rejuvenated. The theory goes that this Jupiter-like planet, which orbits far from its star, would accumulate some of the material sloughed off by its star as the star was dying. The material would cause the planet to swell in mass. As the material fell onto the planet, it would heat up due to friction and glow with infrared light. The final result would be an old planet, billions of years in age, radiating infrared light as it did in its youth. Spitzer detected an excess infrared light around the white dwarf PG 0010+280. Astronomers aren't sure where the light is coming from, but one possibility is a rejuvenated planet. Future observations may help solve the mystery. A Jupiter-like planet is about ten times the size of a white dwarf. White dwarfs are about the size of Earth, so one white dwarf would easily fit into the Great Red Spot on Jupiter! http://photojournal.jpl.nasa.gov/catalog/PIA19346

  10. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  11. SPOTS: Search for Planets Orbiting Two Stars A Direct Imaging Survey for Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Thalmann, C.; Desidera, S.; Bergfors, C.; Boccaletti, A.; Bonavita, M.; Carson, J. C.; Feldt, M.; Goto, M.; Henning, T.; Janson, M.; Mordasini, C.

    2013-09-01

    Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the fre- quency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.

  12. Long term evolution of planetary systems with a terrestrial planet and a giant planet.

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2017-06-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion.

  13. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  14. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    PubMed

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  15. Gas Planet Orbits

    NASA Image and Video Library

    2008-08-19

    Jupiter, Saturn, Uranus, and Neptune are known as the jovian Jupiter-like planets because they are all gigantic compared with Earth, and they have a gaseous nature. This diagram shows the approximate distance of the jovian planets from the Sun.

  16. Fatal outcome after reactivation of inherited chromosomally integrated HHV-6A (iciHHV-6A) transmitted through liver transplantation.

    PubMed

    Bonnafous, P; Marlet, J; Bouvet, D; Salamé, E; Tellier, A-C; Guyetant, S; Goudeau, A; Agut, H; Gautheret-Dejean, A; Gaudy-Graffin, C

    2018-06-01

    HHV-6A and HHV-6B are found as inherited and chromosomally integrated forms (iciHHV-6A and -6B) into all germinal and somatic cells and vertically transmitted in a Mendelian manner in about 1% of the population. They were occasionally shown to be horizontally transmitted through hematopoietic stem cell transplantation. Here, we present a clinical case of horizontal transmission of iciHHV-6A from donor to recipient through liver transplantation. Molecular analysis performed on three viral genes (7.2 kb) in the recipient and donor samples supports transmission of iciHHV-6A from the graft. Transmission was followed by reactivation, with high viral loads in several compartments. The infection was uncontrollable, leading to severe disease and death, despite antiviral treatments and the absence of resistance mutations. This case highlights the fact that physicians should be aware of the possible horizontal transmission of iciHHV-6 and its consequences in case of reactivation in immunocompromised patients. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Laboratory study of hyper-elocity impact-driven chemical reactions and surface evolution in icy targets.

    NASA Astrophysics Data System (ADS)

    Ulibarri, Z.; Munsat, T.; Dee, R.; Horanyi, M.; James, D.; Kempf, S.; Nagle, M.; Sternovsky, Z.

    2017-12-01

    Although ice is prevalent in the solar system and the long-term evolution of many airless icy bodies is affected by hypervelocity micrometeoroid bombardment, there has been little experimental investigation into these impact phenomena, especially at the impact speeds encountered in space. For example, there is little direct information about how dust impacts alter the local chemistry, and dust impacts may be an important mechanism for creating complex organic molecules necessary for life. Laser ablation and light-gas gun experiments simulating dust impacts have successfully created amino acid precursors from base components in ice surfaces. Additionally, the Cassini mission revealed CO2 deposits in icy satellites of Saturn, which may have been created by dust impacts. With the creation of a cryogenically cooled ice target for the dust accelerator facility at the NASA SSERVI-funded Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT), it is now possible to study the effects of micrometeoroid impacts in a controlled environment under conditions and at energies typically encountered in nature. Complex ice-target mixtures are created with a flash-freezing target which allows for homogeneous mixtures to be frozen in place even with salt mixtures that otherwise would form inhomogeneous ice surfaces. Coupled with the distinctive capabilities of the IMPACT dust facility, highly valuable data concerning the evolution of icy bodies under hypervelocity bombardment and the genesis of complex organic chemistry on these icy bodies can be gathered in unique and tightly controlled experiments. Results from recent and ongoing investigations will be presented.

  18. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  19. Planet traps and planetary cores: origins of the planet-metallicity correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca

    2014-10-10

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ≅ 1 AU, and the low-mass planets. We show using a statisticalmore » approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = –0.2 to –0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M {sub c,} {sub crit}) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > –0.6, our models predict that the most likely value of the 'mean' critical core mass of Jovian planets is (M {sub c,} {sub crit}) ≅ 5 M {sub ⊕} rather than 10 M {sub ⊕}. This implies that grain opacities in accreting envelopes should be reduced in order to lower M {sub c,} {sub crit}.« less

  20. Effects of ICI 182780 on estrogen receptor expression, fluid absorption and sperm motility in the epididymis of the bonnet monkey

    PubMed Central

    Shayu, Deshpande; Kesava, Chenna CS; Soundarajan, Rama; Rao, A Jagannadha

    2005-01-01

    Background The importance of estrogen in regulation of fluid absorption and sperm maturation in the rodent epididymis has been established from studies on estrogen receptor-alpha knockout mice. However, functional studies on the role of estrogen in primate epididymis have been few. The main objective of this study was therefore to extend these observations and systematically analyze the presence and function of estrogen receptors in modulating the function of the primate epididymis, using the bonnet monkey (Macaca radiata) as a model system. Methods A steroidal estrogen receptor (ER) antagonist, ICI 182780 (ICI), was administered to adult male bonnet monkeys via mini-osmotic pumps for a duration of 30 to 180 days. The expression of key estrogen-regulated genes (ER-alpha, Na-K ATPase alpha-1 and Aquaporin-1) was examined at specific time points. Further, the effect of ICI in modulating fluid reabsorption in efferent ductules was monitored, and critical sperm-maturation parameters were also analyzed. Results Our studies in the bonnet monkey revealed that both ER-alpha and ER-beta were expressed in all the three regions of the epididymis. We observed an increase in ER-alpha mRNA and protein in the caput of ICI-treated monkeys. Steady state mRNA levels of the water-channel protein, Aquaporin-1, was significantly lower in the caput of ICI-treated monkeys compared to controls, whereas the mRNA levels of Na-K ATPase alpha-1 remained unchanged. In vitro incubation of efferent ductules with ICI resulted in two-fold increase in tubular diameter, indicating affected fluid reabsorption capacity. Furthermore, sperm from ICI-treated monkeys were immotile. Conclusion Taken together, our results point to an integral role for estrogen in modulating the functions of the bonnet monkey epididymis. This study also demonstrates possible differences in the epididymal physiology of rodents and non-human primates, and thus underscores the significance of reports such as these, that examine

  1. Effects of ICI 182780 on estrogen receptor expression, fluid absorption and sperm motility in the epididymis of the bonnet monkey.

    PubMed

    Shayu, Deshpande; ChennaKesava, C S; Soundarajan, Rama; Rao, A Jagannadha

    2005-03-02

    The importance of estrogen in regulation of fluid absorption and sperm maturation in the rodent epididymis has been established from studies on estrogen receptor-alpha knockout mice. However, functional studies on the role of estrogen in primate epididymis have been few. The main objective of this study was therefore to extend these observations and systematically analyze the presence and function of estrogen receptors in modulating the function of the primate epididymis, using the bonnet monkey (Macaca radiata) as a model system. A steroidal estrogen receptor (ER) antagonist, ICI 182780 (ICI), was administered to adult male bonnet monkeys via mini-osmotic pumps for a duration of 30 to 180 days. The expression of key estrogen-regulated genes (ER-alpha, Na-K ATPase alpha-1 and Aquaporin-1) was examined at specific time points. Further, the effect of ICI in modulating fluid reabsorption in efferent ductules was monitored, and critical sperm-maturation parameters were also analyzed. Our studies in the bonnet monkey revealed that both ER-alpha and ER-beta were expressed in all the three regions of the epididymis. We observed an increase in ER-alpha mRNA and protein in the caput of ICI-treated monkeys. Steady state mRNA levels of the water-channel protein, Aquaporin-1, was significantly lower in the caput of ICI-treated monkeys compared to controls, whereas the mRNA levels of Na-K ATPase alpha-1 remained unchanged. In vitro incubation of efferent ductules with ICI resulted in two-fold increase in tubular diameter, indicating affected fluid reabsorption capacity. Furthermore, sperm from ICI-treated monkeys were immotile. Taken together, our results point to an integral role for estrogen in modulating the functions of the bonnet monkey epididymis. This study also demonstrates possible differences in the epididymal physiology of rodents and non-human primates, and thus underscores the significance of reports such as these, that examine the physiology of non-human primates

  2. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  3. Proposed Missions - Terrestrial Planet Finder

    NASA Image and Video Library

    2003-06-20

    NASA Terrestrial Planet Finder will use multiple telescopes working together to take family portraits of stars and their orbiting planets and determine which planets may have the right chemistry to sustain life.

  4. The fate of scattered planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets atmore » least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.« less

  5. High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons

    NASA Astrophysics Data System (ADS)

    Schaible, M. J.; Johnson, R. E.; Zhigilei, L. V.; Piqueux, S.

    2017-03-01

    The so-called 'PacMan' features on the leading hemispheres of the icy Saturnian moons of Mimas, Tethys and Dione were initially identified as anomalous optical discolorations and subsequently shown to have greater thermal inertia than the surrounding regions. The shape of these regions matches calculated deposition contours of high energy plasma electrons moving opposite to the moon's orbital direction, thus suggesting that electron interactions with the grains produce the observed anomalies. Here, descriptions of radiation-induced diffusion processes are given, and various sintering models are considered to calculate the rate of increase in the contact volume between grains in an icy regolith. Estimates of the characteristic sintering timescale, i.e. the time necessary for the thermal inertia to increase from that measured outside the anomalous regions to that within, are given for each of the moons. Since interplanetary dust particle (IDP) impact gardening and E-ring grain infall would be expected to mix the regolith and obscure the effects of high energy electrons, sintering rates are compared to rough estimates of the impact-induced resurfacing rates. Estimates of the sintering timescale determined by extrapolating laboratory measurements are below ∼0.03 Myr, while the regolith renewal timescales are larger than ∼0.1 Myr, thus indicating that irradiation by the high energy electrons should be sufficient to form stable thermal anomalies. More detailed models developed for sintering of spherical grains are able to account for the radiation-induced anomalies on Mimas and Tethys only if the regoliths on those bodies are relatively compact and composed of small (≲ 5 μm) grains or grain aggregates, and/or the grains are highly non-spherical with surface defect densities in the inter-grain contact regions that are much higher than expected for crystalline water ice grains at thermal equilibrium. These results are consistent with regolith thermal conductivity

  6. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    NASA Technical Reports Server (NTRS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  7. The Search for Planet Nine

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22planet.

  8. A Study of the Construct Validity of the Interactive Computer Interview System (ICIS) Using Student Evaluations as the Outcome Measure

    ERIC Educational Resources Information Center

    Gardner, Robby Christopher

    2009-01-01

    The primary objective of this study was to compare the individual teacher interview scores from the Interactive Computer Interview System (ICIS) with their students' responses to "The Steps to Excellence Student Questionnaire". Specifically, the study examined the correlation among the teacher interviews across four themes of the ICIS ("Knowledge…

  9. Direct Imaging of Warm Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  10. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  11. Planet Formation in Binaries

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Haghighipour, N.

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.

  12. Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d

    DOE PAGES

    Ingraham, Patrick; Marley, Mark S.; Saumon, Didier; ...

    2014-09-30

    During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets’ spectral energy distributions.When combined with the 3 to 4μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. Lastly, the data also provide further evidence that future modeling efforts mustmore » include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.« less

  13. Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment

    NASA Technical Reports Server (NTRS)

    Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard

    2004-01-01

    Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of

  14. Detecting and Characterizing Exoplanets with the WFIRST Coronagraph: Colors of Planets in Standard and Designer Bandpasses-SETI

    NASA Astrophysics Data System (ADS)

    Turnbull, Margaret

    spectra for Solar System objects (Jupiter, Saturn, Uranus, Neptune, and Titan; Karcoschka 1994). We will also use observed SCIAMACHY spectra for the desert, ocean, forest, and icy Earth, in order to build a diverse set of spatially integrated super-Earth spectra, plus variations in atmospheric composition. Simulated observed spectra will be generated for planets placed under the irradiance of stellar spectral types corresponding to WFIRST's highest priority targets for exoplanet imaging (approximately K5V through F5V). The colors extracted from these spectra will be compared to colors extracted from spectra for a wide range of likely extragalactic sources (Bruzual & Charlott 2003) and extincted stellar background sources. Finally, we will assess the "background threat" for the 100 most favorable targets for exoplanet imaging with WFIRST. This flag will be assigned based on number and type of background sources expected at various galactic latitudes, and the above results indicating how readily such sources can be discriminated from exoplanets. As a result of this intensive, three year effort, we will deliver to the community a library of planet spectra and colors in standard and proposed "designer" passbands for planets of all types under stars of varying spectral type, plus colors for a wide range of expected stellar and extragalactic background sources. These data will be available for future work in simulating images and eventual "double blind" studies in extracting planet sources and atmospheric signatures. We expect that our investigation will inform WFIRST and all future direct imaging missions of (1) how different planets will appear at "first glance" from the likely sea of background of stars and unresolved extragalactic sources, and (2) the necessary performance specifications required to characterize the most important atmospheric constituents and discriminate between planets of varying type.

  15. A Planet Detection Tutorial and Simulator

    NASA Technical Reports Server (NTRS)

    Knoch, David; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  16. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  17. Impact of planet-planet scattering on the formation and survival of debris discs

    NASA Astrophysics Data System (ADS)

    Marzari, F.

    2014-10-01

    Planet-planet scattering is a major dynamical mechanism able to significantly alter the architecture of a planetary system. In addition to that, it may also affect the formation and retention of a debris disc by the system. A violent chaotic evolution of the planets can easily clear leftover planetesimal belts preventing the ignition of a substantial collisional cascade that can give origin to a debris disc. On the other end, a mild evolution with limited steps in eccentricity and semimajor axis can trigger the formation of a debris disc by stirring an initially quiet planetesimal belt. The variety of possible effects that planet-planet scattering can have on the formation of debris discs is analysed and the statistical probability of the different outcomes is evaluated. This leads to the prediction that systems which underwent an episode of chaotic evolution might have a lower probability of harbouring a debris disc.

  18. International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.

    2013-09-01

    Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.

  19. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  20. Modeling Rock Alteration at the Water-Rock Interface of Icy Moons

    NASA Astrophysics Data System (ADS)

    Semprich, J.; Treiman, A. H.; Schwenzer, S. P.

    2018-05-01

    Alteration phases of a CM rock core are modeled with variations in fluid composition at the water-rock interface of icy moons. In the presence of H2O, CO2, CH4, and H2 serpentinization of the rock core is very likely at low pressures and 200–400 °C.

  1. Geothermal Energy in Planetary Icy Large Objects via Cosmic Rays Muon–Catalyzed Fusion

    NASA Astrophysics Data System (ADS)

    de Morais, A.

    2018-05-01

    We propose the possibility that muon-catalyzed fusion, produced by cosmic rays, might add energy to the interior of planetary icy large objects of the solar system, and other solar systems, interesting for astrobiological considerations.

  2. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected

  3. Thickness Constraints on the Icy Shells of the Galilean Satellites from a Comparison of Crater Shapes

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    2002-01-01

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  4. Helium-Shrouded Planets Artist Concept

    NASA Image and Video Library

    2015-06-11

    Planets having atmospheres rich in helium may be common in our galaxy, according to a new theory based on data from NASA's Spitzer Space Telescope. These planets would be around the mass of Neptune, or lighter, and would orbit close to their stars, basking in their searing heat. According to the new theory, radiation from the stars would boil off hydrogen in the planets' atmospheres. Both hydrogen and helium are common ingredients of gas planets like these. Hydrogen is lighter than helium and thus more likely to escape. After billions of years of losing hydrogen, the planet's atmosphere would become enriched with helium. Scientists predict the planets would appear covered in white or gray clouds. This is in contrast to our own Neptune, which is blue due to the presence of methane. Methane absorbs the color red, leaving blue. Neptune is far from our sun and hasn't lost its hydrogen. The hydrogen bonds with carbon to form methane. This artist's concept depicts a proposed helium-atmosphere planet called GJ 436b, which was found by Spitzer to lack in methane -- a first clue about its lack of hydrogen. The planet orbits every 2.6 days around its star, which is cooler than our sun and thus appears more yellow-orange in color. http://photojournal.jpl.nasa.gov/catalog/PIA19344

  5. Estrogenic agonist activity of ICI 182,780 (Faslodex) in hippocampal neurons: implications for basic science understanding of estrogen signaling and development of estrogen modulators with a dual therapeutic profile.

    PubMed

    Zhao, Liqin; O'Neill, Kathleen; Brinton, Roberta Diaz

    2006-12-01

    The present study sought to determine the characteristics of ICI 182,780 (Faslodex) action in rat primary hippocampal neurons. We first investigated the neuroprotective efficacy of ICI 182,780 against neurodegenerative insults associated with Alzheimer's disease and related disorders. Dose-response analyses revealed that ICI 182,780, in a concentration-dependent manner, significantly promoted neuron survival following exposure to either excitotoxic glutamate (200 muM)- or beta-amyloid(1-42) (1.5 muM)-induced neurodegeneration of hippocampal neurons. At a clinically relevant concentration of 50 ng/ml, ICI 182,780 exerted nearly maximal neuroprotection against both insults with efficacy comparable with that induced by the endogenous estrogen 17beta-estradiol. Thereafter, we investigated the impact of 50 ng/ml ICI 182,780 on mechanisms of 17beta-estradiol-inducible neuronal plasticity and neuroprotection. Results of these analyses demonstrated that ICI 182,780 directly induced a series of rapid intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations in a pattern comparable with that of 17beta-estradiol. In addition, ICI 182,780 exerted dual regulation of the glutamate-induced rise in [Ca(2+)](i) identical to that induced by 17beta-estradiol. Further analyses demonstrated that ICI 182,780 induced significant activation of extracellular signal-regulated kinase 1/2 and Akt (protein kinase B) and significantly increased expression of spinophilin and Bcl-2, with efficacy comparable with neurons treated with 17beta-estradiol. Taken together, results of these in vitro analyses of ICI 182,780 provide direct evidence of an estrogenic agonist profile of ICI 182,780 action in rat hippocampal neurons. Therapeutic development of neuroselective estrogen receptor modulators that mimic ICI 182,780 is discussed with respect to the potential of safe and efficacious alternatives to estrogen therapy for the prevention of postmenopausal cognitive decline and late-onset Alzheimer

  6. Reorientation Histories of the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Keane, J. T.; Matsuyama, I.

    2016-12-01

    The nature of how a planet spins is controlled by the planet's inertia tensor. In a minimum energy rotation state, planets spin about the maximum principal axis of inertia. Yet, the orientation of this axis is not often constant with time. The redistribution of mass within a planet due to both interior processes (e.g. convection, intrusive volcanism) and surface processes (e.g. extrusive volcanism, impacts) can significantly alter the planet's inertia tensor, resulting in the reorientation of the planet. This form of reorientation is also known as true polar wander. Reorientation can directly alter the topography and gravity field of a planet, generate tectonic stresses, change the insolation geometry (affecting climate and volatile stability), and modify the orientation of the planet's magnetic field. Yet, despite its significance, the reorientation histories of many planets is not well constrained. In this work, we present a new technique for using spacecraft-derived, orbital gravity measurements to directly quantify how individual large geologic features reoriented Mercury, Venus, the Moon, and Mars. When coupled with the geologic record for these respective planets, this enables us to determine the reorientation history for each planet. These mark the first comprehensive, multi-episode reorientation chronologies for these planets. The reorientation histories for the Moon and Mercury are similar; the orientation of both planets is strongly controlled by the presence of large remnant bulges (tidal/rotational for the Moon, and likely thermal for Mercury), but significantly modulated by subsequent, large impacts and volcanic events—resulting in 15° of total reorientation after their formation. Mars experienced larger reorientation due to the formation of the Tharsis rise, punctuated by smaller reorientation events from large impacts. Lastly, Venus's diminutive remnant figure and large volcanic edifices result in the largest possible reorientation events, but the

  7. KEPLER PLANETS: A TALE OF EVAPORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. Wemore » construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  8. Light from Red-Hot Planet

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This figure charts 30 hours of observations taken by NASA's Spitzer Space Telescope of a strongly irradiated exoplanet (an planet orbiting a star beyond our own). Spitzer measured changes in the planet's heat, or infrared light.

    The lower graph shows precise measurements of infrared light with a wavelength of 8 microns coming from the HD 80606 stellar system. The system consists of a sun-like star and a planetary companion on an extremely eccentric, comet-like orbit. The geometry of the planet-star encounter is shown in the upper part of the figure.

    As the planet swung through its closest approach to the star, the Spitzer observations indicated that it experienced very rapid heating (as shown by the red curve). Just before close approach, the planet was eclipsed by the star as seen from Earth, allowing astronomers to determine the amount of energy coming from the planet in comparison to the amount coming from the star.

    The observations were made in Nov. of 2007, using Spitzer's infrared array camera. They represent a significant first for astronomers, opening the door to studying changes in atmospheric conditions of planets far beyond our own solar system.

  9. Photon-induced electro-chemical processes in airless icy bodies analogues

    NASA Astrophysics Data System (ADS)

    Marchione, Demian; Gudipati, Murthy

    2016-10-01

    Previous laboratory studies have shown that radiation-induced ionization of impurities in water-rich ices drives the formation of ionized species resulting in charge generation and accumulation in ices [1-3]. It is expected that some of these impurity ions are decomposed into smaller volatile species and ejected into the vacuum. These processes are relevant to the chemical composition of the near-surface tenuous (thin) atmosphere of icy bodies such as the Jovian satellites like Europa.Our work aims at investigating photocurrents from organic impurity embedded water ices of several microns thick and understanding how these measurements correlate with the desorption of volatiles during UV and electron irradiation. These experiments are performed in an ultrahigh vacuum chamber around Europa's surface temperature (100 - 150 K) conditions using a low-pressure hydrogen flow-discharge lamp emitting primarily at Lyα (121.6 nm), a 2 keV electron source, and a substrate-less electrode. Photoionization of organic impurities in the water matrix results in charge pair (electron and ion) separation within the ice, and hence in detectable currents that are measured as a function of the applied bias and the temperature (5 K - 200 K). Photodesorption products are also identified by a quadrupole mass spectrometer (QMS) and correlated with conductivity measurements. We will discuss these results in the context of expected Europa's surface photoconductivity and near-surface volatile production.References:[1] M. S. Gudipati, and L. J. Allamandola, Astrophysical Journal Letters, 2003, 596(2), L195-L198.[2] M. S. Gudipati, Journal of Physical Chemistry A, 2004, 108(20), 4412-4419.[3] S. H. Cuylle, L. J. Allamandola, and H. Linnartz, Astronomy and Astrophysics, 2014, 562, A22.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by NASA under Planetary Atmospheres

  10. Classifying Planets: Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  11. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  12. The Harsh Destiny of a Planet?

    NASA Astrophysics Data System (ADS)

    2001-05-01

    mass of about three times the mass of the Earth. The observational search for Lithium-6 in other stars with planetary systems now continues. In due time, it will permit to better understand the formation and evolution of the newly discovered exoplanets. In particular, it will demonstrate whether the fall of planets into their host stars is a common process or not. More information Further detailed information is available in the research article ("Evidence for planet engulfment by the star HD 82943", by G. Israelian, N.C. Santos, M. Mayor and R. Rebolo), published in the May 10, 2001, issue of the international research journal Nature. Notes [1] The team consists of Garik Israelian and Rafael Rebolo (Instituto de Astrofísica de Canarias, Spain), Nuno C. Santos and Michel Mayor (Geneva Observatory, Switzerland). [2] The nuclei of Lithium-6 ( 6 Li) atoms consist of three protons and three neutrons; those of Lithium-7 ( 7 Li) have three protons and four neutrons. Both isotopes were produced during the Big Bang and in spallation reactions in the interstellar medium. [3] According to the "traditional" view, giant planets like Jupiter would be formed by rapidly accelerating ("runaway") accretion of gas around an initial, icy "planetesimal" with a mass of about 10 Earth masses. An associated prediction was that giant planets would only be found at a distance of at least 750 million kilometres (5 Astronomical Units; or five times the distance between the Earth and the Sun) from their host stars and that their orbits would be circular, like the orbits of the planets in the Solar System. Technical information about the photo PR Photo 17/01 shows the spectrum of the V = 6.5 mag star HD 82943 , as obtained on June 7, 2000, with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope. It is based on three exposures made with Image Slicer 3 in Director's Discretionary Time in Service Mode, and each lasting 120 sec. The spectral resolution is 110,000 and the final S/N-ratio is about

  13. Cratering at the Icy Satellites: Experimental Insights

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Schultz, P. H.

    2013-12-01

    Impact cratering processes play a central role in shaping the evolution of icy satellites and in guiding interpretations of various geologic features at these bodies. Accurate reconstruction of icy satellite histories depends in large part upon observed impact crater size-frequency distributions. Determining the extent of impact-induced thermal processing and the retention rates for impact-delivered materials of interest, e.g. organics, at these outer solar system moons is of fundamental importance for assessing their habitability and explaining differing geophysical histories. Hence, knowledge of how the impact process operates in ices or ice-rich materials is critically important. Recent progress in the development of water equations of state, coupled with increasingly efficient 3-D hydrocode calculations, has been used to construct careful numerical studies of melt and vapor generation for water ice targets. Complementary to this approach is experimental work to constrain the effects of differing ice target conditions, including porosity, rock mass fraction, and impact angle. Here we report on results from hypervelocity impact experiments (v~5.5 km/s) into water ice targets, performed at the NASA Ames Vertical Gun Range (AVGR). The setup at the AVGR allows for the use of particulate targets, which is useful for examining the effects of target porosity. Photometry and geophysical modeling both suggest that regolith porosity at the icy satellites is significant. We use a combination of half-space and quarter-space geometries, enabling analysis of the impact-generated vapor plume (half-space geometry), along with shock wave and transient crater growth tracking in a cross-sectional view (quarter-space geometry). Evaluating the impact-generated vapor from porous (φ = 0.5) and non-porous water ice targets provides an extension to previously published vapor production results for dolomite and CO2 ice targets. For the case of a 90 degree impact into porous ice, we

  14. The Pan-Pacific Planet Search. II. Confirmation of a Two-planet System around HD 121056

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Wang, Liang; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C. G.; Carter, B. D.

    2015-02-01

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 MJup. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 MJup and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  15. Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17beta-treated, intact follicular and pregnant sheep.

    PubMed

    Magness, Ronald R; Phernetton, Terrance M; Gibson, Tiffini C; Chen, Dong-Bao

    2005-05-15

    Oestrogen dramatically increases uterine blood flow (UBF) in ovariectomized (Ovx) ewes. Both the follicular phase and pregnancy are normal physiological states with elevated levels of circulating oestrogen. ICI 182 780 is a pure steroidal oestrogen receptor (ER) antagonist that blocks oestrogenic actions in oestrogen-responsive tissue. We hypothesized that an ER-mediated mechanism is responsible for in vivo rises in UBF in physiological states of high oestrogen. The purpose of the study was to examine the effect of an ER antagonist on exogenous and endogenous oestradiol-17beta (E2beta)-mediated elevations in UBF. Sheep were surgically instrumented with bilateral uterine artery blood flow transducers, and uterine and femoral artery catheters. Ovx animals (n = 8) were infused with vehicle (35% ethanol) or ICI 182 780 (0.1-3.0 microg min(-1)) into one uterine artery for 10 min before and 50 min after E2beta was given (1 microg kg(-1) I.V. bolus) and UBF was recorded for an additional hour. Intact, cycling sheep were synchronized to the follicular phase using progesterone, prostaglandin F2alpha(PGF2alpha) and pregnant mare serum gonadotrophin (PMSG). When peri-ovulatory rises in UBF reached near peak levels, ICI 182 780 (1 or 2 microg (ml uterine blood flow)-1) was infused unilaterally (n = 4 sheep). Ewes in the last stages of pregnancy (late pregnant ewes) were also given ICI 182 780 (0.23-2.0 microg (ml uterine blood flow)-1; 60 min infusion) into one uterine artery (n = 8 sheep). In Ovx sheep, local infusion of ICI 182 780 did not alter systemic cardiovascular parameters, such as mean arterial blood pressure or heart rate; however, it maximally decreased ipsilateral, but not contralateral, UBF vasodilatory responses to exogenous E2beta by approximately 55-60% (P < 0.01). In two models of elevated endogenous E2beta, local ICI 182 780 infusion inhibited the elevated UBF seen in follicular phase and late pregnant ewes in a time-dependent manner by approximately 60% and

  16. The WFCAM Transit Survey: a search for rocky planets around cool stars

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne

    2010-09-01

    The theory of core accretion makes two intriguing, observable predictions: i) that the formation of rocky/icy planets is common around M-dwarfs, and ii) that hot-Jupiters are extremely difficult to produce around low-mass stars. Furthermore, due to their small physical size and lower bolometric luminosity, M-dwarfs are up to 300? more sensitive to planetary transits in their habitable zones than solar-type stars. We present here the WFCAM Transit Survey (WTS); an ambitious, near- infrared photometric monitoring campaign of ˜6000 M-dwarfs across four 1.5 sq deg fields situated >5 degrees above and below the galactic plane. We utilise a unique opportunity provided by the highly efficient queue-scheduled operational mode of the UKIRT to observe our fields, with at least one visible at any time, when atmospheric conditions and RA coverage are unsuitable for other ongoing UKIRT programs. By probing the peak of the M-dwarf spectral energy distribution (13<17), we obtain a statistically significant sample of low-mass stars, which allows us to place meaningful constraints on the occurrence and formation of planets around M-dwarfs. The WTS has achieved one thousand epochs after 2 years in one of our target fields and will continue until April 2012. Our light curves have a per datapoint photometric precision of ˜3-4 mmag for the brightest objects, with RMS scatter < 1% for J<16, sufficient to detect Earth-like transits around M-dwarfs. I report here on the goals of our survey, our most recent results and the properties of our M-dwarf target sample. I also discuss our processing methods and how we combat the challenges encountered when observing occultations of faint red stars and the spectroscopic follow-up required to confirm them. (http://www.ast.cam.ac.uk/˜sth/wts/index.html)

  17. Planets in a Room

    NASA Astrophysics Data System (ADS)

    Giacomini, l.; Aloisi, F.; De Angelis, I.

    2017-09-01

    Teaching planetary science using a spherical projector to show the planets' surfaces is a very effective but usually very expensive idea. Whatsmore, it usually assumes the availability of a dedicated space and a trained user. "Planets in a room" is a prototypal low cost version of a small, spherical projector that teachers, museum, planetary scientists and other individuals can easily build and use on their own, to show and teach the planets The project of "Planets in a Room" was made by the italian non-profit association Speak Science with the collaboration of INAF-IAPS of Rome and the Roma Tre University (Dipartimento di Matematica e Fisica). This proposal was funded by the Europlanet Outreach Funding Scheme in 2016. "Planets in a room" will be presented during EPSC 2017 to give birth to the second phase of the project, when the outreach and research community will be involved and schools from all over Europe will be invited to participate with the aim of bringing planetary science to a larger audience.

  18. Twist planet drive

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  19. Multi-Modal Active Perception for Autonomously Selecting Landing Sites on Icy Moons

    NASA Technical Reports Server (NTRS)

    Arora, A.; Furlong, P. M.; Wong, U.; Fong, T.; Sukkarieh, S.

    2017-01-01

    Selecting suitable landing sites is fundamental to achieving many mission objectives in planetary robotic lander missions. However, due to sensing limitations, landing sites which are both safe and scientifically valuable often cannot be determined reliably from orbit, particularly, in icy moon missions where orbital sensing data is noisy and incomplete. This paper presents an active perception approach to Entry Descent and Landing (EDL) which enables the lander to autonomously plan informative descent trajectories, acquire high quality sensing data during descent and exploit this additional information to select higher utility landing sites. Our approach consists of two components: probabilistic modeling of landing site features and approximate trajectory planning using a sampling based planner. The proposed framework allows the lander to plan long horizons paths and remain robust to noisy data. Results in simulated environments show large performance improvements over alternative approaches and show promise that our approach has strong potential to improve science return of not only icy moon missions but EDL systems in general.

  20. Constraints on the nanoscale minerals on the surface of Saturnian icy moons

    NASA Astrophysics Data System (ADS)

    Srama, R.; Hsu, H.; Kempf, S.; Horanyi, M.

    2011-12-01

    Nano-phase iron particles embedded into the surfaces of Saturn's icy moons as well as in the ring material have been proposed to explain the infrared spectra obtained by Cassini VIMS. Because the continuous influx of interplanetary fast impactors into the Saturnian system erodes any exposed surface, a certain amount of the embedded nano-particles will be ejected into the Saturnian magnetosphere and speed up to velocities high enough to be detected by the Cassini dust detector CDA. Thus, the analysis of the so-called stream particles provides constraints on the amount and the composition of any nano-phase material within the surfaces of the icy moons. Nanoparticles registered by the Cassini dust detector are most likely composed of silica (SiO2). Their dynamical properties indicate that they are relics of E ring dust grains. In this talk we will show that the Cassini stream particle measurements provide strong constraints for the composition and size distribution of any embedded nano-material.

  1. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  2. Phytotoxicology 1996 mercury in tree foliage investigation: ICI Forest Products, Cornwall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, R.

    1998-11-01

    The report presents results of the most recent phytotoxicology investigation in the area of the ICI chlor-alkali plant in Cornwall, Ontario. Foliage was collected from nine regular sampling sites in the immediate area of the plant site and analyzed for mercury. Foliar mercury results, in micrograms per gram, are presented and compared with those of earlier investigations.

  3. Eccentricity evolution during planet-disc interaction

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Rosotti, Giovanni; Teyssandier, Jean; Booth, Richard; Clarke, Cathie J.; Lodato, Giuseppe

    2018-03-01

    During the process of planet formation, the planet-disc interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long (t ˜ 3 × 105 orbits) numerical simulations: (a) one (with a relatively light disc, Md/Mp = 0.2), where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, Md/Mp = 0.65) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.

  4. On the radius of habitable planets

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2014-01-01

    Context. The conditions that a planet must fulfill to be habitable are not precisely known. However, it is comparatively easier to define conditions under which a planet is very likely not habitable. Finding such conditions is important as it can help select, in an ensemble of potentially observable planets, which ones should be observed in greater detail for characterization studies. Aims: Assuming, as in the Earth, that the presence of a C-cycle is a necessary condition for long-term habitability, we derive, as a function of the planetary mass, a radius above which a planet is likely not habitable. We compute the maximum radius a planet can have to fulfill two constraints: surface conditions compatible with the existence of liquid water, and no ice layer at the bottom of a putative global ocean. We demonstrate that, above a given radius, these two constraints cannot be met. Methods: We compute internal structure models of planets, using a five-layer model (core, inner mantle, outer mantle, ocean, and atmosphere), for different masses and composition of the planets (in particular, the Fe/Si ratio of the planet). Results: Our results show that for planets in the super-Earth mass range (1-12 M⊕), the maximum that a planet, with a composition similar to that of the Earth, can have varies between 1.7 and 2.2 R⊕. This radius is reduced when considering planets with higher Fe/Si ratios and taking radiation into account when computing the gas envelope structure. Conclusions: These results can be used to infer, from radius and mass determinations using high-precision transit observations like those that will soon be performed by the CHaracterizing ExOPlanet Satellite (CHEOPS), which planets are very likely not habitable, and therefore which ones should be considered as best targets for further habitability studies.

  5. The SEEDs of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Currie, T.

    2012-01-01

    We live in a planetary system with 2 gas giant planets, and as a resu lt of RV, transit, microlensing, and transit timing studies have ide ntified hundreds of giant planet candidates in the past 15 years. Su ch studies have preferentially concentrated on older, low activity So lar analogs, and thus tell us little about .when, where, and how gian t planets form in their disks, or how frequently they form in disks associated with intermediate-mass stars.

  6. Effects of a phytoestrogen-containing soy extract on the growth-inhibitory activity of ICI 182 780 in an experimental model of estrogen-dependent breast cancer.

    PubMed

    Gallo, Daniela; Mantuano, Elisabetta; Fabrizi, Manuela; Ferlini, Cristiano; Mozzetti, Simona; De Stefano, Ilaria; Scambia, Giovanni

    2007-06-01

    The study reported here was designed to determine whether a phytoestrogen-containing soy extract (SSE) could negate/overwhelm the inhibitory effects of ICI 182 780 on the growth of estrogen-sustained human breast cancer xenografts (MCF-7), in ovariectomized athymic mice. As expected, estradiol-supplemented tumors did not grow over the study period in ICI 182 780-treated females; concomitant administration of 50 mg/kg per day SSE slightly potentiated the inhibitory activity of the drug, while at 100 mg/kg per day, SSE partially negated ICI 182 780 activity. In keeping with these in vivo outcomes, we observed that the level of cyclin D1 (and progesterone receptor) in MCF-7 xenografts was considerably reduced by ICI 182 780, an effect enhanced by concomitant treatment with 50 SSE, but reduced by the higher dosage (i.e. 100 mg/kg per day). Thrombospondin-1 (TSP-1) and kallikrein 6 (KLK6) levels were also reduced following ICI 182 780, although to a lesser degree; again, combined anti-estrogen and SSE produced a dose-dependent regulation in TSP-1 and KLK6 tumor level, with a further reduction in the mRNA gene expression at 50 SSE (compared with ICI 182 780) and a partial reversion of the drug-induced down-regulation at 100 mg/kg per day. No modulation was detected in the serum concentration of IGF-1 (a potent mitogen for estrogen receptor-positive breast cancer cell lines) either upon treatment with ICI 182 780 or concomitant administration of the anti-estrogen with SSE. In conclusion, results from this study raise concerns about the consumption of isoflavone supplements in conjunction with ICI 182 780 therapy, in postmenopausal women with estrogen-dependent breast cancer.

  7. Energetic charged particle interactions at icy satellites

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Hand, K. P.; Paranicas, C.; Howett, C.; Hendrix, A. R.

    2016-12-01

    Satellites embedded within planetary magnetospheres are typically exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. At many planetary satellites, energetic charged particles are typically unimpeded by patchy atmospheres or induced satellite magnetic fields and instead are stopped in the surface itself. Most of these primaries have ranges in porous water ice that are at most centimeters, but some of their secondary photons, emitted during the deceleration process, can reach meter depths [Paranicas et al., 2002, 2004; Johnson et al., 2004]. Examples of radiation-induced surface alteration includes sputtering, radiolysis and grain sintering, processes that are capable of significantly altering the physical properties of surface material. Thus, accurate characterization of energetic charged particle weathering at icy satellites is crucial to a more comprehensive understanding of these bodies. At Saturn's inner mid-size moons remote sensing observations by several instruments onboard the Cassini spacecraft have revealed distinct weathering patterns which have been attributed to energetic electron bombardment of the surface [Howett et al., 2011, 2012, 2014; Schenk et al., 2011; Paranicas et al., 2014]. In the Jovian system, radiolytic production of oxidants has been invoked as a potential source of energy for life which may reside in the sub-surface ocean of its satellite Europa [Johnson et al., 2003; Hand et al., 2007; Vance et al., 2016]. Here we will discuss the near-surface energetic charged particle environment of icy satellites, with particular emphasis on comparative studies between the Saturnian and Jovian systems and interpretation of remote sensing observations by instruments onboard missions such as Cassini and Galileo. In addition, we will discuss implications for surface sampling by future lander missions (e.g. the proposed Europa lander now under study).

  8. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier

    2017-10-01

    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new

  9. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  10. THREE PLANETS ORBITING WOLF 1061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planetmore » falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.« less

  11. The Chemistry of Planet Formation

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.

    2017-01-01

    Exo-planets are common, and they span a large range of compositions. The origins of the observed diversity of planetary compositions is largely unconstrained, but must be linked to the planet formation physics and chemistry. Among planets that are Earth-like, a second question is how often such planets form hospitable to life. A fraction of exo-planets are observed to be ‘physically habitable’, i.e. of the right temperature and bulk composition to sustain a water-based prebiotic chemistry, but this does not automatically imply that they are rich in the building blocks of life, in organic molecules of different sizes and kinds, i.e. that they are chemically habitable. In this talk I will argue that characterizing the chemistry of protoplanetary disks, the formation sites of planets, is key to address both the origins of planetary bulk compositions and the likelihood of finding organic matter on planets. The most direct path to constrain the chemistry in disks is to directly observe it. In the age of ALMA it is for the first time possible to image the chemistry of planet formation, to determine locations of disk snowlines, and to map the distributions of different organic molecules. Recent ALMA highlights include constraints on CO snowline locations, the discovery of spectacular chemical ring systems, and first detections of more complex organic molecules. Observations can only provide chemical snapshots, however, and even ALMA is blind to the majority of the chemistry that shapes planet formation. To interpret observations and address the full chemical complexity in disks requires models, both toy models and astrochemical simulations. These models in turn must be informed by laboratory experiments, some of which will be shown in this talk. It is thus only when we combine observational, theoretical and experimental constraints that we can hope to characterize the chemistry of disks, and further, the chemical compositions of nascent planets.

  12. Objectives for Atmospheres and Ring Science for the Jupiter Icy Moons Orbiter

    NASA Astrophysics Data System (ADS)

    Ingersoll, A.; Simon-Miller, A.

    2003-12-01

    offers continuous planet viewing during the 3 months between satellite encounters. The 10-30 kW of power offers advantages for radio occultations and other active sensors. In addition, JIMO can carry a probe, which can determine the water abundance, deep winds, and thermal structure to 100 bars. At the Forum on Concepts and Approaches for JIMO in Houston, Texas on June 14-15, 2003, the Atmospheres and Rings Subgroup came up with the following prioritized list of objectives: 1. Composition, structure, chemistry, and dynamics of Jupiter's atmosphere. 2. Composition, structure, and dynamics of icy moon atmospheres. 3. Composition, structure, dynamics, and time variability of the atmosphere of Io. 4. Nature of the interaction between magnetosphere, satellites, and Jupiter. 5. Structure, composition, energy budget, and variability of satellite tori. 6. Structure and particle properties of the Jovian ring system Each objective has several prioritized investigations, and each investigation has a prioritized list of measurements. These will be presented at the meeting. Some of the measurements require a probe; others can be done from the JIMO orbiter. With or without a probe, the JIMO mission can answer fundamental questions about atmospheres, rings, and satellite tori in the Jupiter system.

  13. Extreme Planets Artist Concept

    NASA Image and Video Library

    2006-04-05

    This artist concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets circling a pulsar called PSR B1257+12.

  14. ICI-RS 2015-Is a better understanding of sleep the key in managing nocturia?

    PubMed

    Denys, Marie-Astrid; Cherian, Jerald; Rahnama'i, Mohammad S; O'Connell, Kathleen A; Singer, Jonathan; Wein, Alan J; Dhondt, Karlien; Everaert, Karel; Weiss, Jeffrey P

    2016-09-21

    Nocturia, or waking up at night to void, is a highly prevalent and bothersome lower urinary tract symptom. However, the applied treatment modalities do not improve symptoms in about half of the patients. The aim of this report is to generate new ideas for future nocturia research, with special emphasis on the role of sleep physiology and sleep disorders. The following is a report of the presentations and subsequent discussion of the Nocturia Think Tank session at the annual meeting of the International Consultation on Incontinence Research Society (ICI-RS), which took place in September 2015 in Bristol. General information about the organization of the ICI-RS meeting can be found on the website "www.ici-rs.org." An overview of challenges within the existing evidence, future research ideas, and results of research with regard to nocturia and sleep were presented. In order to optimize the management of nocturia and nocturnal polyuria (NP), future research has to focus on the development of unambiguous terminology regarding nocturia and NP, the role of renal function profiles and simplified frequency volume charts as guidance of individualized therapy and the role of sleep disorders such as periodic limb movements during sleep and habitual voiding as a response to awakening. Neurourol. Urodynam. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  16. Selective adrenergic beta-2-receptor blocking drug, ICI-118.551, is effective in essential tremor.

    PubMed

    Teräväinen, H; Huttunen, J; Larsen, T A

    1986-07-01

    Eighteen patients with essential tremor were treated for 2 days with a non-selective adrenergic beta-blocking drug (dl-propranolol, 80 mg X 3), a beta-2-selective blocker (ICI-118.551, 50 mg X 3) and placebo (X 3) in a randomized double blind cross-over study. Postural hand tremor was recorded with an accelerometer before administration of the drugs and at the end of each treatment period. Compared with placebo, both the beta-blocking drugs caused a statistically significant decrease in tremor intensity and they possessed approximately similar antitremor potency. Subjective benefit was reported by 12 of the 18 patients receiving ICI-118.551, 13 when on propranolol and 3 when on placebo.

  17. Planets migrating into stars: Rates and Signature

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-01-01

    New measurements of the occurrence distribution of planets (POD) make it possible to make the first determination of the rate of planet migration into stars as a function of the strength of stellar tidal dissipation. We show how the period at which there is falloff in the POD due to planets migrating into the star can be used to calculate this rate. We show that it does not take extremely weak tidal dissipation for this rate to be low enough to be supplied by a reasonable number of planets being scattered into the lowest period region. The presence of the shortest period giant planets can be better explained by the ongoing migration of giant planets into stars. The presence of giant planets in period on the order of a day and less had prompted some to conclude that tidal dissipation in stars must necessarily be much weaker for planet mass than for binary star mass companions. However, a flow of less than one planet per thousand stars per gigayear could explain their presence without requiring as much of a difference in tidal dissipation strength in stars for planetary than for stellar mass companions. We show several new analytical expressions describing the rate of evolution of the falloff in the POD, as well as the rate of planet. The question of how strong is the tidal dissipation (the quality factor 'Q') for planet-mass companions may be answered within a few years by a measurable time shift in the transit period. We show that the distribution of remaining planet lifetimes indicates a mass-dependence of the stellar tidal dissipation. The possibility of regular merger of planets with stars has led us to find several correlations of iron abundance in stars with planet parameters, starting with the iron-eccentricity correlation (Taylor 2012, Dawson & Murray-Clay 2013). These correlations change in the presence of a stellar companion. We show that the distribution of planets of iron-rich planets is significantly different from the distribution of iron poor stars in

  18. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  19. Comparative effects of estradiol, methyl-piperidino-pyrazole, raloxifene, and ICI 182 780 on gene expression in the murine uterus.

    PubMed

    Davis, Angela M; Mao, Jiude; Naz, Bushra; Kohl, Jessica A; Rosenfeld, Cheryl S

    2008-10-01

    Selective estrogen receptor modulators (SERMs) are potentially useful in treating various endometrial disorders, including endometrial cancer, as they block some of the detrimental effects of estrogen. It remains unclear whether each SERM regulates a unique subset of genes and, if so, whether the combination of a SERM and 17beta-estradiol has an additive or synergistic effect on gene expression. We performed microarray analysis with Affymetrix Mouse Genome 430 2.0 short oligomer arrays to determine gene expression changes in uteri of ovariectomized mice treated with estradiol (low and high dose), methyl-piperidino-pyrazole (MPP), ICI 182 780, raloxifene, and combinations of high dose of estradiol with one of the SERM and dimethyl sulfoxide (DMSO) vehicle control. The nine treatments clustered into two groups, with MPP, raloxifene, and high dose of estradiol in one, and low dose of estradiol, ICI + estradiol, ICI, MPP + estradiol, and raloxifene + estradiol in the second group. Surprisingly, combining a high dose of estradiol with a SERM markedly increased (P<0.02) the number of regulated genes compared with each individual treatment. Analysis of expression for selected genes in uteri of estradiol and SERM-treated mice by quantitative (Q)RT-PCR generally supported the microarray results. For some cancer-associated genes, including Klk1, Ihh, Cdc45l, and Cdca8, administration of MPP or raloxifene with estradiol resulted in greater expression than estradiol alone (P<0.05). By contrast, ICI 182 780 suppressed more genes governing DNA replication compared with MPP and raloxifene treatments. Therefore, ICI 182 780 might be superior to MPP and raloxifene to treat estrogen-induced endometrial cancer in women.

  20. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  1. The anti-oestrogen fulvestrant (ICI 182,780) reduces the androgen receptor expression, ERK1/2 phosphorylation and cell proliferation in the rat ventral prostate.

    PubMed

    Fernandes, S A F; Gomes, G R O; Siu, E R; Damas-Souza, D M; Bruni-Cardoso, A; Augusto, T M; Lazari, M F M; Carvalho, H F; Porto, C S

    2011-10-01

    This study proposed to investigate further the role of oestrogens during pubertal growth of rat ventral prostate, by analysing the effect of anti-oestrogen fulvestrant (ICI 182,780) on the expression of androgen (AR) and oestrogen receptors (ESR1 and ESR2), mitogen-activated protein kinase (ERK1/2) phosphorylation, and expression of Ki-67, a biomarker for cell proliferation. Ventral prostates were obtained from 90-day-old rats treated once a week for 2 months with vehicle (control) or ICI 182,780 (10 mg/rat, s.c.). Transcripts for AR, ESR1 and ESR2 were evaluated by quantitative real-time polymerase chain reaction. Expression of AR, ESR1, ESR2, total and phospho-ERK1/2 was analysed by Western blot or immunofluorescence. Ki-67-positive cells and myosin heavy chain were detected by immunohistochemistry. Cylindrical epithelial cells slightly taller, epithelial dysplasia and an increase in smooth muscle layer were observed in the ventral prostate from ICI 182,780-treated rats. ICI 182,780 did not change the mRNA, but decreased the protein levels for AR in the ventral prostate. The expression of ESR1 (mRNA and protein) was upregulated by ICI 182,780, but no changes were observed on ESR2 expression (mRNA and protein). ICI 182,780 decreased the phosphorylation state of ERK1/2, with no changes in total ERK1/2 levels. Ki-67-positive cells in the ventral prostate were also decreased by ICI 182,780. In conclusion, ICI 182,780 induces downregulation of AR expression and may block the translocation of ESR1 and ESR2 from the nucleus to the plasma membrane, decreasing ERK1/2 phosphorylation and prostatic epithelial cell proliferation. These findings provide a basis for physiological roles of oestrogen in the ventral prostate. Further studies with fulvestrant are necessary in benign prostate hyperplasia and prostatic cancer models. © 2010 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  2. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  3. Portrait of Distant Planets

    NASA Image and Video Library

    2010-04-14

    This image taken with the Palomar Observatory Hale Telescope, shows the light from three planets orbiting a star 120 light-years away. The planets star, called HR8799, is located at the spot marked with an X.

  4. Polarimetry of gas planets

    NASA Astrophysics Data System (ADS)

    Joos, Franco

    The quest for new worlds was not only an adventure at the times of Columbus. Also nowadays mankind searches for new, undiscovered territories. But today they lie no longer only on our Earth, but also well outside the solar system. There, new planets are sought and found. One of the challenges of modern astrophysics is the direct detection of extra- solar planets. To reach this goal, the largest available telescopes and most sophisticated detection techniques are required. A promising method to "see" and analyse extra-solar planets is based on the fact, that light reflected by a planet can be polarised. For its detection, accurate polarisation measurements are needed. This is one of the methods ESO intends to make use of to find new planets outside the solar system. The Institute of Astronomy of ETH Zürich contributes ZIMPOL to this planet-finder project. ZIMPOL is a very sensitive imaging polarimeter. This thesis is situated within the ESO-planet-finder project. It deals with two problems that are crucial for a successful mission: (1) Instrumental polarisation can seriously hamper the performance of the instrument. It is therefore essential, to keep instrumental polarisation very low. (2) A knowledge of the polarisation properties of our targets would be very helpful. For this reason the polarisation properties of our solar system planets are investigated. Promising candidates for a detection with ZIMPOL are large planets with atmospheres similar to those of our giant gas planets Jupiter, Saturn, Uranus and Neptune. In the first part of the thesis the planet-finder project is presented and the role of ZIMPOL is explained. To obtain the instrumental polarisation, the polarimetric properties of mirrors and other optical components of our planet- finder instrument are analysed. The instrumental polarisation for the wavelength range of 600 to 1000 nm and for all zenith distances is calculated with Mueller matrices. Methods for reducing the instrumental polarisation

  5. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Tinney, C. G.; Wang, Liang

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period andmore » a long-period planet.« less

  6. Kepler-47: A Three-Planet Circumbinary System

    NASA Astrophysics Data System (ADS)

    Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader

    2015-12-01

    Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.

  7. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified

    PubMed Central

    Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-01

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795

  8. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified.

    PubMed

    Movérare-Skrtic, Sofia; Börjesson, Anna E; Farman, Helen H; Sjögren, Klara; Windahl, Sara H; Lagerquist, Marie K; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-21

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.

  9. A septet of Earth-sized planets

    NASA Astrophysics Data System (ADS)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  10. Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.

    2015-10-01

    The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of

  11. THE STATISTICAL MECHANICS OF PLANET ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Scott, E-mail: tremaine@ias.edu

    2015-07-10

    The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region ofmore » phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.« less

  12. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  13. Survival of habitable planets in unstable planetary systems

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2016-12-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with a present-day eccentricity of 0.2 and semimajor axis of 5 au orbiting a Sun-like star, 50 per cent of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.

  14. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  15. Eccentricity Evolution of Migrating Planets

    NASA Technical Reports Server (NTRS)

    Murray, N.; Paskowitz, M.; Holman, M.

    2002-01-01

    We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which either the outer or both planets lose energy and angular momentum. The sink of energy and angular momentum could be a gas or planetesimal disk. We analytically calculate the eccentricity damping rate in the case of a single planet migrating through a planetesimal disk. When the planetesimal disk is cold (the average eccentricity is much less than 1), the circularization time is comparable to the inward migration time, as previous calculations have found for the case of a gas disk. If the planetesimal disk is hot, the migration time can be an order of magnitude shorter. We show that the eccentricity of both planetary bodies can grow to large values, particularly if the inner body does not directly exchange energy or angular momentum with the disk. We present the results of numerical integrations of two migrating resonant planets showing rapid growth of eccentricity. We also present integrations in which a Jupiter-mass planet is forced to migrate inward through a system of 5-10 roughly Earth-mass planets. The migrating planets can eject or accrete the smaller bodies; roughly 5% of the mass (averaged over all the integrations) accretes onto the central star. The results are discussed in the context of the currently known extrasolar planetary systems.

  16. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes.

    PubMed

    Schenk, Paul M

    2002-05-23

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  17. DENSITY AND ECCENTRICITY OF KEPLER PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yanqin; Lithwick, Yoram

    2013-07-20

    We analyze the transit timing variations (TTV) obtained by the Kepler mission for 22 sub-Jovian planet pairs (19 published, 3 new) that lie close to mean motion resonances. We find that the TTV phases for most of these pairs lie close to zero, consistent with an eccentricity distribution that has a very low root-mean-squared value of e {approx} 0.01; but about a quarter of the pairs possess much higher eccentricities, up to e {approx} 0.1-0.4. For the low-eccentricity pairs, we are able to statistically remove the effect of eccentricity to obtain planet masses from TTV data. These masses, together withmore » those measured by radial velocity, yield a best-fit mass-radius relation M {approx} 3 M{sub Circled-Plus }(R/R{sub Circled-Plus }). This corresponds to a constant surface escape velocity of {approx}20 km s{sup -1}. We separate the planets into two distinct groups: ''mid-sized'' (those greater than 3 R{sub Circled-Plus }) and 'compact' (those smaller). All mid-sized planets are found to be less dense than water and therefore must contain extensive H/He envelopes that are comparable in mass to that of their cores. We argue that these planets have been significantly sculpted by photoevaporation. Surprisingly, mid-sized planets, a minority among Kepler candidates, are discovered exclusively around stars more massive than 0.8 M{sub Sun }. The compact planets, on the other hand, are often denser than water. Combining our density measurements with those from radial velocity studies, we find that hotter compact planets tend to be denser, with the hottest ones reaching rock density. Moreover, hotter planets tend to be smaller in size. These results can be explained if the compact planets are made of rocky cores overlaid with a small amount of hydrogen, {<=}1% in mass, with water contributing little to their masses or sizes. Photoevaporation has exposed bare rocky cores in cases of the hottest planets. Our conclusion that these planets are likely not water worlds

  18. Explosive desorption of icy grain mantles in dense clouds

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Greenberg, J. M.

    1991-01-01

    The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.

  19. Implications of using broadband photometry for compositional remote sensing of icy objects. [including natural satellites and asteroids

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1982-01-01

    The validity and limitations of assuming bright surfaces are icy and dark surfaces are stony are investigated, and the limitations of JHK colorimetry for distinguishing icy versus stony objects are studied. The broadband JHK reflectances of a large range of minerals and mineral assemblages were computed, the visual albedo obtained, and the J-H and H-K colors computed. Visual reflectance was found to vary easily from 0.15 to 1.0 when the surface contains 99 percent or more water by weight. The effect of varying particulate weight fraction and grain size are described. Visual albedo is found to give no indication of the purity of an icy surface. The JHK colors of an ice and particulate mixture can fall anywhere in the classical J-H versus H-K diagram, and thus the diagram cannot be used to distinguish a predominantly rock surface from a predominantly ice one in a specific case, except where both J-H and H-K colors are less than about -0.2.

  20. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (<1200 K) giant exoplanets at 3.6 and 4.5 microns using the Spitzer Space Telescope, which allow us to constrain their relative abundances of CH4 and CO and corresponding atmospheric metallicities. We discuss the implications of our results for the proposed correlation between planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  1. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    PubMed

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  2. Planet Hunters: Kepler by Eye

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

    2014-01-01

    Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

  3. Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17β-treated, intact follicular and pregnant sheep

    PubMed Central

    Magness, Ronald R; Phernetton, Terrance M; Gibson, Tiffini C; Chen, Dong-bao

    2005-01-01

    Oestrogen dramatically increases uterine blood flow (UBF) in ovariectomized (Ovx) ewes. Both the follicular phase and pregnancy are normal physiological states with elevated levels of circulating oestrogen. ICI 182 780 is a pure steroidal oestrogen receptor (ER) antagonist that blocks oestrogenic actions in oestrogen-responsive tissue. We hypothesized that an ER-mediated mechanism is responsible for in vivo rises in UBF in physiological states of high oestrogen. The purpose of the study was to examine the effect of an ER antagonist on exogenous and endogenous oestradiol-17β (E2β)-mediated elevations in UBF. Sheep were surgically instrumented with bilateral uterine artery blood flow transducers, and uterine and femoral artery catheters. Ovx animals (n = 8) were infused with vehicle (35% ethanol) or ICI 182 780 (0.1–3.0 μg min−1) into one uterine artery for 10 min before and 50 min after E2β was given (1 μg kg−1i.v. bolus) and UBF was recorded for an additional hour. Intact, cycling sheep were synchronized to the follicular phase using progesterone, prostaglandin F2α(PGF2α) and pregnant mare serum gonadotrophin (PMSG). When peri-ovulatory rises in UBF reached near peak levels, ICI 182 780 (1 or 2 μg (ml uterine blood flow)−1) was infused unilaterally (n = 4 sheep). Ewes in the last stages of pregnancy (late pregnant ewes) were also given ICI 182 780 (0.23–2.0 μg (ml uterine blood flow)−1; 60 min infusion) into one uterine artery (n = 8 sheep). In Ovx sheep, local infusion of ICI 182 780 did not alter systemic cardiovascular parameters, such as mean arterial blood pressure or heart rate; however, it maximally decreased ipsilateral, but not contralateral, UBF vasodilatory responses to exogenous E2β by ∼55–60% (P < 0.01). In two models of elevated endogenous E2β, local ICI 182 780 infusion inhibited the elevated UBF seen in follicular phase and late pregnant ewes in a time-dependent manner by ∼60% and 37%, respectively; ipsilateral

  4. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  5. Provenance of the terrestrial planets.

    PubMed

    Wetherill, G W

    1994-01-01

    Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation.

  6. WHY ARE PULSAR PLANETS RARE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats themore » inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.« less

  7. Subcutaneous, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia in the rat.

    PubMed

    Caram-Salas, Nadia L; Reyes-García, Gerardo; Bartoszyk, Gerd D; Araiza-Saldaña, Claudia I; Ambriz-Tututi, Mónica; Rocha-González, Héctor I; Arreola-Espino, Rosaura; Cruz, Silvia L; Granados-Soto, Vinicio

    2007-11-14

    The purpose of this study was to assess the possible antiallodynic effect of asimadoline ([N-methyl-N-[1S)-1-phenyl)-2-(13S))-3-hydroxypyrrolidine-1-yl)-ethyl]-2,2-diphenylacetamide HCl]) and ICI-20448 ([2-[3-(1-(3,4-Dichlorophenyl-N-methylacetamido)-2-pyrrolidinoethyl)-phenoxy]acetic acid HCl]), two peripheral selective kappa opioid receptor agonists, after subcutaneous, spinal and periaqueductal grey administration to neuropathic rats. Twelve days after spinal nerve ligation tactile allodynia was observed, along with an increase in kappa opioid receptor mRNA expression in dorsal root ganglion and dorsal horn spinal cord. A non-significant increase in periaqueductal grey was also seen. Subcutaneous (s.c.) administration of asimadoline and ICI-204448 (1-30 mg/kg) dose-dependently reduced tactile allodynia. This effect was partially blocked by s.c., but not intrathecal, naloxone. Moreover, intrathecal administration of asimadoline or ICI-204448 (1-30 mug) reduced tactile allodynia in a dose-dependent manner and this effect was completely blocked by intrathecal naloxone. Microinjection of both kappa opioid receptor agonists (3-30 mug) into periaqueductal grey also produced a naloxone-sensitive antiallodynic effect in rats. Our results indicate that systemic, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia. This effect may be a consequence of an increase in kappa opioid receptor mRNA expression in dorsal root ganglion, dorsal horn spinal cord and, to some extent, in periaqueductal grey. Finally, our data suggest that these drugs could be useful to treat neuropathic pain in human beings.

  8. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  9. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  10. Searching for Planets Around other Stars

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this colloquim presentation, Professor of Astronomy, Geoffrey Marcy discusses the discovery of planets orbiting other stars. Using the Doppler shift caused by stellar wobble that is caused by nearby planetary mass, astronomers have been able to infer the existence of Jupiter-sized planets around other stars. Using a special spectrometer at Lick Observatory, the wobble of several stars have been traced over the years required to generate an accurate pattern required to infer the stellar wobble. Professor Marcy, discusses the findings of planets around 47 Ursae Majoris, 16 Cygni B, 51 Pegasus, and 56 Rho 1 Cne. In the case of 56 Rho 1 Cne the planet appears to be close to the star, within 1.5 astronomical units. The observations from the smaller Lick Observatory will be augmented by new observations from the larger telescope at the Kek observatory. This move will allow observations of smaller planets, as opposed to the massive planets thus far discovered. The astronomers also hope to observe smaller stars with the Kek data. Future spaceborne observations will allow the discovery of even smaller planets. A spaceborne interferometer is in the planning stages, and an even larger observatory, called the Terrestrial Planet Finder, is hoped for. Professor Marcy shows artists' renderings of two of the planets thus far discovered. He also briefly discusses planetary formation and shows slides of both observations from the Orion Nebula and models of stellar system formation.

  11. Infrared radiation from an extrasolar planet.

    PubMed

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  12. Starting a Planet Protectors Club

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2007

    2007-01-01

    If your mission is to teach children how to reduce, reuse, and recycle waste and create the next generation of Planet Protectors, perhaps leading a Planet Protectors Club is part of your future challenges. You don't have to be an expert in waste reduction and recycling to lead a a Planet Protectors Club. You don't even have to be a teacher. You do…

  13. Hot, Carbon-Rich Planet Artist Concept

    NASA Image and Video Library

    2010-12-08

    This artist concept shows the searing-hot gas planet WASP-12b orange orb and its star. NASA Spitzer Space Telescope discovered that the planet has more carbon than oxygen, making it the first carbon-rich planet ever observed.

  14. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  15. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

    NASA Astrophysics Data System (ADS)

    Shallue, Christopher J.; Vanderburg, Andrew

    2018-02-01

    NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.

  16. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-01-01

    Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.

  17. The Global Contribution of Secondary Craters on the Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters

  18. What Would Constitute Evidence for Life on Icy Moons?

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Hoehler, T. M.

    2017-01-01

    For the first time since Viking, NASA is considering missions that would include life detection as a primary objective, making it critical to develop and evaluate a diverse set of strategies for seeking evidence of life. The central question is: what should be the target of our search that, if found, would constitute a near-certain evidence for life? Since life on icy moons might be quite different from terrestrial life, we should concentrate on features of biological systems that are considered universal and are unlikely to emerge through abiotic means.

  19. Inferring Planet Occurrence Rates With a Q1-Q17 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; McCauliff, Sean D.; Burke, Christopher; Bryson, Steve; Batalha, Natalie; Coughlin, Jeffrey; Rowe, Jason; mullally, fergal; thompson, susan; Seader, Shawn; Twicken, Joseph; Li, Jie; morris, robert; smith, jeffrey; haas, michael; christiansen, jessie; Clarke, Bruce

    2015-08-01

    NASA’s Kepler Space Telescope monitored the photometric variations of over 170,000 stars, at half-hour cadence, over its four-year prime mission. The Kepler pipeline calibrates the pixels of the target apertures for each star, produces light curves with simple aperture photometry, corrects for systematic error, and detects threshold-crossing events (TCEs) that may be due to transiting planets. The pipeline estimates planet parameters for all TCEs and computes diagnostics used by the Threshold Crossing Event Review Team (TCERT) to produce a catalog of objects that are deemed either likely transiting planet candidates or false positives.We created a training set from the Q1-Q12 and Q1-Q16 TCERT catalogs and an ensemble of synthetic transiting planets that were injected at the pixel level into all 17 quarters of data, and used it to train a random forest classifier. The classifier uniformly and consistently applies diagnostics developed by the Transiting Planet Search and Data Validation pipeline components and by TCERT to produce a robust catalog of planet candidates.The characteristics of the planet candidates detected by Kepler (planet radius and period) do not reflect the intrinsic planet population. Detection efficiency is a function of SNR, so the set of detected planet candidates is incomplete. Transit detection preferentially finds close-in planets with nearly edge-on orbits and misses planets whose orbital geometry precludes transits. Reliability of the planet candidates must also be considered, as they may be false positives. Errors in detected planet radius and in assumed star properties can also bias inference of intrinsic planet population characteristics.In this work we infer the intrinsic planet population, starting with the catalog of detected planet candidates produced by our random forest classifier, and accounting for detection biases and reliabilities as well as for radius errors in the detected population.Kepler was selected as the 10th mission

  20. Evolution of Earth Like Planets

    NASA Astrophysics Data System (ADS)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  1. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  2. Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).

  3. Detrusor underactivity: Pathophysiological considerations, models and proposals for future research. ICI-RS 2013.

    PubMed

    van Koeveringe, Gommert A; Rademakers, Kevin L J; Birder, Lori A; Korstanje, Cees; Daneshgari, Firouz; Ruggieri, Michael R; Igawa, Yasuhiko; Fry, Christopher; Wagg, Adrian

    2014-06-01

    Detrusor underactivity, resulting in either prolonged or inefficient voiding, is a common clinical problem for which treatment options are currently limited. The aim of this report is to summarize current understanding of the clinical observation and its underlying pathophysiological entities. This report results from presentations and subsequent discussion at the International Consultation on Incontinence Research Society (ICI-RS) in Bristol, 2013. The recommendations made by the ICI-RS panel include: Development of study tools based on a system's pathophysiological approach, correlation of in vitro and in vivo data in experimental animals and humans, and development of more comprehensive translational animal models. In addition, there is a need for longitudinal patient data to define risk groups and for the development of screening tools. In the near-future these recommendations should lead to a better understanding of detrusor underactivity and its pathophysiological background. Neurourol. Urodynam. 33:591-596, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  4. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  5. Optimization of Planet Finder Observing Strategy

    NASA Astrophysics Data System (ADS)

    Sinukoff, E.

    2014-03-01

    We evaluate radial velocity observing strategies to be considered for future planethunting surveys with the Automated Planet Finder, a new 2.4-m telescope at Lick Observatory. Observing strategies can be optimized to mitigate stellar noise, which can mask and imitate the weak Doppler signals of low-mass planets. We estimate and compare sensitivities of 5 different observing strategies to planets around G2-M2 dwarfs, constructing RV noise models for each stellar spectral type, accounting for acoustic, granulation, and magnetic activity modes. The strategies differ in exposure time, nightly and monthly cadence, and number of years. Synthetic RV time-series are produced by injecting a planet signal onto the stellar noise, sampled according to each observing strategy. For each star and each observing strategy, thousands of planet injection recovery trials are conducted to determine the detection efficiency as a function of orbital period, minimum mass, and eccentricity. We find that 4-year observing strategies of 10 nights per month are sensitive to planets ~25-40% lower in mass than the corresponding 1 year strategies of 30 nights per month. Three 5-minute exposures spaced evenly throughout each night provide a 10% gain in sensitivity over the corresponding single 15-minute exposure strategies. All strategies are sensitive to planets of lowest mass around the modeled K7 dwarf. This study indicates that APF surveys adopting the 4-year strategies should detect Earth-mass planets on < 10-day orbits around quiet late-K dwarfs as well as > 1.6 Earth-mass planets in their habitable zones.

  6. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  7. Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Vanderburg, Andrew; Rizzuto, Aaron C.; Kraus, Adam L.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Esquerdo, Gilbert A.; Latham, David W.; Mace, Gregory N.; Morris, Nathan R.; Quinn, Samuel N.; Sokal, Kimberly R.; Stefanik, Robert P.

    2018-01-01

    Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth ({0.99}-0.04+0.06{R}\\oplus ), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of {2.91}-0.10+0.11{R}\\oplus and {1.45}-0.08+0.11{R}\\oplus , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts.

  8. Atmospheres of the Giant Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.

  9. ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M⊕ planets?

    NASA Astrophysics Data System (ADS)

    Marino, S.; Wyatt, M. C.; Panić, O.; Matrà, L.; Kennedy, G. M.; Bonsor, A.; Kral, Q.; Dent, W. R. F.; Duchene, G.; Wilner, D.; Lisse, C. M.; Lestrade, J.-F.; Matthews, B.

    2017-03-01

    While most of the known debris discs present cold dust at tens of astronomical unit (au), a few young systems exhibit hot dust analogous to the Zodiacal dust. η Corvi is particularly interesting as it is old and it has both, with its hot dust significantly exceeding the maximum luminosity of an in situ collisional cascade. Previous work suggested that this system could be undergoing an event similar to the Late Heavy Bombardment (LHB) soon after or during a dynamical instability. Here, we present ALMA observations of η Corvi with a resolution of 1.2 arcsec (∼22 au) to study its outer belt. The continuum emission is consistent with an axisymmetric belt, with a mean radius of 152 au and radial full width at half-maximum of 46 au, which is too narrow compared to models of inward scattering of an LHB-like scenario. Instead, the hot dust could be explained as material passed inwards in a rather stable planetary configuration. We also report a 4σ detection of CO at ∼20 au. CO could be released in situ from icy planetesimals being passed in when crossing the H2O or CO2 ice lines. Finally, we place constraints on hidden planets in the disc. If a planet is sculpting the disc's inner edge, this should be orbiting at 75-100 au, with a mass of 3-30 M⊕ and an eccentricity <0.08. Such a planet would be able to clear its chaotic zone on a time-scale shorter than the age of the system and scatter material inwards from the outer belt to the inner regions, thus feeding the hot dust.

  10. The size distribution of inhabited planets

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  11. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  12. Genistein versus ICI 182, 780: an ally or enemy in metastatic progression of prostate cancer.

    PubMed

    Nakamura, Hisae; Wang, Yuwei; Xue, Hui; Romanish, Mark T; Mager, Dixie L; Helgason, Cheryl D; Wang, Yuzhuo

    2013-12-01

    Androgen signalling through the androgen receptor (AR) plays a critical role in prostate cancer (PCa) initiation and progression. Estrogen in synergy with androgen is essential for cell growth of the normal and malignant prostate. However, the exact role that estrogen and the estrogen receptor play in prostate carcinogenesis remains unclear. We have previously demonstrated the metastasis-promoting effect of an estrogen receptor beta (ERβ) agonist (genistein) in a patient-derived PCa xenograft model mimicking localized and metastatic disease. To test the hypothesis that the tumor-promoting activity of genistein was due to its estrogenic properties, we treated the xenograft-bearing mice with genistein and an anti-estrogen compound (ICI 182, 780) and compared the differential gene expression using microarrays. Using a second xenograft model which was derived from another patient, we showed that genistein promoted disease progression in vivo and ICI 182, 780 inhibited metastatic spread. The microarray analysis revealed that the metallothionein (MT) gene family was differentially expressed in tumors treated by these compounds. Using qRT-PCR, the differences in expression levels were validated in the metastatic and non-metastatic LTL313 PCa xenograft tumor lines, both of which were originally derived from the same PCa patient. Together our data provide evidence that genistein stimulates and ICI 182, 780 inhibits metastatic progression, suggesting that these effects may be mediated by ERβ signalling. © 2013 Wiley Periodicals, Inc.

  13. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Gerth, Christopher; Hendricks, Charles

    1991-01-01

    Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.

  14. Formation of Giant Planets and Brown Dwarves

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2003-01-01

    According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models predict that rocky planets should form in orbit about most stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. Ongoing theoretical modeling of accretion of giant planet atmospheres, as well as observations of protoplanetary disks, will help decide this issue. Observations of extrasolar planets around main sequence stars can only provide a lower limit on giant planet formation frequency . This is because after giant planets form, gravitational interactions with material within the protoplanetary disk may cause them to migrat inwards and be lost to the central star. The core instability model can only produce planets greater than a few jovian masses within protoplanetary disks that are more viscous than most such disks are believed to be. Thus, few brown dwarves (objects massive enough to undergo substantial deuterium fusion, estimated to occur above approximately 13 jovian masses) are likely to be formed in this manner. Most brown dwarves, as well as an unknown number of free-floating objects of planetary mass, are probably formed as are stars, by the collapse of extended gas/dust clouds into more compact objects.

  15. A Venus-mass Planet Orbiting a Brown Dwarf: A Missing Link between Planets and Moons

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Jung, Y. K.; Han, C.; Gould, A.; Kozłowski, S.; Skowron, J.; Poleski, R.; Soszyński, I.; Pietrukowicz, P.; Mróz, P.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrzyński, G.; Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Gaudi, B. S.; Hwang, K.-H.; Choi, J.-Y.; Shin, I.-G.; Park, H.; Bozza, V.

    2015-10-01

    The co-planarity of solar system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the Kepler satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. Here we report the discovery of an intermediate system, OGLE-2013-BLG-0723LB/Bb, composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled-down version of a planet plus a star or as a scaled-up version of a moon plus a planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us to suggest that the formation processes of companions within accretion disks around stars, brown dwarfs, and planets are similar.

  16. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  17. Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets

    NASA Astrophysics Data System (ADS)

    Marino, Sebastian; Bonsor, Amy; Wyatt, Mark C.; Kral, Quentin

    2018-06-01

    Exocomets scattered by planets have been invoked to explain observations in multiple contexts, including the frequently found near- and mid-infrared excess around nearby stars arising from exozodiacal dust. Here we investigate how the process of inward scattering of comets originating in an outer belt, is affected by the architecture of a planetary system, to determine whether this could lead to observable exozodi levels or deliver volatiles to inner planets. Using N-body simulations, we model systems with different planet mass and orbital spacing distributions in the 1-50 AU region. We find that tightly packed (Δap < 20RH, m) low mass planets are the most efficient at delivering material to exozodi regions (5-7% of scattered exocomets end up within 0.5 AU at some point), although the exozodi levels do not vary by more than a factor of ˜7 for the architectures studied here. We suggest that emission from scattered dusty material in between the planets could provide a potential test for this delivery mechanism. We show that the surface density of scattered material can vary by two orders of magnitude (being highest for systems of low mass planets with medium spacing), whilst the exozodi delivery rate stays roughly constant, and that future instruments such as JWST could detect it. In fact for η Corvi, the current Herschel upper limit rules our the scattering scenario by a chain of ≲30 M⊕ planets. Finally, we show that exocomets could be efficient at delivering cometary material to inner planets (0.1-1% of scattered comets are accreted per inner planet). Overall, the best systems at delivering comets to inner planets are the ones that have low mass outer planets and medium spacing (˜20RH, m).

  18. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy.

  19. Finding A Planet Through the Dust

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral

  20. Basaltic volcanism - The importance of planet size

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1979-01-01

    The volumetrically abundant basalts on the earth, its moon, and the eucrite parent planet all have chemical compositions that are controlled to a large extent by dry, low-pressure, crystal-liquid equilibria. Since this generalization is valid for these three planetary bodies, we infer that it may also apply to the other unsampled terrestrial planets. Other characteristics of basaltic volcanism show variations which appear to be related to planet size: the eruption temperatures, degrees of fractionation, and chemical variety of basalts and the endurance of basaltic volcanism all increase with planet size. Although the processes responsible for chemical differences between basalt suites are known, no simple systematization of the chemical differences between basalts from planet to planet has emerged.