Sample records for id-1 promotes tgf-beta1-induced

  1. Id-1 promotes TGF-{beta}1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Kaijun; Wong, Y.C.; Wang Xianghong

    Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation ofmore » MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.« less

  2. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    PubMed

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  3. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  4. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection.

    PubMed

    Wang, Beinan; Dileepan, Thamotharampillai; Briscoe, Sarah; Hyland, Kendra A; Kang, Johnthomas; Khoruts, Alexander; Cleary, P Patrick

    2010-03-30

    Recurrent group A Streptococcus (GAS) tonsillitis and associated autoimmune diseases indicate that the immune response to this organism can be ineffective and pathological. TGF-beta1 is recognized as an essential signal for generation of regulatory T cells (Tregs) and T helper (Th) 17 cells. Here, the impact of TGF-beta1 induction on the T-cell response in mouse nasal-associated lymphoid tissue (NALT) following intranasal (i.n.) infections is investigated. ELISA and TGF-beta1-luciferase reporter assays indicated that persistent infection of mouse NALT with GAS sets the stage for TGF-beta1 and IL-6 production, signals required for promotion of a Th17 immune response. As predicted, IL-17, the Th17 signature cytokine, was induced in a TGF-beta1 signaling-dependent manner in single-cell suspensions of both human tonsils and NALT. Intracellular cytokine staining and flow cytometry demonstrated that CD4(+) IL-17(+) T cells are the dominant T cells induced in NALT by i.n. infections. Moreover, naive mice acquired the potential to clear GAS by adoptive transfer of CD4(+) T cells from immunized IL-17A(+)/(+) mice but not cells from IL-17A(-)/(-) mice. These experiments link specific induction of TGF-beta1 by a bacterial infection to an in vivo Th17 immune response and show that this cellular response is sufficient for protection against GAS. The association of a Th17 response with GAS infection reveals a potential mechanism for destructive autoimmune responses in humans.

  5. Neutrophil chemotaxis in response to TGF-beta isoforms (TGF-beta 1, TGF-beta 2, TGF-beta 3) is mediated by fibronectin.

    PubMed

    Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I

    1994-03-01

    TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta

  6. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression.

    PubMed

    Chen, Yeung-Jen; Wang, Ching-Jen; Yang, Kuender D; Kuo, Yur-Ren; Huang, Hui-Chen; Huang, Yu-Ting; Sun, Yi-Chih; Wang, Feng-Sheng

    2004-07-01

    Extracorporeal shock waves (ESW) have recently been used in resolving tendinitis. However, mechanisms by which ESW promote tendon repair is not fully understood. In this study, we reported that an optimal ESW treatment promoted healing of Achilles tendintis by inducing TGF-beta1 and IGF-I. Rats with the collagenease-induced Achilles tendinitis were given a single ESW treatment (0.16 mJ/mm(2) energy flux density) with 0, 200, 500 and 1000 impulses. Achilles tendons were subjected to biomechanical (load to failure and stiffness), biochemical properties (DNA, glycosaminoglycan and hydroxyproline content) and histological assessment. ESW with 200 impulses restored biomechanical and biochemical characteristics of healing tendons 12 weeks after treatment. However, ESW treatments with 500 and 1000 impulses elicited inhibitory effects on tendinitis repair. Histological observation demonstrated that ESW treatment resolved edema, swelling, and inflammatory cell infiltration in injured tendons. Lesion site underwent intensive tenocyte proliferation, neovascularization and progressive tendon tissue regeneration. Tenocytes at the hypertrophied cellular tissue and newly developed tendon tissue expressed strong proliferating cell nuclear antigen (PCNA) after ESW treatment, suggesting that physical ESW could increase the mitogenic responses of tendons. Moreover, the proliferation of tenocytes adjunct to hypertrophied cell aggregate and newly formed tendon tissue coincided with intensive TGF-beta1 and IGF-I expression. Increasing TGF-beta1 expression was noted in the early stage of tendon repair, and elevated IGF-I expression was persisted throughout the healing period. Together, low-energy shock wave effectively promoted tendon healing. TGF-beta1 and IGF-I played important roles in mediating ESW-stimulated cell proliferation and tissue regeneration of tendon.

  7. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    PubMed

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  8. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  9. TGF-beta1 stimulates expression of the aromatase (CYP19) gene in human osteoblast-like cells and THP-1 cells.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    2000-02-25

    Recent evidence has shown that bone is not only a target of estrogen action but also a source of local estrogen production. Bone cells such as osteoblasts express aromatase (P450arom) and the expression of P450arom in osteoblasts is positively regulated in a tissue specific fashion, as in the case of other tissues which express P450arom. To clarify the physiological factors regulating expression of P450arom in bone, we tested TGF-beta1 using osteoblast-like cells obtained from human fetuses as well as THP-1 cells. TGF-beta1 increased IL-1beta+DEX- induced aromatase activity in osteoblast-like cells, while it inhibited activity in skin fibroblasts. Similar enhancement of aromatase activity by TGF-beta1 was found in DEX-stimulated THP-1 cells and this cell line was used for further experiments. In THP-1 cells, TGF-beta1 enhanced DEX-induced aromatase activity almost linearly by 12 h and thereafter. Increased levels of P450arom transcripts were also demonstrated by RT-PCR at 3 h of TGF-beta1 treatment and thereafter. Cyclohexamide abolished enhancement of activity but did not inhibit the accumulation of P450arom transcripts induced by TGF-beta1. Increase in P450arom expression by TGF-beta1 was attributable to expression driven by promoter I.4. TGF-beta1 did not change the half life of P450arom transcripts. To identify the cis-acting elements responsible for TGF-beta1 action on aromatase expression, transient transfection assays were performed using a series of deletion constructs for promoter I.4 (P450-I.4/Luc). Two constructs (-410/+14 and-340/+14) that contain a functional glucocorticoid response element (GRE) and downstream sequence showed significant increase of luciferase activity in response to TGF-beta1. Deletion and mutation of the GRE in P450-I.4/Luc (-340/+14) abolished the TGF-beta1. The luciferase activity of a (GRE)(1)-SV40/Luc construct was also stimulated by TGF-beta1. These results indicate that TGF-beta1 increases the expression of P450arom at the

  10. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    PubMed

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  11. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  12. YB-1 overexpression promotes a TGF1-induced epithelial–mesenchymal transition via Akt activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Bin; Lee, Eun Byul; Cui, Jun

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF1 induced YB-1 expression, and TGF1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced themore » expression of E-cadherin transcriptional repressors via TGF1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.« less

  13. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less

  14. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  15. SOCS3 promotes TLR4 response in macrophages by feedback inhibiting TGF-beta1/Smad3 signaling.

    PubMed

    Liu, Xia; Zhang, Yongliang; Yu, Yizhi; Yang, Xiao; Cao, Xuetao

    2008-03-01

    Endogenous transforming growth factor-beta1 (TGF-beta1) plays an important role in the negative regulation of toll-like receptor (TLR) signaling in a feedback manner. Suppressors of cytokine signaling 3 (SOCS3) has been shown to be induced by TGF-beta1 in osteoclast/macrophage, while the reports on the role of SOCS3 in regulating TLR4 signaling were controversial. The functional relationship between SOCS3 and TGF-beta1/Smad3 pathway in TLR4 response also remains unclear. In this study, we demonstrate that LPS-induced endogenous TGF-beta1 contributes to the inducible SOCS3 expression in macrophages. SOCS3 silencing could markedly decrease the LPS-induced production of TNF-alpha and IL-6 in macrophages. Interestingly, less decrease of LPS-induced TNF-alpha, IL-6 by SOCS3 silencing was observed in Smad3 null macrophages. Furthermore, we found SOCS3 could interact with Smad3, and inhibit Smad3 nuclear translocation and transcriptional activity. Therefore, our data demonstrate that SOCS3 is a positive regulator of TLR4 response by feedback inhibiting endogenous TGF-beta1/Smad3 signaling, thus outlining a new feedback regulatory manner for TLR4 response in macrophages.

  16. Streptococcal modulation of cellular invasion via TGF-beta1 signaling.

    PubMed

    Wang, Beinan; Li, Shaoying; Southern, Peter J; Cleary, Patrick P

    2006-02-14

    Group A Streptococcus (GAS) and other bacterial pathogens are known to interact with integrins as an initial step in a complex pathway of bacterial ingestion by host cells. Efficient GAS invasion depends on the interaction of bound fibronectin (Fn) with integrins and activation of integrin signaling. TGF-beta1 regulates expression of integrins, Fn, and other extracellular matrix proteins, and positively controls the integrin signaling pathway. Therefore, we postulated that TGF-beta1 levels could influence streptococcal invasion of mammalian cells. Pretreatment of HEp-2 cells with TGF-beta1 increased their capacity to ingest GAS when the bacteria expressed fibronectin-binding proteins (M1 or PrtF1). Western blots revealed significant induction of alpha5 integrin and Fn expression by HEp-2 cells in response to TGF-beta1. Increased ingestion of streptococci by these cells was blocked by a specific inhibitor of the TGF-beta1 receptor I and antibodies directed against alpha5 integrin and Fn, indicating that increased invasion depends on TGF-beta1 up-regulation of both the alpha5 integrin and Fn. The capacity of TGF-beta1 to up-regulate integrin expression and intracellular invasion by GAS was reproduced in primary human tonsil fibroblasts, which could be a source of TGF-beta1 in chronically infected tonsils. The relationship between TGF-beta1 and GAS invasion was strengthened by the observation that TGF-beta1 production was stimulated in GAS-infected primary human tonsil fibroblasts. These findings suggest a mechanism by which GAS induce a cascade of changes in mammalian tissue leading to elevated expression of the alpha5beta1 receptor, enhanced invasion, and increased opportunity for survival and persistence in their human host.

  17. TGF-beta inhibits IL-1beta-activated PAR-2 expression through multiple pathways in human primary synovial cells.

    PubMed

    Tsai, Shin-Han; Sheu, Ming-Thau; Liang, Yu-Chih; Cheng, Hsiu-Tan; Fang, Sheng-Shiung; Chen, Chien-Ho

    2009-10-23

    To investigate the mechanism how Transforming growth factor-beta(TGF-beta) represses Interleukin-1beta (IL-1beta)-induced Proteinase-Activated Receptor-2 (PAR-2) expression in human primary synovial cells (hPSCs). Human chondrocytes and hPSCs isolated from cartilages and synovium of Osteoarthritis (OA) patients were cultured with 10% fetal bovine serum media or serum free media before treatment with IL-1beta, TGF-beta1, or Connective tissue growth factor (CTGF). The expression of PAR-2 was detected using reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. Collagen zymography was performed to assess the activity of Matrix metalloproteinases-13 (MMP-13). It was demonstrated that IL-1beta induces PAR-2 expression via p38 pathway in hPSCs. This induction can be repressed by TGF-beta and was observed to persist for at least 48 hrs, suggesting that TGF-beta inhibits PAR-2 expression through multiple pathways. First of all, TGF-beta was able to inhibit PAR-2 activity by inhibiting IL-1beta-induced p38 signal transduction and secondly the inhibition was also indirectly due to MMP-13 inactivation. Finally, TGF-beta was able to induce CTGF, and in turn CTGF represses PAR-2 expression by inhibiting IL-1beta-induced phospho-p38 level. TGF-beta could prevent OA from progression with the anabolic ability to induce CTGF production to maintain extracellular matrix (ECM) integrity and to down regulate PAR-2 expression, and the anti-catabolic ability to induce Tissue inhibitors of metalloproteinase-3 (TIMP-3) production to inhibit MMPs leading to avoid PAR-2 over-expression. Because IL-1beta-induced PAR-2 expressed in hPSCs might play a significantly important role in early phase of OA, PAR-2 repression by exogenous TGF-beta or other agents might be an ideal therapeutic target to prevent OA from progression.

  18. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Qing; Liu, Qi; Xu, Ning

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanismmore » in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  19. PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling.

    PubMed

    Thomas, Peedikayil E; Peters-Golden, Marc; White, Eric S; Thannickal, Victor J; Moore, Bethany B

    2007-08-01

    Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-resistant myofibroblasts is adhesion-dependent and focal adhesion kinase (FAK)-mediated. Prostaglandin E(2) (PGE(2)) inhibits this differentiation via E prostanoid receptor 2 (EP2) signaling and cAMP elevation, but whether PGE(2) does so by interfering with TGF-beta1 signaling is unknown. Thus we examined the effects of PGE(2) in the presence and absence of TGF-beta1 stimulation on candidate signaling pathways in human lung fibroblasts. We now demonstrate that PGE(2) does not interfere with TGF-beta1-induced Smad phosphorylation or its translocation to the nucleus. Rather, PGE(2) has dramatic effects on cell shape and cytoskeletal architecture and disrupts the formation of appropriate focal adhesions. PGE(2) treatment diminishes TGF-beta1-induced phosphorylation of paxillin, STAT-3, and FAK and, in turn, limits activation of the protein kinase B (PKB/Akt) pathway. These alterations do not, however, result in increased apoptosis within the first 24 h of treatment. Interestingly, the effects of PGE(2) stimulation alone do not always mirror the effects of PGE(2) in the presence of TGF-beta1, indicating that the context for EP2 signaling is different in the presence of TGF-beta1. Taken together, our results demonstrate that PGE(2) has the potential to limit TGF-beta1-induced myofibroblast differentiation via adhesion-dependent, but Smad-independent, pathways.

  20. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    PubMed

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  1. TGF-beta1 secretion of ROS-17/2.8 cultures on NiTi implant material.

    PubMed

    Kapanen, Anita; Kinnunen, Anne; Ryhänen, Jorma; Tuukkanen, Juha

    2002-08-01

    The biocompatibility of an orthopedic implant depends on the effect of the implant on bone-forming cells, osteoblasts. Changes in osteoblastic proliferation, maturation and differentiation are important events in ossification that enable monitoring the effect of the implant. Transforming growth factor-beta (TGF-beta) is known to suppress osteoblast proliferation and, on the other hand, to induce the maturation and differentiation of osteoblasts. Moreover, osteoblasts produce TGF-beta, which is embedded in the bone matrix and activated by bone-resorbing osteoclasts. TGF-beta inhibits osteoclastic activity. Here, we show for the first time the effect of nickel titanium shape memory metal (NiTi) on osteoblastic cytokine expression. In this study, we measured the levels of TGF-beta with enzyme-linked immunosorbent assay (ELISA) from a ROS-17/2.8 osteosarcoma cell line cultured on different metal alloy discs. ELISA results were proportioned to total DNA content of the samples. We compared NiTi, to stainless steel (Stst), pure titanium (Ti) and pure nickel (Ni). The TGF-beta1/DNA value in the NiTi group (0.0007 +/- 0.0003) was comparable with those seen in the Stst (0.0008 +/- 0.0001) and Ti (0.0007 +/- 0.0001) groups. The concentration in the Ni group was lower (0.0006 +/- 0.0003), though not statistically significantly so. In addition, the effect of surface roughness on TGF-beta1 production was studied. We compared three different grades of roughness in three differently hot-rolled alloys: NiTi. hot-rolled at 950 degrees C. Ti alloy hot-rolled at 850 degrees C (TiI) and the same Ti alloy hot-rolled at 1,050 degrees C (TiII). We found that increasing roughness of the NiTi surface increased the TGF-beta1 concentration. On the other hand, all roughness groups of TiII showed low levels of TGF-beta1. while a rough TiI surface induced similar TGF-beta1, expression as rough NiTi. Further, these same measurements made with interleukine 6 (IL-6) were found to be under the

  2. Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-{beta} signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Reuben H., E-mail: rkim@dentistry.ucla.edu; UCLA Dental Research Institute, Los Angeles, CA 90095; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095

    2010-10-01

    We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-{beta} signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-{beta} signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-{beta}1 levels, phosphorylation of Smad2/3, and increased expression of p15{sup INK4B} and p57{sup KIP2}. An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-{beta}1 induced dephosphorylation of Smad2/3, andmore » diminished the level of p15{sup INK4B} and p57{sup KIP2}. Moreover, Bmi-1 expression led to the inhibition of TGF-{beta}-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15{sup INK4B}, and p57{sup KIP2}. In addition, an exposure of senescent NHOK to TGF-{beta} receptor I kinase inhibitor or anti-TGF-{beta} antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-{beta} signaling pathway in NHOK.« less

  3. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability.

    PubMed

    Lee, Eun Young; Chung, Choon Hee; Khoury, Charbel C; Yeo, Tet Kin; Pyagay, Petr E; Wang, Amy; Chen, Sheldon

    2009-07-01

    The role of monocyte chemoattractant protein-1 (MCP-1) in diabetic nephropathy is typically viewed through the lens of inflammation, but MCP-1 might exert noninflammatory effects on the kidney cells directly. Glomerular podocytes in culture, verified to express the marker nephrin, were exposed to diabetic mediators such as high glucose or angiotensin II and assayed for MCP-1. Only transforming growth factor-beta (TGF-beta) significantly increased MCP-1 production, which was prevented by SB431542 and LY294002, indicating that signaling proceeded through the TGF-beta type I receptor kinase and the phosphatidylinositol 3-kinase pathway. The TGF-beta-induced MCP-1 was found to activate the podocyte's cysteine-cysteine chemokine receptor 2 (CCR2) and, as a result, enhance the cellular motility, cause rearrangement of the actin cytoskeleton, and increase podocyte permeability to albumin in a Transwell assay. The preceding effects of TGF-beta were replicated by treatment with recombinant MCP-1 and blocked by a neutralizing anti-MCP-1 antibody or a specific CCR2 inhibitor, RS102895. In conclusion, this is the first description that TGF-beta signaling through PI3K induces the podocyte expression of MCP-1 that can then operate via CCR2 to increase cellular migration and alter albumin permeability characteristics. The pleiotropic effects of MCP-1 on the resident kidney cells such as the podocyte may exacerbate the disease process of diabetic albuminuria.

  4. Reduction of isoprenaline-induced myocardial TGF-{beta}1 expression and fibrosis in osthole-treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Rong; The First Hospital Affiliated to Soochow University, Suzhou 215006, Jiangsu Province; Xue Jie

    Peroxisome proliferator-activated receptor (PPAR) {alpha} and PPAR{gamma} ligands can attenuate myocardial fibrosis. Osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, may be a dual PPAR{alpha}/{gamma} agonist, but there has been no report on its effect on myocardial fibrosis. In the present study, we investigated the inhibitory effect of osthole on myocardial fibrotic formation in mice and its possible mechanisms. A mouse model with myocardial fibrosis was induced by hypodermic injection of isoprenaline while the mice were simultaneously treated with 40 and 80 mg/kg osthole for 40 days. After the addition of osthole, the cardiac weightmore » index and hydroxyproline content in the myocardial tissues were decreased, the degree of collagen accumulation in the heart was improved, and the downregulation of myocardial PPAR{alpha}/{gamma} mRNA expression induced by isoprenaline was reversed. Moreover, the mRNA expression of transforming growth factor (TGF)-{beta}1 and the protein levels of nuclear factor (NF)-{kappa}B and TGF-{beta}1 in the myocardial tissues were decreased. These findings suggest that osthole can prevent isoprenaline-induced myocardial fibrosis in mice, and its mechanisms may be related to the reduction of TGF-{beta}1 expression via the activation of PPAR{alpha}/{gamma} and subsequent inhibition of NF-{kappa}B in myocardial tissues. - Highlights: > Osthole could inhibit the myocardial fibrosis induced by isoprenaline in mice. > The mechanism was related to reduction of TGF-{beta}1 expression in myocardial tissue. > The result of osthole was from the activation of PPAR{alpha}/{gamma} and inhibition of NF-{kappa}B.« less

  5. Regulation of GM-CSF-induced dendritic cell development by TGF-beta1 and co-developing macrophages.

    PubMed

    Yamaguchi, Y

    1998-01-01

    Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-beta1, a study was performed to analyze the effect of TGF-beta1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-beta1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-beta1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-beta1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-beta1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-alpha. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-beta1. These results indicate that TGF-beta1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.

  6. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less

  7. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk; Kollarovic, Gabriel; Kretova, Miroslava

    2011-08-05

    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G.more » Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.« less

  8. TGF-beta1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium.

    PubMed

    Vega, José L; Puebla, Carlos; Vásquez, Rodrigo; Farías, Marcelo; Alarcón, Julio; Pastor-Anglada, Marçal; Krause, Bernardo; Casanello, Paola; Sobrevia, Luis

    2009-06-01

    We studied whether transforming growth factor beta1 (TGF-beta1) modulates human equilibrative nucleoside transporters 1 (hENT1) expression and activity in human umbilical vein endothelial cells (HUVECs). hENT1-mediated adenosine transport and expression are reduced in gestational diabetes and hyperglycaemia, conditions associated with increased synthesis and release of nitric oxide (NO) and TGF-beta1 in this cell type. TGF-beta1 increases NO synthesis via activation of TGF-beta receptor type II (TbetaRII), and NO inhibits hENT1 expression and activity in HUVECs. HUVECs (passage 2) were used for experiments. Total and hENT1-mediated adenosine transport was measured in the absence or presence of TGF-beta1, NG-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor), S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor), and/or KT-5823 (protein kinase G inhibitor) in control cells and cells expressing a truncated form of TGF-beta1 receptor type II (TTbetaRII). Western blot and real-time PCR were used to determine hENT1 protein abundance and mRNA expression. SLC29A1 gene promoter and specific protein 1 (Sp1) transcription factor activity was assayed. Vascular reactivity was assayed in endothelium-intact or -denuded umbilical vein rings. TGF-beta1 reduced hENT1-mediated adenosine transport, hENT1 protein abundance, hENT1 mRNA expression, and SLC29A1 gene promoter activity, but increased Sp1 binding to DNA. TGF-beta1 effect was blocked by L-NAME and KT-5823 and mimicked by SNAP in control cells. However, TGF-beta1 was ineffective in cells expressing TTbetaRII or a mutated Sp1 consensus sequence. Vasodilatation in response to TGF-beta1 and S-(4-nitrobenzyl)-6-thio-inosine (an ENT inhibitor) was endothelium-dependent and blocked by KT-5823 and ZM-241385. hENT1 is down-regulated by activation of TbetaRII by TGF-beta1 in HUVECs, a phenomenon where NO and Sp1 play key roles. These findings comprise physiological mechanisms that could be important in diseases where TGF-beta

  9. [Effect of TGF-beta1 on embryo implantation and development in mice in vitro].

    PubMed

    Luo, Shan; Yin, Hai-ning; Li, Shang-wei

    2010-03-01

    To investigate the role of TGF-beta1 in embryo implantation and development in vitro in mice. Mouse embryos at 2-cell stage were cultured in the media of M16 with exposure to different levels of TGF-beta1 (0, 1, 10 and 50 ng/mL). The percentage of embryos reaching fixed stages (early blastocyst, expanding blastocyst and hatched blastocyst) was monitored 68 h and 92 h after the culture. The expanding blastocys cultured for 68 h in M16 without TGF-beta1 and those with 10 ng/mL of TGF-beta1 were transferred to pseudopregnant mice. On the 6th day post transfer, the successful rates of implantation were counted. The level of IL-10/IFN-gamma in the serum and maternal-fetus interface of the mice was detected by ELISA on the 6th day post transfer. TGF-beta1 improved embryo growth in vitro. TGF-beta1 at a level of 10 ng/mL had the maximum impact, with 15.6%, 68.09%, 1.42% of embryos reaching early, expanding, and hatched stage, respectively, 68 h after culture, and 6.38%, 28.37%, 53.19% of embryos reaching early, expanding, and hatched stage, respectively, 92 h after culture. The promoting effect declined when TGF-beta1 reached 50 ng/mL. The successful rate of implantation of embryos cultured in M16 with TGF-beta1 was significantly higher than those cultured in M16 without TGF-beta1 (35. 2% vs. 17.19%, P < 0.05). The embryos cultured in M16 with TGF-beta1 had significantly lower level of IFN-gamma in the maternal-fetus interface than those cultured in M16 without TGF-beta1 [(30.89 +/- 11.31) pg/mL vs. (43.23 +/- 18. 09) pg/mL, P < 0.053. TGF-beta1 at an appropriate dose improves embryo implantation in mice in vitro. The mechanism may involve the improvement of the quality of embryos and their development, and decrease of IFN-gamma synthesis in maternal-fetal interface, a chemical that could cause Th2 bias.

  10. A Polymorphism Within the Promoter of the TGF{beta}1 Gene Is Associated With Radiation Sensitivity Using an Objective Radiologic Endpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelsey, Chris R., E-mail: kelse003@mc.duke.edu; Jackson, Lauren; Langdon, Scott

    2012-02-01

    Purpose: To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-{beta}1 (TGF{beta}1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Methods and Materials: Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGF{beta}1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGF{beta}1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolutionmore » melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGF{beta}1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. Results: 39 white patients with preradiation therapy and {>=}6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGF{beta}1 ratios. Conclusions: This study suggests that a polymorphism within the promoter of the TGF{beta}1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion).« less

  11. Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid.

    PubMed

    Altinel, Levent; Saritas, Z Kadir; Kose, Kamil Cagri; Pamuk, Kamuran; Aksoy, Yusuf; Serteser, Mustafa

    2007-02-01

    Avocado and soya unsaponifiables (ASU) are plant extracts used as a slow-acting antiarthritic agent. ASU stimulate the synthesis of matrix components by chondrocytes, probably by increasing the production of transforming growth factor-beta (TGF-beta). TGF-beta is expressed by chondrocytes and osteoblasts and is present in cartilage matrix. This study investigates the effect of ASU treatment on the levels of two isoforms of TGFbeta, TGF-beta1 and TGF-beta2, in the knee joint fluid using a canine model. Twenty-four outbred dogs were divided into three groups. The control animals were given a normal diet, while the treated animals were given 300 mg ASU every three days or every day. Joint fluid samples were obtained prior to treatment, and at the end of every month (up to three months). TGF-beta1 and TGF-beta2 levels were measured using a quantitative sandwich enzyme immunoassay technique. ASU treatment caused an increase in TGF-beta1 and TGF-beta2 levels in the joint fluid when compared to controls. The different doses did not cause a significant difference in joint fluid TGF levels. TGF-beta1 levels in the treated animals reached maximum values at the end of the second month and then decreased after the third month, while TGF-beta2 levels showed a marginal increase during the first two months, followed by a marked increase at the end of the third month. In conclusion, ASU increased both TGF-beta1 and TGF-beta2 levels in knee joint fluid.

  12. TGF-beta1 modulates focal adhesion kinase expression in rat intestinal epithelial IEC-6 cells via stimulatory and inhibitory Smad binding elements.

    PubMed

    Walsh, Mary F; Ampasala, Dinakar R; Rishi, Arun K; Basson, Marc D

    2009-02-01

    TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.

  13. Prostaglandin E1 inhibits collagen expression in anti-thymocyte antibody-induced glomerulonephritis: possible role of TGF beta.

    PubMed

    Schneider, A; Thaiss, F; Rau, H P; Wolf, G; Zahner, G; Jocks, T; Helmchen, U; Stahl, R A

    1996-07-01

    To test whether or not prostaglandins mediate extracellular matrix formation in immune-mediated glomerular disease, rats with anti-thymocyte antibody-induced glomerulonephritis were treated with prostaglandin E1 (PGE1) (250 micrograms/twice daily/s.c.). Glomerular expression of collagen types III and IV was assessed by Northern blotting, immunohistology and Western blotting. Proliferation of glomerular cells was evaluated by staining for the proliferating cell nuclear antigen (PCNA) and consecutive cell counting. At day five after induction of the disease, glomerular mRNA levels of collagen types III and IV were three- to fivefold higher compared with non-nephritic controls. Similarly glomerular deposition of these collagens was markedly increased when assessed by immunohistology. The treatment of nephritic rats with PGE1 reduced the increased glomerular mRNA levels as well as the protein concentration and the deposition of extracellular collagens. The number of PCNA positive cells which was significantly higher in nephritic rats when compared with control animals (24 hr, nephritis 2.53 +/- 0.33 and Control 0.26 +/- 0.06, P = 0.011; 5 days, nephritis 5.10 +/- 1.13 and Control 0.75 +/- 0.08, cells per glomerular cross section, P = 0.03) was reduced by PGE1 (24 hr, nephritis+PGE1 0.44 +/- 0.30, P = 0.0001; 5 days, nephritis +/- PGE1 1.91 +/- 1.84 cells per glomerular cross section, P = 0.001). Prostaglandin E1 also ameliorated the glomerular infiltration of monocytes at 24 hours (nephritis 4.36 +/- 2.82, nephritis + PGE1 2.20 +/- 1.82, cells per glomerular cross section) and five days (nephritis 1.51 +/- 0.58, nephritis+PGE1 1.12 +/- 0.61, cells per glomerular cross section). To further characterize possible mechanisms by which PGE1 reduces extracellular matrix deposition, the glomerular expression of transforming growth factor (TGF-beta), and interleukin 1 beta (IL-1 beta) was assessed by Northern blotting. Nephritic glomeruli showed increased mRNA levels of TGF-beta

  14. Elevated plasma TGF-beta1 in renal diseases: cause or consequence?

    PubMed

    Junker, U; Haufe, C C; Nuske, K; Rebstock, K; Steiner, T; Wunderlich, H; Junker, K; Reinhold, D

    2000-07-01

    We previously reported elevated levels of TGF-beta1 in patients with renal carcinoma. Certain aspects led us to ask whether they might be caused by chronic damage to the kidney(s). Here we report on an extended set of patients with various renal diseases, lung cancer, humoral immunodeficiency and controls. For latent TGF-beta1 in plasma, we find that the control, immunodeficiency, lung cancer and kidney transplant groups do not differ significantly (means, 7.0-8.8 ng/ml). Also, acute short-term renal stress (extracorporal lithotrypsy) does not lead to an increase of TGF-beta1. However, the pyelonephritis patients present with levels of 19.0 ng/ml, chronic extracorporal dialysis patients with 15.5 ng/ml, and renal cell carcinoma patients with 22.8 ng/ml. For active TGF-beta1 these findings are exactly recovered. For serum levels, only the renal carcinoma group presents with significantly elevated levels of TGF-beta1. Kidney transplantation seems to normalize TGF-beta1 levels, while in the kidney cancer patients surgery has an effect only in part of the group. We conclude that elevated plasma TGF-beta1 levels are common in at least two chronic renal disease conditions, and that it normalizes with restoration of renal function. It is tempting to speculate that chronic elevation of TGF-beta1 in these patients may be critically involved in these conditions predisposing to renal cancer. Copyright 2000 Academic Press.

  15. Inhibitory effect of transforming growth factor-. beta. (TGF-. beta. ) on insulin-like growth factor 1 (IGF-1)-induced proliferation and differentiation in primary cultures of pig preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.L.; Hausman, G.J.; Gaskins, H.R.

    1990-02-26

    The influence of serum, IGF-1 and TGF-{beta} on the differentiation of preadipocytes was examined in primary cultures of porcine adipose tissue cells. In serum-supplemented or serum-free, IGF-1 (1 and 10 nM) had no effect on total cell number. However, IGF-1 (10nM) increased adipocyte number only in serum-supplemented (1% pig serum) cultures, whereas TGF-{beta} (15 pm) reduced the adipocyte number in the presence and absence of IGF-1. Replication of preadipocytes was analyzed with a ({sup 3}H) thymidine assay. Preadipocyte proliferation (cpm in adipocyte fraction) was increased by IGF-1 (10nM) only in cultures containing pig serum. TGF-{beta} had no effect on preadipocytemore » proliferation specifically, but slightly increased total ({sup 3}H) thymidine incorporation in cultures with serum. Glycerol phosphate dehydrogenase (GPDH) specific activity was decreased by adding TGF-{beta} to serum-free cultures but TGF-{beta} had little effect in serum-supplemented cultures. Cellular secretion of IGF-1 was decreased when TGF-{beta} was added to serum-free or serum-supplemented cultures. These studies indicate that TGF-{beta} does not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy at a later stage of development.« less

  16. Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury.

    PubMed

    Wolf, Gunter; Jocks, Thomas; Zahner, Gunther; Panzer, Ulf; Stahl, Rolf A K

    2002-11-01

    Glomerular upregulation of monocyte chemotactic protein-1 (MCP-1), followed by an influx of monocytes resulting eventually in extracellular matrix deposition is a common sequel of many types of glomerulonephritis. However, it is not entirely clear how early expression of MCP-1 is linked to the later development of glomerulosclerosis. Because transforming growth factor-beta (TGF-beta) is a key regulator of extracellular matrix proteins, we hypothesized that there might be a regulatory loop between early glomerular MCP-1 induction and subsequent TGF-beta expression. To avoid interference with other cytokines that may be released from infiltrating monocytes, isolated rat kidneys were perfused with a polyclonal anti-thymocyte-1 antiserum (ATS) and rat serum (RS) as a complement source to induce glomerular injury. Renal TGF-beta protein and mRNA expressions were strongly stimulated after perfusion with ATS-RS. This effect was attenuated by coperfusion with a neutralizing anti-MCP-1 but was partly mimicked by perfusion with recombinant MCP-1 protein. On the other hand, renal MCP-1 expression and production were stimulated by administration of ATS-RS. Additional perfusion with an anti-TGF-beta antibody further aggravated this increase, whereas application of recombinant TGF-beta protein reduced MCP-1 formation. Our data demonstrate an intrinsic regulatory loop in which increased MCP-1 levels stimulate TGF-beta formation in resident glomerular cells in the absence of infiltrating immune competent cells.

  17. Hypoxia-induced secretion of TGF1 in mesenchymal stem cell promotes breast cancer cell progression.

    PubMed

    Hung, Shun-Pei; Yang, Muh-Hwa; Tseng, Kuo-Fung; Lee, Oscar K

    2013-01-01

    In solid tumors, a decreased oxygen and nutrient supply creates a hypoxic microenvironment in the central region. This hypoxic condition induces molecular responses of normal and cancer cells in the local area, including angiogenesis, metabolic changes, and metastasis. In addition, other cells including mesenchymal stem cells (MSCs) have been reported to be recruited into the hypoxic area of solid tumors. In our previous study, we found that hypoxic condition induces the secretion of growth factors and cytokines in MSCs, and here we demonstrate that elevated secretion of transforming growth factor-β1 (TGF1) by MSCs under hypoxia promotes the growth, motility, and invasive ability of breast cancer cells. It was found that TGF1 promoter activity was regulated by hypoxia, and the major hypoxia-regulated element was located between bp -1030 to -666 in front of the TGF1 promoter region. In ChIP assay, the results revealed that HIF-1 was bound to the hypoxia response element (HRE) of TGF1 promoter. Collectively, the results indicate that hypoxia microenvironment can enhance cancer cell growth through the paracrine effects of the MSCs by driving their TGF1 gene expression and secretion. Therefore, extra caution has to be exercised when considering hypoxia pretreatment of MSCs before cell transplantation into patients for therapeutic purposes, particularly in patients susceptible to tumor growth.

  18. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1.

    PubMed

    Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine

    2008-06-01

    The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.

  19. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoou; Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan; Liu, Lian

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship betweenmore » miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.« less

  20. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  1. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

    PubMed

    Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F

    2001-08-10

    Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.

  2. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.

    PubMed

    Mody, Avani A; Wordinger, Robert J; Clark, Abbot F

    2017-02-01

    Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.

  3. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling.

    PubMed

    Saeki, N; Kim, D H; Usui, T; Aoyagi, K; Tatsuta, T; Aoki, K; Yanagihara, K; Tamura, M; Mizushima, H; Sakamoto, H; Ogawa, K; Ohki, M; Shiroishi, T; Yoshida, T; Sasaki, H

    2007-10-04

    Defining apoptosis-regulatory cascades of the epithelium is important for understanding carcinogenesis, since cancer cells are considered to arise as a result of the collapse of the cascades. We previously reported that a novel gene GASDERMIN (GSDM) is expressed in the stomach but suppressed in gastric cancer cell lines. Furthermore, in this study, we demonstrated that GSDM is expressed in the mucus-secreting pit cells of the gastric epithelium and frequently silenced in primary gastric cancers. We found that GSDM has a highly apoptotic activity and its expression is regulated by a transcription factor LIM domain only 1 (LMO1) through a sequence to which Runt-related transcription factor 3 (RUNX3) binds, in a GSDM promoter region. We observed coexpression of GSDM with LMO1, RUNX3 and type II transforming growth factor-beta receptor (TGF-betaRII) in the pit cells, and found that TGF-beta upregulates the LMO1- and GSDM-expression in the gastric epithelial cell line and induces apoptosis, which was confirmed by the finding that the apoptosis induction is inhibited by suppression of each LMO1-, RUNX3- and GSDM expression, respectively. The present data suggest that TGF-beta, LMO1, possibly RUNX3, and GSDM form a regulatory pathway for directing the pit cells to apoptosis.

  4. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity ofmore » dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.« less

  5. Differential regulation of immature articular cartilage compressive moduli and Poisson's ratios by in vitro stimulation with IGF-1 and TGF-beta1.

    PubMed

    Williams, Gregory M; Dills, Kristin J; Flores, Christian R; Stender, Michael E; Stewart, Kevin M; Nelson, Lauren M; Chen, Albert C; Masuda, Koichi; Hazelwood, Scott J; Klisch, Stephen M; Sah, Robert L

    2010-09-17

    Mechanisms of articular cartilage growth and maturation have been elucidated by studying composition-function dynamics during in vivo development and in vitro culture with stimuli such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta 1 (TGF-beta1). This study tested the hypothesis that IGF-1 and TGF-beta1 regulate immature cartilage compressive moduli and Poisson's ratios in a manner consistent with known effects on tensile properties. Bovine calf articular cartilage from superficial-articular (S) and middle-growth (M) regions were analyzed fresh or following culture in medium with IGF-1 or TGF-beta1. Mechanical properties in confined (CC) and unconfined (UCC) compression, cartilage matrix composition, and explant size were assessed. Culture with IGF-1 resulted in softening in CC and UCC, increased Poisson's ratios, substantially increased tissue volume, and accumulation of glycosaminoglycan (GAG) and collagen (COL). Culture with TGF-beta1 promoted maturational changes in the S layer, including stiffening in CC and UCC and increased concentrations of GAG, COL, and pyridinoline crosslinks (PYR), but little growth. Culture of M layer explants with TGF-beta1 was nearly homeostatic. Across treatment groups, compressive moduli in CC and UCC were positively related to GAG, COL, and PYR concentrations, while Poisson's ratios were negatively related to concentrations of these matrix components. Thus, IGF-1 and TGF-beta1 differentially regulate the compressive mechanical properties and size of immature articular cartilage in vitro. Prescribing tissue growth, maturation, or homeostasis by controlling the in vitro biochemical environment with such growth factors may have applications in cartilage repair and tissue engineering.

  6. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  7. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  8. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer

    PubMed Central

    Zheng, Lingyan; Xu, Cong; Guan, Zhonghai; Su, Xingyun; Xu, Zhenzhen; Cao, Jiang; Teng, Lisong

    2016-01-01

    Rcinoma-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment. Cancer cells can induce the transformation from normal fibroblasts (NFs) into CAFs, reciprocally, CAFs promote tumor invasion and proliferation. TGF-β has been the mostly accepted factor to fuel NFs transformation into CAFs. Galectin-1 (Gal1) is highly upregulated in CAFs of multiple human cancers, and overexpression of Gal1 in CAFs promotes tumor progression. The effect of Gal1 on TGF-β-induced CAFs activation has not yet been established in gastric cancer (GC). In this study, we show that Gal1 expression in stroma is positively related to TGF-β in epithelial cells by retrospective analysis of GC patient samples. Meanwhile, conditioned media (CMs) from gastric cancer cells induce expression of both Gal1 and the CAFs marker alpha smooth muscle actin (α-SMA) in NFs via TGF-β secretion. Knockdown of Gal1 prevents TGF-β-induced the conversion of NFs to CAFs. CMs from fibroblasts overexpressing Gal1 inhibits cancer cells apoptosis, promotes migration and invasion in vitro. Thus, Gal1 is significantly involved in the development of tumor-promoting microenvironment by enhancing TGF-β signaling in a positive feedback loop. Targeting Gal1 in tumor stroma should be considered as a potential therapeutic target for GC. PMID:27186290

  9. Evaluation of TGF beta1 expression and comparison the thickness of different aorta layers in experimental diabetes.

    PubMed

    Cuce, G; Kalkan, S S; Esen, H H

    2011-01-01

    It was aimed to investigate the effects of experimental diabetes on TGF beta1 expression and tunica intima and media thickness in abdominal and thoracic aorta. Fourteen three months old female rats were divided into two groups, non-diabetic and streptozotocin (STZ) induced diabetic group. Hematoxylin-Eosin and Verhoeff's Van Gieson elastic staining and TGF beta1 immunohistochemistry staining were performed. Abdominal and thoracic intima and media thickness of aortas were measured with the oculometer. Evaluation of intima and media thickness measurements showed no significant statistical differences between non-diabetic and diabetic groups. TGF beta1 expression increased significantly in thoracic diabetic (TD) group. The 60 day duration of diabetes is not sufficiently enough time for the development of pathological changes that could lead to thickening in aortic intima-media layers. TGF beta1 expression was negative in the abdominal aorta that can predispose to the development of atherosclerosis, which could develop overtime. This finding may be interpreted as an appropriate basis for the development of atherosclerosis. In the thoracic aorta TGF beta1 may coordinate cellular events such as tissue repair (Fig. 5, Ref. 23).

  10. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    NASA Technical Reports Server (NTRS)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  11. Equine endometrial fibrosis correlates with 11beta-HSD2, TGF-beta1 and ACE activities.

    PubMed

    Ganjam, V K; Evans, T J

    2006-03-27

    Endometrial periglandular fibrosis (EPF) contributes to embryonic and fetal loss in mares. Equine EPF correlates inversely with conception and successful gestation. In the modified Kenney endometrial biopsy classification system, EPF categories I, IIA, IIB, and III correspond to minimal, mild, moderate, and severe fibrosis (+/-inflammation), respectively. Paraffin sections of biopsy specimens were stained with H&E, and picrosirius red (specific for fibrillar collagens types I and III), to determine %EPCVF. Endometrial ACE-binding activity, TGF-beta1 and 11beta-HSD2 activities were also measured. Ultrastructural changes in EPF categories IIB and III endometria strongly suggested myofibroblastic transformation. ACE-binding activity was highest in EPF category IIB; however, endometrial TGF-beta1 and 11beta-HSD2 activities were significantly correlated to the severity of EPF (P<0.05). We conclude that, locally generated angiotensin II initiates the expression of TGF-beta1 resulting in myofibroblastic transformation. 11Beta-HSD2 in concert appears to modulate the severity of endometrial fibrosis.

  12. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  13. A novel nonsteroidal antifibrotic oligo decoy containing the TGF-beta element found in the COL1A1 gene which regulates murine schistosomiasis liver fibrosis.

    PubMed

    Boros, D L; Singh, K P; Gerard, H C; Hudson, A P; White, S L; Cutroneo, K R

    2005-08-01

    Schistosomiasis mansoni disseminated worm eggs in mice and humans induce granulomatous inflammations and cumulative fibrosis causing morbidity and possibly mortality. In this study, intrahepatic and I.V. injections of a double-stranded oligodeoxynucleotide decoy containing the TGF-beta regulatory element found in the distal promoter of the COL1A1 gene into worm-infected mice suppressed TGF-beta1, COL1A1, tissue inhibitor of metalloproteinase-1, and decreased COL3A1 mRNAs to a lesser extent. Sequence comparisons within the mouse genome found homologous sequences within the COL3A1, TGF-beta1, and TIMP-1 5' flanking regions. Cold competition gel mobility shift assays using these homologous sequences with 5' and 3' flanking regions found in the natural COL1A1 gene showed competition. Competitive gel mobility assays in a separate experiment showed no competition using a 5-base mutated or scrambled sequence. Explanted liver granulomas from saline-injected mice incorporated 10.45 +/- 1.7% (3)H-proline into newly synthesized collagen, whereas decoy-treated mice showed no collagen synthesis. Compared with the saline control schistosomiasis mice phosphorothioate double-stranded oligodeoxynucleotide treatment decreased total liver collagen content (i.e. hydroxy-4-proline) by 34%. This novel molecular approach has the potential to be employed as a novel antifibrotic treatment modality. (c) 2005 Wiley-Liss, Inc.

  14. TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation.

    PubMed

    Bravo, Susana B; Pampín, Sandra; Cameselle-Teijeiro, José; Carneiro, Carmen; Domínguez, Fernando; Barreiro, Francisco; Alvarez, Clara V

    2003-10-30

    Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.

  15. Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds

    PubMed Central

    Zhou, Ao; Chen, Shuo; He, Bin; Zhao, Weikang; Chen, Xiaojun; Jiang, Dianming

    2016-01-01

    Bioactive mediators, cytokines, and chemokines have an important role in regulating and optimizing the synergistic action of materials, cells, and cellular microenvironments for tissue engineering. RADA self-assembling peptide hydrogels have been proved to have an excellent ability to promote cell proliferation, wound healing, tissue repair, and drug delivery. Here, we report that D-RADA16 and L-RADA16-RGD self-assembling peptides can form stable second structure and hydrogel scaffolds, affording the slow release of growth factor (transforming growth factor cytokine-beta 1 [TGF-beta 1]). In vitro tests demonstrated that the plateau release amount can be obtained till 72 hours. Moreover, L-RADA16, D-RADA16, and L-RADA16-RGD self-assembling peptide hydrogels containing TGF-beta 1 were used for 3D cell culture of bone mesenchymal stem cells of rats for 2 weeks. The results revealed that these three RADA16 peptide hydrogels had a significantly favorable influence on proliferation of bone mesenchymal stem cells and hold some promise in slow and sustained release of growth factor. PMID:27703332

  16. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency.

    PubMed

    Serralheiro, Pedro; Cairrão, Elisa; Maia, Cláudio J; João, Marina; Almeida, Carlos M Costa; Verde, Ignacio

    2017-06-01

    Objectives Transforming growth factor-beta1 (TGF1) may participate in local chronic inflammatory processes in varicose veins and in venous wall structure modifications through regulation of matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitor of metalloproteinase (TIMP)). The aim of this study was to analyze the effect of TGF1 in the vein wall, namely on the gene expression of selected MMP, TIMP and TGF1 receptors. Methods Healthy vein samples were harvested from eight subjects who underwent coronary bypass graft surgery with great saphenous vein. Each vein sample was divided into two segments, which were cultivated separately in vitro (one of the segments had TGF1 added) and then submitted to gene expression analysis. Results In the TGF1 supplemented group, there was a general increase in the mean gene expression. Specifically, expression of MMP9, MMP12, TIMP1 and TIMP2 were statistically significant. Conclusion The results of this study demonstrate that the gene expression of MMP9, MMP12, TIMP1 and TIMP2 was influenced by the addition of TGF1. These results may be translated to chronic venous insufficiency framework and suggest involvement of TGF1 in the vein wall pathology.

  17. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  18. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF1 via ROS/p38 MAPK/STAT3 pathway.

    PubMed

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-05-13

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF1 promoter plasmids indicated that TGF1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.

  19. Common Variants of GSTP1, GSTA1, and TGF{beta}1 are Associated With the Risk of Radiation-Induced Fibrosis in Breast Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazzino, Salvatore; La Mattina, Pierdaniele; Gambaro, Giuseppina

    Purpose: To provide new insights into the genetic basis of normal tissue radiosensitivity, we evaluated the association between eight polymorphic variants located in six genes related to DNA repair mechanisms, oxidative stress, and fibroblast proliferation (XRCC1 Arg399Gln, XRCC1 Arg194Trp, TP53 Arg72Pro, GSTP1 Ile105Val, GSTA1 C-69T, eNOS G894T, TGF{beta}1 C-509T, and TGF{beta}1 T869C) and the risk of subcutaneous fibrosis in a retrospective series of patients who received radiotherapy after breast-conserving surgery. Methods and Materials: Subcutaneous fibrosis was scored according to the Late Effects of Normal Tissue-Subjective Objective Management Analytical scale in 257 breast cancer patients who underwent surgery plus adjuvant radiotherapy.more » Genotyping was conducted by polymerase chain reaction-restriction fragment length polymorphism analysis on genomic DNA extracted from peripheral blood. The association between genetic variants and the risk of moderate to severe fibrosis was evaluated by binary logistic regression analysis. Results: Two hundred thirty-seven patients were available for the analysis. Among them, 41 patients (17.3%) developed moderate to severe fibrosis (Grade 2-3), and 196 (82.7%) patients displayed no or minimal fibrotic reactions (Grade 0-1). After adjustment of confounding factors, GSTP1 Ile105Val (odds ratio [OR] 2.756; 95% CI, 1.188-6.393; p = 0.018), GSTA1 C-69T (OR 3.223; 95% CI, 1.176-8.826; p = 0.022), and TGF{beta}1 T869C (OR 0.295; 95% CI, 0.090-0.964; p = 0.043) polymorphisms were found to be significantly associated with the risk of Grade 2-3 radiation-induced fibrosis. In the combined analysis, carriers of three risk genotypes were found to be at higher odds for the development of Grade 2-3 fibrosis than were patients with two risk genotypes (OR 4.415; 95% CI, 1.553-12.551, p = 0.005) or with no or one risk genotype (OR 8.563; 95% CI, 2.671-27.447; p = 0.0003). Conclusions: These results suggest that functional

  20. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF1 via ROS/p38 MAPK/STAT3 pathway

    PubMed Central

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-01-01

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF1 promoter plasmids indicated that TGF1 promoter region between −175 to −60, the Egr-1 binding site, was responsible for TGF1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo. PMID:27173006

  1. Col1A1 Production and Apoptotic Resistance in TGF1-Induced Epithelial-to-Mesenchymal Transition-Like Phenotype of 603B Cells

    PubMed Central

    Liu, Jun; Eischeid, Alex N.; Chen, Xian-Ming

    2012-01-01

    Recent studies have suggested that proliferating cholangiocytes have an important role in the induction of fibrosis, either directly via epithelial-to-mesenchymal transition (EMT), or indirectly via activation of other liver cell types. Transforming growth factor beta 1 (TGF1), a critical fibrotic cytokine for hepatic fibrosis, is a potent EMT inducer. This study aimed to clarify the potential contributions of TGF1-induced EMT-like cholangiocyte phenotype to collagen production and cell survival of cholangiocytes in vitro. Mouse cholangiocytes (603B cells) were treated with TGF1 and EMT-like phenotype alterations were monitored by morphological changes and expression of EMT-associated genes. Alterations in Col1A1 gene, Col1A1-associated miR-29s, and pro-apoptotic genes were measured in TGF1-treated 603B cells. Snail1 knockdown was achieved using shRNA to evaluate the contribution of EMT-associated changes to Col1A1 production and cell survival. We found TGF1 treatment induced partial EMT-like phenotype transition in 603B cells in a Snail1-dependent manner. TGF1 also stimulated collagen α1(I) expression in 603B cells. However, this induction was not parallel to the EMT-like alterations and independent of Snail1 or miR-29 expression. Cells undergoing EMT-like changes showed a modest down-regulation of multiple pro-apoptotic genes and displayed resistance to TNF-α-induced apoptosis. TGF1-induced apoptosis resistance was attenuated in Snail1 knockdown 603B cells. TGF1-induced Col1A1 production seems to be independent of EMT-like transition and miR-29 expression. Nevertheless, TGF1-induced EMT may contribute to the increased survival capacity of cholangiocytes via modulating the expression of pro-apoptotic genes. PMID:23236489

  2. TGFinduced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone.

    PubMed

    Wang, Ting; Jiao, Jian; Zhang, Hao; Zhou, Wang; Li, Zhenxi; Han, Shuai; Wang, Jing; Yang, Xinghai; Huang, Quan; Wu, Zhipeng; Yan, Wangjun; Xiao, Jianru

    2017-10-15

    Although protease activated receptor-1 (PAR-1) has been confirmed as an oncogene in many cancers, the role of PAR-1 in giant cell tumor (GCT) of bone has been rarely reported. The mechanism of PAR-1 in tumor-induced osteoclastogenesis still remains unclear. In the present study, we detected that PAR-1 was significantly upregulated in GCT of bone compared to normal tissues, while TGF-β was also overexpressed in GCT tissues and could promote the expression of PAR-1 in a dose and time dependent manner. Using the luciferase reporter assay, we found that two downstreams of TGF-β, Smad3 and Smad4, could activate the promoter of PAR-1, which might explain the mechanism of TGFinduced PAR-1 expression. Meanwhile, PAR-1 was also overexpressed in microvesicles from stromal cells of GCT (GCTSCs), and might be transported from GCTSCs to monocytes through microvesicles. In addition, knockout of PAR-1 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. Using the chick CAM models, we further showed that inhibition of PAR-1 suppressed tumor growth and giant cell formation in vivo. Using microarray assay, we detected a number of genes involved in osteoclastogenesis as the possible downstreams of PAR-1, which may partly explain the mechanism of PAR-1 in GCT. In brief, for the first time, these results reveal an upstream regulatory role of TGF-β in PAR-1 expression, and PAR-1 expression promotes tumor growth, angiogenesis and osteoclast differentiation in GCT of bone. Hence, PAR-1 represents a novel potential therapeutic target for GCT of bone. © 2017 UICC.

  3. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    PubMed

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  4. Evidence for a role of TGF-beta1 in the expression and regulation of alpha-SMA in fetal growth restricted placentae.

    PubMed

    Todros, T; Marzioni, D; Lorenzi, T; Piccoli, E; Capparuccia, L; Perugini, V; Cardaropoli, S; Romagnoli, R; Gesuita, R; Rolfo, A; Paulesu, L; Castellucci, M

    2007-01-01

    There is evidence that alpha-smooth muscle actin (alpha-SMA) is a protein that plays a pivotal role in the production of contractile forces and it is induced by transforming growth factor-beta1 (TGF-beta1). We have analysed the expression of alpha-SMA, TGF-beta1, its receptor RI and the activator phospho-Smad2 in (a) fetal growth restriction pre-eclamptic placentae characterised by early onset and absence of end diastolic velocities in the umbilical arteries (FGR-AED) and (b) control placentae accurately matched for gestational age. The study was performed by immunohistochemical, quantitative Western blotting, ELISA, RT-PCR and in vitro analyses. We found that TGF-beta1 stimulates alpha-SMA production in chorionic villi cultured in vitro. In addition, we observed that in vivo TGF-beta1 concentration is significantly higher in FGR-AED placental samples than in control placentae and that this growth factor could have a paracrine action on villous stroma myofibroblasts expressing TGF-beta1 receptors and phospho-Smad2. Indeed, we report that alpha-SMA undergoes a redistribution in FGR-AED placental villous tree, i.e. we show that alpha-SMA is enhanced in medium and small stem villi and significantly decreased in the peripheral villi. Our data allow us to consider TGF-beta1 and alpha-SMA as key molecules related to FGR-AED placental villous tree phenotypic changes responsible for increased impedance to blood flow observable in this pathology.

  5. [The effect of overdose fluoride on the expression of TGF-beta1 in rat's dental pulps].

    PubMed

    Wu, Yu; He, Ke-xing; Yang, Yi-ping; Cao, Yang; Liang, Zhi-feng

    2006-04-01

    To observe the effect of overdose fluoride on the expression of TGF-beta1 in rat's dental pulps. 20 wister rats were divided into two groups. In the control group, equal dose distilled water were given to the rats. In the experimental group, 20 mg.kg(-1).d(-1) NaF were given. After 8 weeks of treatment, immunohistochemical staining was adopted for detection of the expression of TGF-beta1 in dental pulps of the rats. SPSS10.0 software package was used for Student's t test. Image analysis results showed that the expression of TGF-beta1 in the dental pulp and inner dentin were inhibited in the experimental group as compared with the control group (P<0.01). The overdose fluoride will inhibit the secretion of TGF-beta1, which leads to abnormal development of the teeth.

  6. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    PubMed

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  7. RACK1 binds to Smad3 to modulate transforming growth factor-beta1-stimulated alpha2(I) collagen transcription in renal tubular epithelial cells.

    PubMed

    Okano, Kazuhiro; Schnaper, H William; Bomsztyk, Karol; Hayashida, Tomoko

    2006-09-08

    Although it is clear that transforming growth factor-beta1 (TGF-beta1) is critical for renal fibrogenesis, the complexity of the involved mechanisms is increasingly apparent. TGF-beta1 stimulates phosphorylation of Smad2/3 and activates other signaling molecules as well. The molecular link between these other kinases and Smads is not known. We sought new binding partners for Smad3 in renal cells and identified receptor for activated protein kinase C 1 (RACK1) as a novel binding partner of Smad3. The linker region of Smad3 and the tryptophan-aspartic acid repeat 6 and 7 of RACK1 are sufficient for the association. RACK1 also interacts with Smad3 in the human kidney epithelial cell line, HKC. Silencing RACK1 increases transcriptional activity of TGF-beta1-responsive promoter sequences of the Smad binding element (SBE), p3TP-Lux, and alpha2(I) collagen. Conversely, overexpressed RACK1 negatively modulates alpha2(I) collagen transcriptional activity in TGF-beta1-stimulated cells. RACK1 did not affect phosphorylation of Smad3 at the C terminus or in the linker region. However, RACK1 reduced direct binding of Smad3 to the SBE motif. Mutating a RACK1 tyrosine at residue 246, but not at 228, decreased the inhibitory effect of RACK1 on both alpha2(I) collagen promoter activity and Smad binding to SBE induced by TGF-beta1. These results suggest that RACK1 modulates transcription of alpha2(I) collagen by TGF-beta1 through interference with Smad3 binding to the gene promoter.

  8. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  9. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  10. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions.

    PubMed

    Mori, Shigeo; Matsuzaki, Koichi; Yoshida, Katsunori; Furukawa, Fukiko; Tahashi, Yoshiya; Yamagata, Hideo; Sekimoto, Go; Seki, Toshihito; Matsui, Hirofumi; Nishizawa, Mikio; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2004-09-23

    Although hepatocyte growth factor (HGF) can act synergistically or antagonistically with transforming growth factor-beta (TGF-beta) signaling, molecular mechanism of their crosstalk remains unknown. Using antibodies which selectively distinguished receptor-regulated Smads (R-Smads) phosphorylated at linker regions from those at C-terminal regions, we herein showed that either HGF or TGF-beta treatment of normal stomach-origin cells activated the JNK pathway, thereafter inducing endogenous R-Smads phosphorylation at linker regions. However, the phosphorylation at their C-terminal regions was not induced by HGF treatment. The activated JNK could directly phosphorylate R-Smads in vitro at the same sites that were phosphorylated in response to TGF-beta or HGF in vivo. Thus, the linker regions of R-Smads were the common phosphorylation sites for HGF and TGF-beta signaling pathways. The phosphorylation induced by simultaneous treatment with HGF and TGF-beta allowed R-Smads to associate with Smad4 and to translocate into the nucleus. JNK pathway involved HGF and TGF-beta-mediated infiltration potency since a JNK inhibitor SP600125 caused the reduction of invasive capacity induced by HGF and TGF-beta signals. Moreover, a combined treatment with HGF and TGF-beta led to a potent increase in plasminogen activator inhibitor type 1 transcriptional activity through Smad3 phosphorylation at the linker region. In contrast, HGF treatment reduced TGF-beta-dependent activation of p15INK4B promoter, in which Smad3 phosphorylation at the C-terminal region was involved. In conclusion, HGF and TGF-beta transmit the signals through JNK-mediated R-Smads phosphorylation at linker regions.

  11. TGFpromotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Liu, Su-zhi; Lin, Yan

    Highlights: •TGFpromoted Nodal expression in glioma cells. •TGFpromoted Nodal expression via activating Smad and ERK1/2 pathways. •TGFpromotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGFpromoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significantmore » when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.« less

  12. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  13. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β–dependent cancer metastasis

    PubMed Central

    Xue, Jianfei; Lin, Xia; Chiu, Wen-Tai; Chen, Yao-Hui; Yu, Guanzhen; Liu, Mingguang; Feng, Xin-Hua; Sawaya, Raymond; Medema, René H.; Hung, Mien-Chie; Huang, Suyun

    2014-01-01

    A key feature of TGF-β signaling activation in cancer cells is the sustained activation of SMAD complexes in the nucleus; however, the drivers of SMAD activation are poorly defined. Here, using human and mouse breast cancer cell lines, we found that oncogene forkhead box M1 (FOXM1) interacts with SMAD3 to sustain activation of the SMAD3/SMAD4 complex in the nucleus. FOXM1 prevented the E3 ubiquitin-protein ligase transcriptional intermediary factor 1 γ (TIF1γ) from binding SMAD3 and monoubiquitinating SMAD4, which stabilized the SMAD3/SMAD4 complex. Loss of FOXM1 abolished TGF-β–induced SMAD3/SMAD4 formation. Moreover, the interaction of FOXM1 and SMAD3 promoted TGF-β/SMAD3–mediated transcriptional activity and target gene expression. We found that FOXM1/SMAD3 interaction was required for TGF-β–induced breast cancer invasion, which was the result of SMAD3/SMAD4-dependent upregulation of the transcription factor SLUG. Importantly, the function of FOXM1 in TGF-β–induced invasion was not dependent on FOXM1’s transcriptional activity. Knockdown of SMAD3 diminished FOXM1-induced metastasis. Furthermore, FOXM1 levels correlated with activated TGF-β signaling and metastasis in human breast cancer specimens. Together, our data indicate that FOXM1 promotes breast cancer metastasis by increasing nuclear retention of SMAD3 and identify crosstalk between FOXM1 and TGF-β/SMAD3 pathways. This study highlights the critical interaction of FOXM1 and SMAD3 for controlling TGF-β signaling during metastasis. PMID:24382352

  14. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements.

    PubMed

    Suzuki, Hiroyuki; Yagi, Ken; Kondo, Miki; Kato, Mitsuyasu; Miyazono, Kohei; Miyazawa, Keiji

    2004-06-24

    c-Ski inhibits transforming growth factor-beta (TGF-beta) signaling through interaction with Smad proteins. c-Ski represses Smad-mediated transcriptional activation, probably through its action as a transcriptional co-repressor. c-Ski also inhibits TGF-beta-induced downregulation of genes such as c-myc. However, mechanisms for transcriptional regulation of target genes by c-Ski have not been fully determined. In this study, we examined how c-Ski inhibits both TGF-beta-induced transcriptional activation and repression. DNA-affinity precipitation analysis revealed that c-Ski enhances the binding of Smad2 and 4, and to a lesser extent Smad3, to both CAGA and TGF-beta1 inhibitory element probes. A c-Ski mutant, which is unable to interact with Smad4, failed to enhance the binding of Smad complex on these probes and to inhibit the Smad-responsive promoter. These results suggest that stabilization of inactive Smad complexes on DNA is a critical event in c-Ski-mediated inhibition of TGF-beta signaling.

  15. Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro.

    PubMed

    Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J

    1998-01-09

    Transforming growth factor-betas (TGF-betas) have been implicated in normal inner ear development and in promoting neuronal survival. Early rat post-natal spiral ganglion cells (SGC) in dissociated cell culture were used as a model of auditory innervation to test the trophic factors TGF-beta3 and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings from this study suggest that TGF-beta3 supports neuronal survival in a concentration-dependent manner. Moreover TGF-beta3 and NT-3-potentiated spiral ganglion neuronal survival in a synergistic fashion.

  16. Involvement of TGF1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice

    PubMed Central

    Niu, Liman; Cui, Xueling; Qi, Yan; Xie, Dongxue; Wu, Qian; Chen, Xinxin; Ge, Jingyan; Liu, Zhonghui

    2016-01-01

    Transforming growth factor-beta1 (TGF1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF

  17. Evodiamine attenuates TGF1-induced fibroblast activation and endothelial to mesenchymal transition.

    PubMed

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF1. HUVECs stimulated with TGF1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  18. [Effect of multi-glycoside of Tripterygium wilfordii Hook. f. in intervening TGF-beta1/Smad signaling pathway of adriamycin-induced nephropathy model rat].

    PubMed

    Wan, Yi-gang; Sun, Wei; Dou, Chen-hui

    2011-04-01

    To explore the potential molecular mechanisms of multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) for ameliorating glomerulosclerosis (GS) by observing its intervention effect on transforming growth factor (TGF)-beta1/Smad signaling pathway in adriamycin-induced nephropathy (ADRN) model rat. Fifteen female Sprague-Dawley (SD) rats were randomly divided into three groups, the sham-operation group (A), the untreated model group (B), and the GTW treated model group (C). Rats in Group B and C were made into ADRN model by right nephrectomy and intravenous injection of adriamycin (ADR, 0. 4 mL and 0. 2 mL respectively in 4 weeks). After the model was successfully established, rats in Group C were orally given GTW (50 mg/kg per day), while rats in Group B were intervened with distilled water. The intervention for two groups was 6 weeks. Rats' body weight were weighed and 24 h urinary protein excretion (Upro) detected by the end of the 2nd, 4th, 8th and 10th week. All rats were sacrificed at the end of 10th week after operation to withdraw blood and kidney tissue to examine serum biochemical parameters, glomerular morphological changes, alpha-smooth muscle actin (alpha-SMA), and collagen type I expression. Besides, the mRNA expressions of TGF-beta1, Smad3 and Smad7, as well as protein expressions of TGF-beta1, and phosphorylated Smad2/3 (p-Smad2/3) in glomeruli were detected by RT-PCR or Western blotting. As compared with Group B, in Group C, Upro and serum albumin were improved significantly, but no difference between groups was found in levels of blood urea nitrogen(BUN), serum creatinine(SCr), or hepatic cell injury. Mesangial cell proliferation, extracellular matrix (ECM) and collagen deposition were suppressed by GTW. Expressions of alpha-SMA and collagen type I decreased, and the characteristic changes of GS were attenuated. The mRNA expressions of TGF-P,31, Smad3 and protein expression of TGF-beta1, p-Smad2/3 in renal tissues were down-regulated, while the

  19. Acute Radiation-Induced Nocturia in Prostate Cancer Patients Is Associated With Pretreatment Symptoms, Radical Prostatectomy, and Genetic Markers in the TGF{beta}1 Gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Langhe, Sofie, E-mail: Sofie.DeLanghe@UGent.be; De Ruyck, Kim; Ost, Piet

    2013-02-01

    Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancermore » patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.« less

  20. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  1. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  2. The TGF-beta-induced gene product, betaig-h3: its biological implications in peritoneal dialysis.

    PubMed

    Park, Sun-Hee; Choi, Soon-Youn; Kim, Mi-Hyung; Oh, Eun-Joo; Ryu, Hye Myung; Kim, Chan-Duck; Kim, In-San; Kim, Yong-Lim

    2008-01-01

    TGF-beta is involved in peritoneal changes during long-term peritoneal dialysis (PD). TGF-beta induces betaig-h3 in several cell lines, and betaig-h3 may be a marker for biologically active TGF-beta. However, no study has reported induction of betaig-h3 in human peritoneal mesothelial cells (HPMCs) or its involvement in PD-related peritoneal membrane changes. We used cultured HPMCs to investigate the biological roles of betaig-h3 during mesothelial cell injury and repair, employing the adhesion, spreading, scratching and cell migration assays. Changes in betaig-h3 expression after high glucose exposure in vivo were also evaluated using an animal chronic PD model. In vitro, TGF-beta1 induced betaig-h3 in cultured HPMCs, and betaig-h3-mediated mesothelial cell adhesion occurred via alphavbeta3 integrin. betaig-h3 enhanced mesothelial cell adhesion and migration and, in part, wound healing during mesothelial cell injury. The animal study demonstrated that compared to the control group, betaig-h3 concentrations in the dialysate effluent increased in the dialysis group with alterations in peritoneal structure and function during PD, and betaig-h3 positively correlated with peritoneal solute transport. Immunohistochemical and immunoblotting results showed that betaig-h3 localizes in the mesothelium and submesothelial matrix of the parietal peritoneum, and in the vascular endothelium of omentum. betaig-h3 protein expression was higher in the dialysis group. In vitro, betaig-h3 induced by TGF-beta1 in HPMCs improved adhesion and migration of HPMCs during wound healing. In the chronic infusion model of PD, betaig-h3 played a role in the functional deterioration of the peritoneal membrane, which is associated with fibrosis.

  3. Increased T cell recruitment to the CNS after amyloid beta 1-42 immunization in Alzheimer's mice overproducing transforming growth factor-beta 1.

    PubMed

    Buckwalter, Marion S; Coleman, Bronwen S; Buttini, Manuel; Barbour, Robin; Schenk, Dale; Games, Dora; Seubert, Peter; Wyss-Coray, Tony

    2006-11-01

    Immunotherapy targeting the amyloid beta (Abeta) peptide is a novel therapy under investigation for the treatment of Alzheimer's disease (AD). A clinical trial using Abeta(1-42) (AN1792) as the immunogen was halted as a result of development of meningoencephalitis in a small number of patients. The cytokine TGF-beta1 is a key modulator of immune responses that is increased in the brain in AD. We show here that local overexpression of TGF-beta1 in the brain increases both meningeal and parenchymal T lymphocyte number. Furthermore, TGF-beta1 overexpression in a mouse model for AD [amyloid precursor protein (APP) mice] leads to development of additional T cell infiltrates when mice were immunized at a young but not old age with AN1792. Notably, only mice overproducing both Abeta (APP mice) and TGF-beta1 experienced a rise in T lymphocyte number after immunization. One-third of infiltrating T cells were CD4 positive. We did not observe significant differences in B lymphocyte numbers in any of the genotypes or treatment groups. These results demonstrate that TGF-beta1 overproduction in the brain can promote T cell infiltration, in particular after Abeta(1-42) immunization. Likewise, levels of TGF-beta1 or other immune factors in brains of AD patients may influence the response to Abeta(1-42) immunization.

  4. Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)?

    PubMed

    Matsumoto, N; Riley, S; Fraser, D; Al-Assaf, S; Ishimura, E; Wolever, T; Phillips, G O; Phillips, A O

    2006-01-01

    Anecdotal evidence suggests that high fibre supplementation of dietary intake may have health benefits in renal disease related to alterations in circulating levels of short-chain fatty acids. The aim of the study was to examine the hypothesis that dietary manipulation may increase serum butyrate and thus have potential beneficial effects in renal disease. We examined the effect of dietary supplementation with a gum arabic sample of standardized molecular characteristics, Acacia(sen) SUPERGUM EM2 (SUPERGUM), on systemic levels of butyrate in normal human subjects. In an in vitro study, we also examined the potential role of butyrate in modifying the generation of the profibrotic cytokine transforming growth factor-beta (TGF-beta1) by renal epithelial cells. Following 8 weeks of dietary supplementation with 25 g/day of SUPERGUM, there was a two-fold increase in serum butyrate (n=7, P=0.03). In vitro work demonstrated that exposure of renal epithelial cells to elevated concentrations of butyrate suppressed both basal and stimulated TGF-beta1 synthesis. The action of butyrate was mediated by suppression of the extracellular signal-regulated kinase/mitogen-activated protein kinase signalling pathway. In addition, butyrate exposures reduced the response of renal epithelial cells to TGF-beta1 as assessed by luciferase activity of a TGF-beta-responsive reporter construct. Attenuation of TGF-beta1 signalling was associated with reduced phosphorylation of Smad 3 and decreased trafficking of TGF-beta1 receptors into signalling, non-lipid raft-associated membrane fractions. In conclusion, the data demonstrate that dietary supplementation with SUPERGU increased serum butyrate, which at least in vitro has beneficial effects on renal pro-fibrotic cytokine generation.

  5. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  6. A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis.

    PubMed

    Jonckheere, Nicolas; Perrais, Michaël; Mariette, Christophe; Batra, Surinder K; Aubert, Jean-Pierre; Pigny, Pascal; Van Seuningen, Isabelle

    2004-07-29

    MUC4: encodes a large transmembrane mucin that is overexpressed in pancreatic adenocarcinomas. The molecular mechanisms responsible for that altered pattern of expression are unknown. TGF-beta, a pleiotropic cytokine, regulates numerous genes involved in pancreatic carcinogenesis via activation of the Smads proteins and MUC4 promoter is rich in Smad-binding elements. Our aim was to study whether the regulation of MUC4 expression by TGF-beta in pancreatic cancer cells was strictly dependent on Smad4 activity. Three pancreatic cancer cell lines, CAPAN-1 (MUC4+/Smad4-), CAPAN-2 (MUC4+/Smad4+) and PANC-1 (MUC4-/Smad4+), were used. By RT-PCR, transfection assays and immunohistochemistry, we show that (i) both MUC4 mRNA and apomucin expression are upregulated by TGF-beta, (ii) Smad2 positively cooperates with Smad4 to activate the promoter, (iii) activation of Smad4 by exogenous TGF-beta induces Smad4 binding to the promoter, (iv) Smad7 and c-ski both inhibit activation by Smad4. When Smad4 is mutated and inactive, TGF-beta activates MUC4 expression via MAPK, PI3K and PKA signaling pathways. Absence of expression in PANC-1 cells is due to histone deacetylation. Altogether, these results indicate that upregulation of MUC4 by TGF-beta is restricted to well-differentiated pancreatic cancer cells, and point out a novel mechanism for TGF-beta as a key molecule in targeting MUC4 overexpression in pancreatic adenocarcinomas.

  7. Src is a major signaling component for CTGF induction by TGF1 in osteoblasts

    PubMed Central

    X, Zhang; JA, Arnott; S, Rehman; WG, DeLong; A, Sanjay; FF, Safadi; SN, Popoff

    2010-01-01

    Connective tissue growth factor (CTGF/CCN2) is induced by transforming growth factor beta 1(TGF1) where it acts as a downstream mediator of TGF1 induced matrix production in osteoblasts. We have shown the requirement of Src, Erk and Smad signaling for CTGF induction by TGF1 in osteoblasts, however the potential interaction among these signaling pathways remains undetermined. In this study we demonstrate that TGF1 activates Src kinase in ROS17/2.8 cells and that treatment with the Src family kinase inhibitor PP2 prevents Src activation and CTGF induction by TGF1. Additionally, inhibiting Src activation prevented Erk activation, Smad 2 & 3 activation and nuclear translocation by TGF1, demonstrating that Src is an essential upstream signaling partner of both Erk and Smads in osteoblasts. MAPKs such as Erk can modulate the Smad pathway through directly mediating the phosphorylation of Smads or indirectly through activation/inactivation of required nuclear co-activators that mediate Smad DNA binding. When we treated cells with the Erk inhibitor, PD98059 it inhibited TGF1-induced CTGF protein expression but had no effect on Src activation, Smad activation or Smad nuclear translocation. However PD98059 impaired transcriptional complex formation on the Smad binding element (SBE) on the CTGF promoter, demonstrating that Erk activation was required for SBE transactivation. This data demonstrates that Src is an essential upstream signaling transducer of Erk and Smad signaling with respect to TGF1 in osteoblasts and that Smads and Erk function independently but are both essential for forming a transcriptionally active complex on the CTGF promoter in osteoblasts. PMID:20432467

  8. Activation of TGF1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    PubMed

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF1) initiates HBV-associated fibrogenesis. The mechanism of TGF1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF1 synthesis. These findings indicate that TGF1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  9. Activation of TGF1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis

    PubMed Central

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-01-01

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF1) initiates HBV-associated fibrogenesis. The mechanism of TGF1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF1 synthesis. These findings indicate that TGF1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis. PMID:26559755

  10. TGF-β Coordinately Activates TAK1/MEK/AKT/NFkB and Smad Pathways to Promote Osteoclast Survival

    PubMed Central

    Gingery, Anne; Bradley, Elizabeth W.; Pederson, Larry; Ruan, Ming; Horwood, Nikki J.; Oursler, Merry Jo

    2008-01-01

    To better understand the roles of TGF-β in bone metabolism, we investigated osteoclast survival in response TGF-β and found that TGF-β inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-β receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-β treatment. Since osteoclast survival involves MEK, AKT, and NFκB activation, we examined TGF-β effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IκB, and NFκB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFκB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFκB repressed TGF-β-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-β-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclXL expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-β-induced NFκB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-β to support of osteoclast survival. PMID:18586026

  11. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells.

    PubMed

    Hayashida, Tomoko; Decaestecker, Mark; Schnaper, H William

    2003-08-01

    Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.

  12. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling.

    PubMed

    Gao, Sheng; Alarcón, Claudio; Sapkota, Gopal; Rahman, Sadia; Chen, Pan-Yu; Goerner, Nina; Macias, Maria J; Erdjument-Bromage, Hediye; Tempst, Paul; Massagué, Joan

    2009-11-13

    TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.

  13. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    PubMed

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  14. Modulation of TGF-beta signaling during progression of chronic liver diseases.

    PubMed

    Matsuzaki, Koichi

    2009-01-01

    A large body of work has established roles for epithelial cells as important mediators of progressive fibrosis and carcinogenesis. Transforming growth factor-beta (TGF-beta) and pro-inflammatory cytokines are important inducers of fibro-carcinogenesis. TGF-beta signaling involves phosphorylation of Smad3 at middle linker and/or C-terminal regions. Reversible shifting of Smad3-dependent signaling between tumor-suppression and oncogenesis in hyperactive Ras-expressing epithelial cells indicates that Smad3 phosphorylated at the C-terminal region (pSmad3C) transmits a tumor-suppressive TGF-beta signal, while oncogenic activities such as cell proliferation and invasion are promoted by Smad3 phosphorylated at the linker region (pSmad3L). Notably, pSmad3L-mediated signaling promotes extracellular matrix deposition by activated mesenchymal cells. During progression of chronic liver diseases, hepatic epithelial hepatocytes undergo transition from the tumor-suppressive pSmad3C pathway to the fibrogenic/oncogenic pSmad3L pathway, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma. c-Jun N-terminal kinase activated by pro-inflammatory cytokines is mediating this perturbed hepatocytic TGF-beta signaling. Thus, TGF-beta signaling of hepatocytes affected by chronic inflammation offers a general framework for understanding the molecular mechanisms of human fibro-carcinogenesis during progression of chronic liver diseases.

  15. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.

    PubMed

    Bu, Shizhong; Kapanadze, Bagrat; Hsu, Tien; Trojanowska, Maria

    2008-07-11

    Transforming growth factor-beta (TGF-beta) is an important regulator of physiological connective tissue biosynthesis and plays a central role in pathological tissue fibrosis. Previous studies have established that a biologically active lipid mediator, sphingosine 1-phosphate (S1P), mimics some of the profibrotic functions of TGF-beta through cross-activation of Smad signaling. Here we report that another product of sphingosine kinase, dihydrosphingosine 1-phosphate (dhS1P), has an opposite role in the regulation of TGF-beta signaling. In contrast to S1P, dhS1P inhibits TGF-beta-induced Smad2/3 phosphorylation and up-regulation of collagen synthesis. The effects of dhS1P require a lipid phosphatase, PTEN, a key modulator of cell growth and survival. dhS1P stimulates phosphorylation of the C-terminal domain of PTEN and its subsequent translocation into the nucleus. We demonstrate a novel function of nuclear PTEN as a co-factor of the Smad2/3 phosphatase, PPM1A. Complex formation of PTEN with PPM1A does not require the lipid phosphatase activity but depends on phosphorylation of the serine/threonine residues located in the C-terminal domain of PTEN. Upon complex formation with PTEN, PPM1A is protected from degradation induced by the TGF-beta signaling. Consequently, overexpression of PTEN abrogates TGF-beta-induced Smad2/3 phosphorylation. This study establishes a novel role for nuclear PTEN in the stabilization of PPM1A. PTEN-mediated cross-talk between the sphingolipid and TGF-beta signaling pathways may play an important role in physiological and pathological TGF-beta signaling.

  16. TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury.

    PubMed

    Xie, Jing; Wang, Chunli; Huang, Dong-Yue; Zhang, Yanyan; Xu, Jianwen; Kolesnikov, Stanislav S; Sung, K L Paul; Zhao, Hucheng

    2013-03-15

    The anterior cruciate ligament (ACL) is known to have a poor self-healing ability. In contrast, the medial collateral ligament (MCL) can heal relatively well and restore the joint function. Transforming growth factor-beta1 (TGF1) is considered to be an important chemical mediator in the wound healing of the ligaments. While the role of TGF1-induced expressions of the lysyl oxidases (LOXs) and matrix metalloproteinases (MMPs), which respectively facilitate the extracellular matrix (ECM) repair and degradation, is poorly understood. In this study, we used equibiaxial stretch chamber to mimic mechanical injury of ACL and MCL fibroblasts, and aimed to determine the intrinsic differences between ACL and MCL by characterizing the differential expressions of LOXs and MMPs in response to TGF1 after mechanical injury. By using semi-quantitative PCR, quantitative real-time PCR, western blot and zymography, we found TGF1 induced injured MCL to express more LOXs than injured ACL (up to 1.85-fold in LOX, 2.21-fold in LOXL-1, 1.71-fold in LOXL-2, 2.52-fold in LOXL-3 and 3.32-fold in LOXL-4). Meanwhile, TGF1 induced injured ACL to express more MMPs than injured MCL fibroblasts (up to 2.33-fold in MMP-1, 2.45-fold in MMP-2, 1.89-fold in MMP-3 and 1.50-fold in MMP-12). The further protein results were coincident with the gene expressions above. The different expressions of LOXs and MMPs inferred the intrinsic differences between ACL and MCL, and the intrinsic differences could help to explain their differential healing abilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dynamic Regulation of Tgf-B Signaling by Tif1γ: A Computational Approach

    PubMed Central

    Andrieux, Geoffroy; Fattet, Laurent; Le Borgne, Michel; Rimokh, Ruth; Théret, Nathalie

    2012-01-01

    TIF1γ (Transcriptional Intermediary Factor 1 γ) has been implicated in Smad-dependent signaling by Transforming Growth Factor beta (TGF-β). Paradoxically, TIF1γ functions both as a transcriptional repressor or as an alternative transcription factor that promotes TGF-β signaling. Using ordinary differential-equation models, we have investigated the effect of TIF1γ on the dynamics of TGF-β signaling. An integrative model that includes the formation of transient TIF1γ-Smad2-Smad4 ternary complexes is the only one that can account for TGF-β signaling compatible with the different observations reported for TIF1γ. In addition, our model predicts that varying TIF1γ/Smad4 ratios play a critical role in the modulation of the transcriptional signal induced by TGF-β, especially for short stimulation times that mediate higher threshold responses. Chromatin immunoprecipitation analyses and quantification of the expression of TGF-β target genes as a function TIF1γ/Smad4 ratios fully validate this hypothesis. Our integrative model, which successfully unifies the seemingly opposite roles of TIF1γ, also reveals how changing TIF1γ/Smad4 ratios affect the cellular response to stimulation by TGF-β, accounting for a highly graded determination of cell fate. PMID:22461896

  18. Effect of doxycycline on transforming growth factor-beta-1-induced matrix metalloproteinase 2 expression, migration, and collagen contraction in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Kang, Byungjin; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-11-01

    It is well known that doxycycline has antibacterial and anti-inflammatory effects. In this study, we aimed to investigate the effects of doxycycline on the transforming growth factor (TGF) beta 1-induced matrix metalloproteinase (MMP) 2 expression, migration, and collagen contraction, and to determine its molecular mechanism on nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from the nasal polyps of six patients. Doxycycline was used to pretreat TGF-beta-1-induced NPDFs and ex vivo organ cultures of nasal polyps. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Smad2/3 is one of the major transcription factors of TGF-beta signaling. The expression levels of MMP2 and Smad2/3 were measured by using Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence staining. The enzymic activity of MMP2 was analyzed by using gelatin zymography. Fibroblast migration was evaluated by using transwell migration assays. Contractile activity was measured by a collagen gel contraction assay. The expression level of MMP2 in nasal polyp tissues increased in comparison with inferior turbinate tissues. TGF-beta-1-induced NPDFs were not affected by doxycycline (0-40 μg/mL). The expression levels of MMP2 and activation of Smad2/3 in TGF-beta-1-induced NPDFs and in organ cultures of nasal polyps were significantly downregulated with doxycycline pretreatment. Doxycycline also reduced TGF-beta-1-induced fibroblast migration and collagen contraction in NPDFs. Doxycycline inhibited TGF-beta-1-induced MMP2 expression, migration, and collagen contraction via the Smad2/3 signal pathways in NPDFs.

  19. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less

  20. TGF-beta1 inhibits Cx43 expression and formation of functional syncytia in cultured smooth muscle cells from human detrusor.

    PubMed

    Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2009-02-01

    Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.

  1. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    PubMed

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  2. Dexamethasone antagonizes IL-4 and IL-10-induced release of IL-1RA by monocytes but augments IL-4-, IL-10-, and TGF-beta-induced suppression of TNF-alpha release.

    PubMed

    Joyce, D A; Steer, J H; Kloda, A

    1996-07-01

    The activities of monocyte-derived tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta are potentially modified by IL-1RA and soluble receptors for TNF (sTNF-R), which are themselves monocyte products. IL-4, IL-10, TGF-beta, and glucocorticoids (GC) all suppress the lipopolysaccharide (LPS)-stimulated release of TNF-alpha and IL-1beta but vary in their effects on IL-1RA and sTNF-R. This raises the prospect of interactions between the cytokines and glucocorticoids, which may be antagonistic or additive on IL-1 and TNF activity. We, therefore, studied the interactions of the GC dexamethasone (Dex) with IL-4, IL-10, and transforming growth factor (TGF)-beta on the release of TNF-alpha and IL-1RA by human monocytes and the monocytic THP-1 cell line. Low concentration of Dex (10(-8)-10(-7)M) acted additively with low concentrations of IL-4 (0.01-1 ng/ml), IL-10 (0.01-0.1 U/ml), or TGF-beta (0.01-1 ng/ml) to profoundly suppress LPS-stimulated release of TNF-alpha by whole blood and, to a lesser degree, THP-1 cells. Dex also suppressed spontaneous release of IL-1RA from PBMC and THP-1 cells, whereas IL-4 and IL-10, but not TGF-beta, stimulated release. Dex antagonized the enhanced release in IL-4 and IL-10-stimulated cultures. The capacity to stimulate release of IL-1RA may contribute to the anti-inflammatory potential of IL-4 and IL-10 in monocyte/macrophage-mediated disease. GC, therefore, do not uniquely enhance the suppressive functions of IL-4 and IL-10 on monokine activity. The therapeutic benefit of combinations of GC and IL-4, IL-10 or TGF-beta in disease may depend on the roles of the individual monokines and antagonists in pathogenesis.

  3. 4-O-Methylhonokiol Protects HaCaT Cells from TGF1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

    PubMed Central

    Kim, Sang-Cheol; Kang, Jung-Il; Hyun, Jin-Won; Kang, Ji-Hoon; Koh, Young-Sang; Kim, Young-Heui; Kim, Ki-Ho; Ko, Ji-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2017-01-01

    4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-β-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF1-induced G1/G0 phase arrest and TGF1-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF1-induced canonical pathway. We observed that ERK phosphorylation by TGF1 was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF1-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF1-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF1-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF1-induced cell cycle arrest. PMID:28190316

  4. 4-O-Methylhonokiol Protects HaCaT Cells from TGF1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling.

    PubMed

    Kim, Sang-Cheol; Kang, Jung-Il; Hyun, Jin-Won; Kang, Ji-Hoon; Koh, Young-Sang; Kim, Young-Heui; Kim, Ki-Ho; Ko, Ji-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2017-07-01

    4- O -methylhonokiol, a neolignan compound from Magnolia Officinalis , has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4- O -methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus examined the effect of 4- O -methylhonokiol on TGF-β-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4- O -methylhonokiol, TGF1-induced G1/G0 phase arrest and TGF1-induced p21 expression were decreased. Moreover, 4- O -methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF1-induced canonical pathway. We observed that ERK phosphorylation by TGF1 was significantly attenuated by treatment with 4- O -methylhonokiol. 4- O -methylhonokiol inhibited TGF1-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF1-induced noncanonical pathway. These results indicate that 4- O -methylhonokiol could inhibit TGF1-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4- O -methylhonokiol might have protective action on TGF1-induced cell cycle arrest.

  5. Up-regulation of Bcl-2 through hyperbaric pressure transfection of TGF-beta1 ameliorates ischemia-reperfusion injury in rat cardiac allografts.

    PubMed

    Grünenfelder, Jürg; Miniati, Douglas N; Murata, Seiichiro; Falk, Volkmar; Hoyt, E Grant; Robbins, Robert C

    2002-02-01

    Oxidative stress after ischemia-reperfusion of cardiac allografts leads to activation of cardiomyocytes and production of cytokines. Bcl-2, an inhibitor of the apoptotic pathway, also has strong antioxidant properties. Ischemia-reperfusion injury after transplantation leads to decreased bcl-2 and increased tumor necrosis factor (TNF)-alpha levels. Transforming growth factor (TGF)-beta1 is known to attenuate ischemia-reperfusion injury and inhibits apoptosis of myofibroblasts. We hypothesize that TGF-beta1, prevents bcl-2 cleavage and increased TNF-alpha production. Rat PVG donor hearts were heterotopically transplanted into ACI recipients. Donor hearts were procured and assigned to groups: (1) intracoronary TGF-beta1 (200 ng/ml) perfusion and pressure at 78 psi for 45 minutes (n = 4); (2) intracoronary TGF-beta1 perfusion and incubation for 45 minutes without pressure (n = 4), (3) saline perfusion and incubation for 45 minutes without pressure (n = 4). Hearts were procured 4 hours after transplantation and analyzed by reverse transcriptase-polymerase chain reaction for bcl-2 mRNA expression, ELISA for TNF-alpha, and for myeloperoxidase activity (MPO). Bcl-2 decreased in untreated animals (bcl-2:G3PDH ratio = 0.85 +/- 0.73 vs 1.16 +/- 0.11, not significant [NS]), whereas TNF-alpha increased to 669.99 +/- 127.09 vs 276.84 +/- 73.65 pg/mg total protein in controls (p < 0.003). In TGF-beta(1) pressure-treated hearts, bcl-2 was up-regulated (2.49 +/- 0.6 vs 1.16 +/- 0.11, controls, p < 0.005), whereas TNF-alpha was unchanged (396.1 +/- 100.38 vs 276.84 +/- 73.65 pg/mg, NS). Hearts treated with TGF-beta1 and pressure showed significant up-regulation of bcl-2 compared with hearts treated with TGF-beta1 without pressure (2.49 +/- 0.6 vs 1.17 +/- 0.6, p < 0.02). MPO showed no differences. Bcl-2 is down-regulated and TNF-alpha up-regulated in this model of ischemia-reperfusion injury. Furthermore, TGF-beta1 is linked to this process and ameliorates reperfusion injury by up

  6. Protocadherin-1 binds to SMAD3 and suppresses TGF1-induced gene transcription

    PubMed Central

    Faura Tellez, Grissel; Vandepoele, Karl; Brouwer, Uilke; Koning, Henk; Elderman, Robin M.; Hackett, Tillie-Louise; Willemse, Brigitte W. M.; Holloway, John; Van Roy, Frans; Koppelman, Gerard H.

    2015-01-01

    Genetic studies have identified Protocadherin-1 (PCDH1) and Mothers against decapentaplegic homolog-3 (SMAD3) as susceptibility genes for asthma. PCDH1 is expressed in bronchial epithelial cells and has been found to interact with SMAD3 in yeast two-hybrid (Y2H) overexpression assays. Here, we test whether PCDH1 and SMAD3 interact at endogenous protein levels in bronchial epithelial cells and evaluate the consequences thereof for transforming growth factor-β1 (TGF1)-induced gene transcription. We performed Y2H screens and coimmunoprecipitation (co-IP) experiments of PCDH1 and SMAD3 in HEK293T and 16HBE14o− (16HBE) cell lines. Activity of a SMAD3-driven luciferase reporter gene in response to TGF1 was measured in BEAS-2B cells transfected with PCDH1 and in 16HBE cells transfected with PCDH1-small-interfering RNA (siRNA). TGF1-induced gene expression was quantified in BEAS-2B clones overexpressing PCDH1 and in human primary bronchial epithelial cells (PBECs) transfected with PCDH1-siRNA. We confirm PCDH1 and SMAD3 interactions by Y2H and by co-IP in HEK293T cells overexpressing both proteins, and at endogenous protein levels in 16HBE cells. TGF-β-induced activation of a SMAD3-driven reporter was reduced by exogenous PCDH1 in BEAS2B cells, whereas it was increased by siRNA-mediated knockdown of endogenous PCDH1 in 16HBE cells. Overexpression of PCDH1 suppressed expression of TGF-β target genes in BEAS-2B cells, whereas knockdown of PCDH1 in human PBECs increased TGF-β-induced gene expression. In conclusion, we demonstrate that PCDH1 binds to SMAD3 and regulates its activation by TGF-β signaling in bronchial epithelial cells. We propose that PCDH1 and SMAD3 act in a single pathway in asthma susceptibility that affects sensitivity of the airway epithelium to TGF-β. PMID:26209277

  7. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    PubMed

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-{beta}/Smad activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xinjuan; Dai Yujie; Li Xing

    2011-08-01

    Chronic arsenic exposure induces oxidative damage to liver leading to liver fibrosis. We aimed to define the effect of grape seed extract (GSE), an antioxidant dietary supplement, on arsenic-induced liver injury. First, Male Sprague-Dawley rats were exposed to a low level of arsenic in drinking water (30 ppm) with or without GSE (100 mg/kg, every other day by oral gavage) for 12 months and the effect of GSE on arsenic-induced hepatotoxicity was examined. The results from this study revealed that GSE co-treatment significantly attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. Moreover, GSE reduced arsenic-stimulated Smad2/3more » phosphorylation and protein levels of NADPH oxidase subunits (Nox2, Nox4 and p47phox). Next, we explored the molecular mechanisms underlying GSE inhibition of arsenic toxicity using cultured rat hepatic stellate cells (HSCs). From the in vitro study, we found that GSE dose-dependently reduced arsenic-stimulated ROS production and NADPH oxidase activities. Both NADPH oxidases flavoprotein inhibitor DPI and Nox4 siRNA blocked arsenic-induced ROS production, whereas Nox4 overexpression suppressed the inhibitory effects of GSE on arsenic-induced ROS production and NADPH oxidase activities, as well as expression of TGF-{beta}1, type I procollagen (Coll-I) and {alpha}-smooth muscle actin ({alpha}-SMA) mRNA. We also observed that GSE dose-dependently inhibited TGF-{beta}1-induced transactivation of the TGF-{beta}-induced smad response element p3TP-Lux, and that forced expression of Smad3 attenuated the inhibitory effects of GSE on TGF-{beta}1-induced mRNA expression of Coll-I and {alpha}-SMA. Collectively, GSE could be a potential dietary therapeutic agent for arsenic-induced liver injury through suppression of NADPH oxidase and TGF-{beta}/Smad activation. - Research Highlights: > GSE attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines

  9. TGF{beta}1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruyck, Kim de; Van Eijkeren, Marc; Claes, Kathleen

    2006-07-15

    Purpose: To investigate the association between six transforming growth factor {beta}1 gene (TGF{beta}1) polymorphisms (-1.552delAGG, -800G>A, -509C>T, Leu10Pro, Arg25Pro, Thr263Ile) and the occurrence of late normal tissue reactions after gynecologic radiotherapy (RT). Methods and Materials: Seventy-eight women with cervical or endometrial cancer and 140 control individuals were included in the study. According to the Common Terminology Criteria for Adverse Events version 3.0 (CTCAEv3.0) scale, 25 patients showed late adverse RT reactions (CTC2+), of whom 11 had severe complications (CTC3+). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), single base extension and genotyping assays were performed to examine the polymorphic sites inmore » TGF{beta}1. Results: Homozygous variant -1.552delAGG, -509TT, and 10Pro genotypes were associated with the risk of developing late severe RT reactions. Triple (variant) homozygous patients had a 3.6 times increased risk to develop severe RT reactions (p = 0.26). Neither the -800A allele, nor the 25Pro allele or the 263Ile allele were associated with clinical radiosensitivity. There was perfect linkage disequilibrium (LD) between the -1.552delAGG and the -509C>T polymorphisms, and tight LD between the -1.552/-509 and the Leu10Pro polymorphisms. Haplotype analysis revealed two major haplotypes but could not distinguish radiosensitive from nonradiosensitive patients. Conclusions: The present study shows that homozygous variant TGF{beta}1 -1.552delAGG, -509TT, and 10Pro genotypes may be associated with severe clinical radiosensitivity after gynecologic RT.« less

  10. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  11. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  12. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Liao, Qi; Tang, Qiang

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cellsmore » growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.« less

  13. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  14. Microarray identifies ADAM family members as key responders to TGF-beta1 in alveolar epithelial cells.

    PubMed

    Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P

    2006-09-01

    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  15. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  16. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  17. The Interaction of Endothelin-1 and TGF1 Mediates Vascular Cell Remodeling

    PubMed Central

    Lambers, Christopher; Roth, Michael; Zhong, Jun; Campregher, Christoph; Binder, Petra; Burian, Bernhard; Petkov, Ventzislav; Block, Lutz-Henning

    2013-01-01

    Background Pulmonary arterial hypertension is characterized by increased thickness of pulmonary vessel walls due to both increased proliferation of pulmonary arterial smooth muscle cell (PASMC) and deposition of extracellular matrix. In patients suffering from pulmonary arterial hypertension, endothelin-1 (ET-1) synthesis is up-regulated and may increase PASMC activity and vessel wall remodeling through transforming growth factor beta-1 (TGF1) and connective tissue growth factor. Objective To assess the signaling pathway leading to ET-1 induced proliferation and extracellular matrix deposition by human PASMC. Methods PASMC were serum starved for 24 hours before stimulation with either ET-1 and/or TGF1. ET-1 was inhibited by Bosentan, ERK1/2 mitogen activated protein kinase (MAPK) was inhibited by U0126 and p38 MAPK was inhibited by SB203580. Results ET-1 increased PASMC proliferation when combined with serum. This effect involved the mitogen activated protein kinases (MAPK) ERK1/2 MAPK and was abrogated by Bosentan which caused a G1- arrest through activation of p27(Kip). Regarding the contribution of extracellular matrix deposition in vessel wall remodeling, TGF1 increased the deposition of collagen type-I and fibronectin, which was further increased when ET-1 was added mainly through ERK1/2 MAPK. In contrast, collagen type-IV was not affected by ET-1. Bosentan dose-dependently reduced the stimulatory effect of ET-1 on collagen type-I and fibronectin, but had no effect on TGF1. Conclusion and Clinical Relevance ET-1 alone does not induce PASMC proliferation and extracellular matrix deposition. However, ET-1 significantly up-regulates serum induced proliferation and TGF1 induced extracellular matrix deposition, specifically of collagen type-I and fibronectin. The synergistic effects of ET-1 on serum and TGF1 involve ERK1/2 MAPK and may thus present a novel mode of action in the pathogenesis of pulmonary arterial hypertension. PMID:24015303

  18. Regeneration of hyaline articular cartilage with irradiated transforming growth factor beta1-producing fibroblasts.

    PubMed

    Song, Sun U; Hong, Young-Jin; Oh, In-Suk; Yi, Youngsuk; Choi, Kyoung Baek; Lee, Jung Woo; Park, Kwang-Won; Han, Jeoung-Uk; Suh, Jun-Kyu; Lee, Kwan Hee

    2004-01-01

    The regeneration of hyaline articular cartilage by cell-mediated gene therapy using transforming growth factor beta(1) (TGF-beta(1))-producing fibroblasts (NIH 3T3-TGF-beta(1)) has been reported previously. In this study, we investigated whether TGF-beta(1)-producing fibroblasts irradiated with a lethal dose of radiation are still capable of inducing the regeneration of hyaline articular cartilage. NIH 3T3TGF-beta(1) fibroblasts were exposed to doses of 20, 40, or 80 Gy, using a irradiator, and then injected into artificially made partial defects on the femoral condyle of rabbit knee joints. The rabbits were killed 3 or 6 weeks postinjection and hyaline articular cartilage regeneration was evaluated by histological and immunohistochemical staining (n = 5 per each group). Irradiated NIH 3T3-TGFbeta(1) fibroblasts started to die rapidly 3 days after irradiation; moreover, the kinetics of their viability were similar regardless of the radiation intensity. TGF-beta1 expression, measured by ELISA, showed that the TGF-beta(1) protein produced from the irradiated cells peaked 5 days after irradiation and thereafter declined rapidly. Complete filling of the defect with reparative tissue occurred in all the groups, although variations were observed in terms of the nature of the repair tissue. Histological and immunohistochemical staining of the repair tissue showed that the tissue newly formed by irradiated NIH 3T3-TGF-beta(1) fibroblasts after exposure to 20 Gy had hyaline cartilage-like characteristics, as was observed in the nonirradiated controls. On the other hand, the repair tissue formed by NIH 3T3-TGF-beta(1) fibroblasts irradiated with 40 or 80 Gy showed more fibrous cartilage-like tissue. These results suggest that TGF-beta(1)-producing fibroblasts irradiated up to a certain level of lethal dose (i.e., 20 Gy) are able to induce normal-appearing articular cartilage in vivo. Therefore, irradiated heterologous cell-mediated TGF-beta(1) gene therapy may be clinically

  19. Pregnancy Specific Glycoprotein 23 binds to CD151 and Induces the Secretion of IL-10 and TGF-beta1 in Murine Macrophages

    DTIC Science & Technology

    2007-07-11

    levels of trophoblast-specific beta-1-globulin (SP1) and alpha -1- fetoprotein (AFP) in pregnant women with rheumatoid arthritis]. Cesk Gynekol, 1991...transforming growth factor-beta TNF-": tumor necrosis factor- alpha TXA: thromboxane A2 uNK: uterine natural killer cell 1 PART ONE...specific glycoprotein, pregnancy-associated plasma protein A, "- fetoprotein , as well as an array of cytokines, including IL-6, and TGF-! [95

  20. Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow.

    PubMed

    Yamaguchi, Y; Tsumura, H; Miwa, M; Inaba, K

    1997-01-01

    Dendritic cells (DC) are a distinct population of leukocytes and specialized antigen-presenting cells for T cell responses. Prior work has shown that GM-CSF can induce the development of large numbers of DC from proliferating progenitors in mouse bone marrow. We have monitored the effects of potentially enhancing and suppressive cytokines in these cultures. In this system, many immature DC develop from proliferating precursors during the first six days of culture, and between days 6-8 maturation of typical nonadherent and nonreplicating DC takes place. The maturation is accompanied by a large increase in the expression of major histocompatibilities complex class II (MHC II) and B7-2/CD86, and in mixed leukocyte reaction stimulating activity. Tumor necrosis factor-alpha (TNF-alpha), previously shown to be required for development of human DC, was found to enhance the maturation of mouse DC in the last two days of culture. Transforming growth factor-beta 1 (TGF-beta 1), on the other hand, almost totally blocked DC maturation, but it had to be given in the first six days of culture when the DC were actively proliferating. TGF-beta 1 did not block the production of immature, MHC II-positive but B7-2/CD86-negative DC. Maturation would take place between days 6-8 as long as the cultures were depleted of Fc-receptor-bearing cells, or if TNF-alpha were added. In both instances, maturation was not blocked even when TGF-beta 1 remained in the culture. We conclude that the development of DC, in response to GM-CSF, can be modified by other cytokines. TGF-beta 1 is suppressive but only indirectly via Fc-receptor-bearing suppressive cells, presumably suppressive macrophages, while TNF-alpha enhances the final maturation of DC.

  1. Cartilage intermediate layer protein-1 alleviates pressure overload-induced cardiac fibrosis via interfering TGF1 signaling.

    PubMed

    Zhang, Cheng-Lin; Zhao, Qian; Liang, Hui; Qiao, Xue; Wang, Jin-Yu; Wu, Dan; Wu, Li-Ling; Li, Li

    2018-03-01

    Cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium and results in decreased ventricular compliance and diastolic dysfunction. Cartilage intermediate layer protein-1 (CILP-1), a novel identified cardiac matricellular protein, is upregulated in most conditions associated with cardiac remodeling, however, whether CILP-1 is involved in pressure overload-induced fibrotic response is unknown. Here, we investigated whether CILP-1 was critically involved in the fibrotic remodeling induced by pressure overload. Western blot analysis and immunofluorescence staining showed that CILP-1 was predominantly detected in cardiac myocytes and to a less extent in the interstitium. In isolated adult mouse ventricular myocytes and nonmyocytes, CILP-1 was found to be mainly synthesized by myocytes. CILP-1 expression in left ventricles was upregulated in C57BL/6 mice undergoing transverse aortic constriction (TAC). Myocardial CILP-1 knockdown aggravated whereas CILP-1 overexpression attenuated TAC-induced ventricular remodeling and dysfunction, as measured by echocardiography test, morphological examination, and gene expressions of fibrotic molecules. Incubation of cardiac fibroblasts with the conditioned medium containing full-length, N-terminal, or C-terminal CILP-1 inhibited transforming growth factor (TGF)-β1-induced Smad3 phosphorylation and the subsequent profibrotic events. We first demonstrated that C-terminal CILP-1 increased Akt phosphorylation, promoted the interaction between Akt and Smad3, and suppressed Smad3 phosphorylation. Blockade of PI3K-Akt pathway attenuated the inhibitory effect of C-CILP-1 on TGF1-induced Smad3 activation. We conclude that CILP-1 is a novel ECM protein possessing anti-fibrotic ability in pressure overload-induced fibrotic remodeling. This anti-fibrotic effect of CILP-1 attributes to interfering TGF1 signaling through its N- and C- terminal fragments. Copyright © 2018 Elsevier

  2. Osteoblast gene expression is differentially regulated by TGF-beta isoforms.

    PubMed

    Fagenholz, P J; Warren, S M; Greenwald, J A; Bouletreau, P J; Spector, J A; Crisera, F E; Longaker, M T

    2001-03-01

    The transforming growth factor beta (TGF-beta) superfamily encompasses a number of important growth factors including several TGF-beta isoforms, the bone morphogenetic proteins, activins, inhibins, and growth and differentiation factors. TGF-beta 1, -beta 2, and -beta 3 are three closely related isoforms that are widely expressed during skeletal morphogenesis and bone repair. Numerous studies suggest that each isoform has unique in vivo functions; however, the effects of these TGF-beta isoforms on osteoblast gene expression and maturation have never been directly compared. In the current study, we treated undifferentiated neonatal rat calvaria osteoblast-enriched cell cultures with 2.5 ng/ml of each TGF-beta isoform and analyzed gene expression at 0, 3, 6, and 24 hours. We demonstrated unique isoform-specific regulation of endogenous TGF-beta 1 and type I collagen mRNA transcription. To assess the effects of extended TGF-beta treatment on osteoblast maturation, we differentiated osteoblast cultures in the presence of 2.5 ng/ml of each TGF-beta isoform. Analysis of collagen I, alkaline phosphatase, and osteocalcin demonstrated that each TGF-beta isoform uniquely suppressed the transcription of these osteoblast differentiation markers. Interestingly, TGF-beta isoform treatment increased osteopontin expression in primary osteoblasts after 4 and 10 days of differentiation. To our knowledge, these data provide the first direct comparison of the effects of the TGF-beta isoforms on osteoblast gene expression in vitro. Furthermore, these data suggest that TGF-beta isoforms may exert their unique in vivo effects by differentially regulating osteoblast cytokine secretion, extracellular matrix production, and the rate of cellular maturation.

  3. Arginine methylation of Smad7 by PRMT1 in TGF-β-induced epithelial-mesenchymal transition and epithelial stem cell generation.

    PubMed

    Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan A; Wang, Hongjun; Jackson-Weaver, Olan; Zhang, Tingwei; Lamouille, Samy; Wu, Jian; Burlingame, A L L; Xu, Jian; Derynck, Rik

    2018-06-15

    The epithelial-to-mesenchymal transdifferentiation (EMT) is crucial for tissue differentiation in development, and drives essential steps in cancer and fibrosis. EMT is accompanied by reprogramming of gene expression, and has been associated with the epithelial stem cell state in normal and carcinoma cells. The cytokine TGF-β drives this program in cooperation with other signaling pathways and through TGF-β-activated Smad3 as major effector. TGF-β-induced Smad3 activation is inhibited by Smad7 and to a lesser extent by Smad6, and Smad6 and Smad7 both inhibit Smad1 and Smad5 activation in response to the TGF-β-related bone morphogenetic proteins (BMPs). We previously reported that, in response to BMP, the protein arginine methyltransferase PRMT1 methylates Smad6 at the BMP receptor complex, thereby promoting its dissociation from the receptors and enabling BMP-induced Smad1 and Smad5 activation. We now provide evidence that PRMT1 also facilitates TGF-β signaling by methylating Smad7, which complements Smad6 methylation. We found that PRMT1 is required for TGF-β-induced Smad3 activation, through a mechanism similar to that of BMP-induced Smad6 methylation, and thus promotes the TGF-β-induced EMT and epithelial stem cell generation. This critical mechanism positions PRMT1 as an essential mediator of TGF-β signaling that controls the EMT and epithelial cell stemness through Smad7 methylation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    PubMed

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  5. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  6. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  7. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less

  8. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1.

    PubMed Central

    Liu, C; Adamson, E; Mercola, D

    1996-01-01

    The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1. Images Fig. 1 Fig. 5 PMID:8876223

  9. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling.

    PubMed

    Izutsu, K; Kurokawa, M; Imai, Y; Maki, K; Mitani, K; Hirai, H

    2001-05-01

    Evi-1 is a zinc finger nuclear protein whose inappropriate expression leads to leukemic transformation of hematopoietic cells in mice and humans. This was previously shown to block the antiproliferative effect of transforming growth factor beta (TGF-beta). Evi-1 represses TGF-beta signaling by direct interaction with Smad3 through its first zinc finger motif. Here, it is demonstrated that Evi-1 represses Smad-induced transcription by recruiting C-terminal binding protein (CtBP) as a corepressor. Evi-1 associates with CtBP1 through one of the consensus binding motifs, and this association is required for efficient inhibition of TGF-beta signaling. A specific inhibitor for histone deacetylase (HDAc) alleviates Evi-1-mediated repression of TGF-beta signaling, suggesting that HDAc is involved in the transcriptional repression by Evi-1. This identifies a novel function of Evi-1 as a member of corepressor complexes and suggests that aberrant recruitment of corepressors is one of the mechanisms for Evi-1-induced leukemogenesis.

  10. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  11. Cordyceps sinensis polysaccharide CPS-2 protects human mesangial cells from PDGF-BB-induced proliferation through the PDGF/ERK and TGF1/Smad pathways.

    PubMed

    Wang, Ying; Liu, Dan; Zhao, Huan; Jiang, Huixing; Luo, Chen; Wang, Min; Yin, Hongping

    2014-02-15

    CPS-2, a Cordyceps sinensis polysaccharide, has been demonstrated to have significant therapeutic activity against chronic renal failure. However, little is known about the underlying molecular mechanism. In this study, we found that CPS-2 could inhibit PDGF-BB-induced human mesangial cells (HMCs) proliferation in a dose-dependent manner. In addition, CPS-2 notably suppressed the expression of α-SMA, PDGF receptor-beta (PDGFRβ), TGF1, and Smad 3 in PDGF-BB-treated HMCs. Furthermore, PDGF-BB-stimulated ERK activation was significantly inhibited by CPS-2, and this inhibitory effect was synergistically potentiated by U0126. CPS-2 could prevent the PDGFRβ promoter activity induced by PDGF-BB, and return expression of PDGFRβ, TGF1, and TGFβRI to normal levels while cells were under PDGFRβ and ERK silencing conditions and transfected with DN-ERK. Taken together, these findings demonstrated that CPS-2 reduces PDGF-BB-induced cell proliferation through the PDGF/ERK and TGF1/Smad pathways, and it may have bi-directional regulatory effects on the PDGF/ERK cellular signaling pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Tannic acid attenuates TGF1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-β signaling in lung epithelial cells.

    PubMed

    Pattarayan, Dhamotharan; Sivanantham, Ayyanar; Krishnaswami, Venkateshwaran; Loganathan, Lakshmanan; Palanichamy, Rajaguru; Natesan, Subramanian; Muthusamy, Karthikeyan; Rajasekaran, Subbiah

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and an irreversible lung disorder characterized by the accumulation of fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor-β1 (TGF1)-induced epithelial-to-mesenchymal transition (EMT) is thought to be one of the possible sources for a substantial increase in the number of fibroblasts/myofibroblasts in IPF lungs. Tannic acid (TA), a natural dietary polyphenolic compound has been shown to possess diverse pharmacological effects. However, whether TA can inhibit TGF1-mediated EMT in lung epithelial cells remains enigmatic. Both the human adenocarcinomic alveolar epithelial (A549) and normal bronchial epithelial (BEAS-2B) cells were treated with TGF1 with or without TA. Results showed that TA addition, markedly inhibited TGF1-induced EMT as assessed by reduced expression of N-cadherin, type-1-collagen, fibronectin, and vimentin. Furthermore, TA inhibited TGF1-induced cell proliferation through inducing cell cycle arrest at G0/G1 phase. TGF1-induced increase in the phosphorylation of Smad (Smad2 and 3), Akt as well as that of mitogen activated protein kinase (ERK1/2, JNK1/2, and p38) mediators was effectively inhibited by TA. On the other hand, TA reduced the TGF1-induced increase in TGF-β receptors expression. Using molecular docking approach, FTIR, HPLC and Western blot analyses, we further identified the direct binding of TA to TGF1. Finally, we conclude that TA might directly interact with TGF1, thereby repressing TGF-β signaling and subsequent EMT process in lung epithelial cells. Further animal studies are needed to clarify its potential therapeutic benefit in pulmonary fibrosis. © 2017 Wiley Periodicals, Inc.

  13. Generational Analysis Reveals that TGF-Beta1 Inhibits the Rate of Angiogenesis in Vivo by Selective Decrease in the Number of New Vessels

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Elliott, Katherine E.; Farr, Andrew G.; Radhakrishnan, Krishnan; Clark, John I.; Sage, E. Helene

    2000-01-01

    Quantitative analysis of vascular generational branching demonstrated that transforming growth factor-beta1 (TGF-beta1), a multifunctional cytokine and angiogenic regulator, strongly inhibited angiogenesis in the arterial tree of the developing quail chorioallantoic membrane (CAM) by inhibition of the normal increase in the number of new, small vessels. The cytokine was applied uniformly in solution at embryonic day 7 (E7) to the CAMs of quail embryos cultured in petri dishes. After 24 h the rate of arterial growth was inhibited by as much as 105% as a function of increasing TGF-beta1 concentration. Inhibition of the rate of angiogenesis in the arterial tree by TGF-beta1 relative to controls was measured in digital images by three well-correlated, computerized methods. The first computerized method, direct measurement by the computer code VESGEN of vascular morphological parameters according to branching generations G(sub 1) through G(sub greater than or equal to 5), revealed that TGF-beta1 selectively inhibited the increase in the number density of small vessels, N(sub v greater than or equal to 5), (382 plus or minus 85 per square centimeter) for specimens treated with 1 microgram TGF-beta1/CAM for 24 h, compared to 583 plus or minus 99 per square centimeter for controls), but did not significantly affect other parameters such as average vessel length or vessel diameter. The second and third methods, the fractal dimension (D(sub f)) and grid intersection (rho (sub v)), are statistical descriptors of spatial pattern and density. According to D(sub f) and rho(sub v), arterial density increased in control specimens from 1.382 plus or minus 0.007 and 662 plus or minus 52 per square centimeters at E7 (0 h) to 1.439 plus or minus 0.013 and 884 plus or minus 55 per square centimeters at E8 (24 h), compared to 1.379 plus or minus 0.039 and 650 plus or minus 111 per square centimeter for specimens treated with 1 microgram TGF-beta1/CAM for 24 h. TGF-beta1 therefore

  14. TGFβ-Id1 Signaling Opposes Twist1 and Promotes Metastatic Colonization Via a Mesenchymal-to-Epithelial Transition

    PubMed Central

    Stankic, Marko; Pavlovic, Svetlana; Chin, Yvette; Brogi, Edi; Padua, David; Norton, Larry; Massague, Joan; Benezra, Robert

    2014-01-01

    SUMMARY ID genes are required for breast cancer colonization of the lungs, but the mechanism remains poorly understood. Here, we show that Id1 expression induces a stem-like phenotype in breast cancer cells, while retaining epithelial properties, contrary to the notion that cancer stem-like properties are inextricably linked to the mesenchymal state. During metastatic colonization, Id1 induces a mesenchymal-to-epithelial transition (MET), specifically in cells whose mesenchymal state is dependent on the Id1 target protein Twist1 but not at the primary site, where this state is controlled by the zinc-finger protein Snail1. Knockdown of Id expression in metastasizing cells prevents MET and dramatically reduces lung colonization. Furthermore, Id1 is induced by TGFβ only in cells that have first undergone EMT, demonstrating that EMT is a pre-requisite for subsequent Id1-induced MET during lung colonization. Collectively, these studies underscore the importance of Id-mediated phenotypic switching during distinct stages of breast cancer metastasis. PMID:24332369

  15. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF1-dependent activation of Smad/ERK signaling.

    PubMed

    Zeng, Huijun; Yang, Zhao; Xu, Ningbo; Liu, Boyang; Fu, Zhao; Lian, Changlin; Guo, Hongbo

    2017-06-15

    Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly upregulated in TMZ-treated GB cells. CTGF knockdown promoted TMZ-induced cell apoptosis and enhanced chemosensitivity, whereas its overexpression markedly conferred TMZ resistance in vitro and in vivo. Moreover, CTGF promoted TMZ resistance through stem-like properties acquisition and CD44 interference reversed the CTGF-induced TMZ resistance. Mechanistically, further investigation revealed that the TMZ-induced CTGF upregulation was tissue growth factor (TGF-β) dependent, and regulated by TGF1 activation through Smad and ERK1/2 signaling. Together, our results suggest a pivotal role of CTGF-mediated TMZ resistance through TGF1-dependent activation of Smad/ERK signaling pathways. These data provide us insights for identifying potential targets that are beneficial for overcoming TMZ resistance in GB.

  16. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  17. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    PubMed

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  18. Role of ROS-mediated TGF beta activation in laser photobiomodulation

    NASA Astrophysics Data System (ADS)

    Arany, Praveen R.; Chen, Aaron Chih-Hao; Hunt, Tristan; Mooney, David J.; Hamblin, Michael

    2009-02-01

    The ability of laser light to modulate specific biological processes has been well documented but the precise mechanism mediating these photobiological interactions remains an area of intense investigation. We recently published the results of our clinical trial with 30 patients in an oral tooth-extraction wound healing model using a 904nm GaAs laser (Oralaser 1010, Oralia, Konstnaz, Germany), assessing healing parameters using routine histopathology and immunostaining (Arany et al Wound Rep Regen 2007, 15, 866). We observed a better organized healing response in laser irradiated oral tissues that correlated with an increased expression of TGF-beta1 immediately post laser irradiation. Our data suggested the source of latent TGF-beta1 might be from the degranulating platelets in the serum, an abundant source of in vivo latent TGF-beta, in the freshly wounded tissues. Further, we also demonstrated the ability of the low power near-infrared laser irradiation to activate the latent TGF-beta complexes in vitro at varying fluences from 10sec (0.1 J/cm2) to 600secs (6 J/cm2). Using serum we observed two isoforms, namely TGF-beta1 and TGF-beta3, were capable of being activated by laser irradiation using an isoform-specific ELISA and a reporter based (p3TP) assay system. We are presently pursuing the precise photomolecular mechanisms focusing on potential chromophores, wavelength and fluence parameters affecting the Latent TGF-beta activation process in serum. As ROS mediated TGF-beta activation has been previously demonstrated and we are also exploring the role of Laser generated-ROS in this activation process. In summary, we present evidence of a potential molecular mechanism for laser photobiomodulation in its ability to activate latent TGF-beta complexes.

  19. UV radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-TGF1-FAP-α.

    PubMed

    Wäster, Petra; Orfanidis, Kyriakos; Eriksson, Ida; Rosdahl, Inger; Seifert, Oliver; Öllinger, Karin

    2017-08-08

    Ultraviolet radiation (UVR) is the major risk factor for development of malignant melanoma. Fibroblast activation protein (FAP)-α is a serine protease expressed on the surface of activated fibroblasts, promoting tumour invasion through extracellular matrix (ECM) degradation. The signalling mechanism behind the upregulation of FAP-α is not yet completely revealed. Expression of FAP-α was analysed after UVR exposure in in vitro co-culture systems, gene expression arrays and artificial skin constructs. Cell migration and invasion was studied in relation to cathepsin activity and secretion of transforming growth factor (TGF)-β1. Fibroblast activation protein-α expression was induced by UVR in melanocytes of human skin. The FAP-α expression was regulated by UVR-induced release of TGF1 and cathepsin inhibitors prevented such secretion. In melanoma cell culture models and in a xenograft tumour model of zebrafish embryos, FAP-α mediated ECM degradation and facilitated tumour cell dissemination. Our results provide evidence for a sequential reaction axis from UVR via cathepsins, TGF1 and FAP-α expression, promoting cancer cell dissemination and melanoma metastatic spread.

  20. [Effects of Valeriana officinalis var. latifolia on expression of transforming growth factor beta 1 in hypercholesterolemic rats].

    PubMed

    Si, Xiao-yun; Jia, Ru-han; Huang, Cong-xin; Ding, Guo-hua; Liu, Hong-yan

    2003-09-01

    To evaluate the effect of Valeriana officinalis var latifolia(VOL) on expression of transforming growth factor beta 1 (TGF-beta 1) in hypercholesterolemic rats and study its possible mechanisms. Dietary-induced hypercholesterolemia was induced in male Wistar rats by given 4% cholesterol and 1% cholic acid diet for 16 weeks. Changes of serum lipid, urinary albumin, renal function and Mesangial matrix index were assessed. Moreover, immunohistochemical stain for TGF-beta 1 and type IV collagen were performed. VOL could reduce the serum levels of total cholesterol, low density lipoprotein, urinary albumin and serum creatinine. Light microscopy and immunohistochemical stain revealed that in the same time of lowing serum lipid, Mesangial matrix index was significantly reduced, accompanied by decreased expression of TGF-beta 1 and type IV collagen. VOL has the protective effect on lipid-induced nephropathy, and the inhibition of TGF-beta 1 expression might be the mechanism of VOL on renal protection.

  1. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. © 2014 Wiley Periodicals, Inc.

  2. Attenuation of CCl4-Induced Hepatic Fibrosis in Mice by Vaccinating against TGF1

    PubMed Central

    Li, Shuang; Lv, Yifei; Su, Houqiang; Jiang, Huiping; Hao, Zhiming

    2013-01-01

    Transforming growth factor β1 (TGF1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF1 with TGF1 kinoids. Two TGF1 kinoid vaccines were prepared by cross-linking TGF1-derived polypeptides (TGF-β125–[41-65] and TGF-β130–[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF1 kinoids efficiently elicited the production of high-levels of TGF1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases. PMID:24349218

  3. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-{beta} signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu

    2008-05-30

    Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression ofmore » Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.« less

  4. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishi, Minoru; Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp; Abe, Yasuhisa

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cellsmore » induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.« less

  5. ALK and TGF-Beta Resistance in Breast Cancer

    DTIC Science & Technology

    2017-10-01

    Award Number: W81XWH‐15‐1‐0650 TITLE: ALK and TGF-Beta Resistance in Breast Cancer PRINCIPAL INVESTIGATOR: Xin-Hua Feng CONTRACTING...and TGF-Beta Resistance in Breast Cancer 5b. GRANT NUMBER W81XWH‐15‐1‐0650 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xin-Hua Feng...response is a hallmark in human cancer . However, the mechanisms underlying TGF- resistance in breast cancer have not been elucidated. Anaplastic

  6. TGF1 accelerates the DNA damage response in epithelial cells via Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF1 pretreatment. However, theymore » soon thereafter exhibited downregulation in TGF1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. -- Highlights: •TGF1 pretreatment accelerates γ-radiation-induced DNA damage response. •TGF1-accelerated DNA damage response is dependent on Smad signaling and DNA Ligase IV. •TGF1 pretreatment protects epithelial cells from γ-radiation in vivo.« less

  7. Overexpression of SASH1 Inhibits TGF1-Induced EMT in Gastric Cancer Cells.

    PubMed

    Zong, Wei; Yu, Chen; Wang, Ping; Dong, Lei

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is considered to be one of the critical steps in gastric cancer cell invasion and metastasis. SAM- and SH3-domain containing 1 (SASH1), a member of the SLY family of signal adapter proteins, is a candidate for tumor suppression in several cancers. However, the biological role of SASH1 in gastric cancer remains largely unknown. Therefore, the purpose of this study was to investigate the impact of SASH1 on the biological behavior of gastric cancer cells treated with transforming growth factor (TGF)-β1. In the current study, we provide evidence that SASH1 was lowly expressed in human gastric cancer cells, and TGF1 also inhibited the expression of SASH1 in TSGH cells. We found that SASH1 inhibited TGF1-mediated EMT in TSGH cells, as well as cell migration and invasion. Furthermore, SASH1 obviously inhibited the phosphorylation of PI3K and Akt in TGF1-stimulated TSGH cells. In summary, our study is the first to show that overexpression of SASH1 inhibits TGF1-induced EMT in gastric cancer cells through the PI3K/Akt signaling pathway. These results suggest that SASH1 may be a potential therapeutic target for the treatment of gastric cancer.

  8. Emodin suppresses TGF1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Rundi; Chen, Ruilin; Cao, Yu

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN inmore » a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF1-induced Notch-1 nucleus translocation and activation.« less

  9. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    PubMed

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  10. Interactions between TGF1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis

    PubMed Central

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2017-01-01

    Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis. PMID:29163854

  11. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling.

    PubMed

    Hough, Chris; Radu, Maria; Doré, Jules J E

    2012-01-01

    The Transforming Growth Factor-Beta (TGF-β) family is involved in regulating a variety of cellular processes such as apoptosis, differentiation, and proliferation. TGF-β binding to a Serine/Threonine kinase receptor complex causes the recruitment and subsequent activation of transcription factors known as smad2 and smad3. These proteins subsequently translocate into the nucleus to negatively or positively regulate gene expression. In this study, we define a second signaling pathway leading to TGF-β receptor activation of Extracellular Signal Regulated Kinase (Erk) in a cell-type dependent manner. TGFinduced Erk activation was found in phenotypically normal mesenchymal cells, but not normal epithelial cells. By activating phosphotidylinositol 3-kinase (PI3K), TGF-β stimulates p21-activated kinase2 (Pak2) to phosphorylate c-Raf, ultimately resulting in Erk activation. Activation of Erk was necessary for TGFinduced fibroblast replication. In addition, Erk phosphorylated the linker region of nuclear localized smads, resulting in increased half-life of C-terminal phospho-smad 2 and 3 and increased duration of smad target gene transcription. Together, these data show that in mesenchymal cell types the TGF-β/PI3K/Pak2/Raf/MEK/Erk pathway regulates smad signaling, is critical for TGF-β-induced growth and is part of an integrated signaling web containing multiple interacting pathways rather than discrete smad/non-smad pathways.

  12. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.

    PubMed

    Stroschein, S L; Wang, W; Zhou, S; Zhou, Q; Luo, K

    1999-10-22

    Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

  13. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2007-01-01

    Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta

  14. FOXO1 promotes wound healing through the up-regulation of TGF1 and prevention of oxidative stress

    PubMed Central

    Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra

    2013-01-01

    Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis. PMID:24145170

  15. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-β signaling

    PubMed Central

    Micalizzi, Douglas S.; Christensen, Kimberly L.; Jedlicka, Paul; Coletta, Ricardo D.; Barón, Anna E.; Harrell, J. Chuck; Horwitz, Kathryn B.; Billheimer, Dean; Heichman, Karen A.; Welm, Alana L.; Schiemann, William P.; Ford, Heide L.

    2009-01-01

    Inappropriate activation of developmental pathways is a well-recognized tumor-promoting mechanism. Here we show that overexpression of the homeoprotein Six1, normally a developmentally restricted transcriptional regulator, increases TGF-β signaling in human breast cancer cells and induces an epithelial-mesenchymal transition (EMT) that is in part dependent on its ability to increase TGF-β signaling. TGF-β signaling and EMT have been implicated in metastatic dissemination of carcinoma. Accordingly, we used spontaneous and experimental metastasis mouse models to demonstrate that Six1 overexpression promotes breast cancer metastasis. In addition, we show that, like its induction of EMT, Six1-induced experimental metastasis is dependent on its ability to activate TGF-β signaling. Importantly, in human breast cancers Six1 correlated with nuclear Smad3 and thus increased TGF-β signaling. Further, breast cancer patients whose tumors overexpressed Six1 had a shortened time to relapse and metastasis and an overall decrease in survival. Finally, we show that the effects of Six1 on tumor progression likely extend beyond breast cancer, since its overexpression correlated with adverse outcomes in numerous other cancers including brain, cervical, prostate, colon, kidney, and liver. Our findings indicate that Six1, acting through TGF-β signaling and EMT, is a powerful and global promoter of cancer metastasis. PMID:19726885

  16. Lipopolysaccharide inhibits transforming growth factor-beta1-stimulated Smad6 expression by inducing phosphorylation of the linker region of Smad3 through a TLR4-IRAK1-ERK1/2 pathway.

    PubMed

    Kim, Eun-Ye; Kim, Byung-Chul

    2011-03-09

    Smad6, one of the inhibitory Smads, plays an important role in transforming growth factor-beta1 (TGF1)-mediated negative regulation of pro-inflammatory signaling. In this study, we found that bacterial endotoxin lipopolysaccharide (LPS) inhibits TGF1-induced expression of Smad6 in RAW264.7 cells. This repression was accompanied by increased Smad3 linker phosphorylation at Thr-179 and Ser-208 and was dependent on ERK1/2 activity via the TLR4-IRAK1-linked signaling cascade. The expression of a mutant Smad3, that lacks the phosphorylation sites in the linker regions, significantly reversed the inhibitory effect of LPS on TGF1-induced Smad6 expression and its anti-inflammatory capacity. Collectively, our findings show how LPS pro-inflammatory signal antagonizes the anti-inflammatory activity of TGF1. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Reduced expression of TGF beta is associated with advanced disease in transitional cell carcinoma.

    PubMed Central

    Coombs, L. M.; Pigott, D. A.; Eydmann, M. E.; Proctor, A. J.; Knowles, M. A.

    1993-01-01

    The gene structure and expression of the related peptide regulatory factors TGF beta 1 and TGF beta 2 were studied in a panel of seven urothelial carcinoma cell lines and 40 transitional cell carcinomas. The latter comprised 15 grade 1, 18 grade 2 and 5 grade 3 tumours and two cases of carcinoma in situ. Control tissues included ten matched 'field' biopsies and 17 other biopsies including 11 biopsies of macroscopically normal urothelium, two of which were from patients with no history of bladder cancer. No amplification of rearrangements of either TGF beta 1 or TGF beta 2 were detected in any sample. A complex pattern of expression or the two genes was found in the urothelial cell lines. High, but variable levels of the 2.5 kb TGF beta 1 transcript were detected and lower and more variable levels of the three (4.1 kb, 5.1 kb and 6.5 kb) transcripts of TGF beta 2 were detected. Although those cell lines expressing most TGF beta 1 tended to express less TGF beta 2 transcript there was no clear-cut relationship. In comparison, no TGF beta 2 transcript was identified in any primary transitional cell carcinoma or control tissue. Markedly reduced or undetectable levels of TGF beta 1 transcript were detected in 4/15 (26%) grade 1, 5/18 (28%) grade 2 and 3/5 (60%) grade 3 tumours. There was no clear relationship to tumour stage, lymphocytic infiltration or stromal content of the tumours. Clinical review one year after the 2 year period of tumour collection showed that 6/9 (66%) of patients with tumours with reduced levels of transcript had died or had disease which was not controllable by local resection and 3/9 (33%) had developed tumour re-occurrences. In comparison, in the group with normal levels of expression of TGF beta 1, 3/18 (17%) had disease which was not controllable by local means, 9/18 (50%) had tumour re-occurrence and 6/18 (33%) had no evidence of disease. The association of reduced expression of TGF beta 1 and advanced disease was statistically significant

  18. Role for transforming growth factor-beta1 in alport renal disease progression.

    PubMed

    Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D

    1999-11-01

    Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.

  19. TGF1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector.

    PubMed

    He, Cai-Xia; Zhang, Tian-Yuan; Miao, Pei-Hong; Hu, Zhong-Jie; Han, Min; Tabata, Yasuhiko; Hu, Yu-Lan; Gao, Jian-Qing

    2012-01-01

    This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF1-gene engineered MSCs can induce cartilage regeneration in vivo. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.

  1. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    PubMed Central

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGFinduced migration in PC3 cells, but not in DU145 cells. TGFinduced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGFinduced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  2. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful

  3. [Regulation effect of β-catenin pathway on TGF1 induced pulmonary pro-fibrosis].

    PubMed

    Tian, X R; Tian, X L; Wang, H F; Chang, Q; Huo, R J; Ying, D L; Zheng, G P

    2016-06-28

    To investigate the regulation effect of β-catenin pathway on transforming growth factor beta1 (TGF1) induced pulmonary pro-fibrosis. The rat alveolar typeⅡ cells (RLE-6TN) were divided into four groups: A1.control group; B1.TGF1 group was treated with 5 μg/L TGF1; C1.pcDNA+ TGF1 group was transiently transfected with eukaryotic expression vector pcDNA3.0 (pcDNA) and followed by TGF1 treatment (5 μg/L); D1.F-(β-TrCP)-Ecad+ TGF1 group was transiently transfected with β-catenin protein knockout vector [F-(β-TrCP)-Ecad] and followed by TGF1 treatment (5 μg/L). After 24 hours, cells were observed under the inverted phase contrast microscope, then the expressions of E-cadherin, α-smooth muscle actin (α-SMA) and fibronectin (Fn) in each group were measured by Western blot and the mRNA levels of Snail which was the downstream profibrotic transcription production in cell culture supernatants of each group were detected by real-time fluorescence quantification-polymerase chain reaction (RT-PCR) .The rat alveolar macrophages (CRL-2192) were divided into five groups: A2.control group; B2.Interferon gamma (IFN-γ) group was treated by 20 μg/L IFN-γ; C2.TGF1+ IFN-γ group was treated by 20 μg/L IFN-γ with 10 μg/L TGF1; D2.F-(β-TrCP)-Ecad+ TGF1+ IFN-γ group was transfected with F-(β-TrCP)-Ecad and other dispose was the same as group C2; E2.WTβ-catenin+ TGF1+ IFN-γ group was transfected with WTβ-catenin and other dispose was the same as group C2.After 24 hours, protein levels of β-catenin in group A2, B2, C2 were determined by Western blot.Inducible nitric oxide synthase (iNOS) mRNA levels of each group were detected by RT-PCR. The RLE-6TN cells of group B1, C1 showed a change in morphology to spindle-shaped cells, the cells of group D1 maintained a cobblestone morphology. Protein expressions of the fibroblast markers α-SMA and Fn, and mRNA expressions of the downstream profibrotic transcription production Snail of group B1

  4. Oncogenic mechanisms of Evi-1 protein.

    PubMed

    Hirai, H; Izutsu, K; Kurokawa, M; Mitani, K

    2001-08-01

    Although Evi-1 is thought to promote growth or block differentiation in some cell types, its biological functions have not been elucidated. To explore the mechanisms underlying Evi-1-induced oncogenesis, we investigated whether Evi-1 affects the signaling of transforming growth factor beta (TGF-beta), which inhibits proliferation of a wide range of cell types and is one of the most studied growth regulatory factors. We demonstrated that Evi-1 represses TGF-beta signaling and antagonizes its growth-inhibitory effects. Two separate regions of Evi-1 are responsible for this repression, one of which is the first zinc-finger domain. Through this domain, Evi-1 physically interacts with Smad3, an intracellular mediator of TGF-beta signaling, thereby suppressing the transcriptional activity of Smad3. These results define a novel function of Evi-1 as a repressor of signaling components of TGF-beta. We also demonstrated that Evi-1 represses Smad-induced transcriptional activation by recruiting CtBP as a corepressor. Evi-1 associates with CtBP1 through one of the CtBP-binding consensus motifs within the region from amino acid 544 to 607, and this association is required for the efficient inhibition of TGF-beta signaling. A specific histone deacetylase (HDAc) inhibitor, trichostatin A (TSA), alleviates Evi-1-mediated repression of TGF-beta signaling, suggesting that HDAc is involved in transcriptional repression by Evi-1. This identifies a novel function of Evi-1 as a member of corepressor complexes and suggests that aberrant recruitment of corepressors is one of the mechanisms involved in Evi-1-induced leukemogenesis. These results indicate that specific HDAc inhibitors may be useful in the treatment of Evi-1-induced neoplastic tumors, including myeloid leukemias.

  5. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  6. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages.

    PubMed

    Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A

    1997-10-01

    Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.

  7. Effect of angiotensin II receptor blocker on plasma levels of TGF-beta 1 and interstitial fibrosis in hypertensive kidney transplant patients.

    PubMed

    el-Agroudy, Amgad E; Hassan, Nabil A; Foda, Mohamed A; Ismail, Amani M; el-Sawy, Essam A; Mousa, Omar; Ghoneim, Mohamed A

    2003-01-01

    Transforming growth factor-beta1 (TGF-beta 1) is involved in the pathogenesis of chronic allograft nephropathy after kidney transplantation. The aim of the study was to evaluate the effect of the angiotensin receptor blocker losartan on TGF-beta 1 plasma levels and proteinuria in hypertensive transplant recipients. A total of 162 transplant recipients were included in the study. The patients were randomized into 3 groups: group 1 received losartan; group II received an angiotensin-converting enzyme inhibitor (captopril), and group III received a calcium channel blocker (amlodipine). All the parameters were recorded at the time of therapy initiation and at 1, 4 and 12 weeks and 12 months thereafter. Graft biopsy before the start and at the end of the study was done to evaluate histopathological progression. Blood pressure was controlled in the 3 groups; however, the need for other antihypertensive agents was significant in groups I and II. Treatment with losartan significantly decreased the plasma level of TGF-beta1, 24-hour urinary protein and serum uric acid (p < 0.05). No significant changes were seen in the hemoglobin or serum potassium levels. The rate of histopathological progression was significantly lower in the losartan group. No patient was discharged from the study due to side effects. After transplantation all drugs were able to control blood pressure with good safety and tolerability. The study demonstrates that ARB significantly decreases the plasma levels of TGF-beta1, proteinuria and uric acid. These results could play an important and decisive role in the treatment and prevention of chronic allograft nephropathy. Copyright 2003 S. Karger AG, Basel

  8. TGF-beta(1) gene-race interactions for resting and exercise blood pressure in the HERITAGE Family Study.

    PubMed

    Rivera, M A; Echegaray, M; Rankinen, T; Pérusse, L; Rice, T; Gagnon, J; Leon, A S; Skinner, J S; Wilmore, J H; Rao, D C; Bouchard, C

    2001-10-01

    We examined the possible association between a transforming growth factor (TGF)-beta(1) gene polymorphism in codon 10 and blood pressure (BP) at rest, in acute response to exercise in the pretrained (sedentary) and trained states, as well as in its training response (Delta) to 20 wk of endurance exercise. Subjects were 257 black and 480 white, healthy sedentary normotensive subjects from the HERITAGE Family Study. The polymorphism was detected by polymerase chain reaction and digestion with the Msp A1 I endonuclease yielding a wild (leucine-10) and a mutant (proline-10) allele. Resting and exercise [50 W plus 60, 80, and 100% maximal oxygen consumption (VO(2)(max))] BP were determined before and after training. Significant (P < 0.05) race-genotype interactions were found for systolic (S) BP in both the sedentary and trained states. Among whites but not in blacks, the TGF-beta(1) genotypes were significantly (P < 0.05) associated with sedentary-state SBP at rest, at 50 W, and at 60 and 100% VO(2)(max)as well as with trained-state SBP at rest and at 80 and 100% VO(2)(max). The leucine-10 homozygotes had significantly (P < 0.05) lower SBP than proline-10 homozygotes. DeltaBP was not significantly associated with genotype. These results support the hypothesis of an association between the TGF-beta(1) marker in codon 10 and SBP at rest and in response to acute exercise in whites but not in blacks.

  9. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3.

    PubMed

    Remy, Ingrid; Montmarquette, Annie; Michnick, Stephen W

    2004-04-01

    Transforming growth factor beta (TGF-beta) has a major role in cell proliferation, differentiation and apoptosis in many cell types. Integration of the TGF-beta pathway with other signalling cascades that control the same cellular processes may modulate TGF-beta responses. Here we report the discovery of a new functional link between TGF-beta and growth factor signalling pathways, mediated by a physical interaction between the serine-threonine kinase PKB (protein kinase B)/Akt and the transcriptional activator Smad3. Formation of the complex is induced by insulin, but inhibited by TGF-beta stimulation, placing PKB-Smad3 at a point of convergence between these two pathways. PKB inhibits Smad3 by preventing its phosphorylation, binding to Smad4 and nuclear translocation. In contrast, Smad3 does not inhibit PKB. Inhibition of Smad3 by PKB occurs through a kinase-activity-independent mechanism, resulting in a decrease in Smad3-mediated transcription and protection of cells against TGF-beta-induced apoptosis. Consistently, knockdown of the endogenous PKB gene with small-interfering RNA (siRNA) has the opposite effect. Our results suggest a very simple mechanism for the integration of signals arising from growth-factor- and TGF-beta-mediated pathways.

  10. Effect of ginseng extract on the TGF1 signaling pathway in CCl4-induced liver fibrosis in rats.

    PubMed

    Hafez, Mohamed M; Hamed, Sherifa S; El-Khadragy, Manal F; Hassan, Zeinab K; Al Rejaie, Salim S; Sayed-Ahmed, Mohamed M; Al-Harbi, Naif O; Al-Hosaini, Khalid A; Al-Harbi, Mohamed M; Alhoshani, Ali R; Al-Shabanah, Othman A; Alsharari, Shakir Dekhal

    2017-01-13

    Liver diseases are major global health problems. Ginseng extract has antioxidant, immune-modulatory and anti-inflammatory activities. This study investigated the effect of ginseng extract on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Male Wistar rats were divided into four groups: control group, ginseng group, CCl 4 group and CCl 4  + ginseng group. Liver injury was induced by the intraperitoneal (I.P) injection of 3 ml/kg CCl 4 (30% in olive oil) weekly for 8 weeks. The control group was I.P injected with olive oil. The expression of genes encoding transforming growth factor beta (TGF-β), type I TGF-β receptor (TβR-1), type II TGF-β receptor (TβR-II), mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad4, matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), Collagen 1a2 (Col1a2), Collagen 3a1 (Col3a1), interleukin-8 (IL-8) and interleukin -10 (IL-10) were measured by real-time PCR. Treatment with ginseng extract decreased hepatic fat deposition and lowered hepatic reticular fiber accumulation compared with the CCl 4 group. The CCl 4 group showed a significant increase in hepatotoxicity biomarkers and up-regulation of the expression of genes encoding TGF-β, TβR-I, TβR-II, MMP2, MMP9, Smad-2,-3, -4, and IL-8 compared with the control group. However, CCl 4 administration resulted in the significant down-regulation of IL-10 mRNA expression compared with the control group. Interestingly, ginseng extract supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl 4 . ginseng extract had an anti-fibrosis effect via the regulation of the TGF1/Smad signaling pathway in the CCl 4 -induced liver fibrosis model. The major target was the inhibition of the expression of TGF1, Smad2, and Smad3.

  11. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in amore » trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.« less

  12. Transforming Growth Factor β1 Induces the Expression of Collagen Type I by DNA Methylation in Cardiac Fibroblasts

    PubMed Central

    Pan, Xiaodong; Chen, Zhongpu; Huang, Rong; Yao, Yuyu; Ma, Genshan

    2013-01-01

    Transforming growth factor-beta (TGF-β), a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGFinduces collagen type I alpha 1 (COL1A1) expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs) were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF1 for 48 h. TGF1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF1-induced COL1A1 gene expression. PMID:23560091

  13. Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis.

    PubMed

    Zhang, Xuemei; Ai, Feiyan; Li, Xiayu; She, Xiaoling; Li, Nan; Tang, Anliu; Qin, Zailong; Ye, Qiurong; Tian, Li; Li, Guiyuan; Shen, Shourong; Ma, Jian

    2015-12-15

    The aberrant expression of S100A8 and S100A9 is linked to nonresolving inflammation and ultimately to carcinogenesis, whereas the underlying mechanism that allows inflammation to progress to specific cancer types remains unknown. Here, we report that S100A8 was induced by inflammation and then promoted colorectal tumorigenesis downstream by activating Id3 (inhibitor of differentiation 3). Using gene expression profiling and immunohistochemistry, we found that both S100A8 and S100A9 were upregulated in the chemically-induced colitis-associated cancer mouse model and in human colorectal cancer specimens. Furthermore, we showed that S100A8 and S100A9 acted as chemoattractant proteins by recruiting macrophages, promoting the proliferation and invasion of colon cancer cell, as well as spurring the cycle that culminates in the acceleration of cancer metastasis in a nude mouse model. S100A8 regulated colon cancer cell cycle and proliferation by inducing Id3 expression while inhibiting p21. Id3 expression was regulated by Smad5, which was directly phosphorylated by Akt1. Our study revealed a novel mechanism in which inflammation-induced S100A8 promoted colorectal tumorigenesis by acting upstream to activate the Akt1-Smad5-Id3 axis. © 2015 UICC.

  14. Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-Induced myodifferentiation.

    PubMed

    Anitua, Eduardo; Sanchez, Mikel; Merayo-Lloves, Jesus; De la Fuente, Maria; Muruzabal, Francisco; Orive, Gorka

    2011-08-01

    Plasma rich in growth factors (PRGF-Endoret) technology is an autologous platelet-enriched plasma obtained from patient's own blood, which after activation with calcium chloride allows the release of a pool of biologically active proteins that influence and promote a range of biological processes including cell recruitment, and growth and differentiation. Because ocular surface wound healing is mediated by different growth factors, we decided to explore the potential of PRGF-Endoret technology in stimulating the biological processes related with fibroblast-induced tissue repair. Furthermore, the anti-fibrotic properties of this technology were also studied. Blood from healthy donors was collected, centrifuged and, whole plasma column (WP) and the plasma fraction with the highest platelet concentration (F3) were drawn off, avoiding the buffy coat. Primary human cells including keratocytes and conjunctival fibroblasts were used to perform the "in vitro" investigations. The potential of PRGF-Endoret in promoting wound healing was evaluated by means of a proliferation and migration assays. Fibroblast cells were induced to myofibroblast differentiation after the treatment with 2.5 ng/mL of TGF1. The capability of WP and F3 to prevent and inhibit TGF1-induced differentiation was evaluated. Results show that this autologous approach significantly enhances proliferation and migration of both keratocytes and conjunctival fibroblasts. In addition, plasma rich in growth factors prevents and inhibits TGF1-induced myofibroblast differentiation. No differences were found between WP and F3 plasma fractions. These results suggest that PRGF-Endoret could reduce scarring while stimulating wound healing in ocular surface. F3 or whole plasma column show similar biological effects in keratocytes and conjunctival fibroblast cells.

  15. Induction of myofibroblastic differentiation in vitro by covalently immobilized transforming growth factor-beta(1).

    PubMed

    Metzger, Wolfgang; Grenner, Nadine; Motsch, Sandra E; Strehlow, Rothin; Pohlemann, Tim; Oberringer, Martin

    2007-11-01

    Growth factors are an important tool in tissue engineering. Bone morphogenetic protein-2 and transforming growth factor-beta(1) (TGF-beta(1)) are used to provide bioactivity to surgical implants and tissue substitute materials. Mostly growth factors are used in soluble or adsorbed form. However, simple adsorption of proteins to surfaces is always accompanied by reduced stability and undefined pharmacokinetics. This study aims to prove that TGF-beta(1) can be covalently immobilized to functionalized surfaces, maintaining its ability to induce myofibroblastic differentiation of normal human dermal fibroblasts. In vivo, fibroblasts differentiate to myofibroblasts (MFs) during soft tissue healing by the action of TGF-beta(1). As surfaces for our experiments, we used slides bearing aldehyde, epoxy, or amino groups. For our in vitro cell culture experiments, we used the expression of alpha-smooth muscle actin as a marker for MFs after immunochemical staining. Using the aldehyde and the epoxy slides, we were able to demonstrate the activity of immobilized TGF-beta(1) through a significant increase in MF differentiation rate. A simple immunological test was established to detect TGF-beta(1) on the surfaces. This technology enables the creation of molecular "landscapes" consisting of several factors arranged in a distinct spatial pattern and immobilized on appropriate surfaces.

  16. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis.

    PubMed

    Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro

    2009-01-01

    Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.

  17. Inhibitor of Differentiation/DNA Binding 1 (ID1) Inhibits Etoposide-induced Apoptosis in a c-Jun/c-Fos-dependent Manner.

    PubMed

    Zhao, Yahui; Luo, Aiping; Li, Sheng; Zhang, Wei; Chen, Hongyan; Li, Yi; Ding, Fang; Huang, Furong; Liu, Zhihua

    2016-03-25

    ID1 (inhibitor of differentiation/DNA binding 1) acts an important role in metastasis, tumorigenesis, and maintenance of cell viability. It has been shown that the up-regulation of ID1 is correlated with poor prognosis and the resistance to chemotherapy of human cancers. However, the underlying molecular mechanism remains elusive. Here, we determined for the first time that up-regulating ID1 upon etoposide activation was mediated through AP-1 binding sites within theID1promoter and confirmed that ID1 enhanced cell resistance to DNA damage-induced apoptosis in esophageal squamous cell carcinoma cells. Ablation of c-Jun/c-Fos or ID1 expression enhanced etoposide-mediated apoptosis through increasing activity of caspase 3 and PARP cleavage. Moreover, c-Jun/c-Fos and ID1 were positively correlated in human cancers. More importantly, simultaneous high expression of ID1 and c-Jun or c-Fos was correlated with poor survival in cancer patients. Collectively, we demonstrate the importance of c-Jun/c-Fos-ID1 signaling pathway in chemoresistance of esophageal cancer cells and provide considerable insight into understanding the underlying molecular mechanisms in esophageal squamous cell carcinoma cell biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The ERK/CREB pathway is involved in the c-Ski expression induced by low TGF1 concentrations during primary fibroblast proliferation.

    PubMed

    Li, Ping; Liu, Ping; Peng, Yan; Zhang, Zhuo-Hang; Li, Xiao-Ming; Xiong, Ren-Ping; Chen, Xing; Zhao, Yan; Ning, Ya-Lei; Yang, Nan; Zhang, Bo; Zhou, Yuan-Guo

    2018-06-27

    Increasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF1 concentrations, but the mechanism by which low TGF1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit. The mRNA and protein expression and phosphorylation levels of corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting. We first found that low TGF1 concentrations not only promoted c-Ski mRNA and protein expression in rat primary fibroblasts but also increased the phosphorylation levels of Extracellular Signal-Regulated Kinases (ERK) and cAMP response element binding (CREB) protein. An ERK kinase (mitogen-activated protein kinase kinase, MEK) inhibitor significantly inhibited ERK1/2 phosphorylation levels, markedly reducing c-Ski expression and CREB phosphorylation levels and abrogating the growth-promoting effect of low TGF1 concentrations. At the same time, Smad2/3 phosphorylation levels were not significantly changed. Taken together, these results suggest that the increased cell proliferation induced by low TGF1 concentrations mediates c-Ski expression potentially through the ERK/CREB pathway rather than through the classic TGF1/Smad pathway.

  19. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  20. The Role of PAR2 in TGF1-Induced ERK Activation and Cell Motility

    PubMed Central

    Ungefroren, Hendrik; Witte, David; Fiedler, Christian; Gädeken, Thomas; Kaufmann, Roland; Lehnert, Hendrik

    2017-01-01

    Background: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-β1. However, it is not known whether activation of non-SMAD TGF-β signaling (e.g., RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) signaling) is required for cell migration and whether it is also dependent on PAR2. Methods: RNA interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation to detect a PAR2–ALK5 physical interaction. Results: Inhibition of ERK signaling with the MEK inhibitor U0126 blunted the ability of TGF1 to induce migration in pancreatic cancer Panc1 cells. ERK activation in response to PAR2 agonistic peptide (PAR2–AP) was strong and rapid, while it was moderate and delayed in response to TGF1. Basal and TGF1-dependent ERK, but not SMAD activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT cells strongly inhibited TGF1-induced ERK activation, while the biased PAR2 agonist GB88 at 10 and 100 µM potentiated TGF1-dependent ERK activation and cell migration. Finally, we provide evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2–AP- and TGF1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for TGF1-induced ERK activation, and that the functional cooperation of PAR2 and TGF1 involves a physical interaction between PAR2 and ALK5. PMID:29261154

  1. Prevention of TGF-beta-induced apoptosis by interlukin-4 through Akt activation and p70S6K survival signaling pathways.

    PubMed

    Lin, Sue-Jane; Chang, Chungming; Ng, Ah-Kau; Wang, Shu-Han; Li, Jia-Je; Hu, Cheng-po

    2007-09-01

    In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-beta (TGF-beta). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-beta-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-beta-induced apoptosis.

  2. Dexamethasone Inhibits TGF1Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61

    PubMed Central

    Han, Sanghoon; Bui, Ngoc Thuy; Ho, Manh Tin; Kim, Young Mee; Cho, Moonjae; Shin, Dong Bok

    2016-01-01

    Purpose One of the features in cancer development is the migration of cancer cells to form metastatic lesions. CYR61 protein promotes migration and the epithelial-mesenchymal transition in several cancer cell types. Evidence suggests that CYR61 and dexamethasone are relevant to colorectal cancer. However, relationships between them and colorectal cancer are still unclear. Understanding the molecular mechanism of colorectal cancer progression related with CYR61 and dexamethasone, which is widely used for combination chemotherapy, is necessary for improved therapy. Materials and Methods We used colorectal cancer cells, HCT116, co-treated with transforming growth factor β1 (TGF1) and dexamethasone to examine the inhibitory migration effect of dexamethasone by migratory assay. Alternatively, both migratory pathways, expression of AKT and ERK, and the target factor CYR61 was also tested by co-treatment with TGF1 and dexamethasone. Results We report that dexamethasone significantly inhibited TGF1induced cell migration, without affecting cell proliferation. Importantly, we observed that TGF1 promoted the epithelial-mesenchymal transition process and that dexamethasone co-treatment abolished this effect. ERK and AKT signaling pathways were found to mediate TGF1induced migration, which was inhibited by dexamethasone. In addition, TGF1 treatment induced CYR61 expression whereas dexamethasone reduced it. These observations were compatible with the modulation of migration observed following treatment of HCT116 cells with human recombinant CYR61 and anti-CYR61 antibody. Our results also indicated that TGF1 enhanced collagen I and reduced matrix metalloproteinase 1 expression, which was reversed by dexamethasone treatment. Conclusion These findings suggested that dexamethasone inhibits AKT and ERK phosphorylation, leading to decreased CYR61 expression, which in turn blocks TGF1induced migration. PMID:26693911

  3. Doxycycline inhibits TGF1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man

    2016-03-01

    Doxycycline has been shown to have antibacterial and anti-inflammatory effects and suppresses collagen biosynthesis. The purpose of this study was to evaluate the effects of doxycycline on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts (NPDFs). We also determined the molecular mechanisms of action for doxycycline. NPDFs were isolated from nasal polyps from 8 patients. Doxycycline was used to pretreat TGF1-induced NPDFs. Cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Expression levels of α-smooth muscle actin (SMA) and fibronectin were measured using Western blot, reverse-transcription polymerase chain reaction, and immunofluorescence staining. Total collagen production was analyzed with the Sircol collagen assay, while mitogen-activated protein kinase (MAPK) and NF-κB activation were determined using Western blot analysis. Luciferase assay was used to evaluate the transcriptional activity of NF-κB. Although doxycycline (0 to 40 μg/mL) had no significant cytotoxic effects in TGF1-induced NPDFs, it significantly reduced the expression levels of α-SMA, fibronectin, and collagen in TGF1-induced NPDFs in a dose-dependent manner. Doxycycline also inhibited the TGF1-induced activation of p38, c-Jun NH2 -terminal kinase (JNK), and NF-κB, and its inhibitory effects were similar to those of the specific inhibitors for each. Doxycycline has an inhibitory effect on TGF1-induced myofibroblast differentiation and extracellular matrix production via the p38 and JNK/NF-κB signal pathways in NPDFs. © 2015 ARS-AAOA, LLC.

  4. Progressive pulmonary fibrosis is mediated by TGF-β isoform 1 but not TGF-β3

    PubMed Central

    Ask, Kjetil; Bonniaud, Philippe; Maass, Katja; Eickelberg, Oliver; Margetts, Peter J; Warburton, David; Groffen, John; Gauldie, Jack; Kolb, Martin

    2008-01-01

    Tissue repair is a well orchestrated biological process involving numerous soluble mediators, and an imbalance between these factors may result in impaired repair and fibrosis. Transforming growth factor (TGF) β is a key profibrotic element in this process and it is thought that its three isoforms act in a similar way. Here, we report that TGF-β3 administered to rat lungs using transient overexpression initiates profibrotic effects similar to those elicited by TGF1, but causes less severe and progressive changes. The data suggest that TGF-β3 does not lead to inhibition of matrix degradation in the same way as TGF1, resulting in non-fibrotic tissue repair. Further, TGF-β3 is able to downregulate TGF1 induced gene expression, suggesting a regulatory role of TGF-β3. TGF-β3 overexpression results in an upregulation of Smad proteins similar to TGF1, but is less efficient in inducing the ALK 5 and TGF-β type II receptor (TβRII). We provide evidence that this difference may contribute to the progressive nature of TGF1 induced fibrotic response, in contrast to the limited fibrosis observed following TGF-β3 overexpression. TGF-β3 is important in “normal wound healing”, but is outbalanced by TGF1 in “fibrotic wound healing” in the lung. PMID:17931953

  5. Connective tissue growth factor mediates TGF1-induced low-grade serous ovarian tumor cell apoptosis.

    PubMed

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF1 induces apoptosis of LGSC cells. However, the effect of TGF1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF1 on LGCS.

  6. Glycogen synthase kinase-3 (GSK-3) regulates TGF1-induced differentiation of pulmonary fibroblasts

    PubMed Central

    Baarsma, Hoeke A; Engelbertink, Lilian HJM; van Hees, Lonneke J; Menzen, Mark H; Meurs, Herman; Timens, Wim; Postma, Dirkje S; Kerstjens, Huib AM; Gosens, Reinoud

    2013-01-01

    Background Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF1-induced myofibroblast differentiation is currently largely unknown. Purpose To determine the contribution of GSK-3 signalling in TGF1-induced myofibroblast differentiation. Experimental Approach We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively. Results Stimulation of MRC5 and primary human lung fibroblasts with TGF1 resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF1-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF1-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling. Conclusion and Implication We demonstrate that GSK-3 signalling regulates TGF1-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases. PMID:23297769

  7. Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways.

    PubMed

    Dong, Feng; Liu, Tingting; Jin, Hao; Wang, Wenbo

    2018-01-01

    Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF1-induced epithelial-to-mesenchymal transition.

  8. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    and posthatch development. Furthermore, TGF-beta1 also reduced the expression of the cell adhesion receptor beta1 integrin subunit during embryonic and posthatch muscle growth in normal and LSN chickens. Therefore, the reduction of beta1 integrin in response to TGF-beta1 is also associated with decreased posthatch muscle growth. The results from this study indicate that TGF-beta1 inhibits skeletal muscle growth by regulating MyoD and myogenin expression. These data also suggest that a beta1 integrin-mediated alternative pathway is likely involved in the TGF-beta1-induced reduction of muscle growth.

  9. Id1, Id2 and Id3 are induced in rat melanotrophs of the pituitary gland by dopamine suppression under continuous stress.

    PubMed

    Konishi, H; Ogawa, T; Nakagomi, S; Inoue, K; Tohyama, M; Kiyama, H

    2010-09-15

    In rats under continuous stress (CS) there is decreased hypothalamic dopaminergic innervation to the intermediate lobe (IL) of the pituitary gland, which causes hyperactivation and subsequent degeneration of melanotrophs in the IL. In this study, we investigated the molecular basis for the changes that occur in melanotrophs during CS. Using microarray analysis, we identified several genes differentially expressed in the IL under CS conditions. Among the genes up-regulated under CS conditions, we focused on the inhibitor of DNA binding/differentiation (Id) family of dominant negative basic helix-loop-helix (bHLH) transcription factors. RT-PCR, Western blotting and in situ hybridization confirmed the significant inductions of Id1, Id2 and Id3 in the IL of CS rats. Administration of the dopamine D2 receptor agonist bromocriptine prevented the inductions of Id1-3 in the IL of CS rats, whereas application of the dopamine D2 antagonist sulpiride induced significant expressions of Id1-3 in the IL of normal rats. Moreover, an in vitro study using primary cultured melanotrophs demonstrated a direct effect on Id1-3 inductions by dopamine suppression. These results suggest that the decreased dopamine levels in the IL during CS induce Id1-3 expressions in melanotrophs. Because Id family members inhibit various bHLH transcription factors, it is conceivable that the induced Id1-3 would cooperatively modulate gene expressions in melanotrophs under CS conditions to induce hormone secretion. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. MiR-9 is involved in TGF1-induced lung cancer cell invasion and adhesion by targeting SOX7.

    PubMed

    Han, Lichun; Wang, Wei; Ding, Wei; Zhang, Lijian

    2017-09-01

    MicroRNA (miR)-9 plays different roles in different cancer types. Here, we investigated the role of miR-9 in non-small-cell lung cancer (NSCLC) cell invasion and adhesion in vitro and explored whether miR-9 was involved in transforming growth factor-beta 1 (TGF1)-induced NSCLC cell invasion and adhesion by targeting SOX7. The expression of miR-9 and SOX7 in human NSCLC tissues and cell lines was examined by reverse transcription-quantitative polymerase chain reaction. Gain-of-function and loss-of-function experiments were performed on A549 and HCC827 cells to investigate the effect of miR-9 and SOX7 on NSCLC cell invasion and adhesion in the presence or absence of TGF1. Transwell-Matrigel assay and cell adhesion assay were used to examine cell invasion and adhesion abilities. Luciferase reporter assay was performed to determine whether SOX7 was a direct target of miR-9. We found miR-9 was up-regulated and SOX7 was down-regulated in human NSCLC tissues and cell lines. Moreover, SOX7 expression was negatively correlated with miR-9 expression. miR-9 knockdown or SOX7 overexpression could suppress TGF1-induced NSCLC cell invasion and adhesion. miR-9 directly targets the 3' untranslated region of SOX7, and SOX7 protein expression was down-regulated by miR-9. TGF1 induced miR-9 expression in NSCLC cells. miR-9 up-regulation led to enhanced NSCLC cell invasion and adhesion; however, these effects could be attenuated by SOX7 overexpression. We concluded that miR-9 expression was negatively correlated with SOX7 expression in human NSCLC. miR-9 was up-regulated by TGF1 and contributed to TGF1-induced NSCLC cell invasion and adhesion by directly targeting SOX7. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Apigenin inhibits TGF1-induced proliferation and migration of airway smooth muscle cells.

    PubMed

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF1-induced ASMCs migration. Furthermore, apigenin inhibited TGF1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  12. Emodin suppresses TGF1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway.

    PubMed

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Preventing effect of TGF-beta1 antibody compounded with fibrin glue on postoperative adhesions of flexor tendon].

    PubMed

    Zhang, Zhimin; Liu, Jian; Meng, Guolin; Wu, Yaoping

    2008-03-01

    To explore the preventing effects of TGF-beta1 antibody (TGF-beta1Ab) compounded with fibrin glue (FG) on postoperative adhesions of flexor tendon. Seventy-two Leghorn chickens were randomly divided into 4 groups (groups A, B, C and D), 18 chickens for each group, and the long flexor tendons of the 3rd and 4th toes in zone II of all chickens were transversed and sutured with the 4-strand cruciate repair technique to make defect models. In group A, 0.2 mL TGF-beta1 Ab was applied at repair site. In group B, 0.2 mL FG was applied at repair site. In group C, 0.2 mL TGF-beta1Ab and FG was applied at repair site. In group D, 0.2 mL normal sodium was applied at repair site. At 1, 3 and 8 weeks after operation, the tendons of 6 chickens in each group were harvested for morphological and histological evaluation. Six specimens of each group were obtained for biomechanical test at 3 and 8 weeks. The gross-observation showed that the differences in grading of tendon adhesion were not significant among 4 groups at 1 week after operation (P > 0.05), but the differences were significant between groups A, B, D and group C at 3 and 8 weeks after operation (P < 0.05). Histological observation showed that collagen fibers arranged irregularly in groups A, B and D, but arranged regularly in group C at 3 and 8 weeks' after operation. At 3 weeks after operation the gliding excursion ratio of the tendon in groups A, B, C and D were 0.45 +/- 0.05, 0.40 +/- 0.10, 0.79 +/- 0.09 and 0.25 +/- 0.07 respectively; the simulated active flexion ratio were 0.61 +/- 0.02, 0.67 +/- 0.03, 0.91 +/- 0.03 and 0.53 +/- 0.04 respectively; the work of flexion were (18.00 +/- 0.77), (17.80 +/- 1.13), (27.60 +/- 1.73) and (15.60 +/- 1.27) degrees/N respectively. There were significant differences between group C and other three groups (P < 0.05). The tendon anastomosis breaking strength were (14.2 +/- 1.9), (15.2 +/- 2.2), (16.0 +/- 2.2) and (14.7 +/- 2.7) N, showing no significant differences among 4 groups

  14. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity.

    PubMed

    Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S

    2006-02-05

    Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.

  15. The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF1-induced growth inhibition by targeting Smad3 linker region.

    PubMed

    Jeon, Woo-Kwang; Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Young K; Lim, Seunghwan; Kim, Jae-Hong; Letterio, John J; Liu, Fang; Kim, Seong-Jin; Kim, Byung-Chul

    2015-12-08

    Leukotriene B4 (LTB4) is a potent pro-inflammatory eicosanoid that is derived from arachidonic acid, and its signaling is known to have a tumor-promoting role in several cancer types. In this study, we investigated whether enhanced LTB4 signaling confers resistance to the cytostatic transforming growth factor-β1 (TGF1) response. We found that LTB4 pretreatment or ectopic expression of BLT1, a high affinity LTB4 receptor, fully abrogated TGF1-induced cell cycle arrest and expression of p15INK4B and p27KIP1. Mechanism study revealed that LTB4-mediated suppression of TGF1-induced Smad3 activation and growth inhibition was due to enhanced phosphorylation of Smad3 linker region (pSmad3L) through activation of BLT1-NAD(P)H oxidase (NOX)-reactive oxygen species (ROS)-epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3-K)-extracellular signal-activated kinase1/2 (ERK1/2)-linked signaling cascade. Furthermore, the LTB4/BLT1 signaling pathway leading to pSmad3L was constitutively activated in breast cancer cells and was correlated with TGF1-resistant growth of the cells in vitro and in vivo. In human breast cancer tissues, the expression level of pSmad3L (Thr179) had a positive correlation with BLT1 expression. Collectively, our data demonstrate for the first time that the induction of pSmad3L through BLT1-NOX-ROS-EGFR-PI3K-ERK1/2 signaling pathway is a key mechanism by which LTB4 blocks the anti-proliferative responses of TGF1, providing a novel mechanistic insight into the connection between enhanced inflammatory signal and cancer cell growth.

  16. The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF1-induced growth inhibition by targeting Smad3 linker region

    PubMed Central

    Park, Seong Ji; Jo, Eun Ji; Lee, Young K.; Lim, Seunghwan; Kim, Jae-Hong; Letterio, John J.; Liu, Fang; Kim, Seong-Jin; Kim, Byung-Chul

    2015-01-01

    Leukotriene B4 (LTB4) is a potent pro-inflammatory eicosanoid that is derived from arachidonic acid, and its signaling is known to have a tumor-promoting role in several cancer types. In this study, we investigated whether enhanced LTB4 signaling confers resistance to the cytostatic transforming growth factor-β1 (TGF1) response. We found that LTB4 pretreatment or ectopic expression of BLT1, a high affinity LTB4 receptor, fully abrogated TGF1-induced cell cycle arrest and expression of p15INK4B and p27KIP1. Mechanism study revealed that LTB4-mediated suppression of TGF1-induced Smad3 activation and growth inhibition was due to enhanced phosphorylation of Smad3 linker region (pSmad3L) through activation of BLT1-NAD(P)H oxidase (NOX)-reactive oxygen species (ROS)-epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3-K)-extracellular signal-activated kinase1/2 (ERK1/2)-linked signaling cascade. Furthermore, the LTB4/BLT1 signaling pathway leading to pSmad3L was constitutively activated in breast cancer cells and was correlated with TGF1-resistant growth of the cells in vitro and in vivo. In human breast cancer tissues, the expression level of pSmad3L (Thr179) had a positive correlation with BLT1 expression. Collectively, our data demonstrate for the first time that the induction of pSmad3L through BLT1-NOX-ROS-EGFR-PI3K-ERK1/2 signaling pathway is a key mechanism by which LTB4 blocks the anti-proliferative responses of TGF1, providing a novel mechanistic insight into the connection between enhanced inflammatory signal and cancer cell growth. PMID:26497676

  17. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3.

    PubMed

    Hesler, Rachel A; Huang, Jennifer J; Starr, Mark D; Treboschi, Victoria M; Bernanke, Alyssa G; Nixon, Andrew B; McCall, Shannon J; White, Rebekah R; Blobe, Gerard C

    2016-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Although low expression of the nucleoside transporters hENT1 and hCNT3 that mediate cellular uptake of gemcitabine has been linked to gemcitabine resistance, the mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. Here, we report that the matricellular protein cysteine-rich angiogenic inducer 61 (CYR61) negatively regulates the nucleoside transporters hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 increased expression of hENT1 and hCNT3, increased cellular uptake of gemcitabine and sensitized PDAC cells to gemcitabine-induced apoptosis. In PDAC patient samples, expression of hENT1 and hCNT3 negatively correlates with expression of CYR61 . We demonstrate that stromal pancreatic stellate cells (PSCs) are a source of CYR61 within the PDAC tumor microenvironment. Transforming growth factor-β (TGF-β) induces the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad2/3 signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in PDAC cells in an in vitro co-culture assay. Our results identify CYR61 as a TGF-β-induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging.

    PubMed

    Barna, János; Princz, Andrea; Kosztelnik, Mónika; Hargitai, Balázs; Takács-Vellai, Krisztina; Vellai, Tibor

    2012-11-01

    Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  19. 1alpha,25-dihydroxyvitamin D3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma: role for IL-10 and TGF-beta.

    PubMed

    Taher, Yousef A; van Esch, Betty C A M; Hofman, Gerard A; Henricks, Paul A J; van Oosterhout, Antoon J M

    2008-04-15

    1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a potent inhibitor of NF-kappaB expression, can prevent the maturation of dendritic cells in vitro leading to tolerogenic dendritic cells with increased potential to induce regulatory T cells. Herein, we investigated whether the combination of allergen immunotherapy with 1,25(OH)(2)D(3) potentiates the suppressive effects of immunotherapy and whether the immunoregulatory cytokines IL-10 and TGF-beta are involved in the effector phase. OVA-sensitized and challenged BALB/c mice displayed airway hyperresponsiveness (AHR) and increased serum OVA-specific IgE levels, bronchoalveolar lavage eosinophilia, and Th2 cytokine levels. In this model, the dose response of allergen immunotherapy 10 days before OVA inhalation challenge shows strong suppression of asthma manifestations at 1 mg of OVA, but partial suppression of bronchoalveolar lavage eosinophilia, IgE up-regulation, and no reduction of AHR at 100 microg. Interestingly, coadministration of 10 ng of 1,25(OH)(2)D(3) with 100 microg of OVA immunotherapy significantly inhibited AHR and potentiated the reduction of serum OVA-specific IgE levels, airway eosinophilia, and Th2-related cytokines concomitant with increased IL-10 levels in lung tissues and TGF-beta and OVA-specific IgA levels in serum. Similar effects on suboptimal immunotherapy were observed by inhibition of the NF-kappaB pathway using the selective IkappaB kinase 2 inhibitor PS-1145. The suppressive effects of this combined immunotherapy were partially reversed by treatment with mAb to either IL-10R or TGF-beta before OVA inhalation challenge but completely abrogated when both Abs were given. These data demonstrate that 1,25(OH)(2)D(3) potentiates the efficacy of immunotherapy and that the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model.

  20. Augmented cell survival in eutopic endometrium from women with endometriosis: Expression of c-myc, TGF-beta1 and bax genes

    PubMed Central

    Johnson, M Cecilia; Torres, Marisa; Alves, Alessandra; Bacallao, Ketty; Fuentes, Ariel; Vega, Margarita; Boric, M Angélica

    2005-01-01

    Background Endometriosis is a common gynaecological disorder characterized by the presence of endometrial tissue outside of the uterus. The fragments in normal menstruation are composed of necrotic and living cells, which do not survive in ectopic locations because of programmed cell death. The aim of this study was to evaluate if the balance between cell proliferation and apoptosis is changed in eutopic endometrium from women with endometriosis throughout the menstrual cycle by studying bax (pro-apoptotic), c-myc (regulator of cell cycle) and TGF-beta1 (involved in cell differentiation) genes. Methods Eutopic endometrium was obtained from: 30 women with endometriosis (32.8 +/- 5 years) and 34 fertile eumenorrheic women (36 +/- 5.3 years). We analyzed apoptosis (TUNEL: DNA fragmentation); cell proliferation (immunohistochemistry (IHC) for Ki67); c-myc, bax and TGF-beta1 mRNA abundance (RT-PCR) and TGF-beta1 protein (IHC) in endometrial explants. Results Cell proliferation strongly decreased from proliferative to late secretory phases in glands, but not in stroma, in both endometria. Positive staining in glands and stroma from proliferative endometrium with endometriosis was 1.9- and 2.2-fold higher than control endometrium, respectively (p < 0.05). Abundance of c-myc mRNA was 65% higher in proliferative endometrium from endometriosis than normal tissue (p < 0.05). TGF-beta1 (mRNA and protein) augmented during mid secretory phase in normal endometrium, effect not observed in endometrium with endometriosis. In normal endometrium, the percentage of apoptotic epithelial and stromal cells increased more than 30-fold during late secretory phase. In contrast, in endometrium from endometriosis, not only this increase was not observed, besides bax mRNA decreased 63% versus normal endometrium (p < 0.05). At once, in early secretory phase, apoptotic stromal cells increased 10-fold with a concomitant augment of bax mRNA abundance (42%) in endometria from endometriosis (p < 0

  1. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells.

    PubMed

    Dumitriu, Ingrid E; Dunbar, Donald R; Howie, Sarah E; Sethi, Tariq; Gregory, Christopher D

    2009-03-01

    Dendritic cells (DCs) have a central role in the development of adaptive immune responses, including antitumor immunity. Factors present in the tumor milieu can alter the maturation of DCs and inhibit their capacity to activate T cells. Using gene expression analysis, we found that human DCs increased the expression of TGF-beta1 transcripts following culture with human lung carcinoma cells (LCCs). These DCs produced increased amounts of TGF-beta1 protein compared with DCs not exposed to tumor cells. LCCs also decreased the expression of CD86 and HLA-DR by immature DCs. Furthermore, LCCs decreased CD86 expression and the production of TNF-alpha and IL-12 p70 by mature DCs. Moreover, LCCs also converted mature DCs into cells producing TGF-beta1. These TGF-beta1-producing DCs were poor at eliciting the activation of naive CD4(+) T cells and sustaining their proliferation and differentiation into Th1 (IFN-gamma(+)) effectors. Instead, TGF-beta1-producing DCs demonstrated an increased ability to generate CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress the proliferation of T lymphocytes. These results identify a novel mechanism by which the function of human DCs is altered by tumor cells and contributes to the evasion of the immune response.

  2. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF1 pathway.

    PubMed

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  3. Comparative immunoexpression of ICAM-1, TGF1 and ki-67 in periapical and residual cysts

    PubMed Central

    Armada, Luciana; dos Santos, Teresa-Cristina; Pires, Fabio-Ramoa

    2017-01-01

    Background This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. Material and Methods The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when p<0.05%. Results There were no differences between the expression of ICAM-1 (p=0.239) and TGF1 (p=0.258) when comparing both groups. Ki-67 labeling index was higher in residual cysts compared to periapical cysts (p=0.017). Conclusions Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair. Key words:Periapical cyst, radicular cyst, residual cyst, transforming growth factor beta 1 (TGF1), intercellular adhesion molecule 1 (ICAM-1), ki-67. PMID:27918735

  4. New insights into the dual role of TGF-beta | Center for Cancer Research

    Cancer.gov

    The dual role of TGF-beta in cancer continues to challenge investigators in the field. TGF-beta is a well-known factor associated with tumor suppression in normal cells and yet promotes tumor progression in advanced stages of cancer. For years, the mechanisms that underpin this conundrum have not been fully understood. Ying Zhang, Ph.D., senior investigator in the Laboratory of Cellular and Molecular Biology, has been exploring this problem by examining and characterizing several key molecules in the TGF-beta signaling pathway. Read more…

  5. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.

    PubMed

    Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S

    2000-11-10

    In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells. Copyright 2000 Academic Press.

  6. TGF-beta in human milk is associated with wheeze in infancy.

    PubMed

    Oddy, Wendy H; Halonen, Marilyn; Martinez, F D; Lohman, I Carla; Stern, Debra A; Kurzius-Spencer, Margaret; Guerra, Stefano; Wright, Anne L

    2003-10-01

    Cytokines secreted in human milk might play important roles in newborn health and in the development of infant immune responses. We investigated the relationship of the concentration and dose of cytokines in human milk to infant wheeze at 1 year of age. Our objective was to test whether the cytokines in milk could account for some of the apparent protective effect of breast-feeding against wheeze in the first year of life. Data on breast-feeding and infant wheeze were collected prospectively from birth to 1 year from 243 mothers participating in the Infant Immune Study in Tucson, Arizona. Breast milk samples obtained at a mean age of 11 days postpartum were assayed by means of ELISA for concentrations of TGF-beta1, IL-10, TNF-alpha, and the soluble form of CD14. The dose of each cytokine was assessed for a relationship with wheeze in bivariate and logistic regression analyses. Increasing duration of breast-feeding was significantly associated with a decreased prevalence of wheeze (P =.039). There was wide variability in levels of each cytokine in milk, as well as variability between women in the amount of each cytokine produced. There was a significant inverse association between the dose of TGF-beta1 received through milk with the percentage of wheeze (P =.017), and the relationship was linear (P =.006). None of the other cytokines showed a linear relationship with wheeze. In multivariate analyses the risk of wheeze was significantly decreased (odds ratio, 0.22; 95% CI 0.05-0.89; P =.034) with increasing TGF-beta1 dose (long breast-feeding and medium-high TGF-beta1 level compared with short breast-feeding and low TGF-beta. This analysis shows that the dose of TGF-beta1 received from milk has a significant relationship with infant wheeze, which might account for at least some of the protective effect of breast-feeding against wheeze.

  7. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    PubMed

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  8. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis.

    PubMed

    Medrano, Estela E

    2003-05-19

    Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.

  9. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF1 expression at the mRNA and protein levels but also luciferase activity driven by a TGFpromoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF1 gene in HCC cells. The high correlation between MUC1 and TGF1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice.

    PubMed

    Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E

    2003-11-01

    Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.

  11. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    PubMed

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  12. Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis.

    PubMed

    Nohara, Hiroaki; Saito, Yuki; Higaki, Singo; Okayama, Naoko; Hamanaka, Yuichiro; Okita, Kiwamu; Hinoda, Yuji

    2002-11-01

    Ulcerative colitis (UC) is a chronic disorder of undetermined etiology, but a genetic predisposition to UC is well recognized. Among cytokines induced in UC, interleukin 1 (IL-1) appears to have a central role because of its immunological upregulatory and proinflammatory activities. The aim of this study was to assess whether UC is associated with polymorphisms of the IL-1beta gene and three additional genes inducible with IL-1beta in Japanese subjects. A total of 96 patients with UC and 106 ethnically matched controls were genotyped at polymorphic sites in IL-1beta, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and inducible nitric oxide synthase (iNOS) genes, using polymerase chain reaction (PCR)-based methods. There was no significant difference in genotype distributions of IL-1beta, MMP-1, MMP-3, and iNOS genes between controls and UC patients in a Japanese population. Also, no significant association of those polymorphisms with various clinical parameters of the patients was found. However, concerning association of age at onset with clinical factors in UC, the frequency of pancolitis was significantly higher in UC patients with age at onset being less than 30 years than in those more than 30 years of age (P = 0.049). No association of the IL-1beta and three IL-1beta-inducible gene polymorphisms with UC was observed in a Japanese population.

  13. Transforming growth factor-beta1 accelerates resorption of a calcium carbonate biomaterial in periodontal defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-beta(1)) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-beta(1) would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-beta(1), and a clear account for this could not be offered. One potential cause may be that the rhTGF-beta(1) formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-beta(1) on biodegradation of the calcium carbonate carrier. rhTGF-beta(1) in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-beta(1) (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-beta(1) compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-beta(1) compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-beta(1) accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-beta(1) formulation apparently not encompassing enhanced or accelerated

  14. CDK2 phosphorylation of Smad2 disrupts TGF-beta transcriptional regulation in resistant primary bone marrow myeloma cells.

    PubMed

    Baughn, Linda B; Di Liberto, Maurizio; Niesvizky, Ruben; Cho, Hearn J; Jayabalan, David; Lane, Joseph; Liu, Fang; Chen-Kiang, Selina

    2009-02-15

    Resistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr(8) (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-beta resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-beta resistance in multiple myeloma.

  15. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1.

    PubMed

    Hulsurkar, M; Li, Z; Zhang, Y; Li, X; Zheng, D; Li, W

    2017-03-01

    Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.

  16. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  17. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Lu; Xue, Jian-Xin; Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy formore » lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA

  18. The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro.

    PubMed

    Marzella, P L; Gillespie, L N; Clark, G M; Bartlett, P F; Kilpatrick, T J

    1999-12-01

    A number of growth factor families have been implicated in normal inner ear development, auditory neuron survival and protection. Several growth factors, including transforming growth factor-beta5 (TGF-beta5) and TGF-beta3, neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were tested for their ability, individually or in combination, to promote auditory neuron survival in dissociated cell cultures of early rat post-natal spiral ganglion cells (SGCs). The results indicate that at discrete concentrations all growth factors act in an additive fashion and some in synergy when promoting neuronal survival. These findings support the hypothesis that growth factors from different families may be interdependent when sustaining neuronal integrity.

  19. AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF1 expression in male rat glomerular mesangial cells.

    PubMed

    Huang, Kai-Peng; Chen, Cheng; Hao, Jie; Huang, Jun-Ying; Liu, Pei-Qing; Huang, He-Qing

    2015-01-01

    We previously demonstrated that advanced glycation-end products (AGEs) promote the pathological progression of diabetic nephropathy by decreasing silent information regulator 2-related protein 1 (Sirt1) expression in glomerular mesangial cells (GMCs). Here, we investigated whether AGEs-receptor for AGEs (RAGE) system down-regulated Sirt1 expression through ubiquitin-proteasome pathway and whether Sirt1 ubiquitination affected fibronectin (FN) and TGF1, 2 fibrotic indicators in GMCs. Sirt1 was polyubiquitinated and subsequently degraded by proteasome. AGEs increased Sirt1 ubiquitination and proteasome-mediated degradation, shortened Sirt1 half-life, and promoted FN and TGF1 expression. Ubiquitin-specific protease 22 (USP22) reduced Sirt1 ubiquitination and degradation and decreased FN and TGF1 expression in GMCs under both basal and AGEs-treated conditions. USP22 depletion enhanced Sirt1 degradation and displayed combined effects with AGEs to further promote FN and TGF1 expression. RAGE functioned crucial mediating roles in these processes via its C-terminal cytosolic domain. Inhibiting Sirt1 by EX-527 substantially suppressed the down-regulation of FN and TGF1 resulting from USP22 overexpression under both normal and AGEs-treated conditions, eventually leading to their up-regulation in GMCs. These results indicated that the AGEs-RAGE system increased the ubiquitination and subsequent proteasome-mediated degradation of Sirt1 by reducing USP22 level, and AGEs-RAGE-USP22-Sirt1 formed a cascade pathway that regulated FN and TGF1 level, which participated in the pathological progression of diabetic nephropathy.

  20. Chronic angiotensin-(1-7) administration improves vascular remodeling after angioplasty through the regulation of the TGF-beta/Smad signaling pathway in rabbits.

    PubMed

    Zeng, Wutao; Chen, Weiyan; Leng, Xiuyu; He, Jian Gui; Ma, Hong

    2009-11-06

    Angiotensin-(1-7) [ANG-(1-7)] has been reported to attenuate neointimal formation after vascular injury and stent implantation in rats, but the mechanism remains mostly unresolved. Interestingly, the levels of circulating transforming growth factor-beta1 (TGF-beta1) after myocardial infarction were suppressed by ANG-(1-7), which suggests a possible downstream target for the anti-remodeling action of ANG-(1-7). Our study focused on the effects of ANG-(1-7) on vascular remodeling, including neointimal formation and collagen synthesis, and determining whether or not these effects were dependent upon the TGF-beta signaling pathway. Thirty-two New Zealand white rabbits underwent sham surgery or angioplasty in abdominal aorta. The animals were divided into four groups, which were sham, control, ANG-(1-7), and ANG-(1-7)+A-779. Subsequently, an osmotic minipump was implanted to deliver saline, ANG-(1-7) (576 microg kg(-1)d(-1)) or ANG-(1-7)+A-779 (576 microg kg(-1)d(-1)) for 4 weeks. The ANG-(1-7) group displayed a significant reduction in neointimal thickness (207.51+/-16.70 microm vs. 448.08+/-15.30 microm, P<0.001), neointimal area (0.266+/-0.009 mm(2) vs. 0.408+/-0.002 mm(2), P<0.001), and restenosis rate (28.13+/-2.74% vs. 40.13+/-2.74%, P<0.001) when compared to the control group. ANG-(1-7) also inhibited collagen synthesis by significantly decreasing the mRNA expression of Collagen I and Collagen III (vs. 0.2190+/-0.0036 vs. 0.3852+/-0.0212, P<0.001 and 1.1328+/-0.0554 vs. 1.7378+/-0.1164, P<0.001, respectively). Furthermore, the expression of TGF-beta1 and phosphor-Smad2 (p-Smad2) were significantly suppressed by ANG-(1-7) (vs. 1.21+/-0.07 vs. 1.54+/-0.08, P<0.001 and 0.31+/-0.01 vs. 0.43+/-0.02, P<0.001, respectively), but no effect on p38 phosphorylation was observed. [d-Ala(7)]-ANG-(1-7) (A-779), showed a tendency to attenuate the anti-remodeling effects of ANG-(1-7). ANG-(1-7) decreases the amount of vascular remodeling, including a reduction in neointimal

  1. Emodin self-emulsifying platform ameliorates the expression of FN, ICAM-1 and TGF1 in AGEs-induced glomerular mesangial cells by promoting absorption.

    PubMed

    Huang, Jiani; Gong, Wenyan; Chen, Zhiquan; Huang, Junying; Chen, Qiuhong; Huang, Heqing; Zhao, Chunshun

    2017-03-01

    Emodin, a potential anti-diabetic nephropathy agent, is limited by its oral use due to the poor water solubility. The present study aimed to enhance the absorption and the suppressive effects of emodin on renal fibrosis by developing a self-microemulsifying drug delivery system (SMEDDS). Solubility studies, compatibility tests, pseudo-ternary phase diagrams analysis and central composite design were carried out to obtain the optimized formulation. The average droplet size of emodin-loaded SMEDDS was about 18.31±0.12nm, and the droplet size and zeta potential remained stable at different dilution ratios of water and different values of pH varying from 1.2 to 7.2. Enhanced cellular uptake in both the Caco-2 cells and glomerular mesangial cells (GMCs) is great advantageous for the formulation. The AUC 0-24h of emodin-loaded SMEDDS was 1.87-fold greater than that of emodin suspension, which may be attributed to enhanced uptake in Caco-2 cells. Moreover, emodin-loaded SMEDDS showed better suppressive effects on the protein level of fibronectin (FN), transforming growth factor-beta 1 (TGF1) and intercellular adhesion molecule 1 (ICAM-1) than the crude emodin in advanced glycation-end products (AGEs)-induced GMCs and renal tubular epithelial cells (NRK-52E). Our study illustrated that developed SMEDDS improved the oral absorption of emodin, and attained better suppressive effects on the protein level of renal fibrosis compositions in AGEs-induced GMCs and NRK-52E cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 1,25(OH)2D3 attenuates TGF1/β2-induced increased migration and invasion via inhibiting epithelial–mesenchymal transition in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF1/β2-induced epithelial–mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actinmore » induced by TGF1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. - Highlights: • TGF1/β2-induced model of EMT was used in this study to test the effect of 1,25(OH)2D3 on EMT in colon cancer cells. • 1,25(OH)2D3 inhibited TGF1/β2-induced increased migration and invasion. • 1,25(OH)2D3 inhibited TGF1/β2-induced increased level of EMT-related transcription factors. • 1,25(OH)2D3 inhibited TGF1/β2-induced increased expression of F-actin in SW-480 cells.« less

  3. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  4. Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells.

    PubMed

    Li, Bin; Cheung, Pak Yan; Wang, Xianghong; Tsao, Sai Wah; Ling, Ming Tat; Wong, Yong Chuan; Cheung, Annie L M

    2007-11-01

    Inhibitor of differentiation or DNA binding (Id-1) is a helix-loop-helix protein that is over-expressed in many types of cancer including esophageal cancer. This study aims to investigate its effects on the phosphatidylinositol-3-kinase (PI3K)/Akt/ nuclear factor kappa B (NFkappaB) signaling pathway and the significance in protecting esophageal cancer cells against apoptosis. We found elevated expression of phosphorylated forms of Akt, glycogen synthase kinase 3beta and inhibitor of kappa B, as well as increased nuclear translocation of NFkappaB subunit p65 and NFkappaB DNA-binding activity, in esophageal cancer cells with stable ectopic Id-1 expression. Transient transfection of Id-1 into HEK293 cells confirmed activation of PI3K/Akt/NFkappaB signaling and the effects were counteracted by the PI3K inhibitor LY294002. Treatment with tumor necrosis factor-alpha (TNF-alpha) elicited a significantly weaker apoptotic response, following a marked and sustained activation of Akt and NFkappaB in the Id-1-over-expressing cells, compared with the vector control. The effects of Id-1 on the PI3K/Akt/NFkappaB signaling pathway and apoptosis were reversed in esophageal cancer cells transfected with siRNA against Id-1. In addition, inhibition of PI3K or NFkappaB signaling using the PI3K inhibitor LY294002 or the NFkappaB inhibitor Bay11-7082 increased the sensitivity of Id-1-over-expressing esophageal cancer cells to TNF-alpha-induced apoptosis. Our results provide the first evidence that Id-1 induces the activation of PI3K/Akt/NFkappaB signaling pathway, and protects esophageal cancer cells from TNF-alpha-induced apoptosis in vitro. Inactivation of Id-1 may provide us with a novel strategy to improve the treatment and survival of patients with esophageal cancer.

  5. Role of Semaphorin 7a signaling in TGF1 induced lung fibrosis and scleroderma-related interstitial lung disease

    PubMed Central

    Gan, Ye; Reilkoff, Ronald; Peng, Xueyan; Russell, Thomas; Chen, Qingsheng; Mathai, Susan K.; Homer, Robert; Gulati, Mridu; Siner, Jonathan; Elias, Jack; Bucala, Richard; Herzog, Erica

    2012-01-01

    Objective Semaphorin (Sema) 7a regulates TGF- β1 induced fibrosis. Using a murine model of pulmonary fibrosis in which an inducible, bioactive form of the human TGF- β1 gene is overexpressed in the lung, we tested the hypothesis that Sema-7a exerts its pro-fibrotic effects in part by promoting the tissue accumulation of CD45+ fibrocytes. Methods Fibrosis and fibrocytes were evaluated in TGF- β1 transgenic mice in which the Sema-7a locus had been disrupted. The effect of replacement or deletion of Sema-7a on bone marrow derived cells was ascertained using bone marrow transplantation. The role of the Sema-7a receptor β1 integrin was assessed using neutralizing antibodies. The applicability of these findings to TGF1-driven fibrosis in humans was examined in patients with scleroderma-related interstitial lung disease. Results The appearance of fibrocytes in the lungs in TGF- β1 transgenic mice requires Sema-7a. Replacement of Sema-7a in bone marrow derived cells restores lung fibrosis and fibrocytes. Immunoneutralization of β1 integrin reduces pulmonary fibrocytes and fibrosis. Peripheral blood mononuclear cells from patients with scleroderma-related interstitial lung disease show increased mRNA for Sema-7a and the β1 integrin, with Sema-7a located on collagen producing fibrocytes and CD19+ lymphocytes. Peripheral blood fibrocyte outgrowth is enhanced in these patients. Stimulation of normal human peripheral blood mononuclear cells with recombinant Sema-7a enhances fibrocyte differentiation; these effects are attenuated by β1 integrin neutralization. Conclusion Interventions that reduce Sema-7a expression or prevent the Sema-7a - β1 integrin interaction may be ameliorative in TGF- β1-driven or fibrocyte-associated autoimmune fibroses. PMID:21484765

  6. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  7. HAb18G/CD147 is involved in TGF-β-induced epithelial-mesenchymal transition and hepatocellular carcinoma invasion.

    PubMed

    Ru, Ning-Yu; Wu, Jiao; Chen, Zhi-Nan; Bian, Huijie

    2015-01-01

    Epithelial-mesenchymal transition (EMT) induced by the transforming growth factor beta (TGF-β) is involved in hepatocarcinogenesis and hepatocellular carcinoma (HCC) metastasis. HAb18G/CD147, a member of the immunoglobulin family, plays an important role in tumor invasion and metastasis. HAb18G/CD147 promotes EMT of hepatocytes through TGF-β signaling and is transcriptionally regulated by Slug. We investigated the role of HAb18G/CD147 in TGF-β-induced EMT in HCC invasion. Two human HCC cell lines, SMMC-7721 and HepG2, were used to determine the role of HAb18G/CD147 in EMT. Upregulation of HAb18G/CD147 induced by the high doses of TGF1 in SMMC-7721 (5 ng/mL) and HepG2 cells (10 ng/mL) (P < 0.05). CD147 upregulation was coupled with upregulation of Snail1 and Slug. CD147 knockout significantly decreased the expression of N-cadherin and vimentin, and colony formation ability of SMMC-7721 cells. TGF1 enhanced the migration capacity of SMMC-7721 cells, which was markedly attenuated by CD147 knockdown. Thus, HAb18G/CD147 is involved in TGF-β-induced EMT and HCC invasion. © 2014 International Federation for Cell Biology.

  8. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  9. New insights into the dual role of TGF-beta | Center for Cancer Research

    Cancer.gov

    The dual role of TGF-beta in cancer continues to challenge investigators in the field. TGF-beta is a well-known factor associated with tumor suppression in normal cells and yet promotes tumor progression in advanced stages of cancer. For years, the mechanisms that underpin this conundrum have not been fully understood. Ying Zhang, Ph.D., senior investigator in the Laboratory

  10. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{submore » 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.« less

  11. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis.

    PubMed

    Yan, Xiaohua; Wu, Jingyi; Jiang, Quanlong; Cheng, Hao; Han, Jing-Dong J; Chen, Ye-Guang

    2018-02-01

    Evading TGF-β-mediated growth inhibition is often associated with tumorigenesis in liver, including hepatocellular carcinoma (HCC). To better understand the functions and the underlying molecular mechanisms of TGF-β in HCC initiation and progression, we carried out transcriptome sequencing (RNA-Seq) to identify the target genes of TGF-β. CXXC5, a member of the CXXC-type zinc finger domain-containing protein family, was identified as a novel TGF-β target gene in Hep3B HCC cells. Knockdown of CXXC5 attenuated the expression of a substantial portion of TGF-β target genes and ameliorated TGF-β-induced growth inhibition or apoptosis of Hep3B cells, suggesting that CXXC5 is required for TGF-β-mediated inhibition of HCC progression. Analysis of the TCGA database indicated that CXXC5 expression is reduced in the majority of HCC tissue samples in comparison to that in normal tissues. Furthermore, CXXC5 associates with the histone deacetylase HDAC1 and competes its interaction with Smad2/3, thereby abolishing the inhibitory effect of HDAC1 on TGF-β signaling. These observations together suggest that CXXC5 may act as a tumor suppressor by promoting TGF-β signaling via a positive feedback loop, and reveal a strategy for HCC to bypass TGF-β-mediated cytostasis by disrupting the positive feedback regulation. Our findings shed new light on TGF-β signaling regulation and demonstrate the function of CXXC5 in HCC development.

  12. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGFinduced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  13. Release of active TGF1 from the latent TGF1/GARP complex on T regulatory cells is mediated by integrin β8.

    PubMed

    Edwards, Justin P; Thornton, Angela M; Shevach, Ethan M

    2014-09-15

    Activated T regulatory cells (Tregs) express latent TGF1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF1 from the complex of latent TGF1 and latent TGF1 binding protein, their role in processing latent TGF1 from the latent TGF1/GARP complex is unclear. Mouse CD4(+)Foxp3(+) Treg, but not CD4(+)Foxp3(-) T cells, expressed integrin β8 (Itgb8) as detected by quantitative RT-PCR. Itgb8 expression was a marker of thymically derived (t)Treg, because it could not be detected on Foxp3(+)Helios(-) Tregs or on Foxp3(+) T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis but failed to provide TGF1 to drive Th17 or induced Treg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF1 from the latent TGF1/GARP complex on the surface of tTregs.

  14. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11.

    PubMed

    Paduch, Roman; Jakubowicz-Gil, Joanna; Kandefer-Szerszen, Martyna

    2009-12-01

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).

  15. Relationship between subclinical rejection and genotype, renal messenger RNA, and plasma protein transforming growth factor-beta1 levels.

    PubMed

    Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; Beltrán-Sastre, Violeta; Ventura, Francesc; Grinyó, Josep M; Serón, Daniel

    2006-05-27

    Transforming growth factor (TGF)-beta(1) is increased in allograft rejection and its production is associated with single nucleotide polymorphisms (SNPs). The contribution of SNPs at codons 10 and 25 of the TGF-beta(1) gene to renal allograft damage was assessed in 6-month protocol biopsies and their association with TGF-beta(1) production. TGF-beta(1) genotypes were evaluated by polymerase chain reaction (PCR)/restriction fragment length polymorphism. Intragraft TGF-beta(1) messenger RNA (mRNA) was measured by real-time PCR and TGF-beta(1) plasma levels were assessed by enzyme-linked immunosorbent assay. Eighty consecutive patients were included. Allele T at codon 10 (risk ratio, 6.7; P = 0.02) and an episode of acute rejection before protocol biopsy (risk ratio, 6.2; P = 0.01) were independent predictors of subclinical rejection (SCR). TGF-beta(1) plasma levels, but not those of TGF-beta(1) mRNA, were increased in patients with SCR (2.59 ng/mL +/- 0.91 [n = 22] vs. 2.05 ng/mL +/- 0.76 [n = 43]; P = 0.01). There was no association between allele T and TGF-beta(1) plasma or intragraft levels. Allele T at codon 10 of the TGF-beta(1) gene is associated with a higher incidence of SCR.

  16. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury.

    PubMed

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning

    2017-01-01

    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo , GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  17. Low molecular weight fucoidan and its fractions inhibit renal epithelial mesenchymal transition induced by TGF1 or FGF-2.

    PubMed

    Li, Xinpeng; Li, Xiaohong; Zhang, Quanbin; Zhao, Tingting

    2017-12-01

    We investigated the renal protective effects of low molecular weight fucoidan (LMWF) and its two fractions (F0.5 and F1.0), which were extracted from Laminaria japonica, on the epithelial-mesenchymal transition (EMT) induced by transforming growth factor beta 1 (TGF1) and fibroblast growth factor 2 (FGF-2) in HK-2 human renal proximal tubular cells. Cell morphology and EMT markers (fibronectin and alpha-smooth muscle actin) demonstrated that cells treated with TGF1 or FGF-2 developed EMT to a significant extent. Treatment with LMWF or its fractions markedly attenuated the EMT and decreased expression of the EMT markers. The F1.0 fraction, the sulfated fucan fraction, was found to be the main active component of LMWF, and heparanase (HPSE) was a key factor in renal tubular epithelial trans-differentiation. The F1.0 fraction inhibited elevated HPSE and matrix metallopeptidase 9 expression, thereby attenuating the progress of EMT. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inhibitory effects of hepatocyte growth factor and interleukin-6 on transforming growth factor-beta1 mediated vocal fold fibroblast-myofibroblast differentiation.

    PubMed

    Vyas, Bimal; Ishikawa, Keiko; Duflo, Suzy; Chen, Xia; Thibeault, Susan L

    2010-05-01

    The role of myofibroblasts in vocal fold scarring has not been extensively studied, partly because of the lack of a robust in vitro model. The objective of this investigation was to develop and characterize a myofibroblast in vitro model that could be utilized to investigate the molecular mechanism of myofibroblast differentiation and function in injured vocal fold tissue. Differentiation of human primary vocal fold fibroblasts (hVFFs) to myofibroblasts was stimulated with 5, 10, or 20 ng/mL of recombinant transforming growth factor-beta1 (TGF-beta1). Cultures were analyzed by immunofluorescence and Western blotting, with an alpha-smooth muscle actin (alpha-SMA) antibody used as a myofibroblast marker. Normal rabbit vocal folds were treated with 10 ng/mL of TGF-beta1 for 7 days for in vivo corroboration. The effects of interleukin-6 (IL-6) and hepatocyte growth factor (HGF) on myofibroblast differentiation were studied with Western blots. The hVFFs demonstrated positive alpha-SMA labeling in cells stimulated by 10 and 20 ng/mL TGF-beta1, indicating that hVFFs were capable of differentiation to myofibroblasts. Transforming growth factor-beta1 induced the largest increase in alpha-SMA at 10 ng/mL on day 5 of treatment. Both HGF and IL-6 suppressed the expression of TGF-beta1-induced alpha-SMA. Our work characterizes a useful in vitro model of TGF-beta1-mediated vocal fold fibroblast-myofibroblast differentiation. The extent of differentiation appears to be attenuated by HGF, suggesting a potential mechanism to support prior work indicating that HGF plays a protective role in reducing scar formation in vocal fold injuries. Paradoxically, IL-6, which has been shown to play a profibrotic role in dermal studies, also attenuated the TGF-beta1 response.

  19. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  20. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses.

    PubMed

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Zhang, Chuanfu; Mei, Zhu; Wang, Yue; Bi, Mingjun; Shan, Dapeng; Meredith, Alex; Li, Hui; Xu, Zhi-Qing David

    2015-03-01

    Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway. Copyright © 2014. Published by Elsevier B.V.

  1. TGF1 is critical for Wallerian degeneration after rat sciatic nerve injury.

    PubMed

    Li, M; Zhang, P; Li, H; Zhu, Y; Cui, S; Yao, D

    2015-01-22

    Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF1) on WD after rat sciatic nerve injury. The data showed that TGF1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF1 on WD and provided the basis for the molecular mechanisms of TGF1-regulated nerve degeneration and/or regeneration. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Effect of [6]-gingerol on myofibroblast differentiation in transforming growth factor beta 1-induced nasal polyp-derived fibroblasts.

    PubMed

    Park, Sook A; Park, Il-Ho; Cho, Jung-Sun; Moon, You-Mi; Lee, Seung Hoon; Kim, Tae Hoon; Lee, Sang Hag; Lee, Heung-Man

    2012-01-01

    [6]-Gingerol is one of the major pungent principles of ginger and has diverse effects, including anti-inflammatory, and antioxidative effects. Reactive oxygen species (ROS) are released during the phenotypic transformation of fibroblasts to myofibroblasts, a process that is involved in the growth of nasal polyps by inducing extracellular matrix (ECM) accumulation. The purpose of this study was to determine the effect of [6]-gingerol on myofibroblast differentiation and collagen production of nasal polyp-derived fibroblasts (NPDFs) and to determine if the effect of [6]-gingerol is linked to an antioxidant effect. NPDFs were incubated and treated with transforming growth factor (TGF) beta 1. The ROS generated by NPDFs were determined using 2″,7″-dichlorfluorescein-diacetate. The fluorescence was captured by a fluorescent microscope and measured using a fluorometer. The expression of alpha-smooth muscle actin (SMA) and collagen type IV mRNA was determined by a reverse transcription-polymerase chain reaction, and the expression of α-SMA protein and pSmad2/3 was determined by immunofluorescence microscopy and or Western blotting. The amount of total soluble collagen production was analyzed by the SirCol collagen dye-binding assay. TGF-beta 1 stimulation increased ROS production by NPDFs. [6]-Gingerol decreased the production of ROS in TGF-beta 1-induced NPDFs. Myofibroblast differentiation, collagen production, and phosphorylation of Smad2/3 were prevented by [6]-gingerol and inhibition of ROS generation with antioxidant such as diphenyliodonium, N-acetylcysteine, and ebselen. These results suggest the possibility that [6]-gingerol may play an important role in inhibiting the production of the ECM in the development of nasal polyps through an antioxidant effect.

  3. FOXO1, TGF-β Regulation and Wound Healing

    PubMed Central

    Hameedaldeen, Alhassan; Liu, Jian; Batres, Angelika; Graves, Gabrielle S.; Graves, Dana T.

    2014-01-01

    Re-epithelialization is a complex process that involves migration and proliferation of keratinocytes, in addition to the production of cytokines and growth factors that affect other cells. The induction of transcription factors during these processes is crucial for successful wound healing. The transcription factor forkhead boxO-1 (FOXO1) has recently been found to be an important regulator of wound healing. In particular, FOXO1 has significant effects through regulation of transforming growth factor-beta (TGF-β) expression and protecting keratinocytes from oxidative stress. In the absence of FOXO1, there is increased oxidative damage, reduced TGF1 expression, reduced migration and proliferation of keratinocytes and increased keratinocytes apoptosis leading to impaired re-epithelialization of wounds. PMID:25226535

  4. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes.

    PubMed

    Khakipoor, Shokoufeh; Ophoven, Christian; Schrödl-Häußel, Magdalena; Feuerstein, Melanie; Heimrich, Bernd; Deitmer, Joachim W; Roussa, Eleni

    2017-08-01

    The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H( + ) recording using the H( + ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H + changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  5. Dose-related influence of sodium selenite on apoptosis in human thyroid follicles in vitro induced by iodine, EGF, TGF-beta, and H2O2.

    PubMed

    Lehmann, Petra; Rank, Petra; Hallfeldt, Klaus L J; Krebs, Bjarne; Gärtner, Roland

    2006-08-01

    Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-beta (TGF-beta), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-beta (5 ng/mL), or H2O2 (100 muM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. Asignificant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 microM), thyroidstimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 microM iodine, EGF (5 ng/mL) and TGF-beta (5 ng/mL), or H2O2 (100 microM) (p < 0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4 +/- 0.2 to 2.25 +/- 0.4 mU/microg DNA with 10 nMselenite and 2.6 + 0.4 mU/microg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-beta, EGF, iodide, and even H2O2.

  6. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  7. Expansion and maintenance of human embryonic stem cell–derived endothelial cells by TGFβ inhibition is Id1 dependent

    PubMed Central

    James, Daylon; Nam, Hyung-song; Seandel, Marco; Nolan, Daniel; Janovitz, Tyler; Tomishima, Mark; Studer, Lorenz; Lee, Gabsang; Lyden, David; Benezra, Robert; Zaninovic, Nikica; Rosenwaks, Zev; Rabbany, Sina Y; Rafii, Shahin

    2010-01-01

    Previous efforts to differentiate human embryonic stem cells (hESCs) into endothelial cells have not achieved sustained expansion and stability of vascular cells. To define vasculogenic developmental pathways and enhance differentiation, we used an endothelial cell–specific VE-cadherin promoter driving green fluorescent protein (GFP) (hVPr-GFP) to screen for factors that promote vascular commitment. In phase 1 of our method, inhibition of transforming growth factor (TGF)β at day 7 of differentiation increases hVPr-GFP+ cells by tenfold. In phase 2, TGFβ inhibition maintains the proliferation and vascular identity of purified endothelial cells, resulting in a net 36-fold expansion of endothelial cells in homogenous monolayers, which exhibited a transcriptional profile of Id1highVEGFR2highVE-cadherin+ ephrinB2+. Using an Id1-YFP hESC reporter line, we showed that TGFβ inhibition sustains Id1 expression in hESC-derived endothelial cells and that Id1 is required for increased proliferation and preservation of endothelial cell commitment. Our approach provides a serum-free method for differentiation and long-term maintenance of hESC-derived endothelial cells at a scale relevant to clinical application. PMID:20081865

  8. RECK-Mediated β1-Integrin Regulation by TGF1 Is Critical for Wound Contraction in Mice.

    PubMed

    Gutiérrez, Jaime; Droppelmann, Cristian A; Contreras, Osvaldo; Takahashi, Chiaki; Brandan, Enrique

    2015-01-01

    Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck+/- mice compared to wild type-derived fibroblasts. We observed that Reck+/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF1-RECK-β1-integrin.

  9. Increased mature interleukin-1beta (IL-1beta) secretion from THP-1 cells induced by nigericin is a result of activation of p45 IL-1beta-converting enzyme processing.

    PubMed

    Cheneval, D; Ramage, P; Kastelic, T; Szelestenyi, T; Niggli, H; Hemmig, R; Bachmann, M; MacKenzie, A

    1998-07-10

    Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195-15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1beta (IL-1beta). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1beta occurred, in the presence of nigericin (4-16 microM). No effects on the release of tumor necrosis factor-alpha, IL-6, or proIL-1beta were seen. Addition of the irreversible interleukin-1beta-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1beta release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1beta. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1beta. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1beta is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1beta production might be effected.

  10. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  11. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  12. The Role of the Rho/ROCK Pathway in Ang II and TGF1-Induced Atrial Remodeling

    PubMed Central

    Lu, Gui-Hua; Xu, Cheng-Gui; Xu, Zhe; Tang, Kai; Cheng, Yun-Jiu; Gao, Xiu-Ren; Wu, Su-Hua

    2016-01-01

    Objectives To study the role of the Rho/ROCK pathway in Ang II and TGF1-induced atrial remodeling. Methods and Results A canine atrial fibrillation (AF) model was established by rapid atrial pacing (RAP) of the left atrium. The roles of TGF1, the RhoA/ROCK signaling pathway and connective tissue growth factor (CTGF) in atrial remodeling were studied via both in vitro and in vivo experiments. Each of the dogs that received RAP developed persistent AF within 4 weeks. The mRNA expression levels of TGF1 (1.32±0.38), Collagen-I(1.33±0.91), CTGF(5.83±3.71), RhoA(1.23±0.57) and ROCK-1 (1.02±0.27) in the left atrium were significantly increased following 4 weeks of RAP. Angiotensin II (Ang II) induced the proliferation of atrial fibroblasts and up-regulated the expression of both CTGF and ROCK-1 in a dose-dependent manner. Simvastatin and Y27632 reversed Ang II-induced CFs proliferation, as well as ROCK-1(0.89±0.05 and 1.27±0.03, respectively) and CTGF (0.87±0.04 and 0.91±0.02, respectively) expression. The expression mRNA of ROCK-1(1.74±0.13) and CTGF (2.28±0.11) can upregulated by TGF1, and down-regulated by Simvastatin (1.22±0.03 vs 2.27±0.11), Y27632 (1.01±0.04 vs 1.64±0.03), Los (1.04±0.11 vs 1.26±0.05), respectively. Losartan and Simvastatin attenuated the effects of TGF1, inhibited RhoA activity as opposed to RhoA protein expression. Y27632 had no effect on either the expression or the activity of RhoA. Conclusions The increased expression of profibrotic factors (CTGF, ROCK1 and Smad2/3) played an important role in our RAP-induced AF model. Increased atrial profibrotic factors involve the activation of either the TGF1/RhoA/ROCK-1 or the TGF1/Smad2/3 signaling pathway. PMID:27611832

  13. Valsartan decreases TGF1 production and protects against chlorhexidine digluconate-induced liver peritoneal fibrosis in rats.

    PubMed

    Subeq, Yi-Maun; Ke, Chen-Yen; Lin, Nien-Tsung; Lee, Chung-Jen; Chiu, Yi-Han; Hsu, Bang-Gee

    2011-02-01

    Peritoneal fibrosis (PF) is a recognized complication of long-term peritoneal dialysis (PD) and can lead to ultrafiltration failure. The present study was designed to investigate the protective effects of valsartan on chlorhexidine digluconate-induced PF by decreasing TGF1 production in rats. PF was induced in Sprague-Dawley rats by daily administration of 0.5 ml 0.1% chlorhexidine digluconate in normal saline via peritoneal dialysis (PD) tube for 1 week. Rats received daily intravenous injections of low dose valsartan (1 mg/kg) or high dose valsartan (3 mg/kg) for 1 week. After 7 days, conventional 4.25% Dianeal (30 ml) was administered via a PD catheter with a dwell time of 4 h and assessed of peritoneal function. At the end of dialysis, rats were sacrificed and the liver peritoneum was harvested for microscopically and immunohistochemistry. There was no significant difference in mean arterial pressure and heart rate between groups. After 4 h of PD, the D₄/P(4Urea) level was reduced, the D₄/D₀ glucose level, serum and dialysate transforming growth factor-β1 (TGF1) level was increased, the liver peritoneum was markedly thicker, and the expression of TGF1, alpha-smooth muscle actin (α-SMA), fibronectin, collagen, and vascular endothelial growth factor (VEGF) were elevated in the PF group compared with the vehicle group. High dose of valsartan decreased the serum and dialysate TGF1 level, decreased the thickness of the liver peritoneum, and decreased the expression of TGF1, α-SMA, fibronectin, collagen, and VEGF-positive cells in liver peritoneum. The low dose of valsartan did not protect against chlorhexidine digluconate-induced PF in rat. Valsartan protected against chlorhexidine digluconate-induced PF in rats by decreasing TGF1 production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H 2 S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H 2 S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H 2 S may provide a promising option for defensing against diabetic renal fibrosis through TGF1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  15. MicroRNA-29b regulates TGF1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Li, Hui; Liu, Xiaoqiang

    2016-07-15

    The role of microRNA (miRNA) in proliferative vitreoretinopathy (PVR) progression has not been studied extensively, especially in retinal pigment epithelial–mesenchymal transition (EMT) which is the main reason for formation of PVR. In this study, we first investigated the miRNA expression profile in transforming growth factor beta 1 (TGF1) mediated EMT of ARPE-19 cells. Among the five changed miRNAs, miR-29b showed the most significant downregulation. Enhanced expression of miR-29b could reverse TGF1 induced EMT through targeting Akt2. Akt2 downregulation could inhibit TGF1-induced EMT. Furthermore, inhibition of miR-29b in ARPE-19 cells directly triggered EMT process, which characterized by the phenotypic transition andmore » the upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin and zona occludin-1 (ZO-1) with increased cell migration. Akt2-shRNA also inhibited miR-29 inhibitor-induced EMT process. These data indicate that miR-29b plays an important role in TGF1-mediated EMT in ARPE-19 cells by targeting Akt2. - Highlights: • MiR-29b expression is decreased in TGF1-induced EMT of ARPE-19 cells. • MiR-29b inhibits TGF1-induced EMT in ARPE-19 cells. • MiR-29b inhibitor induces EMT in ARPE-19 cells. • Akt2 is the target for miR-29b. • Downregulation of Akt2 prevents TGF1-induced EMT of ARPE-19 cells.« less

  16. Low breast milk TGF-beta2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy.

    PubMed

    Böttcher, Malin Fagerås; Abrahamsson, Thomas Robert; Fredriksson, Mats; Jakobsson, Ted; Björkstén, Bengt

    2008-09-01

    The immunological composition of breast milk differs between mothers. The reasons for these differences and the consequences for the breast-fed infants are poorly understood. The aim of this study was to evaluate the effect of probiotic Lactobacillus reuteri supplementation on the immunological composition of breast milk in relation to sensitization and eczema in the babies. Total IgA, secretory IgA (SIgA), TGF-beta1, TGF-beta2, IL-10, TNF, soluble CD14 (sCD14), and Na/K ratios were analyzed in colostrum and mature milk obtained from women treated with L. reuteri (n = 54) or placebo (n = 55) from gestational week 36 until delivery. Bacteriological analyses of L. reuteri were performed in faecal samples of the mothers. The infants were followed prospectively for 2 yr regarding development of eczema and sensitization as defined by a positive skin prick test and/or circulating allergen-specific IgE antibodies at 6, 12, and 24 months of age. Supplementation of L. reuteri during pregnancy was associated with low levels of TGF-beta2 and slightly increased levels of IL-10 in colostrum. For TGF-beta2, this association was most pronounced in mothers with detectable L. reuteri in faeces. Infants receiving breast milk with low levels of TGF-beta2 were less likely to become sensitized during their first 2 yr of life. A similar trend was observed for development of IgE-associated eczema. The levels of total IgA, SIgA, TGF-beta1, TNF, sCD14, and Na/K ratios in breast milk were not affected by the intake of L. reuteri. None of these parameters correlated with sensitization or development of eczema in the infant, except for high Na/K ratios that associated with increased risk of sensitization. Supplementation with L. reuteri during late pregnancy reduces breast milk levels of TGF-beta2, and low levels of this cytokine are associated with less sensitization and possibly less IgE-associated eczema in breast-fed infants.

  17. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-{beta}1 from prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Gwenaelle; Harvey, Kevin; Slivova, Veronika

    2005-04-29

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has notmore » been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-{beta}1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer.« less

  18. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF-beta

  19. Transforming growth factor beta-1 (TGF1) gene single nucleotide polymorphisms (SNPs) and susceptibility to pre-eclampsia in Iranian women: A case-control study.

    PubMed

    Khani, Masood; Amani, Davar; Taheripanah, Robabeh; Sanadgol, Nima; Feizollahzadeh, Sadegh; Rahmani, Zahra

    2015-10-01

    Pre-eclampsia (PE) is a disorder of pregnancy characterized by high blood pressure and proteinuria. Transforming growth factor beta-1 (TGF1) is an important replicated PE candidate gene, and few studies have evaluated the direct association of TGF-β polymorphisms and risk to PE. The aim of this study was to investigate the association between three SNPs of TGF1 and serum level of this cytokine in PE patients and controls. In this study the polymorphisms of the TGF1 gene at the coding region, and positions 29T→C (Leu 10 Pro), 74G→C (Arg 25 Pro) and 788C→T (Thr 263 Ile) were studied in 123 PE and 120 normal subjects using PCR-restriction fragment length polymorphism PCR-(RFLP) and amplification refractory mutation system (ARMS)-PCR methods. Moreover, serum TGF1 was determined by enzyme-linked immunosorbent assay (ELISA) technique. At positions 74G→C and 29T→C the genotypes and allele frequencies showed no significant differences between PE patients and normal controls (P=0.3 and P=0.5 respectively). While in the case of position 788C→T both genotypes and allele frequencies were significantly different between PE patients and controls (P=0.02). Haplotype analysis on three polymorphic sites showed no significant differences between PE and control individuals (P=0.8). TGC and CGC haplotypes were the most frequent in both studied groups. The mean serum TGF1 level was significantly higher (62.73ng/ml) in PE patients compared with pregnant (47.01ng/ml) and non-pregnant (40.68ng/ml) control groups (P=0.0001). The results of this study suggest that TGF1 gene 788C→T polymorphism is an important factor mediating the casual pathway of preeclampsia. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  20. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.

    PubMed Central

    Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G

    1993-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177

  1. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  2. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    PubMed

    Gómez-Rodríguez, Elida Yazmín; Uresti-Rivera, Edith Elena; Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa; Casas-Flores, Sergio

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  3. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism

    PubMed Central

    Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  4. Caffeine and rolipram affect Smad signalling and TGF1 stimulated CTGF and transgelin expression in lung epithelial cells.

    PubMed

    Fehrholz, Markus; Speer, Christian P; Kunzmann, Steffen

    2014-01-01

    Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGF1-inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGF1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF1 induced up-regulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF1 regulated genes involved in airway remodelling. An

  5. Electrospun scaffold containing TGF1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia.

    PubMed

    Cui, Xiang; Liu, Minghan; Wang, Jiaxu; Zhou, Yue; Xiang, Qiang

    2015-04-01

    The study was aimed at evaluating the effect of electrospun scaffold containing TGF1 on promoting human mesenchymal stem cells (MSCs) differentiation towards a nucleus pulposus-like phenotype under hypoxia. Two kinds of nanofibrous scaffolds containing TGF1 were fabricated using uniaxial electrospinning (Group I) and coaxial electrospinning (Group II). Human MSCs were seeded on both kinds of scaffolds and cultured in a hypoxia chamber (2% O2), and then the scaffolds were characterised. Cell proliferation and differentiation were also evaluated after 3 weeks of cell culture. Results showed that both kinds of scaffolds shared similar diameter distributions and protein release. However, Group I scaffolds were more hydrophilic than that of Group II. Both kinds of scaffolds induced the MSCs to differentiate towards the nucleus pulposus-type phenotype in vitro. In addition, the expression of nucleus pulposus-associated genes (aggrecan, type II collagen, HIF-1α and Sox-9) in Group I increased more than that of Group II. These results indicate that electrospinning nanofibrous scaffolds containing TGF1 supports the differentiation of MSCs towards the pulposus-like phenotype in a hypoxia chamber, which would be a more appropriate choice for nucleus pulposus regeneration.

  6. The Transforming Growth Factor-β1 (TGF1) Gene Polymorphisms (TGF1 T869C and TGF1 T29C) and Susceptibility to Postmenopausal Osteoporosis

    PubMed Central

    Sun, Jiajia; Zhang, Chi; Xu, Lei; Yang, Mingyuan; Yang, Huilin

    2015-01-01

    Abstract The aim of the present study was to integrate all the eligible studies and investigate whether the transforming growth factor-β1 (TGF1) gene polymorphisms (TGF1 T869C and TGF1 T29C) are correlated with postmenopausal osteoporosis (PMOP) risk. PMOP is a common skeletal disease and several genetic factors play an important role in the development and progression of PMOP. Significant associations between TGF1 gene polymorphisms (TGF1 T869C and TGF1 T29C) and PMOP risk have been reported; however, some of these results are controversial. A systematic online search was performed using PubMed, EMBASE, Web of Science, and the Cochrane Library to identify case–control studies investigating the relationship between TGF1 T869C and TGF1 T29C polymorphisms and the susceptibility of PMOP. The pooled odds ratio (OR) with 95% confidence interval (95% CI) was calculated to assess the associations, and subgroup meta-analyses were performed according to the ethnicity of the study populations. Eight studies involving 1851 cases and 2247 controls met the inclusion criteria after assessment by 2 reviewers. Overall, there were significant associations between TGF1 T869C and TGF1 T29C polymorphisms and PMOP (TGF1 T869C—C vs T: OR = 1.18, 95% CI = 1.02–1.36, P = 0.030; CC vs TT: OR = 1.38, 95% CI = 1.01–1.88, P = 0.042; CC vs CT/TT: OR = 1.39, 95% CI = 1.09–1.76, P = 0.008; TGF1 T29C—CT vs TT: OR = 1.25, 95% CI = 1.02–1.53, P = 0.032; CT/CC vs TT: OR = 1.37, 95% CI = 1.02–1.84, P = 0.035). In the subgroup analysis of ethnicity, significant association was observed between TGF1 T869C polymorphism and PMOP risk in Asian population (C vs T: OR = 1.18, 95% CI = 1.01–1.38, P = 0.043; CC vs TT: OR = 1.41, 95% CI = 1.01–1.97, P = 0.047; CT/CC vs TT: OR = 1.31, 95% CI = 1.03–1.66, P = 0.026; CC vs CT/TT: OR = 1.35, 95% CI

  7. The protective effect of the EP2 receptor on TGF1 induced podocyte injury via the PI3K / Akt signaling pathway

    PubMed Central

    Zhu, Xue-ling; Chen, Xu; Wu, Jian-hua; Guo, Nai-feng

    2018-01-01

    Transforming growth factor β1 (TGF1) plays a central role in chronic kidney diseases. TGF1 induction causes podocyte injury, which results in proteinuria and renal failure. However, the effect of the prostaglandin E2 /E-prostanoid receptor (EP2) on TGF1-induced podocyte injury remains unknown. Previous studies have shown that phosphoinositide 3-OH kinase (PI3K)/Akt is widespread in cells, and is vital for the regulation of cell proliferation, differentiation, apoptosis and metabolism. In this study, we cultured immortalized mouse podocytes in vitro in different groups: control group; TGF1 (5ng/ml) group; EP2 agonist Butaprost treatment (10−7, 10−6, or 10-5mol/L) +TGF1 group; EP2 antagonist AH6809 treatment (10−7, 10−6, or 10-5mol / L) + TGF1 group. We found that compared with the control group, proliferation of podocytes in the TGF1 group significantly decreased and apoptosis increased. Expression of cAMP decreased, whereas PGE2 increased. Meanwhile, expressions of nephrin, podocin and CD2AP mRNA and protein were dramatically downregulated, activated caspase-3 was increased, and activated PI3K/Akt activity were depressed. Butaprost intervention promoted podocyte proliferation with reduced apoptosis. Conversely, AH6809 intervention led to opposite results (P<0.05). Our findings suggested that EP2 agonist protects podocytes by increasing expression of cAMP, which creates feedback of inhibiting PGE2 expression. This causes the interaction of nephrin, podocin and CD2AP resulting the inhibition of apoptosis induced by activation of the PI3K / Akt signaling pathway. PMID:29746568

  8. The TGF-beta-pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae.

    PubMed

    Drömann, Daniel; Rupp, Jan; Rohmann, Kristina; Osbahr, Sinia; Ulmer, Artur J; Marwitz, Sebastian; Röschmann, Kristina; Abdullah, Mahdi; Schultz, Holger; Vollmer, Ekkehard; Zabel, Peter; Dalhoff, Klaus; Goldmann, Torsten

    2010-05-31

    Nontypeable Haemophilus influenzae (NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-beta. NTHI infection in lung tissues obtained from COPD patients and controls was studied in vivo and using an in vitro model. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using in situ hybridization (ISH) in unstimulated and in in vitro infected lung tissue. For characterization of TGF-beta signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-alpha and TGF-beta expression were evaluated in lung tissue and cell culture using ELISA. In 38% of COPD patients infection with NTHI was detected in vivo in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-beta receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after in vitro infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-beta (p < 0.05) in combination with a strong proinflammatory response (p < 0.01). We show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue in vivo and in vitro. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-beta expression may influence inflammation induced tissue

  9. Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals.

    PubMed Central

    Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J

    1992-01-01

    Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592

  10. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF1-induced EMT.

  11. SUMOylation regulates TGF1/Smad4 signalling in-resistant glioma cells.

    PubMed

    Wang, Zhengfeng; Wang, Kai; Wang, Ruihua; Liu, Xianzhi

    2017-12-18

    The aim of this study was to explore the role of TGF1/Smad4 signalling in the DNA damage-induced ionization radiation (IR) resistance of glioma cells. T98G cells were assigned to the IR group (treated with IR) or the Blank group (with no treatment). The IR-treated cells were also treated/transfected with the TGF-β receptor inhibitor SB431542, SUMO1-overexpressing plasmids (SUMO1 group), SUMO1-interfering plasmids (si-SUMO1 group) or negative control plasmids group. The wound-healing capacity, cell proliferation and cell apoptosis were evaluated by the scratch assay, flow cytometry and the CCK-8 assay, respectively, and protein interactions were investigated by coimmunoprecipitation and colocalization assays. IR-treated T98G cells had DNA damage, but the wound-healing capacity and cell apoptosis were not significantly suppressed. DNA damage also induced TGF1, Smad4, SUMO1, SUMO2/3 and Ubc9 expression. In IR-treated cells cultured with SB431542, the wound-healing capacity and proliferation were promoted. SUMO1 and Smad4 colocalized in the nucleus of T98G cells, and the IR-treated cells had a significantly higher expression of the SUMO1-Smad4 protein complex. Smad4 expression in the nucleus was significantly reduced in the si-SUMO1 group, but was markedly increased in the SUMO1 group; the SUMO1 group had significantly elevated apoptotic activity, whereas the si-SUMO1 group showed significantly suppressed apoptotic activity and the si-SUMO1+SB41542 group had the lowest levels of cell apoptosis. DNA damage may activate Smad4 SUMOylation and the SUMOylation of Smad4 participates in the activation of TGF-β/Smad4 signalling; therefore, enhanced Smad4 SUMOylation is critical for the damage-induced activation of IR resistance.

  12. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hee-Jung; Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do; Chung, Tae-Wook

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressedmore » by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells

  13. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF1. Forced overexpression of BAG3 selectively increased collagens. TGF1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  14. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF1

    PubMed Central

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF1. Forced overexpression of BAG3 selectively increased collagens. TGF1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins. PMID:26885277

  15. PKCδ phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF1-induced senescence.

    PubMed

    Byun, H-O; Jung, H-J; Kim, M-J; Yoon, G

    2014-09-01

    Transforming growth factor β1 (TGF1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF1-induced senescence. When Mv1Lu cells were exposed to TGF1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.

  16. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.

    PubMed

    Papaspyridonos, Marianna; Matei, Irina; Huang, Yujie; do Rosario Andre, Maria; Brazier-Mitouart, Helene; Waite, Janelle C; Chan, April S; Kalter, Julie; Ramos, Ilyssa; Wu, Qi; Williams, Caitlin; Wolchok, Jedd D; Chapman, Paul B; Peinado, Hector; Anandasabapathy, Niroshana; Ocean, Allyson J; Kaplan, Rosandra N; Greenfield, Jeffrey P; Bromberg, Jacqueline; Skokos, Dimitris; Lyden, David

    2015-04-29

    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.

  17. TGF-beta: a new role for an old AktTOR.

    PubMed

    Goraksha-Hicks, Pankuri; Rathmell, Jeffrey C

    2009-07-01

    Nutrient overabundance is known to promote cellular hypertrophy, a significant pathological event in diseases like diabetes and cancer, although mechanisms have remained unclear. In this issue of Developmental Cell, Wu and Derynck provide a new model that links metabolism and cell growth by demonstrating that hyperglycemia can increase TGF-beta-dependent activation of the mTOR pathway to promote cellular hyperplasia.

  18. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

    PubMed

    Xu, W; Angelis, K; Danielpour, D; Haddad, M M; Bischof, O; Campisi, J; Stavnezer, E; Medrano, E E

    2000-05-23

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

  19. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells.

    PubMed

    Wieghaus, Kristen A; Gianchandani, Erwin P; Neal, Rebekah A; Paige, Mikell A; Brown, Milton L; Papin, Jason A; Botchwey, Edward A

    2009-07-01

    We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo.

  20. Cutting edge: spontaneous development of IL-17-producing gamma delta T cells in the thymus occurs via a TGF-beta 1-dependent mechanism.

    PubMed

    Do, Jeong-su; Fink, Pamela J; Li, Lily; Spolski, Rosanne; Robinson, Janet; Leonard, Warren J; Letterio, John J; Min, Booki

    2010-02-15

    In naive animals, gammadelta T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. In this study, we show that TGF-beta1 plays a key role in the generation of IL-17(+) gammadelta T cells and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17(+) gammadelta TCR(+) thymocytes were mainly CD44(high)CD25(low) cells, which seem to derive from double-negative 4 gammadelta TCR(+) cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent gammadelta T cells arise in the thymus by a TGF-beta1-dependent mechanism.

  1. Release of active TGF1 from the Latent TGF1/GARP complex on T regulatory cells is mediated by Integrin β81

    PubMed Central

    Edwards, Justin P.; Thornton, Angela M.; Shevach, Ethan M.

    2014-01-01

    Activated T regulatory cells (Treg) express latent TGF1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF1 from the complex of latent TGF1 and latent TGF1 binding protein, their role in processing latent TGF1 from the latent TGF1/GARP complex is unclear. Mouse CD4+Foxp3+ Treg, but not CD4+Foxp3− T cells, expressed integrin β8 (Itgb8) as detected by qRT-PCR. Itgb8 expression was a marker of thymically-derived (t)Treg, as it could not be detected on Foxp3+Helios− Tregs or on Foxp3+ T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis, but failed to provide TGF1 to drive Th17 or iTreg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF1 from the latent TGF1/GARP complex on the surface of tTregs. PMID:25127859

  2. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  3. PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.

    PubMed

    Zou, Rong; Xu, Gang; Liu, Xiao-cheng; Han, Min; Jiang, Jing-jing; Huang, Qian; He, Yong; Yao, Ying

    2010-01-01

    To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in rat intraglomerular mesangial cells (MCs). Cells were transfected with the pTAL-PPRE-tk-Luc(+) plasmid and then treated with different concentrations of PPARgamma agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPARgamma activation. Protein expression levels were assessed by Western blot, and PepTag assays were used for the non-radioactive detection of protein kinase A (PKA) activity. The deposition of alpha-smooth muscle actin (alpha-SMA) and p-cyclic AMP responsive element binding protein (pCREB) were analyzed by confocal laser scanning. Both troglitazone and telmisartan remarkably inhibit the PKA activation and pCREB expression that is stimulated by TGF-beta. The PPARgamma agonists also inhibited alpha-SMA and collagen IV protein expression by blocking PKA activation. PPARgamma ligands effectively suppress the activation of MCs and the accumulation of collagen IV stimulated by TGF-beta in vitro. The renal protection provided by PPARgamma agonists is partly mediated via their blockade of TGF-beta/PKA signaling.

  4. Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-[beta] receptor promoter DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie

    2010-10-08

    Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.

  5. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice.

    PubMed

    Hayashi, Hiromitsu; Sakai, Keiko; Baba, Hideo; Sakai, Takao

    2012-05-01

    The matricellular protein, thrombospondin-1 (TSP-1), is prominently expressed during tissue repair. TSP-1 binds to matrix components, proteases, cytokines, and growth factors and activates intracellular signals through its multiple domains. TSP-1 converts latent transforming growth factor-beta1 (TGF1) complexes into their biologically active form. TGF-β plays significant roles in cell-cycle regulation, modulation of differentiation, and induction of apoptosis. Although TGF1 is a major inhibitor of proliferation in cultured hepatocytes, the functional requirement of TGF1 during liver regeneration remains to be defined in vivo. We generated a TSP-1-deficient mouse model of a partial hepatectomy (PH) and explored TSP-1 induction, progression of liver regeneration, and TGF-β-mediated signaling during the repair process after hepatectomy. We show here that TSP-1-mediated TGF1 activation plays an important role in suppressing hepatocyte proliferation. TSP-1 expression was induced in endothelial cells (ECs) as an immediate early gene in response to PH. TSP-1 deficiency resulted in significantly reduced TGF-β/Smad signaling and accelerated hepatocyte proliferation through down-regulation of p21 protein expression. TSP-1 induced in ECs by reactive oxygen species (ROS) modulated TGF-β/Smad signaling and proliferation in hepatocytes in vitro, suggesting that the immediately and transiently produced ROS in the regenerating liver were the responsible factor for TSP-1 induction. We have identified TSP-1 as an inhibitory element in regulating liver regeneration by TGF1 activation. Our work defines TSP-1 as a novel immediate early gene that could be a potential therapeutic target to accelerate liver regeneration. Copyright © 2011 American Association for the Study of Liver Diseases.

  6. TGF-beta antisense oligonucleotides reduce mRNA expression of matrix metalloproteinases in cultured wound-healing-related cells.

    PubMed

    Philipp, Katrin; Riedel, Frank; Germann, Günter; Hörmann, Karl; Sauerbier, Michael

    2005-02-01

    The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.

  7. Impact of transforming growth factor-beta1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart.

    PubMed

    Bunch, T Jared; Mahapatra, Srijoy; Bruce, G Keith; Johnson, Susan B; Miller, Dylan V; Horne, Benjamin D; Wang, Xiao-Li; Lee, Hon-Chi; Caplice, Noel M; Packer, Douglas L

    2006-05-30

    Atrioventricular (AV) nodal ablation for management of atrial fibrillation (AF) is irreversible and requires permanent pacemaker implantation. We hypothesized that as an alternative, implantation of autologous fibroblasts in the perinodal region would focally modify AV nodal conduction and that this modulation would be enhanced by pretreatment with transforming growth factor-beta1 (TGF-beta1), a stimulant of fibroblasts. Skin biopsies were taken from 12 mongrel dogs, and derived fibroblasts were dissociated and grown in culture for 2 weeks. Multiple injections (0.25 mL) were made through an 8F NOGA catheter along the fast/slow AV nodal pathways as guided by an electroanatomic mapping system. Seven dogs received fibroblasts alone (1x10(6) cells/mL), 7 dogs received TGF-beta1 (5 microg), 4 dogs received fibroblasts and TGF-beta1 (1x10(6) cells/mL+5 microg), and 4 dogs received saline only. AV node function was assessed at baseline and after 4 weeks. Saline (80 mL) with assigned therapy (0.25 mL per injection) was injected into the peri-AV nodal region in each dog. At baseline, the AH interval (66+/-3 ms) and the average RR interval (331+/-17 ms) in pacing-induced AF were similar in each cohort. The increase in AH interval in normal sinus rhythm was longer after fibroblast (23+/-4 versus 5+/-5 ms; P=0.05) and fibroblast plus TGF-beta1 (50+/-5 versus 5+/-5 ms; P<0.001) injections than with saline alone, with similar findings during high right atrium and distal coronary sinus pacing. The AH interval was not significantly increased after TGF-beta1 injections. The AH interval was significantly longer after fibroblast plus TGF-beta1 injections than with either therapy (TGF-beta1 or fibroblasts) alone. The RR interval during AF was increased in dogs that received fibroblasts alone (110+/-36 versus -41+/-34 ms) and to a greater extent with the addition of TGF-beta1 (294+/-108 versus -41+/-34 ms). No AV block was seen in any cohort at 4 weeks. Labeled fibroblasts that

  8. Curcumin inhibits TGF1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    PubMed

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF1). TGF1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF1 signaling pathways including TGF1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  9. Comparative immunoexpression of ICAM-1, TGF1 and ki-67 in periapical and residual cysts.

    PubMed

    Martins, R; Armada, L; Dos Santos, T-C; Pires, F-R

    2017-01-01

    This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when p<0.05%. There were no differences between the expression of ICAM-1 (p=0.239) and TGF1 (p=0.258) when comparing both groups. Ki-67 labeling index was higher in residual cysts compared to periapical cysts (p=0.017). Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair.

  10. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previouslymore » identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.« less

  11. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in

  12. Potential Ameliorative Effects of Qing Ye Dan Against Cadmium Induced Prostatic Deficits via Regulating Nrf-2/HO-1 and TGF1/Smad Pathways.

    PubMed

    Du, Lifen; Lei, Yongfang; Chen, Jinglou; Song, Hongping; Wu, Xinying

    2017-01-01

    Cadmium (Cd) is an environmental pollutant with reproductive toxicity. Swertia mileensis is used in Chinese medicine for the treatment of prostatic deficits and named as Qing Ye Dan (QYD). This study was undertaken to investigate the potential protective effects of QYD against Cd-induced prostatic deficits. Rat model of prostatic deficits was induced by 0.2 mg/kg/d CdCl2 subcutaneous injection for 15 days. The prostatic oxidative stress was evaluated by detecting the levels of malondialdehyde, nitric oxide, reduced/ oxidized glutathione, total sulfhydryl groups and enzymatic antioxidant status. The prostatic inflammation was estimated by testing the levels of pro-inflammatory cytokines. The levels of epithelial-mesenchymal transition (EMT) markers E-cadherin, fibronectin, vimentin and α-smooth muscle actin were measured by qPCR analysis. Additionally, the prostatic expressions of transforming growth factor-β1 (TGF1), type I TGF-β receptor (TGF-βRI), Smad2, phosphorylation-Smad2 (p-Smad2), Smad3, p-Smad3, Smad7, nuclear related factor-2 (Nrf-2), heme oxygenase-1 (HO-1), B-cell CLL/lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax) were measured by western blot assay. It was found that QYD ameliorated the Cd-induced prostatic oxidative stress and inflammation, attenuated prostatic EMT, inhibited the TGF1/Smad pathway, increased Bcl-2/Bax ratio and enhanced the activity of Nrf-2/HO-1 pathway. These results showed that QYD could ameliorate Cd-induced prostatic deficits via modulating Nrf-2/HO-1 and TGF1/Smad pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  14. Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling.

    PubMed

    Brown, Kimberly; Bhowmick, Neil A

    2004-04-01

    Transforming growth factor-beta (TGF-beta) can mediate G(1)/S cell-cycle inhibition and changes in the cytoskeletal organization through multiple parallel downstream signaling pathways. Recent findings regarding TGF-beta-mediated cell-cycle checkpoint control and epithelial to mesenchymal transition have converged to the RhoA/p160(ROCK) signaling pathway. The activation of TGF-beta-mediated p160(ROCK)rapidly inhibits the Cdc25A phosphatase as a component of the G(1)/S checkpoint control at the time cytoskeletal re-organization occurs. This can be likened to the ability to preserve genomic integrity in circumstances of genotoxic stress. The inactivation of the RhoA/p160(ROCK) pathway may be a mechanism by which cancer cells bypass growth inhibition even in the presence of TGF-beta.

  15. Inhibition of the K+ channel K(Ca)3.1 reduces TGF1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells.

    PubMed

    Fu, Rong-Guo; Zhang, Tao; Wang, Li; Du, Yan; Jia, Li-Ning; Hou, Jing-Jing; Yao, Gang-Lian; Liu, Xiao-Dan; Zhang, Lei; Chen, Ling; Gui, Bao-Song; Xue, Rong-Liang

    2014-01-01

    K(Ca)3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of K(Ca)3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. Rat mesangial cells were cultured together with TGF1 (2 ng/ml) and TGF1 (2 ng/ml) + TRAM-34 (16 nM) separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of K(Ca)3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of K(Ca)3.1, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA) and Student-Newman-Keuls-q test (SNK-q) were used to do statistical analysis. Statistical significance was considered at P<0.05. Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of K(ca)3.1, α-SMA and FSP-1 were elevated under the induction of TGF1 when compared to the control and decreased under the induction of TGF1+TRAM-34 when compared to the TGF1 induced (P<0.05 or P<0.01). Targeted disruption of K(Ca)3.1 inhibits TGF1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.

  16. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer

    PubMed Central

    Smith, Anna L.; Iwanaga, Ritsuko; Drasin, David J.; Micalizzi, Douglas S.; Vartuli, Rebecca L; Tan, Aik-Choon; Ford, Heide L.

    2012-01-01

    The role of TGF-β signaling in tumorigenesis is paradoxical: it can be tumor suppressive or tumor promotional, depending on context. The metastatic regulator, Six1, was recently shown to mediate this switch, providing a novel means to explain this elusive “TGF-β paradox”. Herein, we identify a mechanism by which Six1 activates the tumor promotional arm of TGF-β signaling, via its ability to upregulate the miR-106b-25 microRNA cluster, and further identify a novel function for this cluster of microRNAs. While expression of the miR-106b-25 cluster is known to overcome TGF-β-mediated growth suppression via targeting p21 and BIM, we demonstrate for the first time that this same cluster can additionally target the inhibitory Smad7 protein, resulting in increased levels of the TGF-β type I receptor (TβRI) and downstream activation of TGF-β signaling. We further show that the miR-106b-25 cluster is sufficient to induce an epithelial to mesenchymal transition and a tumor initiating cell phenotype, and that it is required downstream of Six1 to induce these phenotypes. Finally, we demonstrate a significant correlation between miR-106b, Six1, and activated TGF-β signaling in human breast cancers, and further show that high levels of miR-106b and miR-93 in breast tumors significantly predicts shortened time to relapse. These findings expand the spectrum of oncogenic functions of miR-106b-25, and may provide a novel molecular explanation, through the Six1 regulated miR-106b-25 cluster, by which TGF-β signaling shifts from tumor suppressive to tumor promoting. PMID:22286770

  17. Association of β-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF1.

    PubMed

    Tian, Xinrui; Zhang, Jianlin; Tan, Thian Kui; Lyons, J Guy; Zhao, Hong; Niu, Bo; Lee, So Ra; Tsatralis, Tania; Zhao, Ye; Wang, Ya; Cao, Qi; Wang, Changqi; Wang, Yiping; Lee, Vincent W S; Kahn, Michael; Zheng, Guoping; Harris, David C H

    2013-01-01

    Transforming growth factor β1 (TGF1) is known to be both anti-inflammatory and profibrotic. Cross-talk between TGF-β/Smad and Wnt/β-catenin pathways in epithelial-mesenchymal transition (EMT) suggests a specific role for β-catenin in profibrotic effects of TGF1. However, no such mechanistic role has been demonstrated for β-catenin in the anti-inflammatory effects of TGF1. In the present study, we explored the role of β-catenin in the profibrotic and anti-inflammatory effects of TGF1 by using a cytosolic, but not membrane, β-catenin knockdown chimera (F-TrCP-Ecad) and the β-catenin/CBP inhibitor ICG-001. TGF1 induced nuclear Smad3/β-catenin complex, but not β-catenin/LEF-1 complex or TOP-flash activity, during EMT of C1.1 (renal tubular epithelial) cells. F-TrCP-Ecad selectively degraded TGF1-induced cytoplasmic β-catenin and blocked EMT of C1.1 cells. Both F-TrCP-Ecad and ICG-001 blocked TGF1-induced Smad3/β-catenin and Smad reporter activity in C1.1 cells, suggesting that TGF1-induced EMT depends on β-catenin binding to Smad3, but not LEF-1 downstream of Smad3, through canonical Wnt. In contrast, in J774 macrophages, the β-catenin level was low and was not changed by interferon-γ (IFN-γ) or lipopolysaccharide (LPS) with or without TGF1. TGF1 inhibition of LPS-induced TNF-α and IFN-γ-stimulated inducible NO synthase (iNOS) expression was not affected by F-TrCP-Ecad, ICG-001 or by overexpression of wild-type β-catenin in J774 cells. Inhibition of β-catenin by either F-TrCP-Ecad or ICG-001 abolished LiCl-induced TOP-flash, but not TGF1-induced Smad reporter, activity in J774 cells. These results demonstrate for the first time that β-catenin is required as a co-factor of Smad in TGF1-induced EMT of C1.1 epithelial cells, but not in TGF1 inhibition of macrophage activation. Targeting β-catenin may dissociate the TGF1 profibrotic and anti-inflammatory effects.

  18. Regressive changes in finasteride-treated human hyperplastic prostates correlate with an upregulation of TGF-beta receptor expression.

    PubMed

    Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Miranda, G; Rodríguez-Vallejo, J M; González-Esteban, J; Torrubia, F

    1998-10-01

    Prostatic atrophy has been documented histologically as a consequence of finasteride action on human hyperplastic prostates. An increase in apoptotic rates has also been reported in androgen-deprived hyperplastic prostates. Transforming growth factor beta (TGF-beta) signaling is implicated in apoptotic cell death. TGF-betas have been detected in normal and diseased human prostate. In the normal prostate, TGF-beta acts as a predominantly negative growth regulator. TGF-beta signaling receptors TbetaRI and TbetaRII have been shown to be negatively regulated by androgens. We studied the histological changes in 9 selected finasteride-treated patients with benign prostatic hyperplasia (BPH), and analyzed the levels of expression and localization of TGF-beta receptor types TbetaRI and TbetaRII in these patients as compared to selected BPH controls. The prostatic epithelial compartment seemed to be a primary target site for finasteride action, since we observed moderate to severe glandular atrophy after 4-6 months of treatment. TGF-beta receptors were upregulated in treated cases. We assessed a twofold increase in TbetaRII mRNA levels in treated cases as compared to controls. An increase in both TbetaRI and TbetaRII at the protein level by immunostaining was observed, which also provided a helpful means for detecting glands undergoing regression. We conclude that finasteride may modulate the TGF-beta signaling system to promote changes leading to apoptosis of epithelial cells and prostatic glandular atrophy.

  19. Regulation of a TGF1-CD147 self-sustaining network in the differentiation plasticity of hepatocellular carcinoma cells.

    PubMed

    Wu, J; Lu, M; Li, Y; Shang, Y-K; Wang, S-J; Meng, Y; Wang, Z; Li, Z-S; Chen, H; Chen, Z-N; Bian, H

    2016-10-20

    Cellular plasticity has an important role in the progression of hepatocellular carcinoma (HCC). In this study, the involvement of a TGF1-CD147 self-sustaining network in the regulation of the dedifferentiation progress was fully explored in HCC cell lines, hepatocyte-specific basigin/CD147-knockout mice and human HCC tissues. We demonstrated that TGF1 stimulation upregulated CD147 expression and mediated the dedifferentiation of HCC cells, whereas all-trans-retinoic acid induced the downregulation of CD147 and promoted differentiation in HCC cells. Overexpression of CD147 induced the dedifferentiation and enhanced the malignancy of HCC cells, and increased the transcriptional expression of TGF1 by activating β-catenin. CD147-induced matrix metalloproteinase (MMP) production activated pro-TGF1. The activated TGF1 signaling subsequently repressed the HNF4α expression via Smad-Snail1 signaling and enhanced the dedifferentiation progress. Hepatocyte-specific basigin/CD147-knockout mice decreased the susceptibility to N-nitrosodiethylamine-induced tumorigenesis by suppressing TGF1-CD147 signaling and inhibiting dedifferentiation in hepatocytes during tumor progression. CD147 was positively correlated with TGF1 and negatively correlated with HNF4α in human HCC tissues. Positive CD147 staining and lower HNF4α levels in tumor tissues were significantly associated with poor survival of patients with HCC. The overexpression of HNF4α and Smad7 and the deletion of CD147 by lentiviral vectors jointly reprogrammed the expression profile of hepatocyte markers and attenuated malignant properties including proliferation, cell survival and tumor growth of HCC cells. Our results highlight the important role of the TGF1-CD147 self-sustaining network in driving HCC development by regulating differentiation plasticity, which provides a strong basis for further investigations of the differentiation therapy of HCC targeting TGF1 and CD147.

  20. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF1 signaling.

    PubMed

    Luan, Yun; Zhang, Luan; Chao, Sun; Liu, Xiaoli; Li, Kaili; Wang, Yibiao; Zhang, Zhaohua

    2016-07-26

    The aim of the present study is to investigate the protection effects of bone marrow mesenchymal stem cells (MSCs) in combination with EPO against hyperoxia-induced bronchopulmonary dysplasia (BPD) injury in neonatal mice. BPD model was prepared by continuous high oxygen exposure, 1×106 bone marrow MSCs and 5000U/kg recombinant human erythropoietin (EPO) were injected respectively. Results showed that administration of MSCs, EPO especially MSCs+EPO significant attenuated hyperoxia-induced lung damage with a decrease of fibrosis, radical alveolar counts and inhibition of the occurrence of epithelial-mesenchymal transition (EMT). Furthermore, MSCs+EPO co-treatment more significantly suppressed the levels of transforming growth factor-β1(TGF1) than MSCs or EPO alone. Collectively, these results suggested that MSCs, EPO in particular MSCs+EPO co-treatment could promote lung repair in hyperoxia-induced alveoli dysplasia injury via inhibition of TGF1 signaling pathway to further suppress EMT process and may be a promising therapeutic strategy.

  1. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Reelin is involved in transforming growth factor-β1-induced cell migration in esophageal carcinoma cells.

    PubMed

    Yuan, Yi; Chen, Hongyan; Ma, Gang; Cao, Xiaofeng; Liu, Zhihua

    2012-01-01

    Reelin (RELN), which is a glycoprotein secreted by Cajal-Retzius cells of the developing cerebral cortex, plays an important role in neuronal migration, but its role in cell migration and cancer metastasis is largely unclear. Here, we showed that cell motility was significantly increased in KYSE-510 cells by TGF1 treatment. Moreover, TGF1 decreased RELN mRNA expression and overexpression of Reelin at least partly reversed TGF1-induced cell migration in KYSE-30 cells. Furthermore, this negative regulation of Reelin expression by TGF1 was through Snail, one transcription factor which was induced by TGF1 in KYSE-510 cells. RELN promoter activity was reduced in parallel with the induction of Snail after TGF1 treatment and Snail suppressed both RELN promoter activity and expression through binding to E-box sequences in the RELN promoter region in ESCC cells. Knockdown of RELN induced cell migration in KYSE-510 cells, together with the increase of mesenchymal markers expression. Taken together, Reelin is an essential negative regulator in the TGF1-induced cell migration process, and is suppressed by TGF-β pathway at the transcriptional level through Snail regulation. Therefore, the correlation of Reelin and TGF-β pathway was critical in cancer metastasis, and Reelin could be one potential anti-metastasis target in future clinical practice.

  3. MiR-133 modulates TGF1-induced bladder smooth muscle cell hypertrophic and fibrotic response: implication for a role of microRNA in bladder wall remodeling caused by bladder outlet obstruction.

    PubMed

    Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian

    2015-02-01

    Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway

  4. Zinc supplementation augments TGF1-dependent regulatory T cell induction.

    PubMed

    Maywald, Martina; Meurer, Steffen K; Weiskirchen, Ralf; Rink, Lothar

    2017-03-01

    Regulatory T cells (Treg) play a pivotal role in immune regulation. For proper immune function, also trace elements such as zinc, and anti-inflammatory cytokines, including transforming growth factor beta 1 (TGF1) and interleukin (IL)-10 are indispensable. Hence, in this study the influence of TGF1, IL-10, and zinc supplementation on Treg cells differentiation was investigated. A synergistic effect of a combined zinc and TGF1 treatment on Foxp3 expression in peripheral blood mononuclear cells and mixed lymphocyte cultures (MLC) was found by performing Western blot analysis. Additionally, combined treatment causes elevated Smad 2/3 phosphorylation, which plays an important role in Foxp3 expression. This is due to a TGF1-mediated increase of intracellular-free zinc measured by zinc probes Fluozin3-AM and ZinPyr-1. Moreover, zinc as well as TGF1 treatment caused significantly reduced interferon (IFN)-γ secretion in MLC. Combined zinc and TGF1 treatment provoked an increased Treg cell induction due to a triggered intracellular zinc signal, which in association with an increased Smad 2/3 activation leads to a boosted Foxp3 expression and resulting in an ameliorated allogeneic reaction in MLC. Thus, zinc can be used as a favorable additive to elevate the induction of Treg cells in adverse immune reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Triptolide inhibits TGF1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  6. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  7. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination

    PubMed Central

    Cantelli, Gaia; Orgaz, Jose L.; Rodriguez-Hernandez, Irene; Karagiannis, Panagiotis; Maiques, Oscar; Matias-Guiu, Xavier; Nestle, Frank O.; Marti, Rosa M.; Karagiannis, Sophia N.; Sanz-Moreno, Victoria

    2015-01-01

    Summary Cell migration underlies metastatic dissemination of cancer cells, and fast “amoeboid” migration in the invasive fronts of tumors is controlled by high levels of actomyosin contractility. How amoeboid migration is regulated by extracellular signals and sustained over time by transcriptional changes is not fully understood. Transforming growth factor β (TGF-β) is well known to promote epithelial-to-mesenchymal transition (EMT) and contribute to metastasis, but melanocytes are neural crest derivatives that have undergone EMT during embryonic development. Surprisingly, we find that in melanoma, TGFpromotes amoeboid features such as cell rounding, membrane blebbing, high levels of contractility, and increased invasion. Using genome-wide transcriptomics, we find that amoeboid melanoma cells are enriched in a TGF-β-driven signature. We observe that downstream of TGF-β, SMAD2 and its adaptor CITED1 control amoeboid behavior by regulating the expression of key genes that activate contractile forces. Moreover, CITED1 is highly upregulated during melanoma progression, and its high expression is associated with poor prognosis. CITED1 is coupled to a contractile-rounded, amoeboid phenotype in a panel of 16 melanoma cell lines, in mouse melanoma xenografts, and in 47 human melanoma patients. Its expression is also enriched in the invasive fronts of lesions. Functionally, we show how the TGF-β-SMAD2-CITED1 axis promotes different steps associated with progression: melanoma detachment from keratinocytes, 2D and 3D migration, attachment to endothelial cells, and in vivo lung metastatic initial colonization and outgrowth. We propose a novel mechanism by which TGF-β-induced transcription sustains actomyosin force in melanoma cells and thereby promotes melanoma progression independently of EMT. PMID:26526369

  8. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    PubMed

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and

  9. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effectsmore » of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus

  10. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    PubMed

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta

  11. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed Central

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-01-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832

  12. Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF1 and IL-6

    PubMed Central

    Ruff, Kristin R; Puetter, Adriane; Levy, Laura S

    2007-01-01

    Background AIDS-related non-Hodgkin's lymphoma (AIDS-NHL) is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS) in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta). The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6) may represent a counteracting positive influence in their growth regulation. Methods Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. Results Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines differed in their

  13. TGF1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF1/Smad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ling, E-mail: fangling_1984@126.com; Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032; Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7more » protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF1 elicited Smad signaling in HSC

  14. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  15. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul

    2009-11-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibitedmore » increases in the transforming growth factor-beta1 (TGF-beta1) mRNA and alpha-smooth muscle actin (alpha-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of alpha-SMA and TGF-beta1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of alpha-SMA and TGF-beta1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-beta1 expression via Nrf2/ARE activation.« less

  16. Berberine Suppresses Cell Motility Through Downregulation of TGF1 in Triple Negative Breast Cancer Cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; You, Daeun; Jeong, Yisun; Jeon, Myeongjin; Yu, Jonghan; Kim, Seok Won; Nam, Seok Jin; Lee, Jeong Eon

    2018-01-01

    Transforming growth factor-beta proteins (TGF-βs) are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT) in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR) on tumor growth and metastasis of triple negative breast cancer (TNBC) cells via suppression of TGF1 expression. The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. In a clinical data set, aberrant TGF1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 and the capacity for cell migration were increased by TGF1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF1-induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. TGF1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhen-Yu; Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, No.250 Changgang East Road, Guangzhou 510260, Guangdong Province; Zhong, Zhi-Gang

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF1 on dystrophic muscle fibroblasts. Collectively, our datamore » suggest that TGF1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF1.« less

  18. Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma.

    PubMed

    Cook, Peter J; Thomas, Rozario; Kingsley, Philip J; Shimizu, Fumiko; Montrose, David C; Marnett, Lawrence J; Tabar, Viviane S; Dannenberg, Andrew J; Benezra, Robert

    2016-10-01

    In glioblastoma (GBM), Id1 serves as a functional marker for self-renewing cancer stem-like cells. We investigated the mechanism by which cyclooxygenase-2 (Cox-2)-derived prostaglandin E2 (PGE2) induces Id1 and increases GBM self-renewal and radiation resistance. Mouse and human GBM cells were stimulated with dimethyl-PGE2 (dmPGE2), a stabilized form of PGE2, to test for Id1 induction. To elucidate the signal transduction pathway governing the increase in Id1, a combination of short interfering RNA knockdown and small molecule inhibitors and activators of PGE2 signaling were used. Western blotting, quantitative real-time (qRT)-PCR, and chromatin immunoprecipitation assays were employed. Sphere formation and radiation resistance were measured in cultured primary cells. Immunohistochemical analyses were carried out to evaluate the Cox-2-Id1 axis in experimental GBM. In GBM cells, dmPGE2 stimulates the EP4 receptor leading to activation of ERK1/2 MAPK. This leads, in turn, to upregulation of the early growth response1 (Egr1) transcription factor and enhanced Id1 expression. Activation of this pathway increases self-renewal capacity and resistance to radiation-induced DNA damage, which are dependent on Id1. In GBM, Cox-2-derived PGE2 induces Id1 via EP4-dependent activation of MAPK signaling and the Egr1 transcription factor. PGE2-mediated induction of Id1 is required for optimal tumor cell self-renewal and radiation resistance. Collectively, these findings identify Id1 as a key mediator of PGE2-dependent modulation of radiation response and lend insight into the mechanisms underlying radiation resistance in GBM patients. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Delayed Expression of Circulating TGF1 and BMP-2 Levels in Human Nonunion Long Bone Fracture Healing.

    PubMed

    Hara, Yoshiaki; Ghazizadeh, Mohammad; Shimizu, Hajime; Matsumoto, Hisashi; Saito, Nobuyuki; Yagi, Takanori; Mashiko, Kazuki; Mashiko, Kunihiro; Kawai, Makoto; Yokota, Hiroyuki

    2017-01-01

    The healing process of bone fracture requires a well-controlled multistage and sequential order beginning immediately after the injury. However, complications leading to nonunion exist, creating serious problems and costs for patients. Transforming growth factor-beta 1 (TGF1) and bone morphogenic protein 2 (BMP-2) are two major growth factors involved in human bone fracture healing by promoting various stages of bone ossification. In this study, we aimed to determine the role of these factors during the fracture healing of human long bones and assess their impacts on nonunion condition. We performed a comprehensive analysis of plasma TGF1 and BMP-2 levels in blood samples from 10 patients with proved nonunion and 10 matched patients with normal union following a predetermined time schedule. The concentrations of TGF1 and BMP-2 were measured at each time point using a solid-phase ELISA. TGF1 and BMP-2 levels were detectable in all patients. For all patients, a maximal peak for TGF1 was found at 3-week. In normal union group, TGF1 showed a maximal peak at 2-week while nonunion group had a delayed maximal peak at 3-week. Plasma levels of BMP-2 for all patients and for normal union group reached a maximal peak at 1-week, but nonunion group showed a delayed maximal peak at 2-week. In general, plasma TGF1 or BMP-2 level was not significantly different between normal union and nonunion groups. The expression levels of TGF1 and BMP-2 appeared to be delayed in nonunion patients which could play an important role in developing an early marker of fracture union condition and facilitate improved patient's management.

  20. The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation.

    PubMed

    Zhou, Fangfang; Zhang, Long; Wang, Aijun; Song, Bo; Gong, Kai; Zhang, Lihai; Hu, Min; Zhang, Xiufang; Zhao, Nanming; Gong, Yandao

    2008-05-23

    It is widely acknowledged that E2F1 and GSK3beta are both involved in the process of cell differentiation. However, the relationship between E2F1 and GSK3beta in cell differentiation has yet to be discovered. Here, we provide evidence that in the differentiation of PC12 cells induced by nerve growth factor (NGF), GSK3beta was increased at both the mRNA and protein levels, whereas E2F1 at these two levels was decreased. Both wild-type GSK3beta and its kinase-defective mutant GSK3beta KM can inhibit E2F1 by promoting its ubiquitination through physical interaction. In addition, the colocalization of GSK3beta and E2F1 and their subcellular distribution, regulated by NGF, were observed in the process of PC12 differentiation. At the tissue level, GSK3beta colocalized and interacted with E2F1 in mouse hippocampus. Furthermore, GSK3beta facilitated neurite outgrowth by rescuing the promoter activities of Cdk inhibitors p21 and p15 from the inhibition caused by E2F1. To summarize, our findings suggest that GSK3beta can promote the ubiquitination of E2F1 via physical interaction and thus inhibit its transcription activity in a kinase activity independent manner, which plays an important role in the NGF-induced PC12 differentiation.

  1. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF1 pathway activity. • TGF1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  2. Plasma Gelsolin Induced Glomerular Fibrosis via the TGF1/Smads Signal Transduction Pathway in IgA Nephropathy

    PubMed Central

    Zhang, Lei; Han, Changsong; Ye, Fei; He, Yan; Jin, Yinji; Wang, Tianzhen; Wu, Yiqi; Jiang, Yang; Zhang, Fengmin; Jin, Xiaoming

    2017-01-01

    Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN). However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN) was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs) show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1) from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients. PMID:28208683

  3. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    PubMed

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF1) are converted into myofibroblasts through EMT. TGFinduces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF1. Although DA-Raf knockdown abrogated TGF1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF1-induced Ras-ERK pathway in RLE-6TN cells.

  4. Tif1γ regulates the TGF1 receptor and promotes physiological aging of hematopoietic stem cells.

    PubMed

    Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent

    2014-07-22

    The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1(hi)) and myeloid-lymphoid-balanced (Tgfbr1(lo)) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging.

  5. Role of caspase-1 and interleukin-1{beta} in acetaminophen-induced hepatic inflammation and liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Farhood, Anwar; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.ed

    2010-09-15

    Acetaminophen (APAP) overdose can result in serious liver injury and potentially death. Toxicity is dependent on metabolism of APAP to a reactive metabolite initiating a cascade of intracellular events resulting in hepatocellular necrosis. This early injury triggers a sterile inflammatory response with formation of cytokines and innate immune cell infiltration in the liver. Recently, IL-1{beta} signaling has been implicated in the potentiation of APAP-induced liver injury. To test if IL-1{beta} formation through caspase-1 is critical for the pathophysiology, C57Bl/6 mice were treated with the pan-caspase inhibitor Z-VD-fmk to block the inflammasome-mediated maturation of IL-1{beta} during APAP overdose (300 mg/kg APAP).more » This intervention did not affect IL-1{beta} gene transcription but prevented the increase in IL-1{beta} plasma levels. However, APAP-induced liver injury and neutrophil infiltration were not affected. Similarly, liver injury and the hepatic neutrophilic inflammation were not attenuated in IL-1-receptor-1 deficient mice compared to wild-type animals. To evaluate the potential of IL-1{beta} to increase injury, mice were given pharmacological doses of IL-1{beta} after APAP overdose. Despite increased systemic activation of neutrophils and recruitment into the liver, there was no alteration in injury. We conclude that endogenous IL-1{beta} formation after APAP overdose is insufficient to activate and recruit neutrophils into the liver or cause liver injury. Even high pharmacological doses of IL-1{beta}, which induce hepatic neutrophil accumulation and activation, do not enhance APAP-induced liver injury. Thus, IL-1 signaling is irrelevant for APAP hepatotoxicity. The inflammatory cascade is a less important therapeutic target than intracellular signaling pathways to attenuate APAP-induced liver injury.« less

  6. Apelin attenuates TGF1-induced epithelial to mesenchymal transition via activation of PKC-ε in human renal tubular epithelial cells.

    PubMed

    Wang, Li-Yan; Diao, Zong-Li; Zheng, Jun-Fang; Wu, Yi-Ru; Zhang, Qi-Dong; Liu, Wen-Hu

    2017-10-01

    Epithelial to mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of renal fibrosis. Apelin, a bioactive peptide, has recently been recognized to protect against renal profibrotic activity, but the underlying mechanism has not yet been elucidated. In this study, we investigated the regulation of EMT in the presence of apelin-13 in vitro. Expression of the mesenchymal marker alpha-smooth muscle actin (α-SMA) and the epithelial marker E-cadherin was examined by immunofluorescence and western blotting in transforming growth factor beta 1 (TGF1)-stimulated human proximal tubular epithelial cells. Expression of extracellular matrix, fibronectin and collagen-I was examined by quantitative real-time PCR and ELISA. F13A, an antagonist of the apelin receptor APJ, and small interfering RNA targeting protein kinase C epsilon (PKC-ε) were used to explore the relevant signaling pathways. Apelin attenuated TGF1-induced EMT, and inhibited the EMT-associated increase in α-SMA, loss of E-cadherin, and secretion of extracellular matrix. Moreover, apelin activated PKC-ε in tubular epithelial cells, which in turn decreased phospho-Smad2/3 levels and increased Smad-7 levels. APJ inhibition or PKC-ε deletion diminished apelin-induced modulation of Smad signaling and suppression of tubular EMT. Our findings identify a novel PKC-ε-dependent mechanism in which apelin suppresses TGF1-mediated activation of Smad signaling pathways and thereby inhibits tubular EMT. These results suggest that apelin may be a new agent that can suppress renal fibrosis and retard chronic kidney disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF1. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    PubMed

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  9. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma.

    PubMed

    Kiyono, Kunihiko; Suzuki, Hiroshi I; Morishita, Yasuyuki; Komuro, Akiyoshi; Iwata, Caname; Yashiro, Masakazu; Hirakawa, Kosei; Kano, Mitsunobu R; Miyazono, Kohei

    2009-10-01

    c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.

  10. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells.

    PubMed

    Huang, Kaipeng; Chen, Cheng; Hao, Jie; Huang, Junying; Wang, Shaogui; Liu, Peiqing; Huang, Heqing

    2015-01-05

    Sirt1 and nuclear factor-E2 related factor 2 (Nrf2)-anti-oxidant response element (ARE) anti-oxidative pathway play important regulatory roles in the pathological progression of diabetic nephropathy (DN) induced by advanced glycation-end products (AGEs). Polydatin (PD), a glucoside of resveratrol, has been shown to possess strong anti-oxidative bioactivity. Our previous study demonstrated that PD markedly resists the progression of diabetic renal fibrosis and thus, inhibits the development of DN. Whereas, whether PD could resist DN through regulating Sirt1 and consequently promoting Nrf2-ARE pathway needs further investigation. Here, we found that concomitant with decreasing RAGE (the specific receptor for AGEs) expression, PD significantly reversed the downregulation of Sirt1 in terms of protein expression and deacetylase activity and attenuated FN and TGF1 expression in GMCs exposed to AGEs. Under AGEs-treatment condition, PD could decrease Keap1 expression and promote the nuclear content, ARE-binding ability, and transcriptional activity of Nrf2. In addition, PD increased the protein levels of heme oxygenase 1 (HO-1) and superoxide dismutase 1 (SOD1), two target genes of Nrf2. The activation of Nrf2-ARE pathway by PD eventually led to the quenching of ROS overproduction sharply boosted by AGEs. Depletion of Sirt1 blocked Nrf2-ARE pathway activation and reversed FN and TGF1 downregulation induced by PD in GMCs challenged with AGEs. Along with reducing HO-1 and SOD1 expression, silencing of Nrf2 increased FN and TGF1 levels. PD treatment elevated Sirt1 and Nrf2 levels in the kidney tissues of diabetic rats, then improved the anti-oxidative capacity and renal dysfunction of diabetic models, and finally reversed the upregulation of FN and TGF1. Taken together, the resistance of PD on upregulated FN and TGF1 induced by AGEs via oxidative stress in GMCs is closely associated with its activation of Sirt1-Nrf2-ARE pathway. Copyright © 2014 Elsevier

  11. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells.

    PubMed

    Ying, Jun; Wang, Pinger; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Dong, Rui; Xu, Shibing; Tong, Peijian; Wu, Chengliang; Jin, Hongting

    2018-01-01

    Transforming growth factor-β1 (TGF1) is a chondrogenic factor and has been reported to be able to enhance chondrocyte differentiation from bone marrow mesenchymal stem cells (BMSCs). Here we investigate the molecular mechanism through which TGF1 chronically promotes the repair of cartilage defect and inhibit chondrocyte hypertrophy. Animal models of full thickness cartilage defects were divided into three groups: model group, BMSCs group (treated with BMSCs/calcium alginate gel) and BMSCs+TGF1 group (treated with Lentivirus-TGF1-EGFP transduced BMSCs/calcium alginate gel). 4 and 8weeks after treatment, macroscopic observation, histopathological study and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were done to analyze phenotypes of the animals. BMSCs were transduced with Lentivirus-TGF1-EGFP in vitro and Western blot analysis was performed. We found that TGF1-expressiing BMSCs improved the repair of the cartilage defect. The impaired cartilage contained higher amount of GAG and type II collagen and was integrated to the surrounding normal cartilage and higher content of GAG and type II collagen. The major events include increased expression of type II collagen following Smad2/3 phosphorylation, and inhibition of cartilage hypertrophy by increasing Yes-associated protein-1 (YAP-1) and inhibiting Runx2 and Col10 after the completion of chondrogenic differentiation. We conclude that TGF1 is beneficial to chondrogenic differentiation of BMSCs via canonical Smad pathway to promote early-repairing of cartilage defect. Furthermore, TGF1 inhibits chondrocyte hypertrophy by decreasing hypertrophy marker gene expression via Hippo signaling. Long-term rational use of TGF1 may be an alternative approach in clinic for cartilage repair and regeneration. Copyright © 2017. Published by Elsevier Inc.

  12. TGF1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells

    PubMed Central

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF1-induced regulator of CX3CR1 expression. PMID:28791023

  13. TGF1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.

    PubMed

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF1-induced regulator of CX 3 CR1 expression.

  14. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells.

    PubMed

    Bae, Eunjin; Kim, Seong-Jin; Hong, Suntaek; Liu, Fang; Ooshima, Akira

    2012-10-26

    Transforming growth factor-β1 (TGF1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No changemore » in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.« less

  16. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  17. Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study.

    PubMed

    Li, Jingxia; Mu, Shuangfeng; Mu, Lixiang; Zhang, Xiaohui; Pang, Ranran; Gao, Shegan

    2015-01-01

    To examine the relationship between cytokine levels of transforming growth factor-beta-1 (TGF1), interleukin-1 beta (IL-1β), and angiotensin-converting enzyme (ACE) in the plasma of esophageal carcinoma patients and radiation-induced pneumonitis (RP). Sixty-three patients with esophageal carcinoma were treated with three-dimensional conformal radiotherapy (RT) using the Elekta Precise treatment planning system with a prescribed dose of 50-70 Gy. Dose-volume histograms were collected from three-dimensional conformal RT to determine the volume percentage of the lung received V5, V10, V20, and the normal tissue complication probability. RP was diagnosed based on computed tomography imaging, respiratory symptoms, and signs. The severity of radiation-induced lung toxicity was determined using the Lent-Soma scale defined by the Radiation Therapy Oncology Group. Plasma samples obtained before RT, during RT (at 40 Gy), and at 1 day, 1 month, and 3 months after RT were assayed for TGF1, IL-1β, and ACE levels by enzyme-linked immunosorbent assay. From the 63 patients, 17 (27%) developed RP, and 13 (21%) had RP of grade I and four (6%) had grade II or higher. We found plasma TGF1 levels were elevated in the patients that had RP when compared with the other 46 patients who did not have RP. The plasma IL-1β levels were not changed. The ACE levels were significantly lower in the 17 patients with RP compared to the 46 patients without RP throughout the RT. As expected, RP is associated with a higher dose of irradiation (>60 Gy); no other factors, including dose-volume histogram, age, sex, smoking status, location of tumor, and methods of treatment, are associated with RP. Elevated plasma TGF1 levels can be used as a marker for RP.

  18. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    PubMed

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  19. IL-6 inhibits upregulation of membrane-bound TGF-beta 1 on CD4+ T cells and blocking IL-6 enhances oral tolerance

    PubMed Central

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L.

    2016-01-01

    Oral administration of antigen induces regulatory T cells that express latent membrane-bound TGF-beta (LAP) and that have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP+ on CD4+ T cells. The combination of anti-CD3 mAb, anti-CD28 mAb and recombinant IL-2 induced expression of LAP on naïve CD4+ T cells, independent of FoxP3 or exogenous TGF-β. In vitro generated CD4+LAP+FoxP3− T cells were suppressive in vitro, inhibiting proliferation of naïve CD4+ T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing antibodies against cytokines we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNFα. IL-6 abrogated the in vitro induction of CD4+LAP+ T cells by STAT3 dependent inhibition of Lrrc32 (GARP), the adapter protein that tethers TGF-beta to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4+ T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that pro-inflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. PMID:28039301

  20. Analysis of common transforming growth factor beta-1 gene polymorphisms in gastric and duodenal ulcer disease: pilot study.

    PubMed

    Polonikov, Alexey V; Ivanov, Vladimir P; Belugin, Dmitry A; Khoroshaya, Irina V; Kolchanova, Inessa O; Solodilova, Mariya A; Tutochkina, Margarita P; Stepchenko, Alexander A

    2007-04-01

    Transforming growth factor-beta1 (TGF-beta1) has been shown to be an important cytokine that plays a role in cell proliferation, differentiation, tissue injury repair and ulcer healing. The purpose of this pilot study was to investigate if common polymorphisms Leu10Pro, Arg25Pro and C-509T within the TGF-beta1 gene are associated with susceptibility to gastric and duodenal ulcer disease in Russians. Blood samples from 377 unrelated patients with gastric and duodenal ulcer disease and 226 sex- and age-matched healthy controls were used to determine TGF-beta1 gene polymorphisms by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Leu10Pro substitution in the signal peptide of TGF-beta1 has been found to be associated with susceptibility to gastric ulcer (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.12-2.77). A genotype combination of 10Leu/Leu x 25Arg/Arg x -509C/C was also associated with susceptibility to gastric ulcer disease (OR 1.81, P = 0.01). In addition, the frequency of a combination of genotypes 10Pro/Pro x 25Arg/Pro x -509C/T was statistically lower in patients with duodenal ulcer than in controls (OR 0.42, P = 0.05). A significant difference (P = 0.04) in the distribution of rare haplotypes of the TGF-beta1 gene between patients with duodenal ulcer and healthy controls has been found. Polymorphism Leu10Pro was in positive linkage disequilibrium with C-509T polymorphism (coefficient D = 0.191; P < 0.0001). These findings indicate that the Leu10Pro and C-509T polymorphisms may be involved in the modulation of expression of the TGF-beta1 gene, and therefore a predisposition to peptic ulcer disease could be linked to particular alleles of this gene. In particular, a possible role of TGF-beta1 in the pathogenesis of gastric ulcer disease is discussed.

  1. Substance P promotes hepatic stellate cell proliferation and activation via the TGF1/Smad-3 signaling pathway.

    PubMed

    Peng, Lei; Jia, Xiaoqing; Zhao, Jianjian; Cui, Ruibing; Yan, Ming

    2017-08-15

    Prolonged activation and proliferation of hepatic stellate cells (HSCs) usually results in the initiation and progression of liver fibrosis following injury. Recent studies have shown that Substance P (SP) participates in the development of fibrosis. However, whether SP is involved in liver fibrosis, especially in the activation and proliferation of HSCs, is largely unknown. In the present study, we measured the effects of a series of concentrations of SP on the cell viability and activation of HSC-T6 cells and LX2 cells. The underlying mechanism was also investigated. We found that SP effectively increased cell viability, both in an MTT assay (p<0.05) and in a lactate dehydrogenase activity assay (LDH) (p<0.05). Moreover, SP upregulated the protein expression of α-SMA and Collagen I (both p<0.05) and decreased the release of lipid droplets (LDs) (p<0.05), all of which are associated with HSC activation. Apoptosis analysis revealed that SP can attenuate the increase of cell apoptosis induced by serum withdrawal (p<0.05). Furthermore, these effects were all blocked by an SP receptor antagonist, L732138. More importantly, L732138 decreased the activation of the TGF1/Smad3 signaling pathway, which is highly associated with liver fibrosis. Taken together, our results demonstrate that SP can promote HSC proliferation and induce HSC activation via the TGF1/Smad3 signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF1 signaling to PI3Kγ/AKT/Rac1 pathway.

    PubMed

    Xu, Anjian; Li, Yanmeng; Zhao, Wenshan; Hou, Fei; Li, Xiaojin; Sun, Lan; Chen, Wei; Yang, Aiting; Wu, Shanna; Zhang, Bei; Yao, Jingyi; Wang, Huan; Huang, Jian

    2018-02-01

    Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF1 signaling to PI3Kγ/AKT/Rac1 pathway. PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.

  3. [Role of Ski/SnoN protein in the regulation of TGF-beta signal pathway].

    PubMed

    Lu, Zhao-hui; Chen, Jie

    2003-04-01

    TGF-beta signal pathway plays an important role in the cell growth, differentiation, formation of extracellular matrix, embryo development and carcinogenesis, etc. However, the regulation of TGF-beta pathway is not totally understood. In 1999, three independent research groups found that Ski/SnoN protein could inhibit the TGF-beta mediated transcription by recruiting N-CoR, a transcription co-repressor. Later studies suggested that TGF-beta and SMADs degraded the Ski/SnoN protein by mediating ubiquitin linkage, showing negative feedback regulation. The important findings in Ski/SnoN laid the theoretical foundation for demonstrating the function of TGF-beta signal pathway.

  4. Immunohistochemical expression of TGF1 and MMP-9 in periapical lesions.

    PubMed

    Álvares, Pâmella Recco; Arruda, José Alcides Almeida de; Silva, Leorik Pereira da; Nascimento, George João Ferreira do; Silveira, Maria Fonseca da; Sobral, Ana Paula Veras

    2017-07-03

    The objective of this study was to evaluate the expression of matrix metalloproteinase 9 (MMP-9) and transforming growth factor beta (TGF1) in periapical lesion samples correlated with the intensity of the inflammatory infiltrate and thickness of the epithelial lining. Forty-five cases of periapical lesions (23 periapical granulomas and 22 radicular cysts) were subjected to morphological and immunohistochemical analyses using anti-MMP-9 and anti-TGF1 antibodies. The data were analyzed using the following tests: non-parametric Mann-Whitney, chi-square, Fisher's exact test and Spearman's correlation test (P<0.05). Analysis of inflammatory infiltrate revealed that 78% of periapical granulomas presented infiltrate grade III, in contrast with 32% of radicular cysts (P<0.001). Morphological evaluation of the epithelial thickness in radicular cysts revealed the presence of atrophic epithelium in 86% of the cysts. The immunostaining of MMP-9 was score 2 in 67% of the granulomas and 77% of the cysts. Both lesions were predominantly score 1 for TGF1. Significant differences were confirmed between the expression scores of TGF1 and MMP-9 in periapical granulomas (p = 0.004) and in radicular cysts (p < 0.001). Expression of TGF1 was different for periapical granulomas and radicular cysts. This immunoregulatory cytokine seems more representative in asymptomatic lesions. The extracellular matrix remodeling process dependent on MMP-9 seems to be similar for both periapical granulomas and radicular cysts. TGF1 and MMP-9 may play an important role in the maintenance of periapical lesions.

  5. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  6. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth

    PubMed Central

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M.; Yang, Jun; Starbuck, Michael W.; Ravoori, Murali K.; Kundra, Vikas; Vazquez, Elba; Navone, Nora M.

    2012-01-01

    Transforming growth factor beta 1 (TGF1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with x-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF1induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6 weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p < 0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor–bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa

  7. Emodin attenuates high glucose-induced TGF1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie; Zeng, Zhi; Wu, Teng

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF1 and FN expression was significantly decreased by emodin. Thesemore » results demonstrated that emodin suppressed TGF1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF1 and FN.« less

  8. Expression of TGF-beta1, osteonectin, and BMP-4 in mandibular distraction osteogenesis with compression stimulation: reverse transcriptase-polymerase chain reaction study and biomechanical test.

    PubMed

    Kim, Uk-Kyu; Park, Seong-Jin; Seong, Wook-Jin; Heo, Jun; Hwang, Dae-Seok; Kim, Yong-Deok; Shin, Sang-Hun; Kim, Gyoo-Cheon

    2010-09-01

    This study compared the levels of transforming growth factor-beta1 (TGF-beta1), osteonectin, and bone morphogenetic protein-4 (BMP-4) expression in regenerated bone in a rabbit mandible that had undergone conventional distraction osteogenesis (DO) with those in regenerated bone from a modified DO technique with compression stimulation. A total of 42 rabbits were used in this reverse transcriptase-polymerase chain reaction study. In the control group, distraction was performed at 1 mm/day for 8 days. In the experimental group, overdistraction was performed for 10 days, followed by a 3-day latency period and 2 days of compression to achieve the same amount of DO. Three rabbits per subgroup were killed at 0, 5, 13, 20, 27, 34, and 41 days after the initial osteotomy. The levels of TGF-beta1, osteonectin, and BMP-4 in the bone regenerates were measured by reverse transcriptase-polymerase chain reaction. A biomechanical microhardness test was also performed in 8 rabbits as a separate experiment. Reverse transcriptase-polymerase chain reaction revealed a greater level of TGF-beta1 in the experimental group immediately after applying the compression force that continued for 2 weeks. The level then decreased to that of the control group at 3 weeks. The greater level of osteonectin in the experimental group after compression than that in the control group continued for 3 weeks. In the experimental group, the level of BMP-4 increased immediately after compression. However, the level in the control group decreased. The microhardness ratio of distracted bone to normal bone on the cortex was statistically different at 0.47 in the control group and 0.80 in the experimental group (P = .049) at 55 days after osteotomy. The effectiveness of the new DO technique with compression stimulation was confirmed by the gene expression study and the biomechanical test findings. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights

  9. Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor.

    PubMed

    McConalogue, K; Déry, O; Lovett, M; Wong, H; Walsh, J H; Grady, E F; Bunnett, N W

    1999-06-04

    Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.

  10. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF1 in Airway Epithelium via the c-Src Pathway

    PubMed Central

    Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF1 on migration of A549 cells and suppressed TGF1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF1 in upper airway chronic inflammatory disease such as CRS. PMID:28804222

  11. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF1 in Airway Epithelium via the c-Src Pathway.

    PubMed

    Lee, Heung-Man; Kang, Ju-Hyung; Shin, Jae-Min; Lee, Seoung-Ae; Park, Il-Ho

    2017-01-01

    Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF- β 1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF- β 1. We found that E-cadherin, vimentin, fibronectin, and α -SMA expression was increased in nasal polyps compared to inferior turbinates. TGF- β 1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α -SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF- β 1 on migration of A549 cells and suppressed TGF- β 1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF- β 1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF- β 1 in upper airway chronic inflammatory disease such as CRS.

  12. Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells

    PubMed Central

    Wang, Yunling; Yang, Mingzi; Gao, Jianchao; Wei, Xiaofan; Fang, Weigang; Zhan, Jun; Zhang, Hongquan

    2016-01-01

    Kindlin-1, an integrin-interacting protein, has been implicated in TGF-β/Smad3 signaling. However, the molecular mechanism underlying Kindlin-1 regulation of TGF-β/Smad3 signaling remains elusive. Here, we reported that Kindlin-1 is an important mediator of TGF-β/Smad3 signaling by showing that Kindlin-1 physically interacts with TGF-β receptor I (TβRI), Smad anchor for receptor activation (SARA) and Smad3. Kindlin-1 is required for the interaction of Smad3 with TβRI, Smad3 phosphorylation, nuclear translocation, and finally the activation of TGF-β/Smad3 signaling pathway. Functionally, Kindlin-1 promoted colorectal cancer (CRC) cell proliferation in vitro and tumor growth in vivo, and was also required for CRC cell migration and invasion via an epithelial to mesenchymal transition. Kindlin-1 was found to be increased with the CRC progression from stages I to IV. Importantly, raised expression level of Kindlin-1 correlates with poor outcome in CRC patients. Taken together, we demonstrated that Kindlin-1 promotes CRC progression by recruiting SARA and Smad3 to TβRI and thereby activates TGF-β/Smad3 signaling. Thus, Kindlin-1 is a novel regulator of TGF-β/Smad3 signaling and may also be a potential target for CRC therapeutics. PMID:27776350

  13. Thioredoxin 1 mediates TGF-β-induced epithelial-mesenchymal transition in salivary adenoid cystic carcinoma.

    PubMed

    Jiang, Yang; Feng, Xin; Zheng, Lei; Li, Sheng-Lin; Ge, Xi-Yuan; Zhang, Jian-Guo

    2015-09-22

    Epithelial-mesenchymal transition (EMT) plays an important role in the invasion and metastasis of salivary adenoid cystic carcinoma (SACC) which is characterized by wide local infiltration, perineural spread, a propensity to local recurrence and late distant metastasis. Our recent studies have disclosed that TGF-β is a crucial factor for EMT in metastatic SACC. In this study, we further uncovered small redox protein thioredoxin 1 (TXN) as a critical mediator of TGFinduced EMT. Immunohistochemistry analysis revealed significantly higher expressions of TXN, thioredoxin reductase 1 (TXNRD1) and N-cadherin, and lower expression of E-cadherin in human metastatic SACC compared to non-metastatic SACC tissues. Consistently, cultured SACC cells with stable TXN overexpression had decreased E-cadherin and increased N-cadherin as well as Snail and Slug expressions. The enhanced migration and invasion potential of these cells was abrogated by Akt or TXNRD1 inhibitors. Expression of N-cadherin and Akt p-Akt decreased, whereas E-cadherin expression increased in a BBSKE (TXNRD1 inhibitor)-dose-dependent manner. In a xenograft mouse model, TXN overexpression facilitated the metastatic potential of SACC-83 cells to the lung. Our results indicate that TXN plays a key role in SACC invasion and metastasis through the modulation of TGF-β-Akt/GSK-3β on EMT. TXN could be a potential therapeutic target for SACC.

  14. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, amore » previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.« less

  15. Vanillin improves scopolamine-induced memory impairment through restoration of ID1 expression in the mouse hippocampus

    PubMed Central

    Lee, Jae-Chul; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich Na; Yan, Bing Chun; Kim, Jong-Dai; Jeon, Yong Hwan; Lee, Young Joo; Won, Moo-Ho; Kang, Il Jun

    2018-01-01

    4-Hydroxy-3-methoxybenzaldehyde (vanillin), contained in a number of species of plant, has been reported to display beneficial effects against brain injuries. In the present study, the impact of vanillin on scopolamine-induced alterations in cognition and the expression of DNA binding protein inhibitor ID-1 (ID1), one of the inhibitors of DNA binding/differentiation proteins that regulate gene transcription, in the mouse hippocampus. Mice were treated with 1 mg/kg scopolamine with or without 40 mg/kg vanillin once daily for 4 weeks. Scopolamine-induced cognitive impairment was observed from 1 week and was deemed to be severe 4 weeks following the administration of scopolamine. However, treatment with vanillin in scopolamine-treated mice markedly attenuated cognitive impairment 4 weeks following treatment with scopolamine. ID1-immunoreactive cells were revealed in the hippocampus of vehicle-treated mice, and were hardly detected 4 weeks following treatment with scopolamine. However, treatment with vanillin in scopolamine-treated mice markedly restored ID1-immunoreactive cells and expression 4 weeks subsequent to treatment. The results of the present study suggested that vanillin may be beneficial for cognitive impairment, by preventing the reduction of ID1 expression which may be associated with cognitive impairment. PMID:29328430

  16. Triggered Firing and Atrial Fibrillation in Transgenic Mice With Selective Atrial Fibrosis Induced by Overexpression of TGF1

    PubMed Central

    Choi, Eue-Keun; Chang, Po-Cheng; Lee, Young-Soo; Lin, Shien-Fong; Zhu, Wuqiang; Maruyama, Mitsunori; Fishbein, Michael C.; Chen, Zhenhui; der Lohe, Michael Rubart-von; Field, Loren J.; Chen, Peng-Sheng

    2013-01-01

    Background Calcium transient triggered firing (CTTF) is induced by large intracellular calcium (Cai) transient and short action potential duration (APD). We hypothesized that CTTF underlies the mechanisms of early afterdepolarization (EAD) and spontaneous recurrent atrial fibrillation (AF) in transgenic (Tx) mice with overexpression of transforming growth factor β1 (TGF1). Methods and Results MHC-TGFcys33ser Tx mice develop atrial fibrosis because of elevated levels of TGF1. We studied membrane potential and Cai transients of isolated superfused atria from Tx and wild-type (Wt) littermates. Short APD and persistently elevated Cai transients promoted spontaneous repetitive EADs, triggered activity and spontaneous AF after cessation of burst pacing in Tx but not Wt atria (39% vs. 0%, P=0.008). We were able to map optically 4 episodes of spontaneous AF re-initiation. All first and second beats of spontaneous AF originated from the right atrium (4/4, 100%), which is more severely fibrotic than the left atrium. Ryanodine and thapsigargin inhibited spontaneous re-initiation of AF in all 7 Tx atria tested. Western blotting showed no significant changes of calsequestrin or sarco/endoplasmic reticulum Ca2+-ATPase 2a. Conclusions Spontaneous AF may occur in the Tx atrium because of CTTF, characterized by APD shortening, prolonged Cai transient, EAD and triggered activity. Inhibition of Ca2+ release from the sarcoplasmic reticulum suppressed spontaneous AF. Our results indicate that CTTF is an important arrhythmogenic mechanism in TGF1 Tx atria. PMID:22447020

  17. Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor-beta1 promoter activity.

    PubMed

    Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D

    2007-01-01

    While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.

  18. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing.

    PubMed

    Xu, M T; Sun, S; Zhang, L; Xu, F; Du, S L; Zhang, X D; Wang, D W

    2016-01-01

    Transforming growth factor beta 1 (TGF1) and bone morphogenetic protein-2 (BMP-2) are important regulators of bone repair and regeneration. In this study, we examined whether TGF1 and BMP-2 expressions were delayed during bone healing in type 1 diabetes mellitus. Tibial fractures were created in 95 diabetic and 95 control adult male Wistar rats of 10 weeks of age. At 1, 2, 3, 4, and 5 weeks after fracture induction, five rats were sacrificed from each group. The expressions of TGF1 and BMP2 in the fractured tibias were measured by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction, weekly for the first 5 weeks post-fracture. Mechanical parameters (bending rigidity, torsional rigidity, destruction torque) of the healing bones were also assessed at 3, 4, and 5 weeks post-fracture, after the rats were sacrificed. The bending rigidity, torsional rigidity and destruction torque of the two groups increased continuously during the healing process. The diabetes group had lower mean values for bending rigidity, torsional rigidity and destruction torque compared with the control group (P<0.05). TGF1 and BMP-2 expression were significantly lower (P<0.05) in the control group than in the diabetes group at postoperative weeks 1, 2, and 3. Peak levels of TGF1 and BMP-2 expression were delayed by 1 week in the diabetes group compared with the control group. Our results demonstrate that there was a delayed recovery in the biomechanical function of the fractured bones in diabetic rats. This delay may be associated with a delayed expression of the growth factors TGF1 and BMP-2.

  19. Losartan improves resistance artery lesions and prevents CTGF and TGF-beta production in mild hypertensive patients.

    PubMed

    Gómez-Garre, D; Martín-Ventura, J L; Granados, R; Sancho, T; Torres, R; Ruano, M; García-Puig, J; Egido, J

    2006-04-01

    Although structural and functional changes of resistance arteries have been proposed to participate in arterial hypertension (HTA) outcome, not all therapies may correct these alterations, even if they normalize the blood pressure (BP). The aim of this study was to investigate the mechanisms of the protection afforded by the angiotensin receptor antagonist losartan in resistance arteries from patients with essential HTA. In all, 22 untreated hypertensive patients were randomized to receive losartan or amlodipine for 1 year and the morphological characteristics of resistance vessels from subcutaneous biopsies were evaluated. Protein expression of connective tissue growth factor (CTGF), transforming growth factor beta (TGF-beta), and collagens III and IV was detected by immunohistochemistry. In comparison with normotensive subjects, resistance arteries from hypertensive patients showed a significant media:lumen (M/L) ratio increment and a higher protein expression of CTGF, TGF-beta, and collagens. After 1 year of treatment, both losartan and amlodipine similarly controlled BP. However, M/L only decreased in patients under losartan treatment, whereas in the amlodipine-treated group this ratio continued to increase significantly. The administration of losartan prevented significant increments in CTGF, TGF-beta, and collagens in resistance arteries. By contrast, amlodipine-treated patients showed a higher vascular CTGF, TGF-beta, and collagen IV staining than before treatment. Our results show that the administration of losartan, but not amlodipine, to hypertensive patients improves structural abnormalities and prevents the production of CTGF and TGF-beta in small arteries, despite similar BP lowering. These data may explain the molecular mechanisms of the better vascular protection afforded by drugs interfering with the renin-angiotensin system.

  20. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis

    PubMed Central

    Xu, Fengyun; Liu, Changwei; Zhou, Dandan; Zhang, Lei

    2016-01-01

    Transforming growth factor-beta1 (TGF1), a key member in the TGF-β superfamily, plays a critical role in the development of hepatic fibrosis. Its expression is consistently elevated in affected organs, which correlates with increased extracellular matrix deposition. SMAD proteins have been studied extensively as pivotal intracellular effectors of TGF1, acting as transcription factors. In the context of hepatic fibrosis, SMAD3 and SMAD4 are pro-fibrotic, whereas SMAD2 and SMAD7 are protective. Deletion of SMAD3 inhibits type I collagen expression and blocks epithelial-myofibroblast transition. In contrast, disruption of SMAD2 upregulates type I collagen expression. SMAD4 plays an essential role in fibrosis disease by enhancing SMAD3 responsive promoter activity, whereas SMAD7 negatively mediates SMAD3-induced fibrogenesis. Accumulating evidence suggests that divergent miRNAs participate in the liver fibrotic process, which partially regulates members of the TGF-β/SMAD signaling pathway. In this review, we focus on the TGF-β/SMAD and other relative signaling pathways, and discussed the role and molecular mechanisms of TGF-β/SMAD in the pathogenesis of hepatic fibrosis. Moreover, we address the possibility of novel therapeutic approaches to hepatic fibrosis by targeting to TGF-β/SMAD signaling. PMID:26747705

  1. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells

    PubMed Central

    Eiselein, Larissa; Nyunt, Tun; Lamé, Michael W.; Ng, Kit F.; Wilson, Dennis W.; Rutledge, John C.; Aung, Hnin H.

    2015-01-01

    Studies have suggested a link between the transforming growth factor beta 1 (TGF1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses. PMID:26709509

  2. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells

    PubMed Central

    Wieghaus, Kristen A.; Gianchandani, Erwin P.; Neal, Rebekah A.; Paige, Mikell A.; Brown, Milton L.; Papin, Jason A.; Botchwey, Edward A.

    2009-01-01

    We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode-of-action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray dataset of PNF1-treated (versus control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-α) and, subsequently, transforming growth factor-beta (TGF-β) signaling networks by PNF1. Here we validate this microarray data-set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this dataset and identify three specific TGF-β-induced genes with regulation by PNF1 conserved over multiple timepoints—amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)—that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1–48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode-of-action and important for successful promotion of the neovascularization that we have observed by the drug in vivo. PMID:19326468

  3. Fungal β-glucan, a Dectin-1 ligand, promotes protection from Type 1 Diabetes by inducing regulatory innate immune response1

    PubMed Central

    Karumuthil-Melethil, Subha; Gudi, Radhika; Johnson, Benjamin M.; Perez, Nicolas; Vasu, Chenthamarakshan

    2014-01-01

    Beta-glucans (β-glucans) are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes including bacteria, fungi, and yeast. Immune cells recognize these β-glucans through a cell surface pathogen recognition receptor (PRR) called Dectin-1. Studies using β-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. Here, we show that the β-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF1 and IL-2) and a tolerogenic enzyme (Indoleamine 2, 3-dioxygenase; IDO) in bone marrow derived DCs (BM DCs) as well as spleen cells. These properties can be exploited to modulate autoimmunity in non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Treatment of pre-diabetic NOD mice with low dose β-glucan resulted in a profound delay in hyperglycemia and this protection was associated with increase in the frequencies of Foxp3-, LAP-, and GARP-positive T cells. Upon antigen presentation, β-glucan-exposed DCs induced a significant increase in Foxp3− and LAP− positive T cells in in vitro cultures. Further, systemic co-administration of β-glucan plus pancreatic β-cell-Ag resulted in an enhanced protection of NOD mice from T1D as compared to treatment with β-glucan alone. These observations demonstrate that the innate immune response induced by low dose β-glucan is regulatory in nature and can be exploited to modulate T cell response to β-cell-Ag for inducing an effective protection from T1D. PMID:25143443

  4. Hematological and TGF-beta variations after whole-body proton irradiation

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.

  5. Galectin-1 suppresses alpha2(I) collagen through Smad3 in renal epithelial cells.

    PubMed

    Okano, K; Uchida, K; Nitta, K; Hayashida, T

    2008-10-01

    Transforming growth factor (TGF-beta1) promotes renal fibrogenesis through activation of Smads. Galectin-1 is reported to prevent experimental glomerulonephritis. Here we investigated the fact that transfected galectin-1 significantly suppressed the transcription of alpha2(I) collagen (COL1A2) in TGF-beta1- activated human renal epithelial cells. Conversely, galectin-1 silencing RNA reduced secretion of type I collagen by HKC cells. Galectin-1 significantly decreased activation of a TGF-beta1-responsive reporter construct and of a minimal reporter construct that contains four repeats of the Smad binding element (SBE). Galectin-1 had no effect on phosphorylation of Smad3 at the linker region and C-terminus, whereas it decreased affinity of Smad3 to the SBE. Additionally, the inhibitory effect of galectin-1 disappeared using a mutated reporter construct, 376 m-LUC, in which a potential Smad recognition site within the promoter is mutated. Taken together, the results suggest that galectin-1 decreases Smad3-complex from binding to the SBE, down-regulating transcription of COL1A2 in TGF-beta1-stimulated renal epithelial cells.

  6. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    PubMed

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the

  7. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors β1 and β2

    PubMed Central

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF1) and TGF-β2. However, whether TGF1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF1 and TGF-β2. TGF1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  8. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF1) and TGF-β2. However, whether TGF1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF1 and TGF-β2. TGF1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. A Poised Chromatin Platform for TGF-[beta] Access to Master Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Qiaoran; Wang, Zhanxin; Zaromytidou, Alexia-Ileana

    2012-02-07

    Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-{beta} signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compactingmore » factor HP1, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.« less

  10. Functional Effects of TGF-beta1 on Mesenchymal Stem Cell Mobilization in Cockroach Allergen Induced Asthma

    PubMed Central

    Xian, Lingling; Li, Changjun; Xu, Ting; Plunkett, Beverly; Huang, Shau-Ku; Wan, Mei; Cao, Xu

    2014-01-01

    Mesenchymal stem cells (MSCs) have been suggested to participate in immune regulation and airway repair/remodeling. Transforming growth factor β1 (TGFβ1) is critical in the recruitment of stem/progenitor cells for tissue repair, remodeling and cell differentiation. In this study, we sought to investigate the role of TGFβ1 in MSC migration in allergic asthma. We examined nestin expression (a marker for MSCs) and TGFβ1 signaling activation in airways in cockroach allergen (CRE) induced mouse models. Compared with control mice, there were increased nestin+ cells in airways, and higher levels of active TGFβ1 in serum and p-Smad2/3 expression in lungs of CRE-treated mice. Increased activation of TGFβ1 signaling was also found in CRE-treated MSCs. We then assessed MSC migration induced by conditioned medium (ECM) from CRE-challenged human epithelium in air/liquid interface (ALI) culture in Transwell assays. MSC migration was stimulated by ECM, but was significantly inhibited by either TGFβ1 neutralizing antibody or TβR1 inhibitor. Intriguingly, increased migration of MSCs from blood and bone marrow to the airway was also observed after systemic injection of GFP+-MSCs, and from bone marrow of Nes-GFP mice following CRE challenge. Furthermore, TGFβ1 neutralizing antibody inhibited the CRE-induced MSC recruitment, but promoted airway inflammation. Finally, we investigated the role of MSCs in modulating CRE induced T cell response, and found that MSCs significantly inhibited CRE-induced inflammatory cytokine secretion (IL-4, IL13, IL17 and IFN-γ) by CD4+ T cells. These results suggest that TGFβ1 may be a key pro-migratory factor in recruiting MSCs to the airways in mouse models of asthma. PMID:24711618

  11. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Kouji; Ohnishi, Hirohide; Aoki, Hiroyoshi

    2006-02-17

    Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-{beta}{sub 1} inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSCmore » proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-{beta}{sub 1}-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.« less

  12. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF1-induced kidney injury in a mouse model of diabetes.

    PubMed

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF1 signalling, TGF1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF1 signalling and TGF1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  13. Platelet TGF1 contributions to plasma TGF1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload

    PubMed Central

    Meyer, Alexander; Wang, Wei; Qu, Jiaxiang; Croft, Lori; Degen, Jay L.; Coller, Barry S.

    2012-01-01

    Circulating platelets contain high concentrations of TGF1 in their α-granules and release it on platelet adhesion/activation. We hypothesized that uncontrolled in vitro release of platelet TGF1 may confound measurement of plasma TGF1 in mice and that in vivo release and activation may contribute to cardiac pathology in response to constriction of the transverse aorta, which produces both high shear and cardiac pressure overload. Plasma TGF1 levels in blood collected from C57Bl/6 mice by the standard retro-bulbar technique were much higher than those obtained when prostaglandin E1 was added to inhibit release or when blood was collected percutaneously from the left ventricle under ultrasound guidance. Even with optimal blood drawing, plasma TGF1 was lower in mice rendered profoundly thrombocytopenic or mice with selectively low levels of platelet TGF1 because of megakaryocytespecific disruption of their TGF1 gene (Tgfb1flox). Tgfb1flox mice were also partially protected from developing cardiac hypertrophy, fibrosis, and systolic dysfunction in response to transverse aortic constriction. These studies demonstrate that plasma TGF1 levels can be assessed accurately, but it requires special precautions; that platelet TGF1 contributes to plasma levels of TGF1; and that platelet TGF1 contributes to the pathologic cardiac changes that occur in response to aortic constriction. PMID:22134166

  14. Protective Effect of Zingiber Officinale against CCl4-Induced Liver Fibrosis Is Mediated through Downregulating the TGF1/Smad3 and NF-ĸB/IĸB Pathways.

    PubMed

    Hasan, Iman H; El-Desouky, M A; Hozayen, Walaa G; Abd el Aziz, Ghada M

    2016-01-01

    No ideal hepatoprotective agents are available in modern medicine to effectively prevent liver disorders. In this study, we aimed at evaluating the potential of Zingiber officinale in the regression of liver fibrosis and its underlining mechanism of action. To induce liver fibrosis, male Wistar rats received CCl4 (2 ml/kg/2 times/week; i.p.), with and without 300 or 600 mg/kg Z. officinale extract daily through oral gavage. To assess the protective effect of Z. officinale, liver function parameters, histopathology, inflammatory markers and gene expression of transforming growth factor-beta 1 (TGF1)/Smad3 and nuclear factor-kappa B (NF-ĸB)/IĸB pathways were analyzed. Results demonstrate that Z. officinale extract markedly prevented liver injury as evident by the decreased liver marker enzymes. Concurrent administration of Z. officinale significantly protected against the CCl4-induced inflammation as showed by the decreased pro-inflammatory cytokine levels as well as the downregulation of the NF-ĸB)/IĸB and TGF1/Smad3 pathways in CCl4-administered rats. In conclusion, our study provides evidence that the protective effect of Z. officinale against rat liver fibrosis could be explained through its ability to modulate the TGF1/Smad3 and NF-ĸB)/IĸB signaling pathways. © 2015 S. Karger AG, Basel.

  15. Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1.

    PubMed

    Wermuth, Peter J; Li, Zhaodong; Mendoza, Fabian A; Jimenez, Sergio A

    2016-01-01

    TGF-β-induced endothelial-to-mesenchymal transition (EndoMT) is a newly recognized source of profibrotic activated myofibroblasts and has been suggested to play a role in the pathogenesis of various fibrotic processes. Endothelin-1 (ET-1) has been implicated in the development of tissue fibrosis but its participation in TGF-β-induced EndoMT has not been studied. Here we evaluated the role of ET-1 on TGF1-induced EndoMT in immunopurified CD31+/CD102+ murine lung microvascular endothelial cells. The expression levels of α-smooth muscle actin (α-SMA), of relevant profibrotic genes, and of various transcription factors involved in the EndoMT process were assessed employing quantitative RT-PCR, immunofluorescence histology and Western blot analysis. TGF1 caused potent induction of EndoMT whereas ET-1 alone had a minimal effect. However, ET-1 potentiated TGF1-induced EndoMT and TGF1-stimulated expression of mesenchymal cell specific and profibrotic genes and proteins. ET-1 also induced expression of the TGF-β receptor 1 and 2 genes, suggesting a plausible autocrine mechanism to potentiate TGF-β-mediated EndoMT and fibrosis. Stimulation of TGF1-induced skin and lung fibrosis by ET-1 was confirmed in vivo in an animal model of TGF1-induced tissue fibrosis. These results suggest a novel role for ET-1 in the establishment and progression of tissue fibrosis.

  16. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network.more » To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.« less

  17. TGF1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways.

    PubMed

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C K

    2016-09-20

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF1-stimulated cell migration. TGF1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF1 on PTEN mRNA and protein. Interestingly, TGF1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF1. This study provides important insights into the molecular mechanisms mediating TGF1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.

  18. TGF1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways

    PubMed Central

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C.K.

    2016-01-01

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF1-stimulated cell migration. TGF1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF1 on PTEN mRNA and protein. Interestingly, TGF1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF1. This study provides important insights into the molecular mechanisms mediating TGF1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration. PMID:27542208

  19. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β.

    PubMed

    Gómez, Gonzalo I; Velarde, Victoria

    2018-06-25

    Boldine, a major aporphine alkaloid found in the Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of kidney damage in renovascular hypertension (RVH). The activation of the renin-angiotensin system (RAS) is crucial to the development and progression of hypertensive renal damage and TGF-&beta; is closely associated with the activation of RAS. In the present study, we assessed the effect of boldine on the progression of kidney disease using the 2K1C hypertension model and identifying mediators in the RAS, such as TGF-&beta;, that could be modulated by this alkaloid. Toward this hypothesis, rats ( n = 5/group) were treated with boldine (50 mg/kg/day, gavage) for six weeks after 2K1C surgery (pressure ≥ 180 mmHg). Kidney function was evaluated by measuring of proteinuria/creatininuria ratio (U prot/U Crea), oxidative stress (OS) by measuring thiobarbituric acid reactive substances (TBARS). The evolution of systolic blood pressure (SBP) was followed weekly. Alpha-smooth muscle actin (α-SMA) and Col III were used as markers of kidney damage; ED-1 and osteopontin (OPN) were used as markers of inflammation. We also explored the effect in RAS mediators, such as ACE-1 and TGF-&beta;. Boldine treatment reduced the UProt/UCrea ratio, plasma TBARS, and slightly reduced SBP in 2K1C hypertensive rats, producing no effect in control animals. In 2K1C rats treated with boldine the levels of α-SMA, Col III, ED-1, and OPN were lower when compared to 2K1C rats. Boldine prevented the increase in ACE-1 and TGF-&beta; in 2K1C rats, suggesting that boldine reduces kidney damage. These results suggest that boldine could potentially be used as a nutraceutic.

  20. Overexpression of TGF1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun

    2014-08-08

    Highlights: • Continuous TGF1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuousmore » TGF1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF1. The results revealed that continuous overexpression of TGF1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.« less

  1. MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF1 and IL-13 in human airway fibroblasts.

    PubMed

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B; Wenzel, Sally E

    2012-06-15

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF1 plus IL-13. Transcriptional (nuclear run-on) and posttranscriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation, and binding to the CCL11 promoter as compared with IL-13 alone. STAT-6 small interfering RNA significantly knocked down both STAT-6 mRNA expression and phosphorylation and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4Rα complex by TGF1 augmented IL-13 signaling by dampening IL-13Rα2 expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF1 induced activation of the MEK/ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK-dependent conditions.

  2. Role of TGF1 and nitric oxide in the bystander response of irradiated glioma cells

    PubMed Central

    Shao, C; Folkard, M; Prise, KM

    2010-01-01

    The radiation-induced bystander effect (RIBE) increases the probability of cellular response and therefore has important implications for cancer risk assessment following low-dose irradiation and for the likelihood of secondary cancers after radiotherapy. However, our knowledge of bystander signaling factors, especially those having long half-lives, is still limited. The present study found that, when a fraction of cells within a glioblastoma population were individually irradiated with helium ions from a particle microbeam, the yield of micronuclei (MN) in the nontargeted cells was increased, but these bystander MN were eliminated by treating the cells with either aminoguanidine (an inhibitor of inducible nitric oxide (NO) synthase) or anti-transforming growth factor β1 (anti-TGF1), indicating that NO and TGF1 are involved in the RIBE. Intracellular NO was detected in the bystander cells, and additional TGF1 was detected in the medium from irradiated T98G cells, but it was diminished by aminoguanidine. Consistent with this, an NO donor, diethylamine nitric oxide (DEANO), induced TGF1 generation in T98G cells. Conversely, treatment of cells with recombinant TGF1 could also induce NO and MN in T98G cells. Treatment of T98G cells with anti-TGF1 inhibited the NO production when only 1% of cells were targeted, but not when 100% of cells were targeted. Our results indicate that, downstream of radiation-induced NO, TGF1 can be released from targeted T98G cells and plays a key role as a signaling factor in the RIBE by further inducing free radicals and DNA damage in the nontargeted bystander cells. PMID:17621264

  3. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  4. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  5. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments.

    PubMed

    Caswell, Patrick T; Chan, May; Lindsay, Andrew J; McCaffrey, Mary W; Boettiger, David; Norman, Jim C

    2008-10-06

    Here we show that blocking the adhesive function of alphavbeta3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with alpha5beta1 integrin and drove RCP-dependent recycling of alpha5beta1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in alpha5beta1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of alpha5beta1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, alpha5beta1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of alpha5beta1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices.

  6. Can transforming growth factor-beta1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells?.

    PubMed

    Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir

    2004-01-01

    Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the

  7. FOXP3 expression is modulated by TGF1/NOTCH1 pathway in human melanoma

    PubMed Central

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  8. Pirfenidone prevents radiation-induced intestinal fibrosis in rats by inhibiting fibroblast proliferation and differentiation and suppressing the TGF1/Smad/CTGF signaling pathway.

    PubMed

    Sun, Yan-Wu; Zhang, Yi-Yi; Ke, Xin-Jie; Wu, Xue-Jing; Chen, Zhi-Fen; Chi, Pan

    2018-03-05

    Radiation-induced intestinal fibrosis (RIF) is a chronic toxicity following radiation, and can be very difficult to treat. Pirfenidone is a promising anti-fibrotic agent that inhibits fibrosis progression in various clinical and experimental studies. This study was aimed to explore whether pirfenidone could protect against RIF, and to evaluate the underlying mechanism. An animal model of RIF was induced by exposure of a single dose of 20 Gy to the pelvis. Rats were orally administered with pirfenidone (200, 400 md/kg/d) for 12 weeks. Primary rat intestinal fibroblasts were cultured to determine the effects of pirfenidone on TGF1-induced (5 ng/ml) proliferation and transdifferentiation of fibroblasts. The expression of collagen I, α-SMA, and TGF1/Smad/CTGF pathway proteins were analyzed by qRT-PCR and/or western blot analysis. The cell proliferation rate was determined by CCK-8 assay. The results indicated that pirfenidone significantly attenuated fibrotic lesion in irradiated intestines and reduced collagen deposition by inhibiting TGF1/Smad/CTGF pathway in rat models. Moreover, in primary rat intestinal fibroblasts, pirfenidone decreased the up-regulation of TGF1-induced collagen I and α-SMA by suppressing TGF1/Smad/CTGF signaling pathway. Altogether, our findings suggested that pirfenidone attenuated RIF by inhibiting the proliferation and differentiation of intestinal fibroblasts and suppressing the TGF1/Smad/CTGF signaling pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Control of regulatory T cell and Th17 cell differentiation by inhibitory helix-loop-helix protein Id3

    PubMed Central

    Maruyama, Takashi; Li, Jun; Vaque, Jose P.; Konkel, Joanne E.; Wang, Weifeng; Zhang, Baojun; Zhang, Pin; Zamarron, Brian; Yu, Dongyang; Wu, Yuntao; Zhuang, Yuan; Gutkind, J. Silvio; Chen, WanJun

    2010-01-01

    The molecular mechanisms directing Foxp3 gene transcription in CD4+ T cells remain ill defined. We show that deletion of the inhibitory helix-loop-helix (HLH) protein Id3 results in defective Foxp3+ Treg cell generation. We identified two transforming grothw factor-β1 (TGF1)-dependent mechanisms that are vital for activation of Foxp3 gene transcription, and are defective in Id3−/− CD4+ T cells. Enhanced binding of the HLH protein E2A to the Foxp3 promoter promoted Foxp3 gene transcription. Id3 was required to relieve inhibition by GATA-3 at the Foxp3 promoter. Further, Id3−/− T cells increased differentiation of Th17 cells in vitro and in a mouse asthma model. A network of factors therefore act in a TGF-β-dependent manner to control Foxp3 expression and inhibit Th17 cell development. PMID:21131965

  10. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    PubMed

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  11. Metformin inhibits TGF1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway.

    PubMed

    Song, Yang; Chen, Yong; Li, Yunqian; Lyu, Xiaoyan; Cui, Jiayue; Cheng, Ye; Zhao, Liyan; Zhao, Gang

    2018-01-23

    Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults. In spite of advances in diagnosis and therapy, the prognosis is still relatively poor. The invasive property of GBM is the major cause of death in patients. Epithelial-to-mesenchymal transition-like process (EMT-like process) is considered to play an important role in the invasive property. Metformin has been reported as a regulator of EMT-like process. In this study, we confirmed that metformin inhibited TGF1-induced EMT-like process and EMT-associated migration and invasion in LN18 and U87 GBM cells. Our results also showed that metformin significantly suppressed self-renewal capacity of glioblastoma stem cells (GSCs), and expression of stem cell markers Bmi1, Sox2 and Musashi1, indicating that metformin can inhibit cancer stem-like properties of GBM cells. We further clarified that metformin specifically inhibited TGF1 activated AKT, the downstream molecular mTOR and the leading transcription factor ZEB1. Taken together, our data demonstrate that metformin inhibits TGF1-induced EMT-like process and cancer stem-like properties in GBM cells via AKT/mTOR/ZEB1 pathway and provide evidence of metformin for further clinical investigation targeted GBM.

  12. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less

  13. MAPK Regulation of IL-4/-13 Receptors Contributes to the Synergistic Increase in CCL11/Eotaxin-1 in Response to TGF1 and IL-13 in Human Airway Fibroblasts

    PubMed Central

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B.; Wenzel, Sally E.

    2012-01-01

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF1 plus IL-13. Transcriptional (nuclear run-on) and post-transcriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation and binding to the CCL11 promoter as compared to IL-13 alone. STAT-6 siRNA significantly knocked down both STAT-6 mRNA expression and phosphorylation, and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4 receptor α (IL-4Rα) complex by TGF1 augmented IL-13 signaling by dampening IL-13 receptor α2 (IL-13Rα2) expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF1 induced activation of the MEK-ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK dependent conditions. PMID:22573806

  14. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: Implications for Hereditary Hemorrhagic Telangiectasia Type II

    PubMed Central

    Kim, Jai-Hyun; Peacock, Matthew R.; George, Steven C.; Hughes, Christopher C.W.

    2012-01-01

    ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis. PMID:22622516

  15. TGF1/FGF-2 signaling mediates the 15-HETE-induced differentiation of adventitial fibroblasts into myofibroblasts.

    PubMed

    Zhang, Li; Chen, Yan; Li, Guixia; Chen, Minggang; Huang, Wei; Liu, Yanrui; Li, Yumei

    2016-01-05

    Pulmonary adventitial fibroblasts (PAFs) are activated under stress stimuli leading to their differentiation into myofibroblasts, which is involved in vessel remodeling. 15-HETE is known as an important factor in vessel remodeling under hypoxia; however, the role of 15-HETE in PAF phenotypic alteration is not clear. The effect of 15-HETE on PAF phenotypic alterations was investigated in the present study. PAFs were treated with 15-HETE (0.5 μM) for 24 h, and the myofibroblast marker α-smooth muscle actin (α-SMA) was analyzed. The 15-HETE induced α-SMA expression and cell morphology. 15-HETE upregulated FGF-2 levels in PAFs, and knockdown FGF-2 by siRNAs blocked the enhanced α-SMA expression induced by 15-HETE. p38 kinase was activated, and blocked depressed 15-HETE-induced FGF-2 expression. The downstream of p38 pathway, Egr-1 activation, was also raised by 15-HETE treatment, and silenced Egr-1 suppressed the 15-HETE-induced upregulation of FGF-2. TGF1 was upregulated with FGF-2 treatment, and α-SMA expression induced by FGF-2 was inhibited after the cell was transferred with TGF1 siRNA. Meanwhile, FGF-2 increased α-SMA expression and improved proliferation, which was associated with p27(kip1) and cyclin E variation. The above results suggest that p38/Egr-1 pathway-mediated FGF-2 is involved in 15-HETE-induced differentiation of PAFs into myofibroblasts and cell proliferation.

  16. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen; Jin, Rong; Wang, Hong-Cheng

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïvemore » CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.« less

  17. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.

    PubMed

    Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D

    2008-11-01

    Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.

  18. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis.

    PubMed

    Zerr, Pawel; Palumbo-Zerr, Katrin; Huang, Jingang; Tomcik, Michal; Sumova, Barbora; Distler, Oliver; Schett, Georg; Distler, Jörg H W

    2016-01-01

    Sirt1 is a member of the sirtuin family of proteins. Sirt1 is a class III histone deacetylase with important regulatory roles in transcription, cellular differentiation, proliferation and metabolism. As aberrant epigenetic modifications have been linked to the pathogenesis of systemic sclerosis (SSc), we aimed to investigate the role of Sirt1 in fibroblast activation. Sirt1 expression was analysed by real-time PCR, western blot and immunohistochemistry. Sirt1 signalling was modulated with the Sirt1 agonist resveratrol and by fibroblast-specific knockout. The role of Sirt1 was evaluated in bleomycin-induced skin fibrosis and in mice overexpressing a constitutively active transforming growth fac-tor-β (TGF-β) receptor I (TBRIact). The expression of Sirt1 was decreased in patients with SSc and in experimental fibrosis in a TGF-β-dependent manner. Activation of Sirt1 potentiated the profibrotic effects of TGF-β with increased Smad reporter activity, elevated transcription of TGF-β target genes and enhanced release of collagen. In contrast, knockdown of Sirt1 inhibited TGF-β/SMAD signalling and reduced release of collagen in fibroblasts. Consistently, mice with fibroblast-specific knockdown of Sirt1 were less susceptible to bleomycin- or TBRIact-induced fibrosis. We identified Sirt1 as a crucial regulator of TGF-β/Smad signalling in SSc. Although Sirt1 is downregulated, this decrease is not sufficient to counterbalance the excessive activation of TGF-β signalling in SSc. However, augmentation of this endogenous regulatory mechanism, for example, by knockdown of Sirt1, can effectively inhibit TGF-β signalling and exerts potent antifibrotic effects. Sirt1 may thus be a key regulator of fibroblast activation in SSc. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation.

    PubMed

    Soliman, Mahmoud L; Geiger, Jonathan D; Chen, Xuesong

    2017-03-01

    The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.

  20. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF1 signaling.

    PubMed

    Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen

    2017-05-02

    SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene.

    PubMed Central

    Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M

    1990-01-01

    The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158

  2. TGF1-Induced Epithelial–Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells

    PubMed Central

    Johansson, Joel; Tabor, Vedrana; Wikell, Anna; Jalkanen, Sirpa; Fuxe, Jonas

    2015-01-01

    Breast cancer progression toward metastatic disease is linked to re-activation of epithelial–mesenchymal transition (EMT), a latent developmental process. Breast cancer cells undergoing EMT lose epithelial characteristics and gain the capacity to invade the surrounding tissue and migrate away from the primary tumor. However, less is known about the possible role of EMT in providing cancer cells with properties that allow them to traffic to distant sites. Given the fact that pro-metastatic cancer cells share a unique capacity with immune cells to traffic in-and-out of blood and lymphatic vessels we hypothesized that tumor cells undergoing EMT may acquire properties of immune cells. To study this, we performed gene-profiling analysis of mouse mammary EpRas tumor cells that had been allowed to adopt an EMT program after long-term treatment with TGF1 for 2 weeks. As expected, EMT cells acquired traits of mesenchymal cell differentiation and migration. However, in addition, we found another cluster of induced genes, which was specifically enriched in monocyte-derived macrophages, mast cells, and myeloid dendritic cells, but less in other types of immune cells. Further studies revealed that this monocyte/macrophage gene cluster was enriched in human breast cancer cell lines displaying an EMT or a Basal B profile, and in human breast tumors with EMT and undifferentiated (ER−/PR−) characteristics. The results identify an EMT-induced monocyte/macrophage gene cluster, which may play a role in breast cancer cell dissemination and metastasis. PMID:25674539

  3. Inflammation-induced CD69+ Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF1.

    PubMed

    Zhang, Xiang; Jiang, Zhengping; Gu, Yan; Liu, Yanfang; Cao, Xuetao; Han, Yanmei

    2016-12-01

    Kupffer cells, tissue-resident macrophage lineage cell, are enriched in vertebrate liver. The mouse F4/80 + Kupffer cells have been subclassified into two subpopulations according to their phenotype and function: CD68 + subpopulation with potent reactive oxygen species (ROS) production and phagocytic capacities, and CD11b + subpopulation with a potent capacity to produce T helper 1 cytokines. In addition, CD11b + Kupffer cells/macrophages may be migrated from the bone marrow or spleen, especially in inflammatory conditions of the liver. For analyzing diverse Kupffer cell subsets, we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells. During L. monocytogenes infection, hepatic CD69 + Kupffer cells were significantly induced and expanded, and CD69 + Kupffer cells expressed higher level of CD11b, and particularly high level of membrane-bound TGF1 (mTGF1) but lower level of F4/80. We also found that clodronate liposome administration did not eliminate hepatic CD69 + Kupffer cell subset. We consider the hepatic CD69 + Kupffer cell population corresponds to CD11b + Kupffer cells, the bone marrow-derived population. Hepatic CD69 + Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells. Thus, we have identified a new subset of inflammation-induced CD69 + Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF1 at the late stage of immune response against infection. CD69 + Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.

  4. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma.

    PubMed

    Matsuzaki, Koichi; Murata, Miki; Yoshida, Katsunori; Sekimoto, Go; Uemura, Yoshiko; Sakaida, Noriko; Kaibori, Masaki; Kamiyama, Yasuo; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi; Seki, Toshihito

    2007-07-01

    Many patients with chronic hepatitis caused by hepatitis C virus (HCV) infection develop liver fibrosis with high risk for hepatocellular carcinoma (HCC), but the mechanism underling this process is unclear. Conversely, transforming growth factor beta (TGF-beta) activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which convert the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Whereas the TbetaRI/pSmad3C pathway suppresses epithelial cell growth by upregulating p21(WAF1) transcription, JNK/pSmad3L-mediated signaling promotes extracellular matrix deposition, partly, by upregulating plasminogen activator inhibitor 1 (PAI-1). We studied the domain-specific Smad3 phosphorylation in biopsy specimens representing chronic hepatitis, cirrhosis, or HCC from 100 patients chronically infected with HCV, and correlated Smad3 phosphorylation with clinical course. As HCV-infected livers progressed from chronic hepatitis through cirrhosis to HCC, hepatocytic pSmad3L/PAI-1 increased with fibrotic stage and necroinflammatory grade, and pSmad3C/p21(WAF1) decreased. Of 14 patients with chronic hepatitis C with strong hepatocytic pSmad3L positivity, 8 developed HCC within 12 years; only 1 of 12 showing little pSmad3L positivity developed HCC. We further sought molecular mechanisms in vitro. JNK activation by the pro-inflammatory cytokine interleukin-1beta stimulated the pSmad3L/PAI-1 pathway in facilitating hepatocytic invasion, in the meantime reducing TGF-beta-dependent tumor-suppressive activity by the pSmad3C/p21(WAF1) pathway. These results indicate that chronic inflammation associated with HCV infection shifts hepatocytic TGF-beta signaling from tumor-suppression to fibrogenesis, accelerating liver fibrosis and increasing risk for HCC.

  5. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact

    PubMed Central

    Yang, Tian; Wang, Jinyuan; Pang, Yamei; Dang, Xiaomin; Ren, Hui; Liu, Ya; Chen, Mingwei; Shang, Dong

    2016-01-01

    Pulmonary silicosis is characterized by lung fibrosis, which leads to impairment of pulmonary function; the specific mechanism remains to be fully elucidated Emodin shows antifibrotic effects in several organs with fibrosis, however, it has not been investigated in pulmonary silicosis. In the present study, the possible mechanism of lung fibrosis and the antifibrotic effect of emodin in silica inhalation-induced lung fibrosis were investigated. Pulmonary silica particle inhalation was used to induce lung fibrosis in mice. Emodin and or the sirtuin 1 (Sirt1) inhibitor, nicotinamide, were used to treat the modeled animals. Pulmonary function was assessed using an occlusion method. The deposition of collagen I and α-smooth muscle actin (SMA) in the lung tissue were detected using fluorescence staining; transforming growth factor-β1 (TGF1) in the bronchoalveolar lavage fluid (BALF) was examined using an enzyme-linked immunosorbent assay; TGF1/Sirt1/small mothers against decapentaplegic (Smad) signaling activation in lung tissue was also examined. The molecular contacts between emodin were evaluated using liquid chromatography-mass spectrometry analysis. The deposition of collagen I and α-SMA in lung tissues were found to be elevated following silica exposure, however, this was relieved by emodin treatment. The pulmonary function of the animals was impaired by silica inhalation, and this was improved by emodin administration. However, the therapeutic effects of emodin on lung fibrosis were impaired by nicotinamide administration. The levels of TGF1 in the BALF and lung tissue were elevated by silica inhalation, however, they were not affected by either emodin or nicotinamide treatment. Additionally, emodin was found to increase the expression level of Sirt1, which decreased the level of deacetylated Smad3 to attenuate collagen deposition. Furthermore, the data suggested that there was direct binding between emodin and Sirt1. Sirt1-regulated TGF1/Smad

  6. c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis.

    PubMed

    Cunnington, Ryan H; Nazari, Mansoreh; Dixon, Ian M C

    2009-10-01

    Recent studies demonstrate the critical role of the extracellular matrix in the organization of parenchymal cells in the heart. Thus, an understanding of the modes of regulation of matrix production by cardiac myofibroblasts is essential. Transforming growth factor beta (TGF-beta) signaling is transduced through the canonical Smad pathway, and the involvement of this pathway in matrix synthesis and other processes requires precise control. Inhibition of Smad signaling may be achieved at the receptor level through the targeting of the TGF-beta type I receptors with an inhibitory Smad7/Smurf2 complex, or at the transcriptional level through c-Ski/receptor-Smad/co-mediator Smad4 interactions. Conversely, Arkadia protein intensifies TGF-beta-induced effects by marking c-Ski and inhibitory Smad7 for destruction. The study of these TGF-beta mediators is essential for future treatment of fibrotic disease, and this review highlights recent relevant findings that may impact our understanding of cardiac fibrosis.

  7. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein

    PubMed Central

    1995-01-01

    The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation. PMID:7593177

  8. TGF beta and IL13 in Schistosomiasis mansoni associated pulmonary arterial hypertension; a descriptive study with comparative groups.

    PubMed

    Ferreira, Rita de Cassia dos Santos; Montenegro, Silvia Maria Lucena; Domingues, Ana Lucia Coutinho; Bandeira, Angela Pontes; Silveira, Carlos Antonio da Mota; Leite, Luiz Arthur Calheiros; Pereira, Clara de Almeida; Fernandes, Izolda Moura; Mertens, Alessandra Brainer; Almeida, Milena Oliveira

    2014-05-21

    It is suggested that interleukin (IL)-13 and transforming growth factor (TGF)-beta play a role in the pulmonary vascular changes found in animal models of schistosomiasis. The aim of this study was to assess and compare the serum levels of total TGF-beta and IL-13 of patients with schistosomiasis with pulmonary arterial hypertension (PAH) and patients with schistosomiasis without PAH. 34 patients from the schistosomiasis outpatient clinic of the Hospital das Clinicas, Recife, Pernambuco, Brazil, without PAH assessed by echocardiography and 34 patients from the Reference Centre of Pulmonary Hypertension of Pronto Socorro Cardiológico de Pernambuco, Recife, Brazil with PAH, confirmed by right heart catheterization, were enrolled on the study. Both groups presented with schistosomal periportal fibrosis after abdominal ultrasound. Serum levels of TGF-beta1 and IL-13 were determined by ELISA. Student t test to independent samples, Mann-Whitney test to nonparametric variables, Pearson correlation test for correlation analyses and Fisher Chi-squared test to compare categorical analyses were used. The median value of TGF-beta1 was significantly higher in patients with PAH (22496.9 pg/ml, interquartile range [IR] 15936.7 - 32087.8) than in patients without PAH (13629.9 pg/ml, IR: 10192.2- 22193.8) (p = 0.006). There was no difference in the median value of IL-13 in the group with Sch-PAH compared to patients without Sch-PAH (p > 0.05). Our results suggest that TGF-beta possibly plays a role in the pathogenesis of schistosomiasis-associated PAH.

  9. Ursolic acid suppresses TGF1-induced quiescent HSC activation and transformation by inhibiting NADPH oxidase expression and Hedgehog signaling

    PubMed Central

    Yu, Shan-Shan; Chen, Biao; Huang, Chen-Kai; Zhou, Juan-Juan; Huang, Xin; Wang, An-Jiang; Li, Bi-Min; He, Wen-Hua; Zhu, Xuan

    2017-01-01

    Activation of quiescent hepatic stellate cells (q-HSCs) and their transformation to myofibroblasts (MFBs) is a key event in liver fibrosis. Hedgehog (Hh) signaling stimulates q-HSCs to differentiate into MFBs, and NADPH oxidase (NOX) may be involved in regulating Hh signaling. The author's preliminary study demonstrated that ursolic acid (UA) selectively induces apoptosis in activated HSCs and inhibits their proliferation in vitro via negative regulation of NOX activity and expression. However, the effect of UA on q-HSCs remains to be elucidated. The present study aimed to investigate the effect of UA on q-HSC activation and HSC transformation and to observe alterations in the NOX and Hh signaling pathways during q-HSC activation. q-HSC were isolated from adult male Sprague-Dawley rats. Following culture for 3 days, the cells were treated with or without transforming growth factor-β1 (TGF1; 5 µg/l); intervention groups were pretreated with UA (40 µM) or diphenyleneiodonium chloride (DPI; 10 µM) for 30 min prior to addition of TGF1. mRNA and protein expression of NOX and Hh signaling components and markers of q-HSC activation were examined by western blotting and reverse transcription-polymerase chain reaction. TGF1 induced activation of q-HSCs, with increased expression of α-smooth muscle actin (α-SMA) and type I collagen. In addition, expression of NOX subunits (gp91phox, p67phox, p22phox, and Rac1) and Hh signaling components, including sonic Hh, sterol-4-alpha-methyl oxidase, and Gli family zinc finger 2, were upregulated in activated HSCs. Pretreatment of q-HSCs with UA or DPI prior to TGF1 significantly downregulated expression of NOX subunits and Hh signaling components and additionally inhibited expression of α-SMA and type I collagen, thereby preventing transformation to MFBs. UA inhibited TGF1-induced activation of q-HSCs and their transformation by inhibiting expression of NOX subunits and the downstream Hh pathway. PMID:29042951

  10. ID2 collaborates with ID3 to suppress iNKT and innate-like tumors1

    PubMed Central

    Li, Jia; Roy, Sumedha; Kim, Young-Mi; Li, Shibo; Zhang, Baojun; Love, Cassandra; Reddy, Anupama; Rajagopalan, Deepthi; Dave, Sandeep; Diehl, Anna Mae; Zhuang, Yuan

    2017-01-01

    Inhibitor of DNA binding (ID) proteins, including ID1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins has been associated with a broad spectrum of tumors, recent studies have identified that ID3 plays a tumor suppressor role in the development of Burkitt’s lymphoma in humans and Hepatosplenic T cell lymphomas in mice. Here, we report rapid lymphoma development in Id2/Id3 double knockout (L-DKO) mice caused by unchecked expansion of either invariant Natural Killer T (iNKT) cells, or a unique subset of innate-like, CD1d-independent T cells. These populations started expansion in neonatal mice and, upon malignant transformation, caused fatality at age between 3–11 months. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability, along with upregulation of several different signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-kB pathway were found to be shared between L-DKO lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumoriogenic pathways caused by loss function of ID2 and ID3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas. PMID:28258199

  11. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway.

    PubMed

    Polimeni, Manuela; Gulino, Giulia Rossana; Gazzano, Elena; Kopecka, Joanna; Marucco, Arianna; Fenoglio, Ivana; Cesano, Federico; Campagnolo, Luisa; Magrini, Andrea; Pietroiusti, Antonio; Ghigo, Dario; Aldieri, Elisabetta

    2016-06-01

    Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-β/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-β-mediated signalling pathway. Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-β production. Experiments with neutralizing anti-TGF-β antibody, specific inhibitors of GSK-3β and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey's post-hoc test. Fully characterized MWCNT (mean length < 5 μm) are able to induce EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-β secretion, Akt activation and GSK-3β inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear β-catenin - due to E

  12. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    PubMed

    Kaplan, Rebecca E W; Chen, Yutao; Moore, Brad T; Jordan, James M; Maxwell, Colin S; Schindler, Adam J; Baugh, L Ryan

    2015-12-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows

  13. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest

    PubMed Central

    Moore, Brad T.; Jordan, James M.; Maxwell, Colin S.; Schindler, Adam J.; Baugh, L. Ryan

    2015-01-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study

  14. Chitinase 1 Is a Biomarker for and Therapeutic Target in Scleroderma-Associated Interstitial Lung Disease That Augments TGF1 Signaling

    PubMed Central

    Lee, Chun Geun; Herzog, Erica L.; Ahangari, Farida; Zhou, Yang; Gulati, Mridu; Lee, Chang-Min; Peng, Xueyan; Feghali-Bostwick, Carol; Jimenez, Sergio A.; Varga, John; Elias, Jack A.

    2014-01-01

    Interstitial lung disease (ILD) with pulmonary fibrosis is an important manifestation in systemic sclerosis (SSc, scleroderma) where it portends a poor prognosis. However, biomarkers that predict the development and or severity of SSc-ILD have not been validated, and the pathogenetic mechanisms that engender this pulmonary response are poorly understood. In this study, we demonstrate in two different patient cohorts that the levels of chitotriosidase (Chit1) bioactivity and protein are significantly increased in the circulation and lungs of SSc patients compared with demographically matched controls. We also demonstrate that, compared with patients without lung involvement, patients with ILD show high levels of circulating Chit1 activity that correlate with disease severity. Murine modeling shows that in comparison with wild-type mice, bleomycin-induced pulmonary fibrosis was significantly reduced in Chit1−/− mice and significantly enhanced in lungs from Chit1 overexpressing transgenic animals. In vitro studies also demonstrated that Chit1 interacts with TGF1 to augment fibroblast TGF-β receptors 1 and 2 expression and TGF-β–induced Smad and MAPK/ERK activation. These studies indicate that Chit1 is potential biomarker for ILD in SSc and a therapeutic target in SSc-associated lung fibrosis and demonstrate that Chit1 augments TGF1 effects by increasing receptor expression and canonical and noncanonical TGF1 signaling. PMID:22826322

  15. TGF-β but not BMP signaling induces prechondrogenic condensation through ATP oscillations during chondrogenesis.

    PubMed

    Kwon, Hyuck Joon

    2012-08-10

    Although both TGF-β and BMP signaling enhance expression of adhesion molecules during chondrogenesis, TGF-β but not BMP signaling can initiate condensation of uncondensed mesenchymal cells. However, it remains unclear what causes the differential effects between TGF-β and BMP signaling on prechondrogenic condensation. Our previous report demonstrated that ATP oscillations play a critical role in prechondrogenic condensation. Thus, the current study examined whether ATP oscillations are associated with the differential actions of TGF-β and BMP signaling on prechondrogenic condensation. The result revealed that while both TGF1 and BMP2 stimulated chondrogenic differentiation, TGF1 but not BMP2 induced prechondrogenic condensation. It was also found that TGF1 but not BMP2 induced ATP oscillations and inhibition of TGF-β but not BMP signaling prevented insulin-induced ATP oscillations. Moreover, blockage of ATP oscillations inhibited TGF1-induced prechondrogenic condensation. In addition, TGF1-driven ATP oscillations and prechondrogenic condensation depended on Ca(2+) influx via voltage-dependent calcium channels. This study suggests that Ca(2+)-driven ATP oscillations mediate TGF-β-induced the initiation step of prechondrogenic condensation and determine the differential effects between TGF-β and BMP signaling on chondrogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Mechanism of Mechanical Trauma-Induced Extracellular Matrix Remodeling of Fibroblasts in Association with Nrf2/ARE Signaling Suppression Mediating TGF1/Smad3 Signaling Inhibition

    PubMed Central

    Liu, Cheng; Li, Qiannan; Wang, Linlin; Min, Jie; Hu, Ming; Hong, Shasha

    2017-01-01

    Stress urinary incontinence (SUI) is a common hygienic problem affecting the quality of women's life worldwide. In this research, we revealed the involvement and regulation of extracellular matrix (ECM) remodeling, oxidative damage, and TGF1 signaling in the pathological mechanisms of mechanical trauma-induced SUI. We found that excessive mechanical strain significantly increased apoptosis rate, decreased cell viability and ECM production, and broke the balance of MMPs/TIMPs compared with the nonstrain control (NC) group. The expression levels of TGFβ1, p-Smad3, Nrf2, GPx1, and CAT were downregulated, the production of ROS, 8-OHdG, 4-HNE, and MDA was increased, and the nuclear translocation of Smad2/3 was suppressed after 5333 μstrain's treatment. Both mTGF1 pretreatment and Nrf2 overexpression could reverse mechanical injury-induced TGFβ1/Smad3 signaling inhibition and ECM remodeling, whereas mTGF1 had no effect on Nrf2 expression. Nrf2 overexpression significantly alleviated mechanical injury-induced ROS accumulation and oxidative damage; in contrast, Nrf2 silencing exhibited opposite effects. Besides, vaginal distention- (VD-) induced in vivo SUI model was used to confirm the in vitro results; Nrf2 knockout aggravates mechanical trauma-induced LPP reduction, ECM remodeling, oxidative damage, and TGF1/Smad3 suppression in mice. Therefore, we deduce that mechanical injury-induced ECM remodeling might be associated with Nrf2/ARE signaling suppression mediating TGF1/Smad3 signaling inhibition. This might reflect a new molecular target for SUI researches. PMID:29109834

  17. Glycosaminoglycan and transforming growth factor beta1 changes in human plasma and urine during the menstrual cycle, in vitro fertilization treatment, and pregnancy.

    PubMed

    De Muro, Pierina; Capobianco, Giampiero; Formato, Marilena; Lepedda, Antonio Junior; Cherchi, Gian Mario; Gordini, Laila; Dessole, Salvatore

    2009-07-01

    To evaluate transforming growth factor beta1 (TGF-beta1) and glycosaminoglycans (GAG) changes in human plasma and urine during the menstrual cycle, IVF-ET, and pregnancy. Prospective clinical study. University hospital. Thirteen women with apparently normal menstrual cycle (group 1); 18 women undergoing IVF-ET (group 2); and 14 low-risk pregnant women (group 3). We assayed plasma and urine concentrations of TGF-beta1, urine content, and distribution of GAG. Blood and urine samples were collected during days 2 to 3, 12 to 13, and 23 to 24 in group 1; in group 2, samples were obtained at menstrual phase, oocyte pick-up day, and 15 days after ET; in group 3, samples were obtained during gestational weeks 10-12, 22-24, and 30-32 and 1 month after delivery. Changes in TGF-beta1 and GAG content. The mean value of total urinary trypsin inhibitor/chondroitin sulfate (UTI/CS) showed a distinct peak at day 12 of the menstrual cycle in the fertile women in whom we monitored the ovulatory period. In the IVF-ET group, GAG distribution and TGF-beta1 levels showed significant differences during the cycle. We observed increased levels of plasma TGF-beta1 15 days after ET. A significant increase of total UTI/CS value with increasing gestation was detected. Transforming growth factor beta1 and GAG levels could represent an additional tool to monitor reproductive events and could be useful, noninvasive markers of ovulation and ongoing pregnancy.

  18. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors

    PubMed Central

    Budi, Erine H.; Muthusamy, Baby Periyanayaki; Derynck, Rik

    2015-01-01

    Increased activity of transforming growth factor β (TGF-β), which binds to and stimulates cell surface receptors, contributes to cancer progression and fibrosis by driving epithelial cells toward a migratory mesenchymal phenotype and increasing the abundance of extracellular matrix proteins. The abundance of TGF-β receptors at the cell surface determines cellular responsiveness to TGF-β, which is often produced by the same cells that have the receptors, and thus serves as an autocrine signal. We found that Akt-mediated phosphorylation of AS160, a RabGAP [guanosine triphosphatase (GTPase)-activating protein] promoted the translocation of TGF-β receptors from intracellular stores to the plasma membrane of mouse embryonic fibroblasts (MEFs) and NMuMG epithelial cells. Consequently, insulin, which is commonly used to treat hyperglycemia and activates Akt signaling, increased the amount of TGF-β receptors at the cell surface, thereby enhancing TGF-β responsiveness. This insulin-induced increase in autocrine TGF-β signaling contributed to insulin-induced gene expression responses, attenuated the epithelial phenotype, and promoted the migration of NMuMG cells. Furthermore, the enhanced delivery of TGF-β receptors at the cell surface enabled insulin to increase TGF-β-induced gene responses. The enhancement of TGF-β responsiveness in response to Akt activation may help to explain the biological effects of insulin, the progression of cancers in which Akt is activated, and the increased incidence of fibroses in diabetes. PMID:26420907

  19. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β–SMAD3 pathway in non-small cell lung adenocarcinoma

    PubMed Central

    Risolino, Maurizio; Mandia, Nadia; Iavarone, Francescopaolo; Dardaei, Leila; Longobardi, Elena; Fernandez, Serena; Talotta, Francesco; Bianchi, Fabrizio; Pisati, Federica; Spaggiari, Lorenzo; Harter, Patrick N.; Mittelbronn, Michel; Schulte, Dorothea; Incoronato, Mariarosaria; Di Fiore, Pier Paolo; Blasi, Francesco; Verde, Pasquale

    2014-01-01

    Pre–B-cell leukemia homeobox (Pbx)-regulating protein-1 (Prep1) is a ubiquitous homeoprotein involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. Previously we have shown that Prep1 is a haploinsufficient tumor suppressor that inhibits neoplastic transformation by competing with myeloid ecotropic integration site 1 for binding to the common heterodimeric partner Pbx1. Epithelial–mesenchymal transition (EMT) is controlled by complex networks of proinvasive transcription factors responsive to paracrine factors such as TGF-β. Here we show that, in addition to inhibiting primary tumor growth, PREP1 is a novel EMT inducer and prometastatic transcription factor. In human non-small cell lung cancer (NSCLC) cells, PREP1 overexpression is sufficient to trigger EMT, whereas PREP1 down-regulation inhibits the induction of EMT in response to TGF-β. PREP1 modulates the cellular sensitivity to TGF-β by inducing the small mothers against decapentaplegic homolog 3 (SMAD3) nuclear translocation through mechanisms dependent, at least in part, on PREP1-mediated transactivation of a regulatory element in the SMAD3 first intron. Along with the stabilization and accumulation of PBX1, PREP1 induces the expression of multiple activator protein 1 components including the proinvasive Fos-related antigen 1 (FRA-1) oncoprotein. Both FRA-1 and PBX1 are required for the mesenchymal changes triggered by PREP1 in lung tumor cells. Finally, we show that the PREP1-induced mesenchymal transformation correlates with significantly increased lung colonization by cells overexpressing PREP1. Accordingly, we have detected PREP1 accumulation in a large number of human brain metastases of various solid tumors, including NSCLC. These findings point to a novel role of the PREP1 homeoprotein in the control of the TGF-β pathway, EMT, and metastasis in NSCLC. PMID:25157139

  20. Low-Dose Paclitaxel Ameliorates Pulmonary Fibrosis by Suppressing TGF1/Smad3 Pathway via miR-140 Upregulation

    PubMed Central

    Wang, Congjie; Song, Xiaodong; Li, Youjie; Han, Fang; Gao, Shuyan; Wang, Xiaozhi; Xie, Shuyang; Lv, Changjun

    2013-01-01

    Abnormal TGF1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF1/Smad3 pathway via upregulating miR-140. PMID:23967091

  1. Effects of TGF1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling.

    PubMed

    Chang, Mei-Chi; Chang, Hsiao-Hua; Lin, Po-Shuan; Huang, Yu-An; Chan, Chiu-Po; Tsai, Yi-Ling; Lee, Shen-Yang; Jeng, Po-Yuan; Kuo, Han-Yueh; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2018-04-01

    Transforming growth factor-β1 (TGF1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF1 slightly inhibited cell growth that was reversed by SB431542. TGF1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF1-induced secretion of PAI-1 and suPAR. These results indicate that TGF1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF1 and aryl hydrocarbon receptor signaling.

    PubMed

    Miret, Noelia; Rico-Leo, Eva; Pontillo, Carolina; Zotta, Elsa; Fernández-Salguero, Pedro; Randi, Andrea

    2017-11-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant and a dioxin-like compound that binds weakly to the aryl hydrocarbon receptor (AhR). Because AhR and transforming growth factor β1 (TGF1) converge to regulate common signaling pathways, alterations in this crosstalk might contribute to developing preneoplastic lesions. The aim of this study was to evaluate HCB action on TGF1 and AhR signaling in mouse mammary gland, through AhR+/+ and AhR-/- models. Results showed a differential effect in mouse mammary epithelial cells (NMuMG), depending on the dose: 0.05μM HCB induced cell migration and TGF1 signaling, whereas 5μM HCB reduced cell migration, promoted cell cycle arrest and stimulated the dioxin response element (DRE) -dependent pathway. HCB (5μM) enhanced α-smooth muscle actin expression and decreased TGF-β receptor II mRNA levels in immortalized mouse mammary fibroblasts AhR+/+, resembling the phenotype of transformed cells. Accordingly, their conditioned medium was able to enhance NMuMG cell migration. Assays in C57/Bl6 mice showed HCB (3mg/kg body weight) to enhance ductal hyperplasia, cell proliferation, estrogen receptor α nuclear localization, branch density, and the number of terminal end buds in mammary gland from AhR+/+ mice. Primary culture of mammary epithelial cells from AhR+/+ mice showed reduced AhR mRNA levels after HCB exposure (0.05 and 5μM). Interestingly, AhR-/- mice exhibited an increase in ductal hyperplasia and mammary growth in the absence of HCB treatment, thus revealing the importance of AhR in mammary development. Our findings show that environmental HCB concentrations modulate AhR and TGF1 signaling, which could contribute to altered mammary branching morphogenesis, likely leading to preneoplastic lesions and retaining terminal end buds. Copyright © 2017. Published by Elsevier Inc.

  3. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines.

    PubMed

    Shan, Hongli; Zhang, Yong; Lu, Yanjie; Zhang, Ying; Pan, Zhenwei; Cai, Benzhi; Wang, Ning; Li, Xuelian; Feng, Tieming; Hong, Yuan; Yang, Baofeng

    2009-08-01

    The present study was designed to decipher molecular mechanisms underlying nicotine's promoting atrial fibrillation (AF) by inducing atrial structural remodelling. The canine model of AF was successfully established by nicotine administration and rapid pacing. The atrial fibroblasts isolated from healthy dogs were treated with nicotine. The role of microRNAs (miRNAs) on the expression and regulation of transforming growth factor-beta1 (TGF-beta1), TGF-beta receptor type II (TGF-betaRII), and collagen production was evaluated in vivo and in vitro. Administration of nicotine for 30 days increased AF vulnerability by approximately eight- to 15-fold in dogs. Nicotine stimulated remarkable collagen production and atrial fibrosis both in vitro in cultured canine atrial fibroblasts and in vivo in atrial tissues. Nicotine produced significant upregulation of expression of TGF-beta1 and TGF-betaRII at the protein level, and a 60-70% decrease in the levels of miRNAs miR-133 and miR-590. This downregulation of miR-133 and miR-590 partly accounts for the upregulation of TGF-beta1 and TGF-betaRII, because our data established TGF-beta1 and TGF-betaRII as targets for miR-133 and miR-590 repression. Transfection of miR-133 or miR-590 into cultured atrial fibroblasts decreased TGF-beta1 and TGF-betaRII levels and collagen content. These effects were abolished by the antisense oligonucleotides against miR-133 or miR-590. The effects of nicotine were prevented by an alpha7 nicotinic acetylcholine receptor antagonist. We conclude that the profibrotic response to nicotine in canine atrium is critically dependent upon downregulation of miR-133 and miR-590.

  4. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    PubMed

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  5. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    PubMed

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  6. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction

    PubMed Central

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-01-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. PMID:25823960

  7. Transforming growth factor- 1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma.

    PubMed

    Salam, Muhammad T; Gauderman, W James; McConnell, Rob; Lin, Pi-Chu; Gilliland, Frank D

    2007-12-15

    Transforming growth factor (TGF)-beta1 is involved in airway inflammation and remodeling, two key processes in asthma pathogenesis. Tobacco smoke and traffic emissions induce airway inflammation and modulate TGF-beta1 gene expression. We hypothesized that the effects of functional TGF-beta1 variants on asthma occurrence vary by these exposures. We tested these hypotheses among 3,023 children who participated in the Children's Health Study. Tagging single-nucleotide polymorphisms rs4803457 C>T and C-509T (a functional promoter polymorphism) accounted for 94% of the haplotype diversity of the upstream region. Exposure to maternal smoking in utero was based on smoking by biological mother during pregnancy. Residential distance from nearest freeway was calculated based on residential address at study entry. Children with the -509TT genotype had a 1.8-fold increased risk of early persistent asthma (95% confidence interval [CI], 1.11-2.95). This association varied marginally significantly by in utero exposure to maternal smoking. Compared with children with the -509CC/CT genotype with no in utero exposure to maternal smoking, those with the -509TT genotype with such exposure had a 3.4-fold increased risk of early persistent asthma (95% CI, 1.46-7.80; interaction, P = 0.11). The association between TGF-beta1 C-509T and lifetime asthma varied by residential proximity to freeways (interaction P = 0.02). Children with the -509TT genotype living within 500 m of a freeway had over three-fold increased lifetime asthma risk (95% CI, 1.29-7.44) compared with children with CC/CT genotype living > 1500 m from a freeway. Children with the TGF-beta1 -509TT genotype are at increased risk of asthma when they are exposed to maternal smoking in utero or to traffic-related emissions.

  8. Regulation of the expression of GARP/latent-TGF1 complexes on mouse T cells and their role in Regulatory T Cell and Th17 differentiation1

    PubMed Central

    Edwards, Justin P.; Fujii, Hodaka; Zhou, Angela X.; Creemers, John; Unutmaz, Derya; Shevach, Ethan M.

    2013-01-01

    GARP/LRRC32 has previously been defined as a marker of activated human regulatory T-cells (Tregs) that is responsible for surface localization of latent TGF1. We find that GARP and latent TGF1 are also found on mouse Tregs activated via TCR stimulation, but in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF1 and TGF1 loading into GARP and is independent of furin-mediated processing of pro-TGF1 to latent TGF1. Specific deletion of GARP in CD4+ T cells results in lack of expression of latent-TGF1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of T conventional cells in vitro. Activated Tregs expressing GARP/latent-TGF1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17 producing cells and Treg is preferentially induced by Tregs expressing the latent-TGF1/GARP complex on their cell surface rather than by secreted latent-TGF1. PMID:23645881

  9. Monocyte production of transforming growth factor beta in long-term hemodialysis: modulation by hemodialysis membranes.

    PubMed

    Mege, J L; Capo, C; Purgus, R; Olmer, M

    1996-09-01

    Cytokines are likely involved in hemodialysis-associated complications such as immunodeficiency and beta 2 microglobulin amyloidosis. Because transforming growth factors beta (TGF beta) exert immunosuppressive effects on lymphocytes, down-modulate monocyte functions, and promote fibrosis, we hypothesize that they participate in the deleterious effects of hemodialysis. We investigated the production of TGF beta 1 and TGF beta 2 by monocytes from controls and patients dialyzed with high-flux cellulose triacetate (CT) and polyacrylonitrile (PAN) membranes. The detection of both TGF beta s required an acidification step, suggesting that they are secreted as latent complexes. The spontaneous production of TGF beta 1 and TGF beta 2 was significantly higher in patients dialyzed with CT or PAN than in controls, but the oversecretion of TGF beta 1 was more sustained in CT-treated patients than in PAN-dialyzed patients. The production of interleukin-6 (IL-6) was increased in both patient groups as compared with controls. In contrast to TGF beta 1, the increase was greater in PAN-treated patients than in CT-treated patients, and the release of tumor necrosis factor alpha (TNF alpha) was increased only in PAN-treated patients. Taken together, our results show that hemodialysis is associated with the oversecretion of monocyte cytokines. Moreover, the type of dialysis membrane specifically affects the balance between the secretion of suppressive cytokines such as TGF beta and that of inflammatory cytokines such as IL-6 and TNF alpha.

  10. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin

  11. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Xue; Tamai, Riyoko; Endo, Yasuo

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, amore » promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.« less

  12. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats.

    PubMed

    Yanagida, M; Ide, Y; Imai, A; Toriyama, M; Aoki, T; Harada, K; Izumi, H; Uzumaki, H; Kusaka, M; Tokiwa, T

    1997-12-01

    Pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) injected at a suprapharmacologic dose (100 microg/kg) daily for 5 d in normal rats caused marked increases in marrow megakaryocytes and platelet counts at 6-8 d followed by gradual decreases to control levels at 10-20 d. Interestingly, in addition to the expected thrombopoiesis, PEG-rHuMGDF was associated with myelofibrosis with a predominance of reticulin fibres at day 10 followed by complete normalization by day 20. At 6-8 d, the levels of transforming growth factor-beta1 (TGF-beta1) in the extracellular fluid of the marrow, the platelet poor plasma, and the platelet extract were increased 23-, 7- and 2-fold, respectively. The elevated levels of TGF-beta1 were gradually reduced to baseline levels at 13-20 d in accordance with the normalization of myelofibrosis and thrombopoiesis. An ultrastructural analysis showed that large fragments of megakaryocytes were deposited in the marrow parenchyma of PEG-rHuMGDF-treated rats at day 6. PEG-rHuMGDF administration at pharmacologic doses (1 and 10 microg/kg) did not induce the deposition of reticulin fibres in the marrow. These findings suggest that TGF-beta1 leaked from megakaryocytes is involved in the development of the PEG-rHuMGDF-induced myelofibrosis and that this is a reversible process related to the regulation of the excess production of platelets.

  13. Mutual antagonism of TGF-beta and Interleukin-2 in cell survival and lineage commitment of induced regulatory T cells

    PubMed Central

    Tischner, D; Wiegers, G J; Fiegl, H; Drach, M; Villunger, A

    2012-01-01

    Transforming growth factor beta (TGF-β)- and Interleukin-2 (IL-2)-mediated signaling enables the generation and expansion of induced regulatory T (iTreg) cells that carry high hopes for the treatment of chronic inflammatory and autoimmune diseases. Knowledge about factors stabilizing their lineage commitment and lifespan, however, is limited. Here, we investigated the behavior of iTreg cells, derived from apoptosis-defective mouse mutants, during activated cell autonomous cell death, triggered by cytokine-deprivation, or activation-induced cell death (AICD) after restimulation of the T-cell receptor, and compared these responses with those of effector T cells. We observed that iTreg cells were much more sensitive to IL-2-deprivation but poorly susceptible to AICD. In fact, when apoptosis was compromised, T-cell receptor (TCR)-religation resulted in methylation-independent, ERK- and PI3K/mTOR-mediated loss of Foxp3 expression, impaired suppressive capacity and effector cytokine production. Although iTreg cells prevented colitis induction they rapidly lost Foxp3-GFP expression and gained ability to produce effector cytokines thereby imposing Th1 cell fate on resident effector cells. Surprisingly, iTreg cell conversion itself was limited by TGF-β-mediated Bim/Bcl2L11-dependent apoptosis. Hence, the very same cytokine that drives the generation of iTreg cells can trigger their demise. Our results provide novel insights in iTreg cell biology that will assist optimization of iTreg-based therapy. PMID:22322859

  14. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis

    PubMed Central

    Liu, Rui-Ming; Desai, Leena P.

    2015-01-01

    Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  15. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  16. [Expression of Id1 and Id3 in endometrial carcinoma and their roles in regulating biological behaviors of endometrial carcinoma cells in vitro].

    PubMed

    Sun, Lili; Li, Xuenong; Liu, Guobing

    2013-06-01

    To investigate the expression of inhibitor of DNA differentiation/DNA binding 1 (Id1) and Id3 in endometrial carcinoma and explore their roles in regulating the proliferation, invasion, migration and adhesion of endometrial carcinoma cells in vitro. Id1 and Id3 expression in 4 fresh endometrial cancer tissue specimens and matched adjacent tissues were detected using Western blotting. Two endometrial cancer cell lines, HEC-1-B and RL-952, were both divided into 4 groups, namely the untreated group, blank virus group, promoter group and Id1/Id3 double-knockdown group, and their expressions of MMP2, CXCR4 and P21 were detected by qRT-PCR and Western blotting. The proliferation, invasion, migration and adhesion of the cells were evaluated with MTT, Transwell, wound-healing, and adhesion assays. Endometrial carcinoma tissues showed significantly higher Id1 and Id3 expression than the adjacent tissues (P<0.05). In the two endometrial carcinoma cell lines, Id1/Id3 double-knockdown significantly decreased MMP2 and CXCR4 expression and increased P21 expression at both mRNA and protein levels (P<0.05), and resulted in suppressed cell proliferation, invasion, migration and adhesion. Id1 and Id3 expressions are up-regulated in endometrial carcinoma to promote the proliferation, invasion, migration and adhesion of the tumor cells by increasing MMP2 and CXCR4 expression and reducing P21 expression. Therapies targeting Id1/Id3 can be a novel strategy for treatment of endometrial carcinoma.

  17. Role of GARP in the activation of latent TGF1.

    PubMed

    Stockis, Julie; Dedobbeleer, Olivier; Lucas, Sophie

    2017-09-26

    TGF1, 2 and 3 cytokines are involved in many cellular processes including cell proliferation, differentiation, migration and survival. Whereas TGF-β2 and 3 play important roles in embryonic development, TGF1 is mostly implicated in controlling immune responses after birth. The production of TGF1 is a tightly regulated process, occurring mostly at a post-translational level. Virtually all cells produce the latent, inactive form of TGF1. In latent TGF1, the mature TGF1 dimer is non-covalently associated to the Latency Associated Peptide, or LAP, which prevents binding to the TGF1 receptor. Activation of the cytokine implies release of mature TGF1 from LAP. Only a few cell types activate latent TGF1, via mechanisms that are cell type specific. Proteins such as integrins, proteases and thrombospondin-1 activate TGF1 in epithelial cells, fibroblasts and dendritic cells. More recently, the protein GARP was shown to be involved in TGF1 activation by regulatory T cells (Treg), a subset of CD4 + T lymphocytes specialized in suppression of immune responses. GARP is a transmembrane protein that binds latent-TGF1 and tethers it on the Treg surface. The role of GARP was studied mostly in Tregs, and this was recently reviewed in L. Sun, H. Jin and H. Li, Oncotarget, 2016, 7, 42826-42836. However, GARP is also expressed in non-immune cells. This review focuses on the roles of GARP in latent TGF1 activation by immune and non-immune cells.

  18. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    PubMed

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  19. Hepatic Stellate Cells Inhibit T Cells through Active TGF1 from a Cell Surface-Bound Latent TGF1/GARP Complex.

    PubMed

    Li, Yan; Kim, Byung-Gyu; Qian, Shiguang; Letterio, John J; Fung, John J; Lu, Lina; Lin, Feng

    2015-09-15

    Hepatic stellate cells (HSCs) inhibit T cells, a process that could help the liver to maintain its immunoprivileged status. HSCs secrete latent TGF1, but the detailed mechanisms by which latent TGF1 is activated and whether it plays any role in HSC-mediated T cell suppression remain unclear. Glycoprotein A repetitions predominant (GARP) is a surface marker of activated regulatory T cells. GARP binds latent TGF1 for its activation, which is critical for regulatory T cells to suppress effector T cells; however, it is still unclear whether GARP is present on HSCs and whether it has any impact on HSC function. In this study, we found that TGF1(+/-) HSCs, which produce reduced levels of TGF1, showed decreased potency in inhibiting T cells. We also found that pharmaceutical or genetic inhibition of the TGF1 signaling pathway reduced the T cell-inhibiting activity of HSCs. Additionally, using isolated primary HSCs, we demonstrated that GARP was constitutively expressed on HSCs. Blocking GARP function or knocking down GARP expression significantly impaired the potency of HSCs to suppress the proliferation of and IFN-γ production from activated T cells, suggesting that GARP is important for HSCs to inhibit T cells. These results demonstrate the unexpected presence of GARP on HSCs and its significance in regard to the ability of HSCs to activate latent TGF1 and thereby inhibit T cells. Our study reveals a new mechanism for HSC-mediated immune regulation and potentially for other conditions, such as liver fibrosis, that involve HSC-secreted TGF1. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    PubMed

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  1. Association between Plasma Levels of Transforming Growth Factor-beta1, IL-23 and IL-17 and the Severity of Autism in Egyptian Children

    ERIC Educational Resources Information Center

    Hashim, Haitham; Abdelrahman, Hadeel; Mohammed, Doaa; Karam, Rehab

    2013-01-01

    It has been recently shown that dysregulation of transforming growth factor-beta1 (TGF-beta1), IL-23 and IL-17 has been identified as a major factor involved in autoimmune disorders. Based on the increasing evidence of immune dysfunction in autism the aim of this study was to measure serum levels of TGF-beta1, IL-23 and IL-17 in relation to the…

  2. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    PubMed

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF1 using adenoviral (Ad) gene transfer (AdTGF1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  3. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta.

    PubMed

    Wahl, S M; Allen, J B; Costa, G L; Wong, H L; Dasch, J R

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions.

  4. Reversal of acute and chronic synovial inflammation by anti- transforming growth factor beta

    PubMed Central

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions. PMID:8418203

  5. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.

    PubMed

    Mathis, Ute; Schaeffel, Frank

    2010-06-01

    In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in

  6. Dendritic cells exposed in vitro to TGF1 ameliorate experimental autoimmune myasthenia gravis

    PubMed Central

    YARILIN, D; DUAN, R; HUANG, Y-M; XIAO, B-G

    2002-01-01

    Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG), characterized by an autoaggressive T-cell-dependent antibody-mediated immune response directed against the acetylcholine receptor (AChR) of the neuromuscular junction. Dendritic cells (DC) are unique antigen-presenting cells which control T- and B-cell functions and induce immunity or tolerance. Here, we demonstrate that DC exposed to TGF1 in vitro mediate protection against EAMG. Freshly prepared DC from spleen of healthy rats were exposed to TGF1 in vitro for 48 h, and administered subcutaneously to Lewis rats (2 × 106DC/rat) on day 5 post immunization with AChR in Freund’s complete adjuvant. Control EAMG rats were injected in parallel with untreated DC (naive DC) or PBS. Lewis rats receiving TGF1-exposed DC developed very mild symptoms of EAMG without loss of body weight compared with control EAMG rats receiving naive DC or PBS. This effect of TGF1-exposed DC was associated with augmented spontaneous and AChR-induced proliferation, IFN-γ and NO production, and decreased levels of anti-AChR antibody-secreting cells. Autologous DC exposed in vitro to TGF1 could represent a new opportunity for DC-based immunotherapy of antibody-mediated autoimmune diseases. PMID:11876742

  7. [Association between Fok I vitamin D receptor (VDR) gene polymorphism and plasmatic concentrations of transforming growth factor-beta1 and interferon gamma in type 1 diabetes mellitus].

    PubMed

    López, Tatiana; García, Diego; Angel, Bárbara; Carrasco, Elena; Codner, Ethel; Ugarte, Francisca; Pérez-Bravo, Francisco

    2008-02-02

    In order to assess whether Fok I vitamin D receptor gene (VDR) polymorphism is involved in the genetic susceptibility of type 1 diabetes, a case-control study was conducted and VDR genotypes were related to serum concentrations of 25(OH) vitamin D and cytokines transforming growth factor beta1 (TGF-beta1) and interferon gamma (INF-gamma). 151 incident cases of type 1 diabetes and 182 non related healthy controls from Santiago were studied for VDR polymorphisms in peripheral blood DNA. Exon 2 (Fok I) segments were amplified by polimerase chain reaction and analyzed by means of restriction fragment length polymorphism to determine each corresponding genotype. Differences for allele, genotype and serological markers as 25(OH) vitamin D, TGF-beta1 and INF-gamma levels distribution between patients and controls were analyzed. Fok I polymorphism distribution analysis showed no differences between patients and controls. Among diabetics, higher levels of TGF-beta1 (median, 282.6 pg/ml; range, 131.8-3,031.4) were observed compared with healthy children (median, 232.2 pg/ml; range, 135.7-506.5) (p < 0.0038). Similar results were observed for INF-gamma concentrations (median, 121.1 pg/ml, and range, 5.3-228.8, in cases, and median, 89.6 pg/ml, and range, 10.9-117.2 in controls) (p < 0.0004). The diabetic carriers of the ff genotype showed low levels of 25(OH) vitamin D compared with the carriers of the F allele: mean (standard deviation), 23.1 (5.9) versus 27.9 (10.3) ng/ml (p < 0.03). A similar result was observed for TGF-beta1 concentrations in diabetic carriers of ff genotype and patients carriers of the F allele (298.5 versus 276.6; p < 0.05). Fok I polymorphism of VDR could have a marginal role in the immunologic disturbance in type 1 diabetes.

  8. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF1 under the control of dietary xylan 1.

    PubMed

    Hamady, Zaed Z R; Scott, Nigel; Farrar, Mark D; Wadhwa, Meenu; Dilger, Paula; Whitehead, Terence R; Thorpe, Robin; Holland, Keith T; Lodge, J Peter A; Carding, Simon R

    2011-09-01

    While cytokine therapy and the use of immunosuppressive cytokines such as transforming growth factor-β (TGF-β) offer great potential for the treatment of inflammatory bowel disease (IBD), issues concerning formulation, stability in vivo, delivery to target tissues, and potential toxicity need to be addressed. In consideration of these problems we engineered the human commensal bacterium Bacteroides ovatus for the controlled in situ delivery of TGF-β(1) and treatment of colitis. Sequence encoding the human tgf1 gene was cloned downstream of the xylanase promoter in the xylan operon of B. ovatus by homologous recombination. Resulting recombinants (BO-TGF) were tested for TGF-β production in the presence and absence of polysaccharide xylan in vitro and in vivo, and used to treat experimental murine colitis. Clinical and pathological scores were used to assess the effectiveness of therapy. Colonic inflammatory markers including inflammatory cytokine expression were assessed by colorimetric assay and real-time polymerase chain reaction (PCR). BO-TGF secreted high levels of biologically active dimeric TGF-β in vitro and in vivo in a xylan-controlled manner. Administration of xylan in drinking water to BO-TGF-treated mice resulted in a significant clinical improvement of colitis, accelerating healing of damaged colonic epithelium, reducing inflammatory cell infiltration, reducing expression of proinflammatory cytokines, and promoting production of mucin-rich goblet cells in colonic crypts. These beneficial effects are comparable and in most cases superior to that achieved by conventional steroid therapy. This novel drug delivery system has potential for the targeted and controlled delivery of TGF-β(1) and other immunotherapeutic agents for the long-term management of various bowel disorders. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  9. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF1) Production in Human Regulatory T Cells.

    PubMed

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF1, favors its cleavage into latent inactive TGF1, induces the secretion and surface presentation of GARP·latent TGF1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF1 complexes regulate TGF1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF1, secretion of soluble latent TGF1, and surface presentation of GARP·TGF1 complexes by Tregs but does not contribute to TGF1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells

    PubMed Central

    Sharma, Bal Krishan; Kolhe, Ravindra; Black, Stephen M.; Keller, Jonathan R.; Mivechi, Nahid F.; Satyanarayana, Ande

    2016-01-01

    Reprograming of metabolism is one of the central hallmarks of cancer. The majority of cancer cells depend on high rates of glycolysis and glutaminolysis for their growth and survival. A number of oncogenes and tumor suppressors have been connected to the regulation of altered glucose and glutamine metabolism in cancer cells. For example, the oncogene c-Myc plays vital roles in cancer cell metabolic adaptation by directly regulating various genes that participate in aerobic glycolysis and glutaminolysis. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays important roles in cell proliferation, differentiation, and cell fate determination. Overexpression of Id1 causes intestinal adenomas and thymic lymphomas in mice, suggesting that Id1 could function as an oncogene. Despite it being an oncogene, whether Id1 plays any prominent role in cancer cell metabolic reprograming is unknown. Here, we demonstrate that Id1 is strongly expressed in human and mouse liver tumors and in hepatocellular carcinoma (HCC) cell lines, whereas its expression is very low or undetectable in normal liver tissues. In HCC cells, Id1 expression is regulated by the MAPK/ERK pathway at the transcriptional level. Knockdown of Id1 suppressed aerobic glycolysis and glutaminolysis, suggesting that Id1 promotes a metabolic shift toward aerobic glycolysis. At the molecular level, Id1 mediates its metabolic effects by regulating the expression levels of c-Myc. Knockdown of Id1 resulted in down-regulation (∼75%) of c-Myc, whereas overexpression of Id1 strongly induced (3-fold) c-Myc levels. Interestingly, knockdown of c-Myc resulted in down-regulation (∼60%) of Id1, suggesting a positive feedback-loop regulatory mechanism between Id1 and c-Myc. Under anaerobic conditions, both Id1 and c-Myc are down-regulated (50–70%), and overexpression of oxygen-insensitive hypoxia-inducible factor 1α (Hif1α) or its downstream target Mxi1 resulted in a significant reduction

  11. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Sustainability of CD24 expression, cell proliferation and migration, cisplatin-resistance, and caspase-3 expression during mesenchymal-epithelial transition induced by the removal of TGF1 in A549 lung cancer cells.

    PubMed

    Kim, Seong-Kwan; Park, Jin-A; Zhang, Dan; Cho, Sang-Hyun; Yi, Hee; Cho, Soo-Min; Chang, Byung-Joon; Kim, Jin-Suk; Shim, Jae-Han; Abd El-Aty, A M; Shin, Ho-Chul

    2017-08-01

    Epithelial-mesenchymal transition (EMT) is a notable mechanism underlying cancer cell metastasis. Transforming growth factor β1 (TGF1) has been used to induce EMT; however, there is a lack of information regarding the role of TGF1 in mesenchymal-epithelial transition (MET). In the present study, EMT was induced in A549 lung cancer cells using TGF1 (TGF1-treated group) and MET was induced sequentially from the TGF1-treated group by removing the TGF1 (MET/return group). Untreated A549 lung cancer cells were used as a control. Characteristic features, including cancer stem cell markers [cluster of differentiation (CD)24, CD44 and CD133], cell proliferation and migration and diverse intracellular mechanisms, were observed in all groups. Using western blot analysis, the TGF1-treated group demonstrated increased vimentin and reduced E-cadherin expression, whereas the MET/return group demonstrated the opposite trend. Among cancer stem cell markers, the population of CD24 low cells was reduced in the TGF1-treated group. Furthermore, the G2/M phase cell cycle population, cisplatin-sensitivity, and cell proliferation and migration ability were increased in the TGF1-treated group. These features were unaltered in the MET/return group when compared to the TGF1-treated group. Immunoblotting revealed an increase in the levels of SMAD3, phosphorylated SMAD3, phosphorylated extracellular signal-regulated kinase and caspase-3, and a decrease in active caspase-3 levels in the TGF1-treated group. Increased caspase-3 and reduced active caspase-3 levels were observed in the MET/return group, similar to those in the TGF1-treated group; however, levels of other signalling proteins were unchanged compared with the control group. EMT induced by TGF1 was not preserved; however, stemness-associated properties (CD24 expression, caspase-3 expression, cell proliferation and cisplatin-resistance) were sustained following removal of TGF1.

  13. Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors.

    PubMed

    Uberti, Michelle A; Hague, Chris; Oller, Heide; Minneman, Kenneth P; Hall, Randy A

    2005-04-01

    The alpha1D-adrenergic receptor (alpha1D-AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote alpha1D-AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of alpha1D-AR at the cell surface: alpha1B-AR and beta2-AR. Confocal imaging confirmed that coexpression with beta2-AR resulted in translocation of alpha1D-AR from intracellular sites to the plasma membrane. Additionally, coimmunoprecipitation studies demonstrated that alpha1D-AR and beta2-AR specifically interact to form heterodimers when coexpressed in HEK-293 cells. Ligand binding studies revealed an increase in total alpha1D-AR binding sites upon coexpression with beta2-AR, but no apparent effect on the pharmacological properties of the receptors. In functional studies, coexpression with beta2-AR significantly enhanced the coupling of alpha1D-AR to norepinephrine-stimulated Ca2+ mobilization. Heterodimerization of beta2-AR with alpha1D-AR also conferred the ability of alpha1D-AR to cointernalize upon beta2-AR agonist stimulation, revealing a novel mechanism by which these different adrenergic receptor subtypes may regulate each other's activity. These findings demonstrate that the selective association of alpha1D-AR with other receptors is crucial for receptor surface expression and function and also shed light on a novel mechanism of cross talk between alpha1- and beta2-ARs that is mediated through heterodimerization and cross-internalization.

  14. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    PubMed

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  15. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells.

    PubMed

    Haraguchi, Misako; Sato, Masahiro; Ozawa, Masayuki

    2015-01-01

    Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT). During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO) by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  16. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function.

    PubMed

    Wang, Peng; Chen, Zhen; Meng, Zhi-Qiang; Fan, Jie; Luo, Jian-Min; Liang, Wang; Lin, Jun-Hua; Zhou, Zhen-Hua; Chen, Hao; Wang, Kun; Shen, Ye-Hua; Xu, Zu-De; Liu, Lu-Ming

    2009-09-01

    Ski used to be defined as an oncogene that contributes to the resistance of tumor cells to transforming growth factor-beta (TGF-beta)-induced growth arrest. As TGF-beta has a dual effect on tumor growth with both tumor-suppressing and -promoting activity depending on the stage of carcinogenesis and the cell type, the precise role of Ski in carcinogenesis remains unclear. In this study, we show that downregulation of Ski through lentivirus-mediated RNA interference decreases tumor growth both in vitro and in vivo, yet promotes cell invasiveness in vitro, and lung metastasis in vivo in the pancreatic cancer cell line SW1990, which contain wild-type Smad4 expression, and the BxPC3 cell line, which is Smad4 deficient. We also show that the downregulation of Ski increases TGF-beta-induced transcriptional activity, which is associated with increased TGF-beta-dependent Smad2/3 phosphorylation, and results in an altered expression profile of TGF-beta-inducible genes involved in metastasis, angiogenesis and cell proliferation and epithelial-mesenchymal transition. Immunohistochemical analysis of specimens from 71 patients with pancreatic adenocarcinoma showed a significant association between overexpression of Ski and decreased patient survival time (P = 0.0024). Our results suggest that Ski may act as a tumor proliferation-promoting factor or as a metastatic suppressor in human pancreatic cancer.

  17. Lethal Effect of CD3-Specific Antibody in Mice Deficient in TGF1 by Uncontrolled Flu-Like Syndrome1

    PubMed Central

    Perruche, Sylvain; Zhang, Pin; Maruyama, Takashi; Bluestone, Jeffrey A.; Saas, Philippe; Chen, WanJun

    2010-01-01

    CD3-specific Ab therapy results in a transient, self-limiting, cytokine-associated, flu-like syndrome in experimental animals and in patients, but the underlying mechanism for this spontaneous resolution remains elusive. By using an in vivo model of CD3-specific Ab-induced flu-like syndrome, we show in this paper that a single injection of sublethal dose of the Ab killed all TGF1−/− mice. The death of TGF1−/− mice was associated with occurrence of this uncontrolled flu-like syndrome, as demonstrated by a sustained storm of systemic inflammatory TNF and IFN-γ cytokines. We present evidence that deficiency of professional phagocytes to produce TGF1 after apoptotic T cell clearance may be responsible, together with hypersensitivity of T cells to both activation and apoptosis, for the uncontrolled inflammation. These findings indicate a key role for TGF1 and phagocytes in protecting the recipients from lethal inflammation and resolving the flu-like syndrome after CD3-specific Ab treatment. The study may also provide a novel molecular mechanism explaining the early death in TGF1−/− mice. PMID:19561097

  18. TGF1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*

    PubMed Central

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.

    2017-01-01

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF1/Smad3 signals suppressed endogenous glucose production. TGF1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811

  19. Kaempferol Suppresses Transforming Growth Factor-β1Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF1induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF1induced EMT and cell migration. Furthermore, Akt1 was required for TGF1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF1induced Akt1 phosphorylation. In summary, kaempferol blocks TGF1induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  20. Transforming growth factor-beta inhibits the expression of clock genes.

    PubMed

    Gast, Heidemarie; Gordic, Sonja; Petrzilka, Saskia; Lopez, Martin; Müller, Andreas; Gietl, Anton; Hock, Christoph; Birchler, Thomas; Fontana, Adriano

    2012-07-01

    Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients. © 2012 New York Academy of Sciences.

  1. Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition

    PubMed Central

    Law, Brittany A.; Carver, Wayne E.

    2013-01-01

    Background Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as Alcoholic Cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM and prior studies by this lab have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Methods Primary rat cardiac fibroblasts were cultured in the presence of ethanol and assayed for fibroblast activation by collagen gel contraction, alpha smooth muscle- actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I & III and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of of TGF-β in the response of cardiac fibroblasts to ethanol. Results Treatment of cardiac fibroblasts with ethanol at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the ethanol-induced fibroblast activation. Conclusions Ethanol treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by ethanol treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to ethanol. PMID:23528014

  2. Effects of Transforming Growth Factor Beta 1 in Cerebellar Development: Role in Synapse Formation

    PubMed Central

    Araujo, Ana P. B.; Diniz, Luan P.; Eller, Cristiane M.; de Matos, Beatriz G.; Martinez, Rodrigo; Gomes, Flávia C. A.

    2016-01-01

    Granule cells (GC) are the most numerous glutamatergic neurons in the cerebellar cortex and represent almost half of the neurons of the central nervous system. Despite recent advances, the mechanisms of how the glutamatergic synapses are formed in the cerebellum remain unclear. Among the TGF-β family, TGF-beta 1 (TGF1) has been described as a synaptogenic molecule in invertebrates and in the vertebrate peripheral nervous system. A recent paper from our group demonstrated that TGF1 increases the excitatory synapse formation in cortical neurons. Here, we investigated the role of TGF1 in glutamatergic cerebellar neurons. We showed that the expression profile of TGF1 and its receptor, TβRII, in the cerebellum is consistent with a role in synapse formation in vitro and in vivo. It is low in the early postnatal days (P1–P9), increases after postnatal day 12 (P12), and remains high until adulthood (P30). We also found that granule neurons express the TGF-β receptor mRNA and protein, suggesting that they may be responsive to the synaptogenic effect of TGF1. Treatment of granular cell cultures with TGF1 increased the number of glutamatergic excitatory synapses by 100%, as shown by immunocytochemistry assays for presynaptic (synaptophysin) and post-synaptic (PSD-95) proteins. This effect was dependent on TβRI activation because addition of a pharmacological inhibitor of TGF-β, SB-431542, impaired the formation of synapses between granular neurons. Together, these findings suggest that TGF1 has a specific key function in the cerebellum through regulation of excitatory synapse formation between granule neurons. PMID:27199658

  3. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  4. Silibinin inhibits the fibrotic responses induced by cigarette smoke via suppression of TGF1/Smad 2/3 signaling.

    PubMed

    Ko, Je-Won; Shin, Na-Rae; Park, Sung-Hyeuk; Lee, In-Chul; Ryu, Jung-Min; Kim, Ha-Jung; Cho, Young-Kwon; Kim, Jong-Choon; Shin, In-Sik

    2017-08-01

    Cigarette smoke (CS) is generally accepted as a major contributor to chronic obstructive pulmonary disease (COPD) which is characterized by chronic inflammation, fibrotic response, and airway obstruction. In this study, we investigated the preventive effects of silibinin, an active constitute of silymarin on CS and lipopolysaccharide (LPS) exposure-induced fibrotic response. Mice were exposed to CS for 1 h per day (8 cigarettes per day) for 4 weeks. On day 12 and 26, mice were treated with LPS intranasally. Silibinin (10 or 20 mg/kg) was administered orally 1 h before CS exposure. Silibinin markedly decreased the inflammatory cell count in the bronchoalveolar lavage fluid, and reduced levels of proinflammatory mediators. Silibinin suppressed CS + LPS-induced collagen deposition in lung tissue, as evidenced via immunohistochemistry and Masson's trichrome stain. Additionally, silibinin effectively inhibited CS + LPS-mediated expression of transforming growth factor-β1 (TGF1) and Smad 2/3 phosphorylation. Taken together, our data indicate that silibinin effectively inhibits the fibrotic response induced by CS + LPS exposure, possibly via suppression of TGF1/Smad 2/3 signaling, which results in reduced collagen deposition. These findings suggest that silibinin has therapeutic potential for the treatment of COPD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.

    PubMed

    Goodman, Craig A; McNally, Rachel M; Hoffmann, F Michael; Hornberger, Troy A

    2013-11-01

    Myostatin, a member of the TGF superfamily, is sufficient to induce skeletal muscle atrophy. Myostatin-induced atrophy is associated with increases in E3-ligase atrogin-1 expression and protein degradation and decreases in Akt/mechanistic target of rapamycin (mTOR) signaling and protein synthesis. Myostatin signaling activates the transcription factor Smad3 (Small Mothers Against Decapentaplegic), which has been shown to be necessary for myostatin-induced atrogin-1 expression and atrophy; however, it is not known whether Smad3 is sufficient to induce these events or whether Smad3 simply plays a permissive role. Thus, the aim of this study was to address these questions with an in vivo model. To accomplish this goal, in vivo transfection of plasmid DNA was used to create transient transgenic mouse skeletal muscles, and our results show for the first time that Smad3 expression is sufficient to stimulate atrogin-1 promoter activity, inhibit Akt/mTOR signaling and protein synthesis, and induce muscle fiber atrophy. Moreover, we propose that Akt/mTOR signaling is inhibited by a Smad3-induced decrease in microRNA-29 (miR-29) expression and a subsequent increase in the translation of phosphatase and tensin homolog (PTEN) mRNA. Smad3 is also sufficient to inhibit peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) promoter activity and to increase FoxO (Forkhead Box Protein, Subclass O)-mediated signaling and the promoter activity of plasminogen activator inhibitor 1 (PAI-1). Combined, this study provides the first evidence that Smad3 is sufficient to regulate many of the events associated with myostatin-induced atrophy and therefore suggests that Smad3 signaling may be a viable target for therapies aimed at preventing myostatin-induced muscle atrophy.

  6. TGF1 stimulates movement of renal proximal tubular epithelial cells in a three-dimensional cell culture via an autocrine TGF-β2 production.

    PubMed

    Luo, Deyi; Guan, Qiunong; Wang, Kunjie; Nguan, Christopher Y C; Du, Caigan

    2017-01-01

    TGF-βs are multifunctional cytokines, but their roles in human renal homeostasis are not fully understood. This study investigated the role of TGF1 in the movement of human renal proximal tubular epithelial cells (PTECs) in a three-dimensional (3D) model. HKC-8 cells, a human PTEC line, were grown in a 3D collagen culture system. Cell movement was observed under a microscope. The gene expression was examined using PCR Arrays or qRT-PCR, and protein levels by Western blot. Here, we showed that the tight junction structure formed between adjacent cells of a HKC-8 cell colony in 3D cultures, and TGF1 stimulated their movement, evidenced by the appearance of fingerlike pseudopodia in the leader cells at the edge of the colonies. The cell movement of these human PTECs was correlated with up-regulation of both MMP2 and MMP9 and down-regulation or inactivation of PLAUR and PTK2B. Analysis of TGF-β signaling targets confirmed autocrine production of TGF-β2 and its cleaving enzyme furin as well as SNAI1 by TGF1stimulation. Knockdown of TGF-β2 expression disrupted TGF1-stimulated PTEC invasiveness, which was correlated with the down-regulation of MMP2 and MMP9. In conclusion, the activation of TGF-β receptor autocrine signaling by up-regulated TGF-β2 may play a pivotal role in TGF1-induced human PTEC movement, which could be mediated at least by both MMP2 and MMP9. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    PubMed

    Huminiecki, Lukasz; Goldovsky, Leon; Freilich, Shiri; Moustakas, Aristidis; Ouzounis, Christos; Heldin, Carl-Henrik

    2009-02-03

    The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-beta (TGF-beta) pathway -- one of the fundamental and versatile metazoan signal transduction engines. After an investigation of 33 genomes, we show that the emergence of the TGF-beta pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-beta pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-beta pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Our results challenge the view of well-conserved developmental pathways. The TGF-beta signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.

  8. RAGE and TGF1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells

    PubMed Central

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF1 and RAGE signaling. RAGE and TGF1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF1 independent mechanism. Our findings raise the possibility that RAGE and TGF1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications. PMID:27015414

  9. RAGE and TGF1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    PubMed

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF1 and RAGE signaling. RAGE and TGF1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF1 independent mechanism. Our findings raise the possibility that RAGE and TGF1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.

  10. Effects of excimer laser irradiation on the expression of Th17, Treg, TGF-beta1, and IL-6 in patients with psoriasis vulgaris

    NASA Astrophysics Data System (ADS)

    Xiong, Guo-Xin; Li, Xin-Zhong

    2017-11-01

    The effects of laser irradiation on the expression of T helper 17 (Th17) and regulatory T (Treg) cells and their related cytokines, transforming growth factor beta 1 (TGF1) and interleukin-6 (IL-6), respectively, in the peripheral blood of patients with psoriasis vulgaris were investigated. 38 patients with psoriasis vulgaris in the stable state were selected as the treatment group that was treated twice a week for eight weeks. Another 38 healthy persons were chosen as the control group. Before and after treatment, the percentages of Th17 cells and Treg cells in the patients’ peripheral blood were detected using flow cytometry, the content of TGF1 and IL-6 in the patients’ sera were detected using enzyme-linked immunosorbent assay, and the extent and severity of lesions were determined by weighing the psoriasis area and severity index (PASI). After laser treatment, the percentage of Th17 cells, the Th17/Treg cell ratio and the level of IL-6 in the peripheral blood of patients with psoriasis in the treatment group were significantly lower than those of the same patients before the treatment (P  <  0.01), while the percentage of Treg and the content of TGF1 in the patients’ sera were significantly higher than before the treatment (P  <  0.01). The effective rate for laser irradiation of psoriasis vulgaris was 84.21%, and the PASI score was significantly lower (P  <  0.01). Excimer laser irradiation can positively affect the Th17/Treg cell ratio and the expression of related cytokines in the peripheral blood of patients with psoriasis vulgaris.

  11. Increased T cell recruitment to the central nervous system after Aβ1–42 immunization in Alzheimer’s mice overproducing TGF1

    PubMed Central

    Buckwalter, Marion S.; Coleman, Bronwen S.; Buttini, Manuel; Barbour, Robin; Schenk, Dale; Games, Dora; Seubert, Peter; Wyss-Coray, T

    2007-01-01

    Immunotherapy targeting the Aβ peptide is a novel therapy under investigation for the treatment of Alzheimer’s disease (AD). A clinical trial using Aβ1–42 (AN1792) as the immunogen was halted due to development of meningoencephalitis in a small number of patients. The cytokine TGF1 is a key modulator of immune responses that is increased in the brain in AD. We show here that local overexpression of TGF1 in the brain increases both meningeal and parenchymal T lymphocyte number. Furthermore, TGF1 overexpression in a mouse model for AD (APP mice) leads to development of further T cell infiltrates when mice were immunized at a young but not old age with AN1792. Notably, only mice overproducing both Aβ (APP mice) and TGF1 experienced a rise in T lymphocyte number after immunization. One third of infiltrating T cells were CD4 positive. We did not observe significant differences in B lymphocyte numbers in any of the genotypes or treatment groups. These results demonstrate that TGF1 overproduction in the brain can promote T cell infiltration, in particular after Aβ1–42 immunization. Likewise, levels of TGF1 or other immune factors in brains of AD patients may influence the response to Aβ1–42 immunization. PMID:17079673

  12. TGF1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology.

    PubMed

    Serralheiro, Pedro; Soares, Andreia; Costa Almeida, Carlos M; Verde, Ignacio

    2017-11-26

    Chronic venous insufficiency and varicose veins occur commonly in affluent countries and are a socioeconomic burden. However, there remains a relative lack of knowledge about venous pathophysiology. Various theories have been suggested, yet the molecular sequence of events is poorly understood. Transforming growth factor-beta one (TGF1) is a highly complex polypeptide with multifunctional properties that has an active role during embryonic development, in adult organ physiology and in the pathophysiology of major diseases, including cancer and various autoimmune, fibrotic and cardiovascular diseases. Therefore, an emphasis on understanding its signaling pathways (and possible disruptions) will be an essential requirement for a better comprehension and management of specific diseases. This review aims at shedding more light on venous pathophysiology by describing the TGF1 structure, function, activation and signaling, and providing an overview of how this growth factor and disturbances in its signaling pathway may contribute to specific pathological processes concerning the vessel wall which, in turn, may have a role in chronic venous insufficiency.

  13. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  14. TGF1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

    PubMed

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G

    2017-02-24

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF1/Smad3 signals suppressed endogenous glucose production. TGF1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. TGF1 downregulates StAR expression and decreases progesterone production through Smad3 and ERK1/2 signaling pathways in human granulosa cells.

    PubMed

    Fang, Lanlan; Chang, Hsun-Ming; Cheng, Jung-Chien; Leung, Peter C K; Sun, Ying-Pu

    2014-11-01

    Regulation of progesterone production in granulosa cells is important for normal reproductive functions. Steroidogenic acute regulatory protein (StAR) is recognized as the key regulatory protein involved in the rate-limiting step of steroidogenesis. TGF1 protein is detected in human follicular fluid, and TGF1 and its receptors are expressed in human granulosa cells. However, the functional role of TGF1 in the regulation of StAR expression and progesterone production in human granulosa cells remains unknown. Our objective was to investigate the effects of TGF1 on StAR expression and progesterone production in human granulosa cells. SVOG cells are human granulosa cells that were obtained from women undergoing in vitro fertilization and immortalized with SV40 large T antigen. SVOG cells were used to investigate the effects of TGF1 on StAR expression and progesterone production at an academic research center. Levels of mRNA and protein were examined by RT-qPCR and western blotting, respectively. The accumulation levels of progesterone were measured by enzyme-linked immunosorbent assay (ELISA). TGF1 treatment downregulated StAR expression and decreased progesterone production. The suppressive effects of TGF1 on StAR expression and progesterone production were abolished by the inhibition of TGF-β type I receptor. In addition, treatment with TGF1 activated the Smad2/3 and ERK1/2 signaling pathways. The inhibition of the Smad3 and ERK1/2 signaling pathways attenuated the TGF1-induced downregulation of StAR expression and progesterone production. TGF1 downregulated StAR expression and decreased progesterone production by activating the Smad3 and ERK1/2 signaling pathways in human granulosa cells.

  16. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers.

    PubMed

    De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini

    2017-01-10

    The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by

  17. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    PubMed

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  18. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF1 signaling in a mouse model of osteoarthritis.

    PubMed

    Chen, Rebecca; Mian, Michelle; Fu, Martin; Zhao, Jing Ying; Yang, Liang; Li, Yefu; Xu, Lin

    2015-11-01

    Transforming growth factor beta 1 (TGF1) is implicated in osteoarthritis. We therefore studied the role of TGF1 signaling in the development of osteoarthritis in a developmental stage-dependent manner. Three different mouse models were investigated. First, the Tgf-β receptor II (Tgfbr2) was specifically removed from the mature cartilage of joints. Tgfbr2-deficient mice were grown to 12 months of age and were then euthanized for collection of knee and temporomandibular joints. Second, Tgfbr2-deficient mice were subjected to destabilization of the medial meniscus (DMM) surgery. Knee joints were then collected from the mice at 8 and 16 weeks after the surgery. Third, wild-type mice were subjected to DMM at the age of 8 weeks. Immediately after the surgery, these mice were treated with the Tgfbr2 inhibitor losartan for 8 weeks and then euthanized for collection of knee joints. All joints were characterized for evidences of articular cartilage degeneration. Initiation or acceleration of articular cartilage degeneration was not observed by the genetic inactivation of Tgfbr2 in the joints at the age of 12 months. In fact, the removal of Tgfbr2 and treatment with losartan both delayed the progression of articular cartilage degeneration induced by DMM compared with control littermates. Therefore, we conclude that inhibition of Tgf1 signaling protects adult knee joints in mice against the development of osteoarthritis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Attenuation of the Progression of Articular Cartilage Degeneration by Inhibition of TGF1 Signaling in a Mouse Model of Osteoarthritis

    PubMed Central

    Chen, Rebecca; Mian, Michelle; Fu, Martin; Zhao, Jing Ying; Yang, Liang; Li, Yefu; Xu, Lin

    2016-01-01

    Transforming growth factor beta 1 (TGF1) is implicated in osteoarthritis. We therefore studied the role of TGF1 signaling in the development of osteoarthritis in a developmental stage-dependent manner. Three different mouse models were investigated. First, the Tgf-β receptor II (Tgfbr2) was specifically removed from the mature cartilage of joints. Tgfbr2-deficient mice were grown to 12 months of age and were then euthanized for collection of knee and temporomandibular joints. Second, Tgfbr2-deficient mice were subjected to destabilization of the medial meniscus (DMM) surgery. Knee joints were then collected from the mice at 8 and 16 weeks after the surgery. Third, wild-type mice were subjected to DMM at the age of 8 weeks. Immediately after the surgery, these mice were treated with the Tgfbr2 inhibitor losartan for 8 weeks and then euthanized for collection of knee joints. All joints were characterized for evidences of articular cartilage degeneration. Initiation or acceleration of articular cartilage degeneration was not observed by the genetic inactivation of Tgfbr2 in the joints at the age of 12 months. In fact, the removal of Tgfbr2 and treatment with losartan both delayed the progression of articular cartilage degeneration induced by DMM compared with control littermates. Therefore, we conclude that inhibition of Tgf1 signaling protects adult knee joints in mice against the development of osteoarthritis. PMID:26355014

  20. Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF-β Signaling

    PubMed Central

    Fullerton, Paul T.; Creighton, Chad J.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer death in the United States. The TGF-β signaling protein SMAD family member 4 is lost in 60% of PDAC, and this has been associated with poorer prognosis. However, the mechanisms by which SMAD4 loss promotes PDAC development are not fully understood. We expressed SMAD4 in human PDAC cell lines BxPC3 and CFPAC1 by selection of stable clones containing an inducible SMAD4 tetracycline inducible expression system construct. After 24 hours of SMAD4 expression, TGF-β signaling-dependent G1 arrest was observed in BxPC3 cells with an increase in the G1 phase fraction from 48.9% to 71.5%. Inhibition of cyclin-dependent kinase inhibitor 1A by small interfering RNA eliminated the antiproliferative effect, indicating that up-regulation of cyclin-dependent kinase inhibitor 1A/p21 by TGF-β signaling is necessary for the phenotype. SMAD4 expression had no impact on invasion in BxPC3 cells, but reduced migration. Microarray analysis of gene expression at 8, 24, and 48 hours after SMAD4 expression characterized the regulatory impact of SMAD4 expression in a SMAD4-null PDAC cell line and identified novel targets of TGF-β signaling. Among the novel TGF-β targets identified are anthrax toxin receptor 2 (3.58× at 8 h), tubulin, β-3 class III (7.35× at 8 h), cell migration inducing protein, hyaluronan binding (8.07× at 8 h), IL-1 receptor-like 1 (0.403× at 8 h), regulator of G protein signaling 4 (0.293× at 8 h), and THAP domain containing 11 (0.262× at 8 h). The gene expression changes we observed upon restoration of TGF-β signaling provide numerous new targets for future investigations into PDAC biology and progression. PMID:26284758

  1. An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro.

    PubMed

    Li, Wei; Wang, Hang; Kuang, Chun-Yan; Zhu, Jin-Kun; Yu, Yang; Qin, Zhe-Xue; Liu, Jie; Huang, Lan

    2012-04-01

    The enhancement of re-endothelialisation is a critical therapeutic option for repairing injured blood vessels. Endothelial progenitor cells (EPCs) are the major source of cells that participate in endothelium repair and contribute to re-endothelialisation by reducing neointima formation after vascular injury. The over-expression of the inhibitor of differentiation or DNA binding 1 (Id1) significantly improved EPC proliferation. This study aimed to investigate the effects of Id1 on the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor kappa B (NFκB)/survivin signalling pathway and its significance in promoting EPC proliferation in vitro. Spleen-derived EPCs were cultured as previously described. Id1 was presented at low levels in EPCs, and was rapidly up-regulated by stimulation with vascular endothelial growth factor. We demonstrated that transient transfection of Id1 into EPCs activated the PI3K/Akt/NFκB/survivin signalling pathway and promoted EPC proliferation. The proliferation of EPCs was extensively inhibited by silencing of endogenous Id1, and knockdown of Id1 expression led to suppression of PI3K/Akt/NFκB/survivin signalling pathway in EPCs. In addition, blockade by the PI3K-specific inhibitor LY294002, Akt inhibitor, the NFκB inhibitor BAY 11-7082, the survivin inhibitor Curcumin, or the survivin inhibitor YM155 reduced the effects of Id1 transfection. These results suggest that the Id1/PI3K/Akt/NFκB/survivin signalling pathway plays a critical role in EPC proliferation. The Id1/PI3K/Akt/NFκB/survivin signalling pathway may represent a novel therapeutic target in the prevention of restenosis after vascular injury.

  2. Nitric Oxide Modulates TGF-β–Directive Signals To Suppress Foxp3+ Regulatory T Cell Differentiation and Potentiate Th1 Development

    PubMed Central

    Lee, Seung-Woo; Choi, Heonsik; Eun, So-Young; Fukuyama, Satoshi; Croft, Michael

    2011-01-01

    TGF-β can induce Foxp3+ inducible regulatory T cells (Treg) and also synergize with IL-6 and IL-4 to induce Th17 and Th9 cells. We now report that NO modulates TGF-β activity away from Treg but toward the Th1 lineage. NO potentiated Th1 differentiation in the presence of TGF-β in both IL-12–independent and –dependent fashions by augmenting IFN-γ–activated STAT-1 and T-bet. Differentiation into Treg, Th1, and Th17 lineages could be modulated by NO competing with other cofactors, such as IL-6 and retinoic acid. NO antagonized IL-6 to block TGF-β–directed Th17 differentiation, and together with IL-6, NO suppressed Treg development induced by TGF-β and retinoic acid. Furthermore, we show that physiologically produced NO from TNF and inducible NO synthase-producing dendritic cells can contribute to Th1 development predominating over Treg development through a synergistic activity induced when these cells cocluster with conventional dendritic cells presenting Ag to naive Th cells. This illustrates that NO is another cofactor allowing TGF-β to participate in development of multiple Th lineages and suggests a new mechanism by which NO, which is associated with protection against intracellular pathogens, might maintain effective Th1 immunity. PMID:21555530

  3. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.

    PubMed

    Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique

    2003-01-03

    Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.

  4. Interleukin-1beta gene polymorphisms in Taiwanese patients with gout.

    PubMed

    Chen, Man-Ling; Huang, Chung-Ming; Tsai, Chang-Hai; Tsai, Fuu-Jen

    2005-04-01

    The purpose of this study was to examine whether interleukin-1 beta (IL-1beta) promoter and exon 5 gene polymorphisms are markers of susceptibility or clinical manifestations in Taiwanese patients with gout. The study included 196 patients in addition to 103 unrelated healthy control subjects living in central Taiwan. From genomic DNA, polymorphisms of the gene for IL-1beta promoter and IL-1beta exon 5 were typed. Allelic frequencies were compared between the two groups, and the relationship between allelic frequencies and clinical manifestations of gout was evaluated. No significant differences were observed in the allelic frequencies of the IL-1beta promoter between patients with gout and healthy control subjects. Additionally, we did not detect any association of the IL-1beta promoter genotype with the clinical and laboratory profiles of gout patients. However, there was a significant difference between the two groups in terms of hypertriglyceridemia (P=0.0004, chi(2)=12.52, OR 7.14, 95%CI 0.012-0.22). There was also a significant difference in the genotype of IL-1beta exon 5 polymorphism between patients with and without hypertriglyceridemia. Results of the present study suggest that polymorphisms of the IL-1beta promoter and IL-1beta exon 5 are not related to gout patients in central Taiwan.

  5. Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition.

    PubMed

    Law, Brittany A; Carver, Wayne E

    2013-08-01

    Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as alcoholic cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM, and prior studies by this laboratory have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date, there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Primary rat cardiac fibroblasts were cultured in the presence of ethanol (EtOH) and assayed for fibroblast activation by collagen gel contraction, alpha-smooth muscle actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I and III, and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of TGF-β in the response of cardiac fibroblasts to EtOH. Treatment for cardiac fibroblasts with EtOH at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the EtOH-induced fibroblast activation. EtOH treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by EtOH treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to EtOH. Copyright © 2013 by the Research Society on Alcoholism.

  6. TGF1-Mediated Differentiation of Fibroblasts Is Associated with Increased Mitochondrial Content and Cellular Respiration

    PubMed Central

    Negmadjanov, Ulugbek; Godic, Zarko; Rizvi, Farhan; Emelyanova, Larisa; Ross, Gracious; Richards, John; Holmuhamedov, Ekhson L.; Jahangir, Arshad

    2015-01-01

    Objectivs Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts. Methods Cultured NIH/3T3 mouse fibroblasts treated with TGF1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit. Results Treatment with TGF1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF1 (2.52 ± 0.11 RU). TGF1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells

  7. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β expression

    PubMed Central

    Hou, Chun; Miao, Yong; Wang, Jin; Wang, Xue; Chen, Chao-Yue; Hu, Zhi-Qi

    2015-01-01

    , MMP-2 and MMP-9, play important roles in hair cycle, and this could be mediated by induced expression of VEGF, IGF-1, and TGF-β. PMID:26451090

  8. Mutual regulation of TGF1, TβRII and ErbB receptors expression in human thyroid carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincione, Gabriella, E-mail: g.mincione@unich.it; Center of Excellence on Aging, Ce.S.I., ‘G. d'Annunzio’ University Foundation, Chieti; Tarantelli, Chiara

    2014-09-10

    The role of EGF and TGF1 in thyroid cancer is still not clearly defined. TGF1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC andmore » FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF1 treatment in follicular thyroid carcinoma cells. • EGF and TGF1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.« less

  9. Meprin A and meprin {alpha} generate biologically functional IL-1{beta} from pro-IL-1{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, Christian; University of Arkansas for Medical Sciences, Department of Medicine, Little Rock, AR 72205; Haun, Randy S.

    The present study demonstrates that both oligomeric metalloendopeptidase meprin A purified from kidney cortex and recombinant meprin {alpha} are capable of generating biologically active IL-1{beta} from its precursor pro-IL-1{beta}. Amino-acid sequencing analysis reveals that meprin A and meprin {alpha} cleave pro-IL-1{beta} at the His{sup 115}-Asp{sup 116} bond, which is one amino acid N-terminal to the caspase-1 cleavage site and five amino acids C-terminal to the meprin {beta} site. The biological activity of the pro-IL-1{beta} cleaved product produced by meprin A, determined by proliferative response of helper T-cells, was 3-fold higher to that of the IL-1{beta} product produced by meprin {beta}more » or caspase-1. In a mouse model of sepsis induced by cecal ligation puncture that results in elevated levels of serum IL-1{beta}, meprin inhibitor actinonin significantly reduces levels of serum IL-1{beta}. Meprin A and meprin {alpha} may therefore play a critical role in the production of active IL-1{beta} during inflammation and tissue injury.« less

  10. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway.

    PubMed

    Huang, Xin-Zhong; Wen, Donghai; Zhang, Min; Xie, Qionghong; Ma, Leting; Guan, Yi; Ren, Yueheng; Chen, Jing; Hao, Chuan-Ming

    2014-05-01

    TGF-β signaling plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). Smad3, a transcription factor, is a critical fibrogenic mediator of TGF-β. Sirt1 is a NAD(+) -dependent deacetylase that has been reported to modify a number of transcription factors to exert certain beneficial health effects. This study examined the effect of Sirt1 on Smad3 and its role in CKD. Resveratrol attenuated the expression of extracelluar matrix proteins in both the remnant kidney of 5/6th nephrectomized rats and cultured mesangial cells (MMCs) exposed to TGF1. The effect of resveratrol was substantially attenuated in cultured MMCs for which Sirt1 had been knocked down by an shRNA lentivirus. Overexpression of Sirt1 attenuated TGF1-induced extracelluar matrix expression in cultured cells. Co-immunoprecipitation studies suggested that Sirt1 could bind with Smad3. Resveratrol treatment enhanced this binding and reduced acetylation levels of Smad3. Resveratrol inhibited the transcription activity of Smad3. Knockdown of Sirt1 increased acetylated Smad3 and substantially enhanced the transcriptional activity following TGF1. Finally, Sirt1 deficiency aggravated renal function damage and markedly enhanced fibrosis in the remnant kidney of 5/6 nephrectomized mice. Taken together, these results identify Sirt1 as an important protective factor for renal fibrosis in a CKD rodent model, and the protective function of Sirt1 is attributable to its action on TGF-β/Smad3 signaling. Therefore, we suggest that Sirt1 may be a potential therapeutic target for the treatment of CKD. © 2013 Wiley Periodicals, Inc.

  11. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation.

    PubMed

    Prunier, Celine; Pessah, Marcia; Ferrand, Nathalie; Seo, Su Ryeon; Howe, Philip; Atfi, Azeddine

    2003-07-11

    The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.

  12. TGF1 (Transforming Growth Factor-β1) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity.

    PubMed

    Salvarani, Nicolò; Maguy, Ange; De Simone, Stefano A; Miragoli, Michele; Jousset, Florian; Rohr, Stephan

    2017-05-01

    TGF1 (transforming growth factor-β 1 ) importantly contributes to cardiac fibrosis by controlling differentiation, migration, and collagen secretion of cardiac myofibroblasts. It is still elusive, however, to which extent TGF1 alters the electrophysiological phenotype of myofibroblasts and cardiomyocytes and whether it affects proarrhythmic myofibroblast-cardiomyocyte crosstalk observed in vitro. Patch-clamp recordings of cultured neonatal rat ventricular myofibroblasts revealed that TGF1 , applied for 24 to 48 hours at clinically relevant concentrations (≤2.5 ng/mL), causes substantial membrane depolarization concomitant with a several-fold increase of transmembrane currents. Transcriptome analysis revealed TGF1 -dependent changes in 29 of 63 ion channel/pump/connexin transcripts, indicating a pleiotropic effect on the electrical phenotype of myofibroblasts. Whereas not affecting cardiomyocyte membrane potentials and cardiomyocyte-cardiomyocyte gap junctional coupling, TGF1 depolarized cardiomyocytes coupled to myofibroblasts by ≈20 mV and increased gap junctional coupling between myofibroblasts and cardiomyocytes >5-fold as reflected by elevated connexin 43 and consortin transcripts. TGF1 -dependent cardiomyocyte depolarization resulted from electrotonic crosstalk with myofibroblasts as demonstrated by immediate normalization of cardiomyocyte electrophysiology after targeted disruption of coupled myofibroblasts and by cessation of ectopic activity of cardiomyocytes coupled to myofibroblasts during pharmacological gap junctional uncoupling. In cardiac fibrosis models exhibiting slow conduction and ectopic activity, block of TGF1 signaling completely abolished both arrhythmogenic conditions. TGF1 profoundly alters the electrophysiological phenotype of cardiac myofibroblasts. Apart from possibly contributing to the control of cell function in general, the changes proved to be pivotal for proarrhythmic myofibroblast

  13. Regulation of the membrane mucin Muc4 in corneal epithelial cells by proteosomal degradation and TGF-beta.

    PubMed

    Lomako, Joseph; Lomako, Wieslawa M; Carothers Carraway, Coralie A; Carraway, Kermit L

    2010-04-01

    MUC4 is a heterodimeric membrane mucin, composed of a mucin subunit ASGP-1 (MUC4alpha) and a transmembrane subunit ASGP-2 (MUC4beta), which has been implicated in the protection of epithelial cell surfaces. In the rat stratified corneal epithelium Muc4 is found predominantly in the most superficial cell layers. Since previous studies in other tissues have shown that Muc4 is regulated by TGF-beta via a proteosomal degradation mechanism, we investigated the regulation of corneal Muc4 in stratified cultures of corneal epithelial cells. Application of proteosome or processing inhibitors led to increases in levels of Muc4, particularly in the basal and intermediate levels of the stratified cultures. These changes were accompanied by increases in Muc4 ubiquitination, chaperone association and incorporation into intracellular aggresomes. In contrast, treatment with TGF-beta resulted in reduced levels of Muc4, which were reversed by proteosome inhibition. The results support a model in which Muc4 precursor is synthesized in all layers of the corneal epithelium, but Muc4 is degraded in basal and intermediate layers by a proteosomal mechanism at least partly dependent on TGF-beta inhibition of Muc4 processing. J. Cell. Physiol. 223: 209-214, 2010. (c) 2009 Wiley-Liss, Inc.

  14. Transforming growth factor beta-1 expression in macrophages of human chronic periapical diseases.

    PubMed

    Liang, Z-Z; Li, J; Huang, S-G

    2017-03-30

    The objective of this study was to observe the distribution of macrophages (MPs) expressing transforming growth factor beta-1 (TGF1) in tissue samples from patients with different human chronic periapical diseases. In this study, samples were collected from 75 volunteers, who were divided into three groups according to classified standards, namely, healthy control (N = 25), periapical granuloma (N = 25), and periapical cyst (N = 25). The samples were fixed in 10% buffered formalin for more than 48 h, dehydrated, embedded, and stained with hematoxylin and eosin for histopathology. Double immunofluorescence was conducted to analyze the expression of TGF-β-CD14 double-positive MPs in periapical tissues. The number of double-positive cells (cells/mm 2 ) were significantly higher in the chronic periapical disease tissues (P < 0.01) compared to that in the control tissue; in addition, the density of TGF1-CD14 double positive cells was significantly higher in the periapical cyst group than in the periapical granuloma group (P < 0.01). The number of TGF1 expressing macrophages varied with human chronic periapical diseases. The TGF1-CD14 double-positive cells might play an important role in the pathology of human chronic periapical diseases.

  15. Luteolin attenuates TGF1-induced epithelial-mesenchymal transition of lung cancer cells by interfering in the PI3K/Akt-NF-κB-Snail pathway.

    PubMed

    Chen, Kun-Chieh; Chen, Chiu-Yuan; Lin, Chih-Ru; Lin, Chih-Ju; Yang, Tsung-Ying; Chen, Tzu-Hsiu; Wu, Li-Chen; Wu, Chun-Chi

    2013-12-05

    Luteolin is a natural flavonoid that possesses a variety of pharmacological activities, such as anti-inflammatory and anti-cancer abilities. Whether luteolin regulates the transformation ability of lung cancer cells remains unclear. The current study aims to uncover the effects and underlying mechanisms of luteolin in regulation of and epithelial-mesenchymal transition of lung cancer cells. The lung adenocarcinoma A549 cells were used in this experiment; the cells were pretreated with luteolin followed by administration with TGF1. The expression levels of various cadherin and related upstream regulatory modules were examined. Pretreatment of luteolin prevented the morphological change and downregulation of E-cadherin of A549 cells induced by TGF1. In addition, the activation of PI3K-Akt-IκBa-NF-κB-Snail pathway which leads to the decline of E-cadherin induced by TGF1 was also attenuated under the pretreatment of luteolin. We provide the mechanisms about how luteolin attenuated the epithelial-mesenchymal transition of A549 lung cancer cells induced by TGF1. This finding will strengthen the anti-cancer effects of flavonoid compounds via the regulation of migration/invasion and EMT ability of various cancer cells. © 2013.

  16. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

    PubMed

    Baldwin, Rae Lynn; Tran, Hang; Karlan, Beth Y

    2003-03-15

    Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to determine the mechanisms of TGF-beta resistance. To simulate in vivo responses to TGF-beta, primary cultures derived from normal human ovarian surface epithelium (HOSE) and from ovarian carcinomas (CSOC) were grown on collagen I gel, the predominant matrix molecule in the ovarian tumor milieu. When treated with 5 ng/ml TGF-beta for 72 h, HOSE (n = 11) proliferation was inhibited by 20 +/- 21% on average. In contrast, CSOC (n = 10) proliferation was stimulated 5 +/- 10% in response to TGF-beta (a statistically significant difference in response when compared with HOSE; P = 0.001). To dissect the TGF-beta/Smad signaling pathway we used a quantitative RNase protection assay (RPA) for measuring mRNA levels of TGF-beta pathway components in 20 HOSE and 20 CSOC cultures. Basal mRNA levels of TGF-beta receptors I and II, downstream signaling components Smad2, 3, 4, 6, 7, and the transcriptional corepressors Ski and SnoN did not show a statistically significant difference between HOSE and CSOC, and cannot explain their differential susceptibility to TGF-beta-induced cell cycle arrest. To assess functional differences of the TGF-beta pathway in TGF-beta-sensitive HOSE and TGF-beta-resistant CSOC, we measured Smad2/4 and 3/4 complex induction after TGF-beta treatment. HOSE and CSOC showed equivalent Smad2/4 and 3/4 complex induction after TGF-beta exposure for 0, 0.5, 2, and 4 h. It has been proposed that SnoN and Ski are corepressors of the TGF-beta/Smad pathway and undergo TGF-beta-induced degradation followed by reinduction of SnoN mRNA. However, our data show equivalent SnoN degradation

  17. Specific α7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF1/Smad3 pathway.

    PubMed

    Yang, Yong-Hua; Fang, Huan-Le; Zhao, Ming; Wei, Xiang-Lan; Zhang, Ning; Wang, Shun; Lu, Yi; Yu, Xiao-Jiang; Sun, Lei; He, Xi; Li, Dong-Ling; Liu, Jin-Jun; Zang, Wei-Jin

    2017-12-01

    It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor β1 (TGF1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases. © 2017 John Wiley & Sons Australia, Ltd.

  18. Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar: a preliminary report.

    PubMed

    Xiao, Zhibo; Zhang, Fengmin; Lin, Weibin; Zhang, Miaobo; Liu, Ying

    2010-08-01

    Hypertrophic scar is a common dermal disease. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Hence, alternatives are needed. Recent basic and clinical research has shown that botulinum toxin type A (BTXA) has antihypertrophic scar properties but the molecular mechanism for this action is unknown. The aim of this study was to explore the effect of BTXA on transforming growth factor beta1 (TGF-beta1) in fibroblasts derived from hypertrophic scar and further elucidate its actual mechanism. Fibroblasts were isolated from tissue specimens of hypertrophic scar. Fibroblasts were treated with BTXA and the difference in proliferation between treated and nontreated cells was analyzed through the MTT method from the first to the fifth day after treatment. Proteins of TGF-beta1 were checked using ELISA in fibroblasts with BTXA and without BTXA from the first to the fifth day. The growth of the fibroblast treated with BTXA was obviously slower than that of the fibroblast without BTXA treatment (p < 0.01), which showed that BTXA effectively inhibited the growth of fibroblasts. Proteins of TGF-beta1 between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (p < 0.01). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from hypertrophic scar and in turn caused a decrease in TGF-beta1 protein, indicating that BTXA-based therapies for hypertrophic scar are promising and worth investigating further.

  19. Mechanical Force-induced TGFB1 Increases Expression of SOST/POSTN by hPDL Cells.

    PubMed

    Manokawinchoke, J; Limjeerajarus, N; Limjeerajarus, C; Sastravaha, P; Everts, V; Pavasant, P

    2015-07-01

    The aim of this study was to investigate the response of human periodontal ligament (hPDL) fibroblasts to an intermittent compressive force and its effect on the expression of SOST, POSTN, and TGFB1. A computerized cell compressive force loading apparatus was introduced, and hPDL cells were subjected to intermittent compressive force. The changes in messenger RNA (mRNA) and protein expression were monitored by real-time polymerase chain reaction and Western blot analysis, respectively. An increased expression of SOST, POSTN, and TGFB1 was observed in a time-dependent fashion. Addition of cycloheximide, a transforming growth factor (TGF)-β inhibitor (SB431542), or a neutralizing antibody against TGF1 attenuated the force-induced expression of SOST and POSTN as well as sclerostin and periostin, indicating a role of TGF1 in the pressure-induced expression of these proteins. Enzyme-linked immunosorbent assay analysis revealed an increased level of TGF1 in the cell extracts but not in the medium, suggesting that intermittent compressive force promoted the accumulation of TGF1 in the cells or their surrounding matrix. In conclusion, an intermittent compressive force regulates SOST/POSTN expression by hPDL cells via the TGF1 signaling pathway. Since these proteins play important roles in the homeostasis of the periodontal tissue, our results indicate the importance of masticatory forces in this process. © International & American Associations for Dental Research 2015.

  20. Effects of TGF1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    PubMed

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF1 were used as controls. The CCK8 method was adopted to detect the effect of TGF1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.